
Middleware for Heterogenous and Distributed Information Systems - WS04/05

Prof. Dr.-Ing. Stefan Deßloch
AG Heterogene Informationssysteme
Geb. 36, Raum 329
Tel. 0631/205 3275
dessloch@informatik.uni-kl.de

Chapter 2
Distributed Information Systems

Middleware for Heterogenous and
Distributed Information Systems -

WS04/05
2

© Prof.Dr.-Ing. Stefan Deßloch

Chapter Outline

Layers of an information system
presentation
application logic
resource management

Design strategies
top-down, bottom-up

Architectures
1-tier, 2-tier, 3-tier, n-tier

Communication
synchronous, asynchronous

Middleware for Heterogenous and
Distributed Information Systems -

WS04/05
3

© Prof.Dr.-Ing. Stefan Deßloch

Layers of an Information System

Separation of functionality into three
conceptual layers

presentation
interacts with client

present information
accept requests

graphical user interface, or module that
formats/transforms data, or …

application logic
programs that implement the services
offered by the IS

often retrieves/modifies data

resource management
manages the data sources of the IS

DBMSs
file system
any "external" system

In an IS implementation, these layers
might not be clearly distinguishable

presentation layer

application logic layer

resource management
layer

client

inform
ation system

Middleware for Heterogenous and
Distributed Information Systems -

WS04/05
4

© Prof.Dr.-Ing. Stefan Deßloch

Top-Down Information System Design

Steps
1) define access channels and client platforms
2) define presentation formats and protocols
3) define functionality (application logic) necessary to deliver the content and formats
4) define the data sources and data organization needed

Design involves specification of system distribution across different computing
nodes

distribution possible at every layer
homogenous environment, tightly-coupled components

Pro: focus on high-level goals, addresses both functional and non-functional
requirements
Con: can only be applied if IS is developed from scratch

Middleware for Heterogenous and
Distributed Information Systems -

WS04/05
5

© Prof.Dr.-Ing. Stefan Deßloch

Bottom-up Information System Design

Steps
1) define access channels and client platforms
2) examine existing resources and their functionality (RM layer)
3) wrap existing resources, integrate them into consistent interface (AL layer)
4) adapt output of AL for client (P layer)

Design focuses on integration/reuse of existing (legacy) systems/applications
functionality of components is already (pre-)defined

modification or re-implementation is often not a choice

driven by characteristics of lower layers
start with high-level goals, then determine how it can be achieved using existing
components

often starts with thorough analysis of existing applications and systems to
determine which high-level objectives can be achieved
results in loosely-coupled systems

components can mostly be used stand-alone
underlying systems often remain autonomous

Not an advantage, but a necessity

Middleware for Heterogenous and
Distributed Information Systems -

WS04/05
6

© Prof.Dr.-Ing. Stefan Deßloch

Bottom-Up Design Example

presentation

application
logic

resource
management

inform
ation system

client

wrapper wrapper

legacy system legacy system

Legacy
ApplicationsLegacy

Applications

Middleware for Heterogenous and
Distributed Information Systems -

WS04/05
7

© Prof.Dr.-Ing. Stefan Deßloch

1-Tier Architecture

All layers are combined in a single tier
Predominant on mainframe-based computer architectures

client is usually a "dumb terminal"
focus on efficient utilization of CPU, system resources

"Monolithic" system
no entry points (APIs) from outside, other than the channel to the dumb terminals
have to be treated as black boxes
integration requires "screen scraping"

program that simulates user, parses the "screens" produced by the system

the prototype of a legacy system

Advantages
optimizes performance by merging the layers as necessary
client development, deployment, maintenance is not an issue

Disadvantages
difficult and expensive to maintain

further increased by lack of documentation and qualified programmers

Middleware for Heterogenous and
Distributed Information Systems -

WS04/05
8

© Prof.Dr.-Ing. Stefan Deßloch

2-Tier Architecture

Pushed by emergence of PC, workstations (replacing dumb terminals)
(parts of the) presentation layer is moved to the PC

exploit the processing power of PC
free up resources for application logic/resource management layers

possibility to tailor presentation layer for different purposes
e.g., end-user presentation vs. administrator presentation modules

typically realized as client/server system
one (popular) approach: client corresponds to presentation layer, server includes the
application logic and resource management layers
another approach (more traditional C/S): client includes presentation and application logic
layer, server provides resource management services
where does the client end and the server begin?

thin client/fat server vs. fat client/thin server

presentation resource
mgmnt.

application
logic

client server

fat serverfat client

Middleware for Heterogenous and
Distributed Information Systems -

WS04/05
9

© Prof.Dr.-Ing. Stefan Deßloch

Properties of 2-Tier Architecture

Pro
emphasis on "services" provided by server, requested consumed by client
definition of application programming interfaces (APIs) as published server
interfaces

portability, stability
multiple types of clients can utilize the same server API

server can support multiple clients at the same time
sufficient scalability for departmental applications

Con
scalability is often limited (esp. for thin clients)

requires to move to very powerful server machines

especially fat clients require increased software maintenance/deployment on client
side
client is often turned into an integration engine interacting with multiple types of
servers

extra application layer appears in thin clients

Middleware for Heterogenous and
Distributed Information Systems -

WS04/05
10

© Prof.Dr.-Ing. Stefan Deßloch

3-Tier Architecture

Usually based on a clear separation
between the three layers

client tier implements presentation
layer
middle tier realizes application logic

employs middleware

resource management layer composed
of a (set of) servers (e.g., DBS)

Addresses scalability
application layer can be distributed
across nodes (in a cluster)

Portability of application logic
Supports integration of multiple
resource managers
Disadvantages

increased communication

middleware

client

presentation layer

application logic layer

resource management
layer

inform
ation system

Middleware for Heterogenous and
Distributed Information Systems -

WS04/05
11

© Prof.Dr.-Ing. Stefan Deßloch

N-Tier Architecture

Further generalizes 3-tier
architecture

Resource layer may include 1-, 2-,
3-, N-tiered systems

focus on linking, integration of
different systems

Presentation layer may be realized
in separate tiers

especially important for supporting
internet connectivity

client using browser
server-side presentation done by
web server, dynamic HTML
generation (HTML filter)

usually results in 4-tier architecture

Going from N to N+1 in general
adds flexibility, functionality,
distribution options
introduces performance,
complexity, management, tuning
issues

middleware

client

presentation
layer

application logic layer

resource management
layer

inform
ation system

web browser

web server

HTML filter

Middleware for Heterogenous and
Distributed Information Systems -

WS04/05
12

© Prof.Dr.-Ing. Stefan Deßloch

Communication in an Information Systems

Blocking and non-blocking interactions
"synchronous" and "asynchronous" are accepted synonyms in our context

formal definition of synchronous involves additional aspects (transmission time), which we
are ignoring here

interactions is
synchronous/blocking, if the involved parties must wait for interaction to conclude before
doing anything else
asynchronous/non-blocking, otherwise

Middleware for Heterogenous and
Distributed Information Systems -

WS04/05
13

© Prof.Dr.-Ing. Stefan Deßloch

Synchronous or Blocking Calls

Thread of execution at the requestor side must wait until response comes
back
Advantage: Easier to understand for the programmer

state of calling thread will not change before response comes back
code for invoking a service and processing the response are next to each other

Disadvantage: Calling thread must wait, even if a response is not needed
(right away) for further processing steps

waste of time, resources
blocking process may be swapped out of memory
running out of available connections

tight coupling of components/tiers
fault tolerance: both parties must be online, work properly for the entire duration of call
system maintenance: server maintenance forces client downtime

blocking period
request

response

invoking execution thread

invoked execution thread

Middleware for Heterogenous and
Distributed Information Systems -

WS04/05
14

© Prof.Dr.-Ing. Stefan Deßloch

Asynchronous or Non-Blocking Calls

Thread of execution at requestor side is not blocked
can continue working to perform other tasks
check for a reponse message at a later point, if needed

Message queues
intermediate storage for messages until receiver is ready to retrieve them
more detail: chapters on message-oriented middleware

Can be used in request-response interactions
requester "actively waits"
handle load peaks

Supports other types of interaction
information dissemination, publish/subscribe

putinvoking execution thread

invoked execution thread

fetch

putfetch

queue

thread remains active

queue

Middleware for Heterogenous and
Distributed Information Systems -

WS04/05
15

© Prof.Dr.-Ing. Stefan Deßloch

Middleware

Middleware
supports the development, deployment, and execution of complex information
systems
facilitates interaction between and integration of applications

across multiple distributed, heterogenous platforms and data sources
Wide range of middleware, at every IS layer

integrating databases on a LAN
integrating complete 3-tier systems within a company
linking business partners across company boundaries
…

Middleware for Heterogenous and
Distributed Information Systems -

WS04/05
16

© Prof.Dr.-Ing. Stefan Deßloch

Two major aspects

Middleware as a programming abstraction
hide complexities of building IS

distribution
communication
data access, persistence
error/failure handling
transaction support

Middleware as infrastructure
realizes complex software infrastructure that implements programming abstractions

development
deployment

code generation, application "assembly"

runtime execution

