

Trends in DBS	The Client-to-Server Path Through the Internet
Web caching Approaches to DB caching DBProxy DBCache Adaptive and constraint-based Cost considerations	 Conceptually, a Web request is processed as follows: A Web client sends a query containing a URL via HTTP and the Internet to a Web server (server, for short) identified by the URL. The server processes the request, generates the answer (typically an HTML or XML document), and sends it back to the client. To solve the performance and availability problems, we add, again conceptually, a Web proxy server somewhere in the client-to-server path. Such a proxy can be used in a number of ways, including caching documents and parts thereof converting data to HTML/XML format so it is readable by a client browser providing Internet access for companies using private networks selectively controlling access to the Internet based on the submitted URL
Implementation of ACCache	• permitting and restricting client access to the Internet based on the client IP address
Update models for caches	client contents server
© 2005 AG DBIS	client proxy server

Trends in DBS	The Client-to-Server Path Through the Internet (3)
Web caching	 Browser cache: For all user requests, this cache dedicated to the browser is first searched. If the specific content is located in the cache, it is checked to make sure that it is "fresh". Such a private cache is particularly useful if a user scrolls back in his request history or clicks a link to a page previously looked at.
DBProxy	Proxy cache: While working on the same principle, but a much larger scale, such a cache is shared, performs demand-driven <i>pull caching</i> , and serves hundreds or thousands of users in the same way. It can be set up on the firewall or as a stand-alone device. Unless other search paths are specified, a cache miss sends the request to the next proxy cache in the client-to-server path.
Adaptive and constraint-based Cost considerations Implementation of ACCache	 <i>Reverse proxy cache</i>: This kind of cache is an intermediary also known as "edge cache", "surrogate cache", or "gateway cache". While not demand-driven, such caches reverse their role as compared to proxy caches, because they are supplied by origin servers with their most recent offerings—a kind of <i>push caching</i>. Furthermore, they are not deployed by network administrators to save bandwidth and to reduce user-perceived delays which is characteristic for proxy caches, but they are typically deployed by Web masters themselves, to unburden the origin servers and to make their Web sites more scalable, reliable,
	 <i>Server cache</i>. It keeps generated content and enables reuse without interaction of the origin server. Intermediate results and deliverable Web documents help to reduce the server load and improve server scalability.

Trends in DBS	Validity of Cached Objects
Web caching	 The <i>Expires</i> HTTP header is the basic means of controlling caches. It tells the cache how long the object is fresh for; after that time, the cache will always check back with the origin server to see if a document is changed.
Approaches to DB caching	 If no <i>Expires</i> value as the definite time limit is set (for ZeroTTL objects), the cache may estimate the freshness via <i>Last-Accessed</i> or <i>Last-Modified</i>.
DBProxy	 Cache-Control response headers contain directives to specify what is cacheable, what may be stored, how to modify the expiration mechanism, and how to revalidate or reload objects. Useful Cache-Control response headers
Adaptive and constraint-based	 <i>max-age=[seconds]</i> – specifies the maximum amount of time that an object will be considered fresh. Similar to Expires, this directive allows more flexibility.
Cost considerations	 public – marks the response as cacheable, even if it would normally be uncacheable, e.g., if the object is authenticated, the public directive makes it cacheable.
Implementation of ACCache	 no-cache – forces caches (both proxy and browser) every time to submit the request to the origin server for validation before releasing a cached copy. This is useful to assure that authentication is respected (in combination with public), or to maintain
Update models for caches	 must-revalidate – tells the cache that it must obey any freshness information given about an object. By specifying this header, the cache is forced to strictly follow the
	given rules.
© 2005 AG DBIS	6-10

Trends in DBS	Approaches to DB Caching
<u> </u>	Classical approaches
Web caching	 declarative caching (static), full-table caching, etc. not cost- effective and adaptable
Approaches	 materialized views V_i
to DB caching	- queries typically refer to single cache tables: PS queries
DBProxy	 result of query Q_A is contained in V_i, if predicate P_A is logically implied by predicate P_i (subsumption) and if the output attributes of O_A are contained in the OV attributes
DBCache	- adaptive?
Adaptive and constraint-based	 Constraint-based caching
Cost considerations	 specification of parameterized predicates: adaptable to workload constraints are guaranteed by the cache mgr
Implementation of ACCache	 evaluation of PSJ queries in the cache on the resp. predicate extension
Update models for caches	 further application of Group-By, Having, Order-By, and other predicates
Contentional States	6-15

Trends in DBS	DB Caching – Crucial Differences!
Web caching Approaches to DB caching DBProxy DBCache Adaptive and constraint-based Cost	TA 1 TA 2 TA n FE-DBMS data and access system ldgical page references DB buffer mgmt physical page references storage mgmt disk access data and access system ldgical page references storage mgmt disk access
Implementation of ACCache Update models for caches	 Conceptual requirements data model dependent dynamic adaptive Deformance requirements DB-Caching close to the application Content of FE-DB must enable evaluation of (partial) queries DB modifications (at first) in the BE-DBMS Data consistency
DBIS Dater handler und Formationssystems	 minimization of contact to BE-DBMS, e.g., no ONC via wide-area networks often reference to staled DB-states query can see several DB-states

Trends in DBS	DBProxy – Example
Web caching Approaches	FE item
DBProxy	i_id i_cost i_srp
DBCache	5 14 8 NULL Retrieved by Q ₁ SELECT i_cost, i_srp FROM item
	120 15 22 NULL WHERE i_cost BETWEEN 14 AND 16
constraint-based	340 16 13 abc SELECT i srp. i isbn FROM item
Cost considerations	450 NULL 18 Cde WHERE i_srp BETWEEN 13 AND 20
Implementation of ACCache	620 🔲 NULL 20 🔲 efg 🔲
Update models for caches	
Detententen und Informationssystemer © 2005 AG DBIS	6-22

Trends in DBS	Controlled Cache Filling					
Web	cache keys:		U	NU	NU	U
caching	CType and CLoc	BE_C	Cno	СТуре	CLoc	Cid
Approaches			1	silver	SF	NULL
to DB caching	 cache kev rule: 		2	silver	LA	а
	at most one cache key		3	platinum	SJ	b
DBProxy	may be of type. NU		4	unspec.	LA	с
	may be of type no		5	gold	SJ	d
DBCache			6	gold	SF	e
	• why?		7	gold	NY	f
Adaptive and			8	bronze	Chi	g
constraint-based			9	NULL	Chi	h
Cost	 assume query with 					
considerations	CTvpe = platinum'	FE_C	Cno	СТуре	CLoc	Cid
Implementation			3	platinum	SJ	b
of ACCache			5	gold	SJ	d
Update models	an FE table may carry up		6	gold	SF	e
for caches	to n cache Keys		7	gold	NY	f
			1	silver	SF	NULL
$\Box \oplus \triangleright$			2	silver	LA	а
(DBIS,			4	unspec.	LA	с
© 2005 AG DBIS	L					6-30

Trends in DBS	Cache Table Filling – Use of Cache Key Values								
Web	• FE-CUST has defined 2 cache keys: CType and Cno	BE_CUST	U Cno	NU CType	NU CLoc	U Cid			
Approaches to DB caching DBProxy	 when the cache is empty, the query Where 'CType=gold' has the following effect: 		 789 891 333 444 123	silver silver platinum unspec. gold	SF LA SJ LA S1	NULL d07 a21 a07 a14			
DBCache Adaptive and constraint-based	 query with 'Cid=a14' is evaluated in the cache; however, it would not result in cache filling 		456	gold 	SF 	b21			
Implementation of ACCache Update models for caches	 cache filling after a query with 'Cno=789' 	FE_CUST	Cno 123 456 789 891	CType gold gold silver silver	CLoc SJ SF NY LA	Cid a14 b21 NULL d07			
COSSAG DBIS						6-31			

Trends in DBS	ACCache – Adaptive Constraint-Based Caching						
Web caching Approaches to DB caching	 Reuse and adaptation of DBCache concepts RCC cache group but: top-down approach 						
DBProxy	 Goal: evaluation of a given predicate in the cache 						
DBCache	 cache mgr uses cache constraints to guarantee predicate completeness 						
Adaptive and constraint-based	Def.: Predicate completeness A collection of tables is said to be predicate complete w.r.t. predicate Q if it contains all records needed to evaluate Q, i.e., its predicate extension.						
Implementation of ACCache	 simplest form: equality predicates their evaluation requires value completeness 						
for caches	Def.: Value completeness (VC)						
	A value v is said to be value complete (complete for short) in a column S.c if and only if all records of $\sigma_{c=v}S_{B}$ are in S.						
© 2005 AG DBIS	6-44						

Trends in DBS	Fill Daemon
\sim	 If probing fails,
Web caching	 the value looked up is not complete in the cache and the query has to be processed in the BE DB
Approaches to DB caching	 if the value is a CV, a msg is sent to the FD to load it into the cache
DBProxy	 assume actor name 'Bond' is a CV and the resp. predicate extension has to be loaded:
DBCache	 loading the related Actor records force Play and City records into the cache.
Adaptive and constraint-based	 the inserted Play records require the filling of Movie records and these, in turn, Genre and City records
Cost	- beware of duplicates!
considerations	 Top-down filling
Implementation of ACCache	 the filling process iteratively loads a sequence of cache tables starting with the control table
Update models for caches	• as an example, we list the insert statement for the Actor table:
	INSERT INTO CA_Actor SELECT * FROM Actor a WHERE a.name = 'Bond' AND a.name NOT IN (SELECT name FROM CA_Actor)
Datenbanken und Performationssystems © 2005 AG DBIS	long X locks must be kept until filling is successfully finished!

Trends in DBS	Fill Daemon (2)
	Key observation
Web caching	 when loading the cache tables bottom-up, we can fill each table in a separate transaction thereby providing cache consistency and only need to lock until the resp. cache table is loaded
to DB caching	 more precisely, we have to define so-called atomic zones which can be loaded independently
DBProxy	 in the simplest case, when no cycles are present, each table is an
DBCache	atomic zone
Adaptive and	 Bottom-up filling
constraint-based	 determine the loading sequence of the zones by topological sorting
Cost considerations	 in the example. (Genre, City), Movie, Play, Actor, and finally the control table A.name
Of ACCache	 reverse RCC path be R_n, R_{n-1},, R₁ where the target table to be filled is R_n and the source table of R₁ is the root table
for caches	 generic form of prepared insert statements:
<	INSERT INTO <cache table=""> (SELECT * FROM <corresponding backend="" table=""> WHERE <r<sub>n target col.> IN (</r<sub></corresponding></cache>
Datenbanken und hormationssystems © 2005 AG DBIS	SELECT <r<sub>n source col.> FROM <r<sub>n source table> WHERE <r<sub>n-1 target col.> IN ((SELECT <r<sub>1 source col.> FROM <r<sub>1 source table> WHERE <filling col.=""> = ?)))) ₆₋₇₁</filling></r<sub></r<sub></r<sub></r<sub></r<sub>

Trends in DBS	IADA – Modifications in a S	ingle	FE 1	Table		
Web caching Approaches to DB caching DBProxy DBCache	 Most simple case isolated BE table all modifications in the related FE table primary key: Cno cache keys: Cid (U), CType (NU) Insert inserts of the new records: Cno = 8 possibly reload of records to satisfy an NU- DC condition Cno = 5: NULL semantics for DC? 	BE_C	Cno 1 2 3 4 5 6 7	CType silver platinum NULL NULL gold gold	CLoc SF LA SJ LA SJ SF NY	Cid NULL a b c d e f
Cost constraint-based Cost considerations Implementation of ACCache Update models for caches	 how to test UNIQUE in the FE? trigger actions must be restricted to the FE table Delete in the cache: Cno = 8 data in the BE: Cno = 3, Cno = 6 fetch delete 	FE_C	Cno 8 1 2 5 3 6	CType silver silver silver NULL platinum gold	CLoc NY SF LA SJ SJ SF	Cid c NULL a d b e
© 2005 AG DBIS						6-76

