
An Extensible Workflow Design Kit

Markus Bon, Jürgen Zimmermann
Universität Kaiserslautern

(bon, jnzimmer)@informatik.uni-kl.de

Abstract: Using workflows is a quite convenient matter. The right piece of work is
done at the right time by the right person. Unfortunately, many workflow manage-
ment systems are tailored to specific tasks and (in spite of nice GUIs) hard to handle
for non-IT-specialists. However, most of the analysts/designers are non-IT-people.
In this paper, we introduce a mechanism which provides the possibility of building
workflow systems “as needed” in a very flexible way. We present a macro compo-
nent offering building blocks to the workflow designer, so he may easily compose
a workflow by adapting predefined elements. New building blocks may be added
by the IT specialists on demand.

keywords: Workflow, extensibility, macros

1. Introduction & Motivation
Workflow management has grown to everybody’s attention, as it supports the execution
and coordination of complex business processes in a handy manner. Most business proc-
esses may be structured very well, but nevertheless, producing an adequate description is
non an easy task to perform, mainly because of the large amount of steps that have to be
accomplished in the modelling process. As more and more workflow management sys-
tems (WfMS) are available ([7], [8], [9], [10]), the fact that a common workflow model
is missing becomes obvious. Where a given system and its workflow model prevail in a
primary target domain (e. g., office automation), they fail or become hard to utilize in an-
other one, e. g., manufacturing, due to deficiencies in their workflow model.

A number of organizations joined the “Workflow Management Coalition” (WfMC),
which tries to establish some common standards for WfMSs [11]. Most of these standards
origin from analysing and merging the concepts found in existing WfMSs. As a result, a
“reference model” for a WfMS has been established, which consists of build-time tools,
a runtime environment, and a user-interaction abstraction.

For the definition of workflows some kind of workflow definition language (WDL) is pro-
vided by the WfMSs. Although these languages are sufficient for representing a business
process as a workflow, they are not very comfortable to use. Complex dependencies have
to be expressed with simple constructs. Unfortunately, knowledge about business proc-
esses is provided by employees which are no trained IT-people. Asking them to describe
the process using the WDL is like demanding a bookkeeper to write the software he needs
for work. On the other hand, the IT-people knowing how to use the WDL have no detailed
knowledge about the business processes. Therefore, an extended WDL is needed which
may easily be used by non-IT-people, powerful enough to express complex dependencies
in a simple way, easy to be tailored for special interests and extendible for further tasks
unknown by now.
1



In short, a useful WDL has to meet the following demands:

• easy to use and to maintain

• expressive power

• extensible

• adaptable

• independent of underlying WfMS

Offering these properties, the WDL is likely to be accepted by non-IT-people, as they may
focus on their actual job – to build an appropriate representation of a real life process –
without struggling with cryptic languages. In fact, they get exactly the language they
want. Being independent of the actually used WfMS, the modelled workflows have not to
be changed even if the WFMS is exchanged. On the other hand, the IT-people may con-
centrate on the technical aspects like implementing a proper mapping of the macro lan-
guage to the WDL provided by the underlying WfMS(s). Therefore, everybody does the
job he is qualified for.

The Arktis (A reliable kernel for technical information systems) approach used in our own
prototypical WfMS (see Figure 1) is to provide an extensible workflow model consisting
of building blocks (“macros”) for workflows and methods to combine them. The macros
are described in an abstract manner, only their functional interface is known, implemen-
tation details are hidden to the engineers who specify the workflows. The combination
methods for macros enforce sound macro usage in workflow definitions. The implemen-
tation of the macros and their combination methods lie in the responsibility of the IT-spe-
cialist. Furthermore, using macros hides the WfMS actually used. Even though the
underlying WfMS is changed, the workflow definition using macros may remain unmodi-
fied.

WfMS-1

Arktis Macros

Arktis Workflow

WfMS-n

engineers

IT specialists

uses

implemented by

workflow definition layer

macro layer

implementation layer

design

implementation

Figure 1 The multiple layers of Arktis
2



As different Wf-designers frequently identify different building blocks or combination
methods as essential for the way they describe their workflows, extensibility is extremely
important for this approach to be accepted. Therefore, the building blocks are not hard-
coded in the Arktis approach, but are provided by a macro component. Hence, they are
configurable and extensible at any time, which leads to a high degree of adaptability for
easy deployment and refinement of workflows in different domains. The macros them-
selves can have algorithmic elements, so that an entire problem class can be subsumed by
one macro. Given the macros, everything (simple or complex) needed by a Wf-designer
(even IT-specialist) can be pre-build by a few IT-specialists.

In analogy to the previously mentioned programming languages, the macro component al-
lows for new combinations of existing macros without exposing the implementation de-
tails. In addition, it facilitates the introduction of new macros needed to face (dynamically
occurring) special problems which cannot be solved with the existing macros. Conse-
quently, the collection of all available macros forms a new WDL, which meets the de-
mands we stated earlier.

In this paper, we concentrate on the macro abstraction and its implementation in the macro
component. We describe the abstractions provided by macros along with a definition lan-
guage for macros. Before we give a conclusion and an outlook, we refer to some related
work.

2. Macro Abstraction

The macro component — the server which provides the macro abstraction — is one of the
most important parts of the Arktis architecture with respect to flexibility, reusability and
expressive power. It offers a set of building blocks which can easily be used without both-
ering about implementation details. All the analyst/workflow designer has to do is to se-
lect appropriate macros and adjust the parameters. No IT-specific knowledge is
necessary.

In order to accomplish this, the macro component must at first abstract from implementa-
tion details of the underlying workflow engine, so that the workflow designer has only to
deal with one workflow definition language, namely the one provided by the macro com-
ponent. When for example the workflow designer wants to express alternative execution
paths in the workflow design, he just uses a design element “IF” and adjusts the parame-
ters accordingly, regardless of the target workflow engine and the design constructs of-
fered by this engine.

But how do we identify those design elements? Figure 2a shows a short excerpt of a work-
flow instance. Using the value of CUR, an existing customer number is searched or a new
one is created, respectively. In the next step, this customer number is used to decide how
to proceed. Obviously, the two IF-blocks are very similar to each other, so we extract the
common elements and offer them as a template to be adopted by passing adequate param-
eters. These templates are called macro bodies, the instantiation is named macro. Macro
bodies are workflow modules which may be used in a very flexible way. Nevertheless,
they differ from sub-workflows in a fundamental point: macros describe the inner struc-
3



ture of a workflow, like e. g., the flow of control or the flow of data, whereas sub-work-
flows can be used as predefined building blocks within this structural description. Most
macros just model exactly one aspect of a workflow definition, for example the flow of
control, the flow of data or organizational matters. This is supported by the observation
that these aspects may often be modelled more or less independently from each other [6].
There are only a few exceptions: the crossing points between the different flows, e. g., an
application or sub-workflow call, must be modelled by a special type of macro. As this
macro combines different kinds of aspects, it is called hybrid macro.

Figure 2b shows the resulting macro body for the conditional branch IF as used in our ex-
ample. The variable parts are provided as build-time parameters (namely predicate P and
two macros M1 and M2 as “plug-ins”). Binding these parameters to actual values leads to
“executable” macros. These macros may be combined and thus be used to model the flow
of control. Figure 2c shows both instantiated IF-macros. Hence, we have replaced (a part
of) the workflow description by an equivalent macro chain.

Fortunately, many design elements reappear again and again, so providing these elements
allows the composition of most of the desired workflows. In addition, more complex mac-
ros composed of existing macros may be saved in a macro database for future use. Only
if a new macro is needed, the IT specialist has to be involved.

All macros and macro bodies defined are collected in libraries. This makes them easy to
use, edit, or reuse for the definition of new macros. Fully instantiated macros may be ex-
ecuted within a special engine.

Reusability is one of the key qualities macros offer. As stated before, macros may be built
hierarchically using already defined macros. We distinguish between basic and decom-

IF (CUR > 0)

ELSE
Search(CUR, CNR)

New(CNR)

IF (CNR = 4711)

ELSE
registered_customer(LNR)

chance_customer(LNR)

IFCUR IFCNR
CNR

START END
CUR

a) excerpt from a workflow description

b) macro-body “IF”

c) workflow represented by a macro chain

IF DO

ELSE

P

M2

M1 exitenter

b) macro body IF

Figure 2 Transforming a workflow description into a macro chain
4



posable macros. Basic macros have a direct counterpart at the implementation layer, de-
composable macros are constructed using basic and/or decomposable macros.

• Macro bodies are workflow modules which can be instantiated as macros by passing
parameters.

• Macros are instantiated macro bodies. They are simple, executable workflows.
• Atomic macros are macros not using other macros as plugin macros.
• Composite macros are macros using other macros as plugin macros.
• Plugin macros are macros used as sub-macros by a composite macro.
• Basic macros are those macros which can be used to define decomposable macros.

Every basic macro owns an implementation or implementation description.
• Decomposable macros are composed of basic and/or other decomposable macros

Definition 1 Macro Types

Figure 3 shows the relationship between different macro types. There are two similar
composition principles at the design level and at the implementation level (see Figure 1).
A stock of simple modules is used to compose more complex ones. At the design level,
new composite macros may be produced by combining composite and atomic macros.
Composite macros are the nodes of the originating building tree, atomic macros are the
leaves. Macros may be nested arbitrarily many times, but finally there must be an atomic
macro to complete the definition (Figure 3a).

At the implementation level, macros are built up hierachically, too (Figure 3b). Decom-
posable macros may be transformed into a representation using only basic macros (this
work is done by a parser, see Section 4). Fortunately, a few basic macros suffice to
achieve this goal. For example, most common constructs can be built by using only a few
elements like conditional branch, iteration, sequence, parallelization and serialization.
Basic macros can be directly mapped into the implementation layer, for they own a direct
counterpart (this is done by a compiler). If the implementation layer changes, only the im-
plementation of the basic macros must be adapted.

In most cases, building up new macros is quite simple. In Figure 4, the definition of a new
macro body WHILE is shown using the macros IF, REPEAT, and DoNothing defined in

basic macro decomposable
 macro

composite
macro

composite macro

atomic
macro

a) composite / atomic b) decomposable / basic

atomic
macro

decomposable
 macro

Figure 3 Relationships between different macro types
5



an earlier step. The parameters of WHILE (P, M) are mapped into the parameters needed
by IF (P) and REPEAT (M, ~P). DoNothing and REPEAT are used as plugin macros for
IF. More complex is the handling of macros accepting an arbitrary number of parameters,
this will be discussed later.

2.1 Declaration and Usage of Macros

We choose XML for the representation of our workflow definition language (WDL) as
well as for the macros themselves. Thereby we do not only achieve the structure and read-
ability of the definition, but also the advantage of standardized tools for parsing, analys-
ing, operating, and transforming of the definition. Therefore, the macros can be integrated
seamlessly into the workflow definition language, so that every new macro improves the
readability, if not also the expressiveness, of the WDL.

Before a macro can be used, it must be registered in the macro component. This involves
three steps. Firstly, the macro’s composition rules for the workflow definition language,
i. e., the rules where in the workflow definition language the macro use is allowed and
where it is forbidden. For example, it would make no sense to use a data-flow macro in
the description part of the control flow.

The composition rules are accomplished by the notion of an interface, which is very sim-
ilar to the interface construct offered by the programming language JAVATM [4]. For ex-
ample, many macros just let pass the flow of control through themselves, despite of the
inner working. Therefore, there is one special point to enter and another one to leave the
macro. A suitable interface for this kind of macro may be called
“WDL_INTERFACE:LINEAR”. Examples satisfying this interface are “IF” and
“LOOP” which both have different inner workings, but just pass the flow of control
through themselves.

Obviously, different macros may be derived from the same interface, as different macros
comply with the same composition rules accomplished with an interface.

IF DO

ELSE

P

~P

MREPEAT

UNTIL

DoNothing

exitenter

Figure 4 Building WHILE using IF and REPEAT
6



3. Macro Representation

After the macro’s interface is defined, we must declare its representation in the WDL.
This describes the internal structure of the macro itself. As we have already mentioned,
the WDL is XML-based, so a workflow definition itself is an XML document. Hence, the
natural description of a macro declaration/body is a DTD fragment which just describes
the syntactical structure the macro supplements to the WDL. Moreover, the DTD frag-
ment also uses the interface idea in order to describe what macros are allowed to be
plugged into the macro body.

The definition of IF is shown in Example 1, the usage in the workflow definition is shown
in Example 2, where “SEARCH” and “NEW” are macros, which comply to the
“WDL_INTERFACE:LINEAR” interface, too.

Remember, the collection of all defined macros and interfaces makes up the complete
WDL which may be used to define workflows. Therefore, all interfaces and macros can
be used to define new ones and thus extend the WDL. As stated before, the definition is
done by describing the new macro using XML. As precondition of the translation process,
the new document must be well-formed and valid w.r.t. the DTD containing all DTD frag-
ments from the macros already defined. This document may be parsed to transform it in
a basic form, where only basic macros are used (Section 4). Therefore, after this transla-
tion process the resulting document must be valid for the DTD formed from the descrip-
tion of the basic macros only.

<!ELEMENT IF (CONDITION, ACTION, ELSE?)>
<!ELEMENT CONDITION (WDL:EXPRESSION)>
<!ELEMENT ACTION (WDL_INTERFACE:LINEAR)>
<!ELEMENT ELSE (WDL_INTERFACE:LINEAR)>

Example 1 Macro representation of the “IF” macro as DTD fragment

<IF>
<CONDITION>

<WDL:EXPRESSION>”CUR > 0” </WDL:EXPRESSION>
</CONDITION>
<ACTION>

<SEARCH>
<CURRENT> CUR </CURRENT>
<CUSTOMER> CNR </CUSTOMER>

</SEARCH>
</ACTION>
<ELSE>

<NEW> <CUSTOMER> CNR </CUSTOMER> </NEW>
</ELSE>

</IF>

Example 2 Using the definition language
7



4. Macro Implementation

The third and last step involved in the definition of the macro is its implementation. The
macro implementation deals with the processing of the macro within the macro compo-
nent, as outlined by the algorithm shown in Figure 5.

The whole process is specified as a document transformation from a workflow definition
document to another workflow definition document which at least has some parts of the
originating document’s macro usage replaced by other (simpler) composite macros or ba-
sic macros. When there are no more replacements possible, the expanded workflow defi-
nition must only use basic macros. Afterwards, the workflow definition is ready to be
translated to the target workflow engine.

The macro transformation itself is done by the means of expansion processors which are
configured to perform the transformation a macro defines.

As a generic expansion processor, the macro component integrates an XSLT processor
[13] like, e. g., SAXON ([15]) or Xalan-Java([14]). The generic expansion processor
takes XSLT as its configuration language and transforms (stepwise) the workflow defini-
tion by applying the macro’s associated XSLT stylesheet. As XSLT is a widely adapted
technology, powerful tools exist which help in the design of such a transformation style-
sheet interactively. Hence, the generic expansion processor is a good starting point for the
development of macros.

Let us look at an example. A very useful macro is SWITCH, a 1-out-of-n selection. Sup-
pose, only IF macros are available (just like in ancient programming languages), then we
may build up SWITCH as illustrated in Figure 6. The definition of the SWITCH macro is
shown in Example 3. Note that as the SWITCH is built upon the IF macro, it “reuses” its

MacroProcessor:
oldDocument, newDocument: workflow_definition_document;
newDocument := oldDocument;
// expand all composite macros
REPEAT

FOR composite_macro IN MacroComponent.getCompositeMacros() DO
newDocument:= composite_macro.process (newDocument);

END;
UNTIL (newDocument = oldDocument);

// translate to the target machine using all basic macros
Translate (newDocument);

END.

Figure 5 Algorithm for macro transformation within the macro processor

<!ELEMENT SWITCH (CASE+)>
<!ELEMENT CASE (CONDITION, ACTION)>

Example 3 Macro representation of the “SWITCH” macro as DTD fragment
8



definition for CONDITION and ACTION. The transformation of the SWITCH macro is
done by the generic expansion processor, the associated XSLT stylesheet looks like the
one outlined in Example 4.

If we use the SWITCH macro in the workflow-definition document like in Figure 7, the
generic expansion processor transforms the document stepwise using the XSLT stylesheet
introduced in Example 4. The first CASE is taken to the IF macro, whereas the rest goes

IF

DO
ELSE

M1P1

DO
ELSE

M2P2

IF

IF DO
ELSE

M3P3

...IF

exitenter

Figure 6 Building macro SWITCH using IF

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"versi-
on="1.0">

<xsl:template match="SWITCH">
<xsl:choose>

<xsl:when test="count(./CASE) >= 2">
<IF>

<xsl:apply-templates select="./CASE[1]"/>
<ELSE>

<SWITCH>
<xsl:for-each select="./CASE">

<xsl:if test="position() > 1">
<xsl:element name="CASE">

<xsl:apply-templates/>
</xsl:element>

</xsl:if>
</xsl:for-each>

</SWITCH>
</ELSE>

</IF>
</xsl:when>
<xsl:when test="count(./CASE) = 1">

<IF>
<xsl:apply-templates select="./CASE[1]"/>

</IF>
</xsl:when>

</xsl:choose>
</xsl:template>

</xsl:stylesheet>

Example 4 Body definition of macro SWITCH as an XSLT stylesheet
9



to the ELSE part and forms a new SWITCH macro with one CASE less. After the first
transformation step, a definition emerges as the one shown in Figure 8.

As already being basic, the macro IF is ignored in the expansion step. Therefore, the
SWITCH macro is the only candidate for expansion in the next step. After this, the CASEs
of the SWITCH macro are all substituted by IFs. The expansion step ends here, because
every macro used is a basic one. At this point, the macro component starts generating code
for all basic macros, which is outlined in Section 5.

Despite the power of XSLT, sometimes it is not easy—albeit the powerful tools which ex-
ist—to create an XSLT stylesheet that does exactly the transformation needed. In this sit-
uation, the processing is defined as an external processor which performs all the
processing of a new macro. Consider for example the macro “SERIAL”, which executes
a set of the plug-in macros (which must belong to the interface WFL_INTERFACE:LIN-

<SWITCH>
<CASE>

<CONDITION> pred0 </CONDITION>
<ACTION> act0 </ACTION>

</CASE>
<CASE>

<CONDITION> pred1 </CONDITION>
<ACTION> act1 </ACTION>

</CASE>
<CASE>

<CONDITION> pred2 </CONDITION>
<ACTION> act2 </ACTION>

</CASE>
</SWITCH>

Figure 7 A simple example using SWITCH

<IF>
<CONDITION> pred0 </CONDITION>
<ACTION> act0 </ACTION>
<ELSE>

<SWITCH>
<CASE>

<CONDITION> pred1 </CONDITION>
<ACTION> act1 </ACTION>

</CASE>
<CASE>

<CONDITION> pred2 </CONDITION>
<ACTION> act2 </ACTION>

</CASE>
</SWITCH>

</ELSE>
</IF>

Figure 8 First expansion step
10



EAR) in an arbitrary order. The macro uses two already defined macros “SEQUENCE”,
which executes in a fixed order, and “ALTERNATIVE”, which executes only one of the
paths given. If we want to express “SERIAL(a,b)”, the expansion rule is described by:

SERIAL (a,b) => ALTERNATIVE ( SEQUENCE(a,b), SEQUENCE(b,a) ).

But how should we express “SERIAL(a,b,c)”? Possible solutions are shown in Figure 10.
One way is using recursive substitution, leading to a deeply nested result (Figure 10a).
The other way shown in Figure 10b seems to be more preferable. Unfortunately, the style-
sheet for this transformation is very complicated and error-prone to design. It is more fea-
sible to use some kind of external processor to perform the transformation. As a model for
the external processor we choose the transformation of a DOM [12], as it can be seen as
the abstract syntax tree (AST) of the input document, and the processor can do all trans-
formations needed on this AST according to the macro’s semantics.

5. Code Generation

In order to actually execute a macro it has to be translated into a representation understood
by the implementation layer which, in general, is some WfMS with an associated work-
flow engine. Therefore, we need an appropriate compiler to handle this translation. As we
have seen before, a few basic macros suffice to build up all the decomposable ones. Only
these basic macros have to be processed by the compiler. For this reason, we have to ex-
pand all decomposable macros as described in Section 4 using the macro processor. Do-
ing so, only basic macros remain. Errors occurring are reported to the user. If the macro
processor succeeds, the resulting document is valid w.r.t. the DTD including only the ba-
sic macros’ definitions. Thus, it may be transferred to the compiler. The compiler trans-
lates this definition into an implementation-layer-dependent representation. Every basic
macro is associated with a matching translation rule mapping it into the WDL used by the
WfMS. Again, errors are reported. If the compiler succeeds, a valid “executable” is deliv-
ered as result. This executable is stored within an “executable server” providing executa-
bles for direct invocation.

<IF>
<CONDITION> pred0 </CONDITION>
<ACTION> act0 </ACTION>
<ELSE>

<IF>
<CONDITION> pred1 </CONDITION>
<ACTION> act1 </ACTION>
<ELSE>

<IF>
<CONDITION> pred2 </CONDITION>
<ACTION> act2 </ACTION>

</IF>
</ELSE>

</IF>
</ELSE>

</IF>

Figure 9 Final result
11



As stated before, the compiler depends on a chosen implementation layer. Therefore, we
do not describe any implementation details in this paper. If the implementation layer is
changed, only the compiler has to be changed, too. Fortunately, a new compiler only has
to translate basic macros, and there really are only a few of them. Parser and macro defi-
nitions may remain unchanged.

6. Related Work

In this section, we outline two projects having similar ideas. First, we have a closer look
at the workflow patterns described by W. van der Aalst et al. [1]. Subsequently, we present
some ideas considering the representation of flow of control introduced by Markus Böhm
in [2].

6.1 Workflow Patterns

Although there are many WfMSs with more or less expressive power, there are neverthe-
less certain requirements recurring quite frequently during the analysis phases of work-
flow projects. These requirements can be described in an abstract form called workflow
pattern (similarly to [5]). In [1], the following collection of patterns is presented:

• basic control patterns (Sequence, Parallel Split, Simple Merge, ...),

• advanced branching and synchronization patterns (Multi-choice, Synchronizing
Merge, ...),

• structural patterns (Arbitrary Cycles, Implicit Termination),

• patterns involving multiple instances,

• temporal relations,

• state-based patterns,

• inter-workflow synchronization.

a
b c

bc

b
a c

ac

c
a b

ab

b a

cb

c

a

a c b

c a b

c b a

a b c

a) recursive expansion b) algorithmical expansion

Figure 10 Two different solutions for expanding SERIAL(a,b,c)
12



Our macro approach is quite compatible with this idea of workflow patterns. Likewise,
macros (without their implementation) are an abstract description of workflow parts, too.
Many of the patterns described have a direct macro counterpart in our system.

There are two main differences between the workflow patterns and our macro approach.
The first one is that we do not only provide macros for control flow, but also for data flow
and other tasks using our extensibility mechanism. The second difference is that we pro-
vide some of the patterns only in valid combinations (XOR-Split combined with XOR-
Merge), so that the workflow designer cannot model semantically incorrect combinations
(XOR-Split with AND-Merge). As a consequence, one major source for specification er-
rors is eliminated in a satisfactory manner.

Nevertheless, the macro approach may be seen as (partial) realization of patterns, so they
may be easily used by workflow developers.

6.2 Flow of Control Within Workflow Types
According to [2] there are three different classes of flow-of-control definitions. Böhm dis-
tinguishes between primitives, constructs, and execution directives.

Primitives are used to correlate the states of two workflows (e.g., the rule “when the first
workflow is done, the second one becomes ready”)

Constructs are combinations of primitives to gain a certain functionality (e. g., SPLIT,
ALT or PAR). While using different constructs, the designer has to pay attention to cer-
tain rules. Obviously, there is no sense at all in combining an XOR-SPLIT with an AND-
JOIN, to give a simple example.

Last but not least, the execution directives describe the order the sub-workflows are exe-
cuted in. The actual sub-workflows are hidden and new connection points are offered.
Therefore, the designer has no more the opportunity to create “senseless” connections.
This idea of encapsulating sub-workflows is also closely related to our way using macros.
Like Böhm we offer only the interface, hiding away the innards.

Our macro approach can be classified in this context as a combination of Böhm’s con-
structs and execution primitives, but enriched by algorithmic elements within the macros,
which allow for an arbitrary number of plugin macros. Moreover, we do not only concen-
trate on flow-of-control definitions, but also on data flow and other tasks.

7. Conclusion & Future Work

WfMSs are more and more accepted, since they provide an efficient way to control and
monitor complex processes. But unfortunately there are many different software products
called WfMS and no common workflow model exists. These systems are very powerful
for tasks they were built for, but they are not applicable universally. The Workflow Man-
agement Coalition (WfMC) tried to figure out the commonalities of different WfMSs and
to define at least some standards.

Nevertheless, most systems may only be used by specialists, are difficult to handle, and
do not offer the flexibility and extensibility desired by process designers. We have prima-
13



rily designed Arktis to improve this situation. The component described in this paper pro-
vides high-level constructs called “macros” for defining flow of control and flow of data.
Only few macros are offered directly, but they may be used to define new, more complex
ones and thereby extend the possibilities for defining workflows.

We then had a closer look at the macro component and showed how complex macros may
be derived from fundamental macros. This concept enables the designer to build up his
own stock of macros, custom tailored exactly for him and his needs. The more macros he
builds the better complex constructs may be expressed in a simple way. Hence, we gain
adaptability and increasing expressive power.

Furthermore, we examined the possibility to define macros with an arbitrary number of
parameters. Additionally, we showed how a macro definition is expanded, until it only
consists of basic macros and hence may be translated to the WDL offered by the underly-
ing WfMS through the compiler. Therefore, if the WfMS is exchanged, only a new com-
piler has to be provided, the macro definitions remain the same.

As we have seen, our Arktis approach promises to relieve non-IT-people while modelling
real life processes as workflows. Therefore, they can use a WDL adapted to their special
needs, powerful enough to express complex facts in an easy way. As the actual WfMS is
hidden by the macro component, the workflow designer has not to care about technical
details. Even if this WfMS is exchanged, the designer does not notice at all. On the other
hand, the IT-specialists are used for the tasks they are qualified for: to handle the technical
aspects (like maintaining the macro compiler) of the workflow system.

Since macros describe either flow of control or flow of data, we have to provide a way to
combine flows at the points where applications are started. This will be accomplished by
the integration of “hybrid macros”. We also plan to test our model by using an existing
WfMS as implementation layer (e. g., MQSeries/Workflow).

References

[1] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, A.P. Barros: Work-
flow-Patterns, BETA Working Paper Series, WP 47, Eindhoven University of Tech-
nology, Eindhoven, 2000.

[2] M. Böhm: Entwicklung von Workflow-Typen, Springer Verlag Berlin, Heidelberg,
New York, 2000

[3] M. Bon: ARKTIS/Makros – Eine Makrokomponente als Basis für flexible, erweiter-
bare WfMS. Diplomarbeit, Universität Kaiserslautern, Fachbereich Informatik, Kai-
serslautern, Germany, 1999

[4] J. Gosling, B. Joy, G. Steele: The JavaTM Language Specification, Addison-Wesley,
1996

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides: Design Patterns: Elements Of
Reusable Object-Oriented Software, Addison-Wesley, Reading, Massachusetts, 1995

[6] S. Jablonski: Workflow-Management-Systeme – Modellierung und Architektur,
Thomsons Aktuelle Tutorien, Int. Thomson Publ., Bonn, Germany, 1995
14



[7] S. Jablonski, C. Bussler: Workflow Management: Modeling Concepts, Architecture,
and Implementation, International Thomson Computer Press, Bonn, Germany, 1996

[8] IBM: MQSeries Workflow (distributed platforms) Version 3.2.2,
http://www-4.ibm.com/software/ts/mqseries/library/manuals/#Workflow

[9] Software-Ley: COSA User Manual, Software-Ley GmbH, Pullheim, Germany, 1996

[10] Staffware: Staffware 97 / GWD User Manual, Staffware plc, Berkshire, United King-
dom, 1997

[11] Workflow Management Coalition, The Workflow Reference Model, Document
Number WfMC TC00-1003, Jan. 1995,
http://www.aiim.org/wfmc/mainframe.htm

[12] W3C, Document Object Model (DOM) Level 3 Core Specification, W3C Working
Draft 1, 3 September 2001,
http://www.w3.org/TR/2001/WD-DOM-Level-3-Core-20010913/

[13] W3C, Extensible Stylesheet Language (XSL) Version 1.0, W3C Recommendation
15 October 2001,
http://www.w3.org/TR/2001/REC-xsl-20011015/

[14] The Apache XML project, Xalan-Java, Version 2,
http://xml.apache.org/xalan-j/index.html

[15] M. H. Kay: SAXON The XSLT Processor, Version 6.4
http://saxon.sourceforge.net/
15


	An Extensible Workflow Design Kit
	Markus Bon, Jürgen Zimmermann
	Universität Kaiserslautern
	(bon, jnzimmer)@informatik.uni-kl.de
	1. Introduction & Motivation
	Figure�1 The multiple layers of Arktis

	2. Macro Abstraction
	Figure�2 Transforming a workflow description into a macro chain
	Definition�1 Macro Types

	Figure�3 Relationships between different macro types
	2.1 Declaration and Usage of Macros
	Figure�4 Building WHILE using IF and REPEAT


	3. Macro Representation
	Example�1 Macro representation of the “IF” macro as DTD fragment
	Example�2 Using the definition language

	4. Macro Implementation
	Figure�5 Algorithm for macro transformation within the macro processor
	Example�3 Macro representation of the “SWITCH” macro as DTD fragment
	Figure�6 Building macro SWITCH using IF
	Example�4 Body definition of macro SWITCH as an XSLT stylesheet
	Figure�7 A simple example using SWITCH
	Figure�8 First expansion step
	Figure�9 Final result
	Figure�10 Two different solutions for expanding SERIAL(a,b,c)

	5. Code Generation
	6. Related Work
	6.1 Workflow Patterns
	6.2 Flow of Control Within Workflow Types

	7. Conclusion & Future Work



