

Trends in DBMSs	Маррі	ng: XML \leftarrow	→ Re	lational Model
RM vs. XML Architectural requirements Node labeling Indexing Node processing services Concurrency control Lock manager	Person Name A Müller S a	Age Address Age chloss- lee 1,	Persons Persons Name Maier	Person Name Address Age Schmidt Opern- platz 5, 35 Address Age Badstr. 3, 20
Derformance	Person	-		Perfect mapping in the RM only, if
measurement	Name	Address	Age	- exactly three-level description O/A/W
	Müller	Schlossallee 1,	55	- atomic values
	Maier	Badstraße 3,	20	- no aspects (attributes of XML elements)
DBIS	Schmidt	Opernplatz 5,	35	- order does not matter.
© 2005 AG DBIS				5-2

Trends in DBMSs	Марр	ing Flex	ibilit	ty: XI	$ML \leftrightarrow \Rightarrow Relational Model$
RM vs. XML Architectural requirements Node labeling Indexing	Person Name	Address Ag chloss- llee 1,	e Persor	son Address	Person Name Address Height measure Schmidt Opern- platz 5, 180
Node processing services Concurrency control		Maier	Stree Badstr. 3	t Zip	City Street Zip City 3 KL F-W-Str. 5 67657 KL
Lock manager Performance	Person				Mapping in RM in a single table fails, if object
measurement	Name	Address	Age	Height	description
	Müller	Schlossallee 1,	55		(composed attributes),
	Maier	?	20		- owns multi-valued or relation-valued
© 2005 AG DBIS	Schmidt	Opernplatz 5,		180	attributes (n-level repeating groups) 5-4

Trends in DBMSs	Characte	ristics of XN	1L Docu	ments	Consid	lered				
	file name	description	size (bytes)	number of element nodes	number of text nodes	number of attributes	max. depth	ø– depth	max. fanout	Ø−fanout of elements
RM vs. XML	l) treebank_e.xml	Encoded DB of English records of Wall Street Journal	86,082,517	2,437,666	1,391,845	1	37	8.44	56,385	1.58
Architectural requirements	2) nasa.xml	Astronomical data	25,050,288	476,646	303,676	56,317	9	6.08	2,435	1,76
Node labeling	3) psd7003.xml	DB of protein sequences	716,853,016	21,305,818	15,955,109	1,290,647	8	5.68	262,529	1.81
Indexing	4) SwissProt.xml	DB of protein sequences	114,820,211	2,977,031	2,013,844	2,189,859	6	4.07	50,000	2.41
Node processing services	5) dblp.xml	Computer Science Index	284,994,162	6,662,623	6,013,355	1,375,832	7	3.39	649,080	2.11
Concurrency	6) customer.xml	Customers from TPC-H benchmark	515,660	13,501	12,000	1	4	3.41	1,501	1.89
	7) ebay.xml	Ebay auction data	35,562	156	107	0	6	4.26	12	1.90
Performance	8) lineitem.xml	Line items from TPC-H benchmark	32,295,475	1,022,976	962,800	1	4	3.45	60,176	1.94
measurement	9) mondial-3.0.xml	Geographical DB of diverse sources	1,784,825	22,423	7,467	47,423	6	4.15	955	3.45
	10) orders.xml	Orders from TPC-H Benchmark	5,378,845	150,001	135,000	1	4	3.42	15,001	1.90
DBIS Detenbenken und Informationsystem	11) uwm.xml	Courses of a University Website	2,337,522	66,729	40,234	6	6	4.37	2,112	1.91 5-32
@ 2000 AD DBIO										

Trends in DBMSs	Encoding o	f Dev	veyIDs	
RM vs. XML	Huffman code	L _i	value range of O _i	r
Architectural	0	3	1-7	a
requirements	100	4	8-23	g
Node labeling	101	6	24-87	e
	1100	8	88-343	е
Indexing	1101	12	344-4,439	- X p
Node processing	11100	16	4,440-69,975	a
services	11101	20	69,976-1,118,551	n s
Concurrency control	11110	24	1,118,552-17,895,767	i
	11111	31	17,895,768-2,165,379,414	n
Performance measurement	Optimization - analysis phase for optimized - cut prefix 1. - apply prefix co	potent e, if pos Huffmai ompress	ial sible: determine DOM tree param n code assignment (even level-wi sion to DeweyIDs	eters se applicable)

Trends in DBMSs	DeweyIDs –	Compa	arison o	of Avg. S	Sizes to	o Max. S	Sizes	
\smile		-	-	-	-	-		
RM vs. XML			Ø-size			max-size		
	Document	dist(2)	dist(32)	dist(256)	dist(2)	dist(256)	dist(256)	
requirements	1. tree-bank_e	6.67	11.57	15.94	22	46	72	
Node labeling	2. nasa ·	5.19	8.54	11.30	8	13	18	
Indexing	3. psd7003	5.61	8.84	11.30	8	13	17	
Nada processing	4. SwizzProt	5.10 .	7.04.	8.14	.8	••11	. 13 .	
services	5. dblp	4.58	6.12	7.16	7	10	13	
Concurrency control	6. customer	3.17	5.04	6.19	4	6	7	
Lock manager								
Performance measurement								
DBIS Deenbanken und Urformationasystems 2005 AG DBIS	· .							5-3

Trends in DBMSs	XPath Axes	
RM vs. XML Architectural requirements Node labeling	 parent child ancestor descendant 	
Indexing Node processing services	 previous-sibling following-sibling previous following attribute 	
Concurrency control	9. attribute 10. namespace 11. self 12. ancestor-or-self 13. descendant-or-self	
		5.53

Trends in DBMSs	N	od	le	Loc	ks							
RM vs. XML	•	No re	ode fine	e loo ed fr	cks rom	ano hie	d co raro	omp chica	oatil al Ic	bility	matrix 3 schemes	
Architectural				Comp	atibil	itv m	atrix				lock	Read locks
requiremento						-7					IR (intention rea	d) Read lock on non-direct
Node labeling		-	IR	NR	LR	SR	IX	CX	SU	SX		child node
	IR	+	+	+	+	+	+	+	-	-	NR (node read)	Read lock on the node
Indexing	NR	+	+	+	+	+	+	+	-	-	LR (level read)	Read lock on context node and all direct-child nodes
Node processing	LR	+	+	+	+	+	+	-	-	-	SR (subtree read	d) Read lock on entire subtree
services	SR	+	+	+	+	+	-	-	-	-		
Concurrency control	IX	+	+	+	+	-	+	+	-	-		Write locks
	CX	+	+	+	-	-	+	+	-	-	lock	effect
Lock manager	SU	+	+	+	+	+	-	-	-	-	SX (exclusive)	Write lock on entire subtree
Performance	SX	+	-	-	-	-	-	-	-	-	CX (child excl.)	Write lock on direct child node
measurement											IX (intent. excl.)	Write lock on non-direct child node
											SU (update)	Read lock with intended update operation on entire subtree
Datenbanken und Informationssysteme												5-62

Trends in DBMSs	t	aDO	DM ³	* G I	rou	р —	Loc	k Pı	roto	col	Opt	imi	zat	ion		_
)		Opti	miza	ition	step	S										
RM vs. XML		• t	aDOI - de	M2+: etermin	LRIX	K, SRI of ance	IX, LR	CX, S	RCX cheap	, but th	at of cl	nild ID	s very	expen	sive	
Architectural requirements		• t	- nc aDOI	ow loci M3: N	k mgr NRIX,	can eas , NRC	se the p X, NU	, NX	n by se	tting in	nplicit lo	ocks o	n then	ו		
Node labeling			- sp - IX	becial (and	mode CX or	e allow nly ind	s lock icate t	ing a s he int	single ention	node v of wr	withou ite ope	t affe eratio	cting ns on	the si some	ubtree	e att.
Indexing		• t	a aDOI	escen M3+:	LRI	nodes, K, SRI	but a X, LR	o not CX, S	RCX,	LRNU	nation J, SRN	abou NU, L	t read RNX,	sRN	esses X	
Node processing services		Lock	con	vers	ion i	n taD	DOM3	8								
Congurrange			-	IR	NR	LR	SR	IX	NRIX	CX	NRCX	NU	NX	SU	SX	
control		IR	IR	IR	NR	LR	SR	IX	NRIX	CX	NRCX	NU	NX	SU	SX	
		NR	NR	NR	NR	LR	SR	NRIX	NRIX	NRCX	NRCX	NR	NX	SU	SX	
Lock manager		LR	LR	LR	LR	LR	SR	NRIX _{NR}	NRIX _{NR}	NRCX _{NR}	NRCX _{NR}	NU _{NR}	NX _{NR}	SU	SX	
		SR	SR	SR	SR	SR	SR	NRIX _{SR}	NRIX _{SR}	NRCX _{SR}	NRCX _{SR}	NU _{SR}	NX _{SR}	SR	SX	
Performance		IX	IX	IX	NRIX	NRIX _{NR}	NRIX _{SR}	IX	NRIX	CX	NRCX	NX	NX	SX	SX	
measurement		NRIX	NRIX	NRIX	NRIX	NRIX _{NR}	NRIX _{SR}	NRIX	NRIX	NRCX	NRCX	NX	NX	SX	SX	
		CX	CX	CX	NRCX	NRCX _{NR}	NRCX _{SR}	CX	NRCX	CX	NRCX	NX	NX	SX	SX	
		NRCX	NRCX	NRCX	NRCX	NRCX _{NR}	NRCX _{SR}	NRCX	NRCX	NRCX	NRCX	NX	NX	SX	SX	
		NU	NU	NU	NU	NUNR	NU _{SR}	NA	NX	NA	NX	NU	NA	SU ev	SA EV	
(DBIS)		SU	SU	SU	SU	SU SU	SU SU	SX	SX	SX SX	SX SX	SU	SX	SU	SX	
© 2005 AG DBIS		sx	sx	sx	sx	sx	sx	sx	sx	sx	sx	sx	sx	sx	sx 5-	84
		-														

Trends in DBMSs	Summary
RM vs. XML Architectural requirements	 Invariants of DB management determine the mapping steps in the DBMS architecture XDBMS require substantial adjustments VITA data or data streams?
Node labeling Indexing	 DeweyIDs are the key for an efficient infrastructure support for navigational operations core path processing steps concurrency control
Node processing services Concurrency control	 Support of 12 locking protocols taDOM protocols taDOM2, taDOM2+, taDOM3, and taDOM3+ classic hierarchical protocols and improvements IRX, IRX+, IRIX, IRIX+, and URIX alternative XML locking protocols Node2PL, NO2PL, and OO2PL
	 Processing of declarative queries: various optimizations, adjustments and complements needed index structures query optimization plan operators and cost models evaluation of alternative access plans
© 2005 AG DBIS	5-88

Trends in DBMSs	Conclusions and Outlook	
RM vs. XML	 XTC is used as a test vehicle for empirical DB research optimization of native XML storage models 	
Architectural requirements	 effectiveness of XML concurrency control fine-granular locking on nodes and edges 	
Node labeling	 exchange of lock manager possible meta-synchronization allows comparison of different compatibilities 	5
Node processing services	 performance evaluation revealed cost of lock management 	
Concurrency control	 effect of isolation levels on transaction throughput influence of node numbering schemes: node insertions at arbitrary positions needed 	
Lock manager Performance	 ancestor path locking without accessing the storage engine desirable mapping different XML language models 	
	 via access models to the XML storage model to analyze the locking behavior of XQuery processing new locking approach to XQuery? 	
Datenbanken und brinnationasystems © 2005 AG DBIS		5-89

Trends in DBMSs	Further References
RM vs. XML	 Beyer, K. S., Cochrane, R., Josifovski, V., Kleewein, J., Lapis, G., Lohman, G. M., Lyle, B., Ozcan, F., Pirahesh, H., Seemann, N., Truong, T. C., van der Linden, B., Vickery, B., Zhang, C.: System RX: One Part Relational, One Part XML. in: Proc. ACM SIGMOD Conf., Baltimore, Maryland, pp. 347-358, 2005.
Architectural requirements	 Härder, T., Haustein, M. P., Mathis, C., Wagner, M.: <u>Node Labeling Schemes for Dynamic XML Documents Reconsidered</u>, appears in Data & Knowledge Engineering, Elsevier, 2006.
Node labeling	 Haustein, M.: <u>Eine XML-Programmierschnittstelle zur transaktionsgeschützten Kombination von DOM, SAX</u> <u>und XQuery</u>, in: Proc. BTW-Konferenz, Karlsruhe, March 2005, pp. 265–284.
Indexing	 Haustein, M.: <u>Verhinderung von Phantomen in XML-Datenbanksystemen mit wertbasierten</u> <u>Achsensperren</u>, in: Proc. Berliner XML Tage, Sept. 2005, pp. 79-92.
services	 Haustein, M. P., Harder, L.: <u>Adjustable Transaction Isolation in XML Database Management Systems</u>, in: Proc. 2nd Int. XML Database Symp., Toronto, Canada, Aug. 2004, LNCS 3186, Springer, pp. 173-188.
Concurrency control	 Haustein, M. P.: Feingranulare Transaktionsisolation in nativen XML-Datenbanksystemen, Verlag Dr. Hut, München, Januar 2006.
Lock manager	 Haustein, M. P., Härder, T., Luttenberger, K.: <u>Contest of XML Lock Protocols</u>, appears in: Proc. VLDB Conf., Seoul, Sept. 2006. Mathis Ch. Härder T.
Performance measurement	Hash-Based Structural Join Algorithms, appears in: Proc. DATAX'06 Workshop, Munich, March 2006.
	 Induits, Ch., Haluer, L., Halueri, Ph.: Locking-Aware Structural Join Operators for XML Query Processing, in: Proc. Sigmod Conf., Chicago, Illinois, pp. 467-478, 2006.
Datenbanken und Informationssystems © 2005 AG DBIS	 Pabler, M., Nicola, M.: Native XML-Unterstützung in DB2 Viper, Datenbank-Spektrum 17/2006, pp. 42-47. 5-90