
Change Management in Large-Scale Enterprise
Information Systems

Boris Stumm

University of Kaiserslautern
stumm@informatik.uni-kl.de

Abstract. The information infrastructure in today’s businesses consists of many
interoperating autonomous systems. Changes to a single system can therefore
have an unexpected impact on other, dependent systems. In our Caro approach
we try to cope with this problem by observing each system participating in the
infrastructure and analyzing the impact of any change that occurs. The analysis
process is driven by declaratively defined rules and works with a generic and ex-
tensible graph model to represent the relevant metadata that is subject to changes.
This makes Caro applicable to heterogeneous scenarios and customizable to spe-
cial needs.

1 Introduction

In today’s businesses, information infrastructures are getting more and more complex.
There are many heterogeneous systems with a manifold of mutual dependencies leading
to unmanageability of the overall infrastructure. New dependencies between existing
systems evolve and new systems are added. Generally, there is no central management
of all systems.

Small, local changes can have a major impact at company-wide scale due to the de-
pendencies between systems. To keep everything running, it is therefore necessary to
preventively analyze the impact of a change, to be able to make adjustments in case of
conflicts without compromising the infrastructure. While the heterogeneity of systems
and the problem of incomplete metadata make change impact analysis already a hard
task, the situation becomes even more difficult as changes are not always planned glob-
ally and in advance. Thus, unexpected problems may occur after a change is carried
out, making a reactive change impact analysis necessary. We present Caro, an approach
for change impact analysis (CIA) that is able to operate even under these adverse con-
ditions.

When speaking of changes, we refer to metadata changes. In our context, metadata
includes not only data schemas, but also APIs, configuration files, assertions about data
quality and performance, etc., in short, everything that other systems could rely on.

Problem Statement. The problems that we face in change management and which we
address with our approach can be divided into three categories:

– Heterogeneity. The connected systems often have different data models (e.g. XML
or SQL), different interfaces (e.g. query or function calls), etc.

T. Grust et al. (Eds.): EDBT 2006 Workshops, LNCS 4254, pp. 86–96, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Change Management in Large-Scale Enterprise Information Systems 87

– Incomplete metadata. In general, it is not possible or feasible to get all metadata
for an exact CIA. There may be no easy way to query the metadata of a system,
documentation is often outdated or non-existent, and dependencies between sys-
tems can be hidden in procedural code, which in the worst case would have to be
decompiled to get the required information. While it is theoretically possible to get
exact metadata, in practice, the costs may be too high.

– System autonomy and missing global management. In practice, many systems are
black boxes that cannot be controlled from outside. This especially holds true if
an integration environment spans over several departments or even several compa-
nies, and complicates access to such systems. Changes are applied without global
analysis, and without notification to the affected systems. Thus, problems emerge
unexpectedly, and it is hard to find the cause.

Contribution. Caro is a concept which includes three main components responsible for
addressing the discussed problems:

– We propose an architecture which allows a central or distributed approach to
change impact analysis. We have software components called metadata agents,
which, amongst other things, monitor the systems participating in the integration
infrastructure for changes. The change manager allows for preventive CIA as well
as reactive CIA.

– We present a metamodel which allows us to handle and homogenize the heteroge-
neous metadata encountered. It is designed to be extensible to describe arbitrary
metadata at arbitrary granularities.

– We use a robust and generic analysis algorithm which can handle incomplete meta-
data. It works on a best-effort basis based on the input metadata, and the quality of
the analysis results will gracefully degradate as input metadata gets less complete
or more coarse-grained.

With these concepts, Caro is applicable to a wide range of different systems, and thus a
wide range of different changes can be detected and analyzed.

Related Work. In the context of information integration, much research has been done.
Some approaches are complementary to ours, and others are similar to Caro in some
aspects. The most important distinguishing facts of Caro are its genericity, robustness
and scope. It makes no assumptions about the environment it operates in, and can be
used for any scenario where change impact analysis is necessary.

Dorda et al. [8] present an approach which is quite similar to Caro with respect to the
problems addressed. However, the solution they propose is different in two fundamen-
tal points: They require a central documentation (or metadata) repository and a strict
process policy. This constrains their approach to scenarios where it is feasible to have
a central repository and to enforce adherence to defined processes. While they want to
avoid integration clusters1, we think that such a clustering (and thus decentralization)
in large EIS cannot be avoided.

1 Integration clusters are called “integration islands” in [8].

88 B. Stumm

Deruelle et al. [7] present another approach to change impact analysis. They use a
multigraph and change propagation rules for analysis, which is very similar to Caro.
Their approach has several limitations. The focus lies on preventive change impact
analysis, thus they lack a framework to support reactive CIA. Apparently, they do not
consider the problem of incomplete metadata. Also, their meta-model and rules are
rather specialized, which makes the extension to support other data models and change
types more difficult than with Caro.

Various other approaches to CIA in information systems exist that are limited with
respect to the supported data models [10] or scope and support of exact analysis [12].
The concepts of change impact analysis in software systems [6,3,16] are similar to the
ones we use. However, the models and analysis procedures focus on the elements that are
found in software: methods, signatures, classes, attributes and so on. In addition, CIA
for software systems is usually done preventively. Aspects of heterogeneity, metadata
incompleteness and distribution are not that relevant as they are in information systems.

Research done in the field of schema evolution [15,4,17], schema matching
[14,13,11] or model management [5] are complementary to our approach. Especially
the latter approaches are used to plan and realize integration, generally between only
two or a small group of systems, as well as adapt systems to changing requirements.
Caro is not designed for use in the initial stages of an integration project. It will take the
results of such a project, namely the dependencies between the systems that were cre-
ated based on schema matches or mapping definitions, and monitor them for changes.
When a change occurs, Caro will analyze the impact of it and notify the responsible
person. If problems are encountered, the output of Caro can be the input for the in-
formation integration tools that are used to repair the impacted systems. Caro focuses
on the monitoring of systems participating in the overall information infrastructure and
the detection of the global impact of changes. As such, it “fills the gap” to an overall
management of a heterogeneous integrated environment.

Structure of the Paper. In the following sections, we will first give an overview over
the architecture of our CIA approach (Sect. 2). We discuss the conceptual meta-model
on which our approach is based on in Sect. 3. In Sect. 4 our approach to conduct the
analysis is presented. In Sect. 5 we will discuss some of the issues that arise during the
preceeding sections. Finally we finish with conlusions and outlook in Sect. 6.

2 Overview

Central architectural components of Caro are the metadata repository (MDR) and the
change manager (CM) (see Fig. 1). The MDR is a passive component that holds the
metadata of the different information systems in a common representation. It provides
an interface to query and update the stored metadata. All metadata is versioned, to
be able to keep track of any changes that happened in the past. The CM is a reactive
component responsible for the analysis of changes. It can analyze change proposals
issued via the user interface, or react to changes that have happened in an observed sys-
tem. The third component in our architecture is constituted by metadata agents (MDA).
Every system participating in CIA is monitored by an MDA responsible for mediating

Change Management in Large-Scale Enterprise Information Systems 89

analyzer processing queue

query interface storage

manager
change

repository
metadata

MDA APICM API

Caro MDA GUICaro CM GUI

storagetransformer

metadata extractor

information system

observer
agent
metadata

Fig. 1. Caro architecture

between the CM, the observed information system and the human responsible for it.
An MDA consists of various subcomponents. The metadata extractor is needed to ini-
tially extract all metadata from the underlying system and to later pick up changes. A
transformer component maps the extracted metadata to the Caro format. The observer
component serves as a guard and watches for changes in the information system. For
caching purposes there is a storage component. The MDA communicates with the CM
via asynchronously to not block either component. The MDA parts written in bold face
are those that need to be customized for each information system. Caro provides generic
functionality, and specific functionality can be added via a plugin mechanism. To con-
figure the components, GUIs for the CM and the MDAs will be provided. Furthermore,
the GUIs give a global (CM GUI) or local (MDA GUI) view of metadata and depen-
dencies and are used as interface for preventive CIA. The MDA GUI is constrained to
a local analysis, which is also useful (e.g., to analyze how views are affected if a base
table changes). In the following sections, the main focus lies on the metadata model
and the analysis approach. The issues that arise in the functionality of the MDAs, such
as detecting changes in system metadata, conversion from a source’s native metadata
representation or modeling dependencies, are discussed in Sect. 5.

Caro can also be used in a distributed way. Several change managers, each responsi-
ble for a part of the overall system, can communicate with each other and pass on their
analysis results. This enables the use of Caro in cases where a centralized solution is
not feasible. An example scenario for this is shown in Fig. 2. This way it is possible
to restrict the data passed on to the other servers, which can be important for security
reasons.

Our base assumption is that every single system in an integrated information in-
frastructure provides various kinds of services to other systems. We refer to this set of
services as the system’s provision. For each accessing client system, there may exist a
different provision set, depending on the authorizations of it. Complementary to this,
the part of the provision that is used by the client system is called usage. A client sys-
tem as a usage for each system it depends on. Note that the usage of the client needs
not to be identical to the provision of the server system. In general, the usage will be
a subset of the provision, or may even contain elements not present in the provision. If
that happens, there exists a problem which will be recognized by our approach.

We do not use the more common terms import or export schema, since provisions
and usages can contain more than only schema data, and may, for example, include con-
figuration data, technical metadata, quality assertions (“The data provided is less than

90 B. Stumm

MDA

Complaints

Customers
Warehouse

MDA

Stock

MDAMDAMDA MDA MDA MDA

Change
Management
Layer

Agent
Layer

System
Layer

Information

Customers CareDistribution

Caro Server Caro Server Caro Server

Marketing

Fig. 2. Distributed Caro architecture

P

PP

UU
Di

De De

Fig. 3. Provision and usage specifications, internal and external dependencies

a day old.”) or activity information (“The ETL process runs every Saturday at 0:00.”).
Figure 3 illustrates provisions P, usages U and the dependencies D between them. Ex-
ternal dependencies (De) exist between a provision and a usage of different systems.
The usage depends on the corresponding provision to be made. Internal dependencies
(Di) exist between the provision and usages within a system. Services provided (in the
provision) may be dependent on the use (in the usage) of other system’s services. A
simple example is a federated DBMS, whose provision is basically a view on the pro-
visions of the base systems. In this case, the internal dependencies are represented by
the view definitions in the federated DBMS.

Change impact analysis is an integral part of a larger system evolution process, which
is happening in every information infrastructure. System evolution includes all changes
that occur to systems that are part of the infrastructure. In ideal scenarios, before any
change is applied, its impact will be analyzed. We call this preventive CIA. Depending
on the analysis result, some adjustments may be made to minimize the impact or to
adapt the impacted systems. Caro supports this process by providing tools and inter-
faces to do preventive CIA before changes are made. In practice, such ideal scenarios
do not exist, mostly due to the autonomy of systems involved. The larger the number of
integrated systems, the more probable it is that changes are made without prior analy-
sis or coordination. Caro monitors every system and detects changes shortly after they
occur. Reactive CIA is then initiated automatically, and administrators of impacted sys-
tems are notified. The analysis process itself is identical for both cases. The difference
lies only in the type of input data (proposed changes vs. already applied changes) and
in the actions taken after analysis. With preventive CIA, results will have no effect on
running systems, whereas with reactive CIA, affected systems may be disabled, or other
measures may be taken, to prevent data corruption or incorrect query results.

Change Management in Large-Scale Enterprise Information Systems 91

InternalDependency

ExternalDependency

Dependency

<<enumeration>>
Status

deleted
added

changed
...

Compound

ModelElement

hasPart label

Table hasColumnColumn

hasParameter

Part

Literal
value

ContentModel Attribute hasAttribute hasContentModel

derivedFrom subclassOf

provision

provision
usage

CIAMElement

type: Type
issuedBy

status: Set<Status>

usage

1

0..*
0..*

1

1

0..*

0..* 1

usage
provision

<<enum>>
Type

CIAM

1

0..*

0..*

specific data model (relational)

(XML)XElement

ModelRelationship

hasType

source

Element
1

target core CISDM

Fig. 4. Caro meta-models

3 Conceptual Model

An important consideration was the choice of the meta-model to use in our approach.
It must be possible to represent arbitrary metadata and dependencies, without assuming
any data model (like SQL or XML) or types of dependencies. There has to be support
for a declarative specification of change impact, and the possibility to describe metadata
at different granularities. These requirements are met by our conceptual model.

The base assumption we build our model on is the following: A metadata description
consists of elements and the relationships between them. Elements are atomic informa-
tion units. In the relational world, a table definition consists of many elements, namely
the element representing the table itself, the name of the table, elements for every col-
umn, column name and column type, and so on. A metadata description can then be
expressed as a bipartite digraph with node types E and R representing elements and
relationships, similar to the ER-model. Relationship nodes represent a binary relation
between element nodes and thus always have one incoming and one outgoing edge.
Expressing relationships as nodes and not as edges has its reason in that there can be
dependencies between relationships.

The elements in the metadata graph are instances of elements defined in the Caro
meta-model. This meta-model has two parts, the change-impact system description
model (CISDM) and the change-impact analysis meta-model (CIAM). Both of them
are depicted in Fig. 4. We aim to provide more complex class-building constructs,
like it is possible in OWL [1], but for readability we used an UML-like syntax in the
figure.

The CISDM defines classes that capture the semantics that are relevant to CIA. The
figure shows a selection of these. The top level classes are Element, which all element
nodes are instances of, and ModelRelationship for the relationship nodes. ModelRela-
tionships connect two Elements, as we have stated before. Literals have no outgoing

92 B. Stumm

edges, since they only function as containers for values of other Nodes. For each CIA-
relevant “role” that a node may have, the top level classes are subclassed. In the figure,
two roles for element nodes (Compound and Part), and several roles for relationship
nodes are shown. The CISDM itself is not intended to model metadata graphs directly.
It is an abstract meta-model from which concrete meta-models can inherit, assigning
CIA semantics to their elements. In the lower part of the figure, this is shown for some
elements of the relational and XML data model. The change impact analysis is done
only with the information that the generic part of the CISDM provides, whereas the
metadata is described in terms of the corresponding data model. Change impact proper-
ties are assigned to meta-model elements by inheritance, which makes it easy to adapt
existing meta-models for use in Caro by simply adding the CISDM classes as super-
classes to the model.

While the CISDM is used to model the change impact properties of metadata de-
scriptions, the CIAM provides means to connect different graphs via dependencies and
enables setting the status of nodes (e.g., to added or deleted). The upper part of Fig. 4
shows the CIAM. Main classes are Dependency and CIAMElement. Each dependency
connects two CIAMElements, which are either ModelElements or ModelRelationships.
The connected elements have one of two roles: provision or usage. CIAMElement has
two other properties. The status property holds the current analysis result for this ele-
ment. For simplicity, only the three status values added, deleted and changed are shown
in the figure. The issuedBy property denotes the observed system which the graph be-
longs to. With this model, not only dependencies between elements, but also between
relationships can be expressed.

There is no requirement for metadata graphs to be complete, or every dependency to
be modeled. If there is a dependency between a table in a source system and a feder-
ated DBMS, the individual column elements need not be connected via dependencies.
The most coarse-grained metadata graph would consist only in one element node per
system, and dependency nodes showing how systems are related to each other. This
does not allow a very precise analysis, but in this way no system will be “forgotten”
if a change occurs somewhere. Since fine-grained metadata can be very expensive to
get, it can be decided on a case-by-case basis if an exact analysis is required or if more
false alarms are acceptable. There are no constraints on the types of metadata changes
that can be captured. If the corresponding elements and their dependencies are mod-
eled, changes will be detected. Although in our prototype we focus on schema changes,
Caro is not limited to that. Some examples that come to mind are function signatures,
classes, methods, directory layouts, application configuration files, installed software.
Even more dynamic metadata such as network capacity, free disk space, or CPU perfor-
mance can be modeled and analyzed. Of course, the CISDM will probably have to be
extended, and some more analysis rules may be required. We will discuss this in Sect. 5.

4 Analysis

The analysis of a change is done by applying impact rules to the metadata graph until
no more rules can fire. Conceptually the rules and the graphs they operate on have the
following characteristics:

Change Management in Large-Scale Enterprise Information Systems 93

:hasPart

status = added

:Compound

status + changed

rule

:hasPart

status = added

:Compound

graph before analysis

:hasPart

status = added

:Compound

status = changed

graph after analysis

Fig. 5. Example rule

– Each rule has a premise, which is a graph pattern specifying nodes and their prop-
erties. If the premise matches a subgraph, the conclusion of the rule is applied. The
conclusion is always a list of property values that will be added to a specific node.

– Each node has a finite set of properties that are identified by property names.
– If a part of a conclusion already exists in the graph, only the missing part is added.

These characteristics make the appliance of rules monotonic. Besides that, order of
rule appliance does not matter. This ensures that analysis will always produce the same
output if given the same input and that the calculation will always terminate.

Figure 5 shows a simple rule in a graphical notation on the left. Text written in nor-
mal font constitutes the premise. The conclusion is written in boldface. The analysis
rule shown in the figure adds the changed-status to a compound if a part was added.
Although the rule is quite simple, we argue that in the majority of cases, such sim-
ple rules suffice, making the analysis procedure similar transitive closure algorithm. In
some cases, more complex rules which contain more nodes and edges may be needed,
therefore the reasoner used must not rely on having only simple rules. Our current im-
plementation uses RDF [2] and the Jena framework [9] with its generic rule reasoner for
analysis. We mapped our conceptual model to RDF triples. The implementation details
cannot be discussed here due to space restrictions. Rules always specify the most gen-
eral class to which they apply, but also match subclasses. For the example analysis rule
this means that a hasColumn relationship, which is a specialization of hasPart, between
a table and its columns will also be matched. If a meta-model needs to be analyzed in a
way not covered by the standard ruleset, special rules can easily be added by using the
corresponding subclasses in the rule definitions.

5 Deploying Caro

In the previous two sections we introduced the conceptual meta-model and the analysis
rules that work on it. We showed that we can handle arbitrary metadata models, and
even cope with incomplete data. For this to work, we make several basic assumptions:
for all metadata there is a specific meta-model extending the CISDM, and all meta-
data to analyze will be transformed automatically into our common format. Further, the
metadata agents detect all changes and notify the change manager component. In this
section we will discuss the manual effort that is needed to fulfill these assumptions.

Extending the CISDM. All metadata needs to be described by a meta-model which is
an extension of the CISDM. Although we aim to provide meta-models for SQL and
XML directly, there will in general be the need to define custom meta-models. We
believe that for most cases the effort will be rather small, and depending on the resources

94 B. Stumm

available, one can decide to have a not-so-detailed model at the cost of a more coarse-
grained analysis. Tightly coupled with the extension of the CISDM is the addition of
new analysis rules. As we mentioned, rules will generally have a very simple structure,
so this is also an unproblematic task.

Transforming the Metadata. Since Caro needs all metadata in form of a graph, the sys-
tem metadata will need to be transformed to the graph format. This basically amounts
to writing custom transformer components for the corresponding MDA. This is not a
scientific effort, only a technical one, since there is already a meta-model for the system.
While this is a manual task, it can be accomplished in a straightforward way.

Monitoring and Extracting the Metadata. Perhaps the biggest problems that Caro and
all similar approaches are facing is how to monitor systems for changes, and how to
extract the metadata in an automated way. All relational DBMS have an information
schema2, which makes it very easy create a custom MDA-component to extract the
schema and other metadata. Listening for changes gets more difficult, since triggers on
system tables are usually not allowed. A solution here can be a periodic poll and use of
a “diff” tool to find out what changed, or inspecting logfiles. In this and similar cases,
monitoring and metadata extraction poses no problems. But there are other scenarios,
e.g., systems only allowing function calls with no simple query mechanism to inspect
metadata, or where access rights prevent the MDA from inspection. There is no general
solution for these scenarios. An implementation of a custom MDA-component might,
e.g., analyze the source code, do probing or check the timestamps of files. Even if the
information that is gathered this way is incomplete, Caro is still able to do analysis on
a more coarse-grained level.

While the manual effort to make the assumptions work may seem high, it is far less
than the manual effort needed when integrating information systems. In information
integration, specific data schemas (models) have to be integrated, matched and mapped
to each other. In Caro, we work with meta-models. Most of the work has to be done
only once for all instances of a proprietary system type, or could be provided by third
parties.

6 Conclusions and Outlook

We presented a generic approach to change impact analysis which uses inference rules
for processing. The approach can be applied to a wide range of scenarios. There are
no constraints on which systems can be monitored and analyzed for changes. If a sys-
tem with a proprietary metadata format is to be analyzed, only some custom MDA-
components need to be developed. Since Caro can also function with incomplete and
coarse-grained metadata, the initial development time and cost of these components can
be kept low, at the cost of a less precise analysis leading to more false alarms.

An important question that arises is how Caro handles metadata other than SQL and
XML schemas. It is neither possible nor desirable to include elements for all possible

2 Not all DBMS may have a information schema conforming to the newer SQL standards, but
all have a proprietary variant of it.

Change Management in Large-Scale Enterprise Information Systems 95

metadata descriptions in the CISDM or CIAM. Instead, these meta-models themselves
can be extended by adding more possible values to the status property or subclassing
ModelRelationship and ModelElement. In addition to the model extensions, new analysis
rules need to be defined, too. This imposes no problem, since the rules are generally very
simple. The main goal of our work is to analyze the impact of changes in an integrated
environment of heterogeneous information systems. It would be interesting to know to
which extent our approach could be used in other areas where the analysis of change
impact is important, like CIA in software development.

One of the next steps is to extend Caro to not only be able to automatically analyze
changes but also to handle problems that are detected, and help the developers by cor-
relating the “old” and the “new” elements (i.e., to better recognize renaming or moving
of elements). Furthermore, it is necessary to provide possibilities to give behavioral
advice to systems affected by a change, to enable automatic reaction to problems. By
using additional properties for element and relationship nodes, this can happen without
interference with the current system. While the existing system was developed with this
in mind, the details are subject to future work.

References

1. OWL Web Ontology Language Guide, 2004. http://www.w3.org/TR/2004/REC-owl-guide-
20040210/.

2. RDF/XML Syntax Specification (Revised), 2004. http://www.w3.org/TR/2004/REC-rdf-
syntax-grammar-20040210/.

3. S. Ajila. Software Maintenance: An Approach to Impact Analysis of Objects Change. Soft-
ware – Practice and Experience, 25(10):1155–1181, October 1995.

4. P. Andritsos, A. Fuxman, A. Kementsietsidis, R. J. Miller, and Y. Velegrakis. Kanata: Adap-
tation and Evolution in Data Sharing Systems. SIGMOD Record, 33(4):32–37, December
2004.

5. P. A. Bernstein. Applying Model Management to Classical Meta Data Problems. In Proc. of
the 1st Conference on Innovative Data Systems Research (CIDR), 2003.

6. S. A. Bohner and R. S. Arnold, editors. Software Change Impact Analysis. IEEE Computer
Society Press, Los Alamitos, CA, USA, 1996.

7. L. Deruelle, M. Bouneffa, G. Goncalves, and J.-C. Nicolas. Local and Federated Database
Schemas Evolution: An Impact Propagation Model. In Proc. of the 10th International Con-
ference on Database and Expert Systems Applications (DEXA), pages 902–911, 1999.

8. C. Dorda, H.-P. Steiert, and J. Sellentin. Modellbasierter Ansatz zur Anwendungsintegration.
it – Information Technology, 46(4):200–210, 2004.

9. Hewlett-Packard. Jena – A Semantic Web Framework for Java, 2005. http://jena.
sourceforge.net/.

10. A. Keller and C. Ensel. An Approach for Managing Service Dependencies with XML and
the Resource Description Framework. Technical report, IBM, 2002.

11. P. McBrien and A. Poulovassilis. Automatic migration and wrapping of database applica-
tions – a schema transformation approach. In Int. Conf. on Conceptual Modeling/the Entity
Relationship Approach, 1999.

12. R. McCann, B. AlShebli, Q. Le, H. Nguyen, L. Vu, and A. Doan. Mapping Maintenance for
Data Integration Systems. In Proceedings of the 31st VLDB Conference, 2005.

13. S. Melnik, E. Rahm, and P. A. Bernstein. Developing Metadata-Intensive Applications with
Rondo. Journal of Web Semantics, 1(1), 2004.

http://jena.sourceforge.net/
http://jena.sourceforge.net/

96 B. Stumm

14. E. Rahm and P. A. Bernstein. A survey of approaches to automatic schema matching. VLDB
Journal, 10:334–350, 2001.

15. J. F. Roddick. Schema Evolution in Database Systems – An Annotated Bibliography. SIG-
MOD Record, 21(4):35–40, 1992.

16. B. G. Ryder and F. Tip. Change Impact Analysis for Object-Oriented Programs. In Proceed-
ings of PASTE, 2001.

17. X. Zhang and E. A. Rundensteiner. Data Warehouse Maintenance Under Concurrent Schema
and Data Updates. Technical report, Worcester Polytechnic Institute, 1998.

	Introduction
	Overview
	Conceptual Model
	Analysis
	Deploying Caro
	Conclusions and Outlook

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

