
M. Bon, N. Ritter, T. Härder Sharing Product Data

1 / 10

Sharing Product Data
among Heterogeneous Workflow Environments

Markus Bon, Norbert Ritter, Theo Härder

Department of Computer Science
University of Kaiserslautern

67653 Kaiserslautern, Germany
e-mail: {bon | ritter | haerder}@informatik.uni-kl.de

Abstract

Nowadays, we increasingly face the situation that possibly heterogeneous workflow environments must be
integrated in order to support company-internal business processes as well as cooperation among differ-
ent enterprises more effectively. Thus, interoperability of heterogeneous workflow management systems
(WfMSs) is the major goal of one of our projects conducted with industrial cooperation partners. In this
paper, we, on one hand, report on how our approach supports integration of heterogeneous WfMSs in
general, and, on the other hand, detail the very important aspect of allowing workflow applications asso-
ciated with different, possibly heterogeneous workflow environments to share product data. Traditionally,
the management of product data is beyond the scope of a WfMS and is left to the individual workflow
applications. However in a multi-WfMS environment, additional control facilities are needed enabling
multiple and potentially different WfMSs to share data for cooperation purposes. We introduce different
approaches for product data control in heterogenous WfMS environments. As an important result of our
work, global dataflow dependencies between workflows in different environments may be properly mod-
eled and automatically controlled by extending the local workflows by activities, which provide the trans-
parent supply of data. Fortunately, in most cases only few adaptations of the local workflow types are
necessary to achieve this goal.

Keywords: WfMS, Heterogeneity, Integration, Interoperability, Product Data Management.

1 Motivation

During the last few years, WfMSs were successfully used to automate and to improve the execution of
classic business processes [Sche94]. Further on, there are also attempts to use workflow techniques sup-
porting engineering environments [BDS98]. Since modern enterprises often consist of various more or
less independent companies, heterogenous workflow environments are a natural consequence of the tech-
nological development. All the participating companies contribute to the overall enterprise's business
goal, and the closer the separate workflows have to interact with each other, the stronger different kinds
of dependencies between them are formed. Unfortunately, maintaining these inter-workflow dependen-
cies exceeds the capabilities of the WfMS used. Therefore, necessary work to satisfy these dependencies
has to be done ‘by hand’.

In our project, we examine possibilities for maintaining these dependencies automatically. The different
parts of an enterprise (with potentially different WfMSs) are called ‘islands'. Not only the WfMS used is
associated with an island, but also resources like users (identified by roles), applications, or database and
product data management systems (PDMSs). A new way has to be explored to specify knowledge about
existing dependencies between the islands and to replace the manual maintenance by some kind of auto-
mated (or at least semi-automated) mechanism. The islands have to ‘obey' some kind of authority – a
global system control. Rather than defining new global workflows to include all dependencies in question
(the ‘top down’ method), we intend to identify these dependencies between existing workflows, describe
them in an explicit way and handle them automatically (‘bottom up’ integration). As a result, the neces-
sary adaptation of the underlying local workflows should be as minimal as possible.

2 / 10

One of the main aspects within this problem area is the flow of data between islands. After describing our
general approach for combining heterogenous workflows in Section 2, we will focus on dataflow depend-
encies and how they may be handled. In Section 4, we will have a closer look to the specification of data
granules in order to extract them from a PDMS and to transfer them to the requesting location. Section 5,
describes the key part of our proposal, that is the different aspects of automated data supply, thereby as-
suming only minimal workflow adaptation. After showing how SOAP may be used as a transport proto-
col we present a short summary of our ideas and conclusions.

2 General Approach to Combine Heterogeneous Workflows

To accomplish island-spanning workflows, we have to use global knowledge about the process as a
whole; the information available at a specific island is not sufficient. Furthermore, we want to keep the
changes affecting the local workflows as small as possible. Because of lack of global knowledge, distrib-
uted solutions for global workflow control require complex protocols and massive adaptations of the par-
ticipating WfMS [Schu99]. Therefore, we recommend a logically centralized ‘omniscient’ component
which we denote coordinator [BRZ00]. The coordinator has to be informed about dependencies between
local workflows in order to be able to control and support the resulting actions between the associated
islands. In particular, the coordinator has to be provided with knowledge about:

• global controlflow: causal dependencies of activities in different workflow types;
• global dataflow: dependencies between workflow types specifying the flow of data, especially

originating workflow activities and corresponding destinations;
• execution locations of (local) workflows;
• execution progress: monitoring information about the status of every workflow instance as well

as of the global process;
• temporal restrictions, e.g., deadlines, resulting from inter-workflow dependencies, and excep-

tions, e.g., special recovery steps to be performed if corresponding restrictions are violated;
• authentication of systems participating in the global process in order to guarantee that none of

the remotely accessed data is abused.

This knowledge helps the coordinator to fulfill the tasks of a reliable and neutral mediator. Thus, the co-
ordinator is responsible for:

• registration of the local workflows which together establish the global process;
• island-spanning coordination of local workflows, i.e., identification/authentication of partners for

information exchange as well as control of the corresponding communication processes;
• monitoring the global process by monitoring each of the participating local workflows;
• suspending/resuming local workflows in order to fulfill (island-spanning) temporal restrictions;
• performing (island-spanning) exception handling in the case of failures.

After having presented major ideas of our approach, we focus on the automatic handling of dataflow de-
pendencies in the remainder of this paper.

3 Dataflow Dependencies

The main problem we have to face is providing workflow applications with data produced by some exter-
nal source. In this paper, we will focus on engineering activities, but this makes no major difference com-
pared with the ‘common case’. We assume that the source is an island with workflow support, too. As
shown in Figure 1, dataflow dependencies affect two different ‘layers’ of processing (Figure 1). Initially,
at the type layer the dependencies between workflow types at different islands are identified; later on
these dependencies have to be materialized at the instance layer.

In our example, we consider the workflow types WfT1 and WfT2 (Figure 1A). A dataflow dependency
may be viewed as a special relationship crossing workflow type borders. For example, dataflow depend-

3 / 10

ency DfD1, as shown in Figure 1, links two workflow activities of the two different workflow types by a
directed arc. The directed arc indicates that output data of activity WfA115 is required as additional input
for activity WfA213. ‘Additional’ means that the appropriate data (called cooperation data) is strongly
required as input by some application used in WfA213 without being directly registered in the internal
dataflow specification of WfT2. The specification of an inter-workflow dataflow dependency consists of:

• the workflow types concerned;
• the workflow activities linked by the dataflow dependency;
• a suitable specification describing the cooperation data;
• the name of the data source (in general a PDMS) and a specification of the data access (database

query or PDMS function) to be performed in order to extract the cooperation data;
• the mechanism to be used to transport the cooperation data from the source island to the target is-

land;
• the data target (in general a PDMS, too) and a specification of the operation to be performed in

order to integrate the cooperation data.

A. Type Layer
WfI1

WfT11
WfA115

WfA213

DfD1

WfI1

WfT11
WfA115

WfI1

WfT11
WfA115

WfA213WfA213

DfD1

WfI i: Workflow Island i WfAijk:Workflow Activity k in Workflow Type j at Island i

 WfTij: Workflow Type j at Island i DfDi: Dataflow Dependency i

B. Instance Layer

PDMS1

WfE1

Wf1 WfA115

WfE1

Wf1

WfA213

Application1 Application2

Inter-Workflow

Dataflow

PDMS2PDMS1PDMS1

WfE1

Wf1 WfA115

WfE1

Wf1 WfA115

WfE1

Wf1

WfA213WfA213

Application1 Application2Application2

Inter-Workflow

Dataflow

PDMS2PDMS2

WfEi: Workflow Engine at Island i
Wfi: Workflow at Island i (Instance of appropriate Type)

 Applicationi: Application called by Instance of Workflow Activity
 PDMSi: Product Data Management System used by Application i

Figure 1 Dataflow Dependencies

4 / 10

At the instance layer, workflow instances (shortly workflows) are to be considered, as Wf1 and Wf2 in our
example (Figure 1B). Since there may be multiple instances of a single workflow type, the identification
of cooperation pairs, each associating exactly one source workflow (Wf1 in our example) with exactly one
target workflow (Wf2 in our example) w. r. t. exactly one dataflow dependency specification (DfD1 in our
example), is a prerequisite for the proper handling of dataflow dependencies. Enabling the coordinator to
maintain cooperation pairs requires:

• local workflow management systems to register newly initiated workflow instances at the coor-
dinator’s registry and

• human assistance in order to associate workflow instances with each other.

The mentioned human assistance can help in the following way. Whenever a workflow instance is created
and registered, the coordinator, first, creates a list of specified dataflow dependencies referring to the
workflow type of the newly created workflow instance in the role ‘source’ or ‘target’. For each pair (data-
flow dependency, role), a list of potential cooperation partners can be generated regarding the set of cur-
rently running workflow instances which have not yet been assigned to a cooperation partner. Thus, for
each pair (dataflow dependency, role), the user may select a cooperation partner from the list offered by
the coordinator or can indicate that the corresponding partner has not yet been initiated.

 4 Specification of Data Granules

As stated in Section 3, specifications of the cooperation data and corresponding means for extraction are
parts of the dataflow dependency specification. Thus, a (specification) language is needed, powerful
enough to specify exactly that amount of data needed for cooperation purposes. As indicated in Figure 2,
product data is typically modeled in a hierarchical way. The root of the product tree represents a kind of
handle for the product as a whole and may consist of composite parts (‘assemblies’), which are simple
parts (‘components’) or assemblies themselves [Step92]. By applying a nesting of compo-
nents/assemblies, a tree structure emerges (we call it the ‘product tree’). Its inner nodes are formed by
assemblies, the leaves by components. At each level of the tree, additional objects may be attached, for
example, documents describing a part in detail or geometry data needed to process a part by CAD tools.
These elements may be very large. Hence, for better performance, only data which is really needed should
be transferred. Furthermore, access control privileges may limit the selection of components/assemblies
during the extraction process (as will be further detailed in the following sections). By performing the
data granule specification, we typically have to select a significant subset of the product tree describing
the elements to be transferred. For instance, the gray parts in Figure 2 are chosen as cooperation data for
some dataflow dependency. The selection of such a granule is not a simple task, since specific knowledge

Module 2

Submodule 1

Submodule 2

Submodule 3

Part 1

Part 2

Part 3

Module 1

Assembly 1

Document 1

Geometry 2

Geometry 1

Document 2

Geometry 3

<part>
<name>Assembly1</name>
<subparts>

<part>
<name>Module2</name>
<geometry mode="materialized">

<uri>"Geometry2"</uri>
</geometry>
<subparts>

<part>
<name>Submodule3</name>
<subparts>

<part>
<name>Part2</name>
<geometry mode="referenced">

<uri>"Geometry3"</uri>
</geometry>

</part>
</subparts>

</part>
</subparts>

</p art>
</subparts>

</p art>

Figure 2 Identification and Specification of Cooperation Data

5 / 10

about the product structure at the source side as well as at the target side is mandatory. Furthermore, the
processing characteristics of the target application also have to be considered. Therefore, major parts of
the specification have to be supplied manually by a human expert providing all this knowledge and can-
not be generated automatically. After identification of the relevant parts, an XML-like language can be
used to specify the cooperation data required. Figure 2 shows an XML-based specification example. For
this purpose, we have identified the following properties a specification language should embody:

• descriptive specification: powerful constructs allowing to describe the relevant data resp. the de-
sired sub-tree have to be offered;

• hierarchical data structures: in general, product data is build up in a hierarchical way; therefore,
the description language should allow to separately describe every hierarchy level as well as the
hierarchical structure of the entire tree;

• extensibility: specifications must be mapped to various, heterogeneous systems (e.g., in order to
extract and integrate cooperation data from/into PDMSs); although most PDMSs support similar
models for storing product data, adaptations may help to reduce mapping overhead;

• simplicity: for ease of specification as well as efficient and, as far as possible, automated process-
ing, the language should be easy to parse.

Obviously, it might not be convenient for the human expert to use this kind of language directly. There-
fore, assistance by graphical tools is certainly helpful.

5 Automation of Data Supply

After having introduced the notion of dataflow dependencies as well as having clarified the necessity of a
language flexibly supporting the specification of exactly that amount of data needed for cooperation pur-
poses in the previous sections, we now want to tackle the problem of data supply. This problem has sev-
eral dimensions to be discussed in the following subsections.

Level of Automation

In general, we see two completely different approaches of data supply automation. First, actions can be
taken at the level of workflow types by extending the source workflow type and the target workflow type
(of a dataflow dependency) by additional, possibly generated (workflow) activities performing the data
supply. Second, automated actions can be taken at the level of workflow applications by directing data
access operations of the target workflow application to the source PDMS for cooperation data access.

Pursuing the first approach (automation at the level of workflow types) requires to take the following
actions:

• identifying and extracting the cooperation data from the source PDMS by mapping the coopera-
tion data specification (as contained in the dataflow dependency specification) to source PDMS
access operations;

• converting, packaging and transferring the cooperation data from the source side to the target
side;

• integrating the cooperation data by mapping the cooperation data specification (as contained in
the dataflow dependency specification) to access operations of the target PDMS.

To what extend corresponding activities can be provided automatically will be the subject of the follow-
ing section. We will further see that identification, extraction, conversion, packaging and transfer actions
are performed by workflow activities which have to be newly made available and integrated into the
source workflow type. Integration activities are to be provided by corresponding adaptation of the target
workflow type. Note that all these actions are subjected to temporal restrictions, which can be partially
fulfilled by integrating new workflow activities into the original workflow types at the right places, but
also require some kind of global workflow synchronization the coordinator is in charge of.

6 / 10

Regarding the second approach (automation at the level of workflow applications) we assume the coop-
eration data to remain in the source PDMS. In this case, suitable mechanisms for remote data access have
to be provided [AGL98]. Note that it is in general not feasible to modify the target application in a way
that cooperation data access is directly routed to the source PDMS. Beyond, there are two feasible possi-
bilities of enabling the target application to access remotely stored cooperation data objects. First, some
kind of proxy objects can be stored within the local PDMS providing interfaces of cooperation data ob-
jects and transparently performing the remote access. Second, data access operations of the target applica-
tion are filtered and each operation addressing cooperation data is redirected to the remote PDMS at the
source side. Although feasible, the second approach is not as elegant as the first one, since an external
filter is needed. Furthermore, there are the following problems w.r.t. both approaches:

• mechanisms must be provided translating API calls of the target PDMS into semantically equiva-
lent calls to the source PDMS;

• these calls lead to possibly frequent system border crossings, which, in turn, might be difficult,
since many islands are protected by security measures such as firewalls;

• as the cooperation data remains at the source side, especially access to large attachments (see
Section 4) must be expected to lead to increased waiting times for remote users.

Before we can take a decision about which level of automation is the better choice w.r.t. to data supply,
we have to take into account the following aspects.

Product Data Management Systems

A favorable setting is the usage of identical PDMSs at both islands. Thus, both systems offer the same
API and the same model for representing the product data structures and there is no need for a coopera-
tion data mapping. If the systems differ, however, things are substantially more complex. The cooperation
data has to be mapped from the source PDMS data model into the one used by the target system. This
mapping is obviously a prerequisite of data transfer (which is the major characteristic of the workflow
type level of automation). It is also helpful for determining proper actions of access propagation (which is
the major characteristic of the workflow application level of automation). However, it seems to be more
feasible to provide a generator, which automatically generates data transfer activities from the dataflow
dependency specification and a mapping given by a human expert than to provide a generator for rewrit-
ing the data access operations of the target PDMS for access propagation purposes.

Cooperation Data Access

Another problem dimension is whether the cooperation data is accessed at the target side in a read-only or
read/write manner. The simplest solution is achieved by restricting accesses to read-only. Thus, no data
changes have to be propagated back. Nevertheless, suitable arrangements have to guarantee that the target
application accesses the right version of the cooperation data. This problem primarily arises in the case of
access propagation, since the version seen by the target application has to be frozen until it is no longer
needed. Changes performed by applications running at the source island must be isolated from the target
application. Fortunately, management of multiple versions is a standard functionality of most PDMSs.
Read/write access is much more difficult to be handled, since the modifications performed by the target
application have to be propagated back to the source system. This update propagation, however, can only
be performed in a safe and consistent way, if appropriate synchronization mechanisms across island bor-
ders are provided. Such a distributed concurrency control component would require considerable changes
in the participating PDMSs. Hence, this does not seem to be a feasible approach. A more practical solu-
tion exploits the versioning mechanisms supported by most PDMSs allowing to propagate the changes as
new versions of the product. This, however, requires that other applications can be prevented to modify
the product as long as the target application has not propagated its changes, since merge operations are
usually not feasible due to complexity.

Access Control

Another important issue for all kinds of data supply is access control. Since product data is crucial for the
company’s work, unauthorized access has to be prevented, no matter if it is initiated at the source or at the

7 / 10

target side. In the case of data transfer this, on one hand, means that in the adjusted source workflow type
a staff member must be assigned to the newly provided activity for data extraction, who has at least read
permissions to the target PDMS. On the other hand, in the adjusted target workflow type a staff member
must be assigned to the newly provided activity for data integration, who has at least insert permissions to
the target PDMS, and, additionally appropriate access rights must be granted to the person/role, who is
responsible for the target application. In the case of access propagation, the staff member responsible for
the target application has to be registered at the source side and to be granted sufficient access rights to
the source PDMS. However, since the islands are assumed to be different environments, this again seems
to be the worse solution.

Coming back to the still open question, if the workflow type level or the workflow application level is the
better choice w.r.t to data supply automation, the previous discussions show that the first approach (auto-
mation at the level of workflow types) is less problematic, since workflow management systems are ge-
neric by nature and, therefore, can be more easily adjusted than workflow activities. For this reason, we
favor the first approach and detail it in the following section.

6 Automation by Workflow Type Adaptation

In this section, we examine how workflow types can be adjusted to support automated processing of data-
flow dependencies. Because of space restrictions we can only consider the scenario of identical PDMSs at
source and target side and read-only access by the target application. Remember, workflow type adapta-
tion means cooperation data transfer where all original workflow activities and corresponding data access
operations remain unchanged.

For explanation purposes, we refer to the scenario illustrated in Figure 1 and corresponding notions in the
following. Since the dataflow dependency DfD1 refers to activity WfA115 of workflow type WfT11 as
source activity and to activity WfA213 of workflow type WfT21 as target activity, the data extraction activ-
ity to be newly provided has to be incorporated into WfT11 right after WfA115 and the new integration
activity has to be integrated into WfT21 before WfA213. The resulting adapted workflow types can be

PDMS1

WfE1

Wf1 WfA115

WfE2

Wf2

WfA213

PDMS2

Application1 Export
Application2Import

WfA11E

DfD1

Transport
File

A P I
A P I

WfA22I

PDMS1PDMS1

WfE1

Wf1 WfA115

WfE2

Wf2

WfA213

PDMS2PDMS2

Application1 Export
Application2Import

WfA11E

DfD1

Transport
File

Transport
File

A P I
A P I

WfA22I

Figure 3 Transfer of Cooperation Data (Instance Layer)

8 / 10

imagined from the illustration in Figure 3, although only the instance layer is shown. WfA11E represents
the extraction activity and WfA22I the integration activity, both newly created in order to automatically
perform data supply actions at workflow runtime. Obviously, the process of adapting the workflow types
is very easy and can be performed on every WfMS.

After the adaptation of the workflow types, we now consider the transfer of cooperation data at the in-
stance layer. Here, besides the involved WfMSs, the coordinator plays an important role, too. There are 6
phases to be processed (cf. Figure 3):

1. Wf1 and Wf2 are (not necessary simultaneously) initiated. The coordinator is informed about the crea-

tion of the new instances and gets the information needed to relate cooperation partners.
2. The source application (Application1) produces data and stores it into its local PDMS (PDMS1).
3. The export application identifies/extracts the cooperation data using the cooperation data specification

contained in the dataflow dependency specification and creates a transport file.
4. The transport file is transferred from the source island (WfI1) to the target island (WfI2). The coordina-

tor is involved to provide information about the target location.
5. After having received the transport file, the import application extracts the cooperation data and stores

it into the local PDMS (PDMS2).
6. The target application starts its work and accesses data using the local copy.

Dynamic Specification of Cooperation Data

As already mentioned, the specification of the cooperation data is part of the overall dataflow dependency
specification. Unfortunately, this static specification is not really satisfying in all situations. In fact, we
also have to consider scenarios in which the concrete set of cooperation data cannot be determined before
runtime. For example, a certain result status of the source application may determine the cooperation data.
Such situations require some kind of generic data export and import activities which are able to process
dynamic cooperation data specifications.

Import and Export Applications

Import and export applications perform the actual work of data extraction, transfer, and integration. We
see three different approaches for data extraction and transfer.

• Many PDMSs support the extraction of objects in some kind of proprietary format. This can be
exploited by an export activity performing the following three steps:

1. extraction of the product tree into a file (proprietary format);
2. filtering the tree w.r.t the cooperation data specification;
3. contacting the coordinator to get the target address and sending the file.

The critical point within this processing is the filter to be used in step 2. It must at least be able to
‘understand’ the proprietary data format used by the PDMS for data export as well as the specifi-
cation of the cooperation data. It must also be able to remove objects from the file created in step
1 without invalidating the file. Note that for each export data format of a PDMS a separate filter
is needed. Information about applying the cooperation data specification to the contents of the ex-
tracted file is ‘hard coded’ within the filter.

• Since most PDMSs use a relational database management system (DBMS) as data store it is also
possible to extract data using the SQL interface. Based on the tree structure described by the co-
operation data specification, a set of SQL statements may be generated. Database schema infor-
mation needed for the generation of these SQL statements can be selected by metadata lookups in
the database system. After the evaluation of the generated SQL statements by the DBMS, the re-
sulting data can be packaged into a transport file in some neutral data format (for example by us-
ing XML). Using the SQL interface has proved to be quite an efficient way for our purposes
[MDJF01].

9 / 10

• It is also possible to combine both approaches. Using the SQL interface, an internal representa-
tion of the whole product tree can be created, for example using the DOM [W3C01]. Afterwards,
it can be reduced to the desired volume quite effectively, because all subsequent operations are
directly performed using the product tree created in main memory. Since the SQL statements for
creating the whole product tree rarely change, they may be pregenerated.

The application used to insert the cooperation data into the target PDMS is easier to provide. There is no
additional mapping to perform, since the two PDMSs are assumed to be of the same type. If the proprie-
tary file is available, the data can directly be integrated by calling the corresponding API function of the
PDMS. Otherwise, the structural information provided by the transport format may be exploited to create
appropriate INSERT statements. Especially XML seems to be well suited for such purposes because of its
hierarchical structures. The schema information needed to generate the mentioned INSERT statements
can again best be selected by performing metadata lookups at the relational DBMS used by the target
PDMS.

Access Control

As already mentioned, cooperation data may be critical from the viewpoint of the enterprise. Therefore, it
is, on one hand, important to grant sufficient access rights for the newly generated export and import
activities as well as for the target application. On the other hand, access rights must be as strict as possible
in order to prevent unauthorized access. However, since the data is shifted between different environ-
ments, some amount of trust is also required between the human partners. Only in some cases, precau-
tions like disabling parts of data while keeping the relevant parts are possible [Naw01].
For coding (protection during transmission) and authentication, techniques using asymmetric key pairs
may be used. To each island a private key is assigned. A public key ring may be accessible through the
coordinator as trusted ‘key broker’. Before sending the cooperation data, the sender gets the target is-
land’s public key. After having encoded the transport file with this key, only the target island is able to
decode it again. In the case the sender is supposed to identify himself, too, the file is also encoded using
the source island’s private key. The target island may now use the matching public key and identify the
source securely. The problem with this approach is the high costs in time. Especially encoding large files,
e.g., containing CAD geometries, may last very long. Therefore, according to the security needs the en-
coding may be skipped for less critical data.
After successfully importing the cooperation data, the import application has to adjust proper access
rights for data access at the target side. For this purpose, the organizational manager provided by most
WfMSs can be exploited. Since we restricted our considerations to read-only access, it is sufficient to
grant read access to the corresponding group of people/applications.

7 Transfer Protocols

Communication between workflow islands requires communication protocols. There are various
possibilities, for example some kind of binary protocol (using TCP) for synchronous communication or
message queuing for asynchronous communication [SZ98]. Furthermore, using remote procedure calls
(RPC) may be a good choice, too. Unfortunately, the security procurements such as firewalls complicate
things for protocols like CORBA or RMI, but using SOAP seems to help in this matter.
SOAP messages are transferred using HTTP. Upon arrival a servlet provided by an application server
takes care of the further processing. The application server may be integrated quite easily with most of the
common web servers available (for example, TOMCAT may be docked to an APACHE web server).
Therefore, SOAP messages may be delivered using port 80, a port which is unlocked at almost every
firewall. Afterwards, the message is handed over to the responsible servlet (the SOAP message handler).
A sample scenario may look as follows. An export application (as introduced in Section 5) prepares the
cooperation data for transfer. Then, a servlet wraps the data as ‘payload’ into a SOAP message. This mes-
sage is transmitted using HTTP. At the target island, another servlet ‘unwraps’ the cooperation data for
further processing. Using SOAP is substantially slower than using CORBA or RMI [GSC+00]. On the
other hand, the possible use of port 80 avoids many firewall problems and is nevertheless a big pro for
using SOAP.

10 / 10

8 Conclusion

In this paper, we examined how dataflow dependencies in distributed and heterogeneous workflow envi-
ronments may be handled. After a short motivation, we introduced our general approach towards provid-
ing interoperability of heterogeneous workflows. Since control information existing in the local systems
is not sufficient, we propose the use of a logically centralized component dealing with global dependen-
cies. This coordinator has several duties like supervising global flow of control, resolve dataflow
dependencies, monitor the current state of a global process, observe the meeting of deadlines, provide
recovery actions, and enable the islands to authenticate themselves. In this paper, we focused on dataflow
dependencies. A dataflow dependency specification encompasses: the workflow types, the concerned
workflow activities, the data source, the data target, the transport mechanism, and a specification of the
cooperation data to be actually transferred. Since product data may be very large in size, it is desirable to
minimize the data volume to be transferred. Unfortunately, much knowledge is needed to achieve this
goal, so human participation becomes necessary. Furthermore, for purposes of specifying the cooperation
data some kind of language is needed. Therefore, we examined the typical structure of product data and
described the characteristics required for such a language. Thus completing the definition of dataflow
dependencies, we examined how their instantiation may be handled automatically. We identified several
‘dimensions’: physical transfer of cooperation data (automation at the level of workflow types) vs. access
propagation (automation at the level of workflow applications); read-only access vs. read/write; use of
identical PDMSs vs. different PDMSs. Furthermore, we examined the adaptation of workflows for
automated handling of dataflow dependencies. We found out that there has to be some kind of ‘pair
management’ adding further duties to the coordinator. We detailed the approach of automation at the
workflow type level by considering the simple scenario characterized by identical source and target
PDMSs and read-only accessed to the cooperation data. For this scenario, we proposed different ap-
proaches for exporting and importing data. Fortunately, most extensions to the local workflows can be
made available without exploiting WfMS-dependent features. For example, the actual import and export
process may be achieved by applications embedded into workflow activities. Hence, modifications of the
workflow engine can be avoided. Finally, we introduced SOAP as a protocol usable for communication
between islands which are protected by firewalls.
As future work, we want to detail and to prove our concepts to work in a realistic environment. Therefore,
we will realize the proposed components for different scenarios and, thereby, hope to gain further experi-
ence with this kind of inter-workflow operability.

9 Literature

[AGL98] Abramovici, M., Gerhard, D., Langenberg, L.: Supporting Distributed Product Development Processes with PDM.,
in: Krause, Heimann, Raupach.(Editors), New Tools and Workflows for Product Development - Proceedings of the
CIRP Seminar STC Design, May 1998, Berlin, Fraunhofer IRB Verlag, 1998, pp. 1-11

[BDS98] Beuter, T., Dadam, P., Schneider, P.: The WEP Model: Adequate Workflow-Management for Engineering Processes,
Proc. European Concurrent Engineering Conf., Erlangen, 1998

[BRZ00] Bon, M., Ritter, N., Zimmermann, J.: Interoperabilität heterogener Workflows. Grundlagen von Datenbanken 2000:
11-15

[Bur99] Burkett, W.: PDML - Product Data Markup Language - A New Paradigm for Product Data Exchange and Integra-
tion, 30.04.1999, www.pdml.org/whitepap.pdf

[GSC+00] Govindaraju, M., Slominski, A., Choppella, V., Bramley, R., Gannon, D.: Requirements for and Evaluation of RMI
Protocols for Scientific Computing, in: Proc. Supercomputing 2000 (SC2000), Dallas, 2000

[MDJF01] Müller, E., Dadam, P., Enderle, J., Feltes, M.: Tuning an SQL-Based PDM System in a Worldwide Client/Server
Environment, Proc. 17th Int. Conf. on Data Engineering (ICDE2001), Heidelberg, 2001, pp. 99-108

[Naw01] Nawotki, A.: Eine selektive Methode zur Verschlüsselung von Konstruktionsdaten mit Wavelets, Dissertation, Kai-
serslautern, logos Verlag, 2001

[Sche94] Scheer, A.-W.: Business Process Engineering: Reference Models for Industrial Enterprises, 2nd ed., Springer, 1994
[Schu99] Schulze, W.: Workflow-Management für CORBA-basierte Anwendungen, Springer-Verlag, Berlin Heidelberg 2000
[Step92] Subcommittee 4 of ISO Technical Committee 184, "Product Data Representation and Exchange - Part 11: The

EXPRESS Language Reference Manual," ISO Document, ISO DIS 10303-11, August 1992
[SZ98] Steiert, H.-P., Zimmermann, J.: JPMQ – An Advanced Persistent Message Queuing Service, in: Advances in Data-

bases, Proc. 16th Nat. British Conf. on Databases (BNCOD16), LNCS 1405, Springer, 1998, pp. 1-18
[W3C01] W3C, Document Object Model (DOM) Level 3 Core Specification, W3C Working Draft 1, 3 September 2001,

http://www.w3.org/TR/2001/WD-DOM-Level-3-Core-20010913/

