
1

Middleware for Heterogenous and Distributed Information Systems - WS06/07

Prof. Dr.-Ing. Stefan Deßloch
AG Heterogene Informationssysteme
Geb. 36, Raum 329
Tel. 0631/205 3275
dessloch@informatik.uni-kl.de

Chapter 6 – Object Persistence, Relationships
and Queries

Middleware for Heterogenous and
Distributed Information Systems -

WS06/07
2

© Prof.Dr.-Ing. Stefan Deßloch

Object Persistence

Persistent objects
Lifetime of a persistent object may exceed the execution of individual applications
Goals

simplification of programming model for persistent data access and management
no explicit interaction with data source using SQL, JDBC, …
eliminate "impedance mismatch"

hide heterogeneity of existing data stores
data model, query language, API

Basic approach
application (component) interacts with objects

create, delete
access object state variables
method invocation

persistence infrastructure maps interactions with objects to operations on data sources
e.g., INSERT, UPDATE, SELECT, DELETE

Variations
explicit vs. implicit (transparent) persistence
type-specific vs. orthogonal persistence

2

Middleware for Heterogenous and
Distributed Information Systems -

WS06/07
3

© Prof.Dr.-Ing. Stefan Deßloch

CORBA – Persistent Object Service

Goal: uniform interfaces for realizing object persistence
POS (Persistent Object Service) components

PO: Persistent Object
are associated with persistent state
through a PID (persistent object
identifier)

PID describes data location

POM: Persistent Object Manager
mediator between POs and PDS
realizes interface for persistence
operations
interprets PIDs
implementation-independent

PDS: Persistent Data Service
mediator between POM/PO and
persistent data store
data exchange between object and data store as defined by protocols

Datastore
stores persistent object data
may implement Datastore_CLI (encapsulates ODBC/CLI)

Middleware for Heterogenous and
Distributed Information Systems -

WS06/07
4

© Prof.Dr.-Ing. Stefan Deßloch

CORBA Persistence Model

CORBA object is responsible for realizing its own persistence
can use PDS services and functions
implicit persistence control

client is potentially unaware of object persistence aspects

explicit persistence control
persistent object implements PO interface, which can then be used by the client

Explicit persistence control by CORBA client:
client creates PID, PO using factory objects
PO Interface

connect/disconnect – automatic persistence for the duration of a "connection"
store/restore/delete – explicit transfer of data
delegated to POM, PDS

caution!: CORBA object reference and PID are different concepts
client can "load" the same CORBA object with data from different persistent object states

3

Middleware for Heterogenous and
Distributed Information Systems -

WS06/07
5

© Prof.Dr.-Ing. Stefan Deßloch

Persistent Object Manager

Middleware for Heterogenous and
Distributed Information Systems -

WS06/07
6

© Prof.Dr.-Ing. Stefan Deßloch

Persistence Protocols

CORBA Persistence Service defines three protocols
Direct Access (DA) protocols

PO stores persistent state using so-called direct access data objects (DADOs)
CORBA objects whose interfaces only have attributes
defined using Data Definition Language (IDL subset)

DADOs may persistently reference other DADOs, CORBA objects

ODMG'93 protocols
similar to DA protocol (is a superset)

own DDL (ODL) for defining POs

ideal for OODBMS-based persistence

Dynamic Data Object (DDO) protocols
"generic", self-describing DO

methods for read/update/add of attributes and values
manipulation of meta data

used for accessing record-based data sources (e.g. RDBMS) using DataStore CLI interface
SQL CLI for CORBA

Protocols are employed in the implementation of DOs

4

Middleware for Heterogenous and
Distributed Information Systems -

WS06/07
7

© Prof.Dr.-Ing. Stefan Deßloch

CORBA Queries and Relationships

Query Service
set-oriented queries for locating CORBA objects
SQL, OQL
query results are represented using Collection objects

iterators

Relationship Service
management of object dependencies
relationship: type, role, cardinality

Middleware for Heterogenous and
Distributed Information Systems -

WS06/07
8

© Prof.Dr.-Ing. Stefan Deßloch

EJB – Entity Beans

Follows transparent persistence approach
persistence-related operations (e.g., synchronizing object state with DB contents)
are hidden from the client

Persistence logic is implemented separately from business logic
entity bean "implements" call-back methods for persistence

ejbCreate – insert object state into DB
ejbLoad – retrieve persistent state from DB
ejbStore – update DB to reflect (modified) object state
ejbRemove – remove persistent object state

5

Middleware for Heterogenous and
Distributed Information Systems -

WS06/07
9

© Prof.Dr.-Ing. Stefan Deßloch

Entity Beans - Client-Perspective

Persistence aspects are hidden from client

Middleware for Heterogenous and
Distributed Information Systems -

WS06/07
10

© Prof.Dr.-Ing. Stefan Deßloch

Container-Managed Persistence (CMP)

Bean developer defines an abstract persistence schema in the deployment
descriptor

persistent attributes (CMP fields)
relationships

Mapping of CMP fields to DB-structures (e.g., columns) in deployment phase
depends on DB, data model
tool support

top-down, bottom-up, meet-in-the-middle

Container saves object state, maintains relationships
bean does not worry about persistence mechanism

call-back methods don't contain DB access operations

Manipulation of CMP fields through access methods (getfield(), setfield(...))
access within methods of the same EB
client access can be supported by including access methods in the remote interface
provides additional flexibility for container implementation

lazy loading of individual attributes
individual updates for modified attributes

6

Middleware for Heterogenous and
Distributed Information Systems -

WS06/07
11

© Prof.Dr.-Ing. Stefan Deßloch

Container-managed Relationships

Relationships can be defined in deployment descriptor
part of abstract persistence schema

Relationships may be
uni-directional ("reference")
bi-directional

Relationship types
1:1, 1:n, n:m

Access methods for accessing objects participating in a relationship
like CMP field methods
Java Collection interface for set-valued reference attributes

Container generates code for
relationship maintenance
persistent storage
cascading delete (optional)

Middleware for Heterogenous and
Distributed Information Systems -

WS06/07
12

© Prof.Dr.-Ing. Stefan Deßloch

EJB Query Language

Query language for CMP EntityBeans
used in the definition of user-defined Finder methods of an EJB Home interface

no arbitrary (embedded or dynamic) object query capabilities!

uses abstract persistence schema as its schema basis
SQL-like

Example:
SELECT DISTINCT OBJECT(o)
FROM Order o, IN(o.lineItems) l
WHERE l.product.product_type

= ‘office_supplies’

7

Middleware for Heterogenous and
Distributed Information Systems -

WS06/07
13

© Prof.Dr.-Ing. Stefan Deßloch

Bean-Managed Persistence (BMP)

Callback-methods contain explicit DB access operations
useful for interfacing with legacy systems or for realizing complex DB-mappings
(not supported directly by container or CMP tooling)

No support for container-managed relationships
Finder-methods

have to be implemented in Java
no support for EJB-QL

Middleware for Heterogenous and
Distributed Information Systems -

WS06/07
14

© Prof.Dr.-Ing. Stefan Deßloch

Entity Beans

Problems
distributed component vs. persistent object

granularity
potential overhead (and possible performance problems)

solution in EJB 2.0: local interfaces
but: semantic differences (call-by-value vs. call-by-reference)

complexity of development process

missing support for class hierarchies with inheritance

Alternatives?
use JDBC, stored procedures

complex development

use O/R Mapping product
proprietary

implement own persistence framework
complex

JDO

8

Middleware for Heterogenous and
Distributed Information Systems -

WS06/07
15

© Prof.Dr.-Ing. Stefan Deßloch

JDO – Java Data Objects

JDO developed as new standard for persistence in Java-based applications
first JDO specification 1.0 released in March 2002 (after ~ 3 years) through Suns
JCP (Java Community Process)
> 10 vendor implementations plus open-source projects
mandatory features and optional features in the specification (i.e., some optional
features are „standardised“ promises better portability).

Features, elements
orthogonal persistence
native Java objects (inheritance)
byte code enhancement
mapping to persistence layer using XML-metadata
transaction support
JDO Query Language
JDO API
JDO identity
JDO life cycle
integration in application server standard (J2EE)

Middleware for Heterogenous and
Distributed Information Systems -

WS06/07
16

© Prof.Dr.-Ing. Stefan Deßloch

Orthogonal Persistence in JDO

Object-based persistence, independent of type/class
Java class supports (optional) persistence (implements PersistenceCapable)
not all instances of the class need to be persistent

application can explicitly turn a transient object into a persistent object (and vice versa)

Persistence logic is transparent for application
interacting with transient and persistent objects is the same

"persistence by reachability"

9

Middleware for Heterogenous and
Distributed Information Systems -

WS06/07
17

© Prof.Dr.-Ing. Stefan Deßloch

Persistence by Reachability

all PersistenceCapable objects reachable from persistent object within
an object graph are made persistent, too
cascading delete? optional in JDO

Author1

Book1 Book2

Chapter1 Chapter2 Chapter1

If Author1 is made
persistent, then all objects
reachable (e.g., books
and chapters) are made
persistent, too!

Middleware for Heterogenous and
Distributed Information Systems -

WS06/07
18

© Prof.Dr.-Ing. Stefan Deßloch

Byte-Code-Enhancement

Java bytecode (*.class) and metadata (*.jdo)
Same object class (now implements PersistenceCapable)
O/R-mapping specification is vendor-specific

MyClass.java

MyClass.java
MyClass.javaJDO
meta data

MyClass.java MyClass.javaJava
Compiler

JDO
Enhancer

Java Virtual Machine

JDO
run time environment

provided by application
developer

provided by JDO
vendor

10

Middleware for Heterogenous and
Distributed Information Systems -

WS06/07
19

© Prof.Dr.-Ing. Stefan Deßloch

JDO API

manages connection to persistence layer
manages PersistenceManager pool

PersistenceManagerFactory

has connection to persistence layer
manages JDO instance cache

PersistenceManager

realizes transactional behavior
together with persistence layer

Transaction

helps locate persistent objects

Query

represents all instances of a class

Extent

1

1

1

1

1

0..n

0..n

0..n 0..1

use

Middleware for Heterogenous and
Distributed Information Systems -

WS06/07
20

© Prof.Dr.-Ing. Stefan Deßloch

PersistenceManager API - Example

1 Author author1 = new Author("John", "Doe");
2 PersistenceManager pm1 = pmf.getPersistenceManager();
3 pm1.currentTransaction.begin();
4 pm1.makePersistent(author1);
5 Object jdoID = pm1.getObjectId(author1);
6 pm1.currentTransaction.commit();
7 pm1.close();

8 // Application decides that author1
9 // must be deleted
10 PersistenceManager pm2 = pmf.getPersistenceManager();
11 pm2.currentTransaction.begin();
12 Author author2 = (Author)pm2.getObjectById(jdoID);
13 pm2.deletePersistent(author2);
14 pm2.currentTransaction.commit();
15 pm2.close();

11

Middleware for Heterogenous and
Distributed Information Systems -

WS06/07
21

© Prof.Dr.-Ing. Stefan Deßloch

Transactions

JDO transactions supported at the object level
Datastore Transaction Management (standard):

JDO synchronises transaction with the persistence layer
transaction strategy of persistence layer is used

Optimistic Transaction Management (optional):
JDO progresses object transaction at object level
at commit time, transaction is synchronized with persistence layer

Transactions and object persistence are orthogonal

standard (JVM)optionaltransient

optionalstandardpersistent

non-transactionaltransactionalobject
characteristics

Middleware for Heterogenous and
Distributed Information Systems -

WS06/07
22

© Prof.Dr.-Ing. Stefan Deßloch

JDO Query Language

A JDOQL query has 3 parts
candidate class: class(es) of expected result objects

restriction at the class level
candidate collection: collection/extent to search over

(optional) restriction at the object extent level
filter: boolean expression with JDOQL (optional: other query language)

JDOQL characteristics
read-only (no INSERT, DELETE, UPDATE)
returns JDO objects (no projection, join)
query submitted as string parameter dynamic processing at run-time
logical operators, comparison operators: e.g. !,==,>=
JDOQL-specific operators: type cast using "()", navigation using "."
no method calls supported in JDOQL query
sort order (ascending/descending)
variable declarations

12

Middleware for Heterogenous and
Distributed Information Systems -

WS06/07
23

© Prof.Dr.-Ing. Stefan Deßloch

Query

JDO-Query with JDOQL for locating JDO instances:

1 String searchname = "Doe";
2 Query q = pm.newQuery();
3 q.setClass(Author.class);
4 q.setFilter("name == \"" + searchname +"\"");
5 Collection results =(Collection)q.execute();
6 Iterator it = results.iterator();
7 while (it.hasNext()){
8 // iterate over result objects
9 }
10 q.close(it);

Middleware for Heterogenous and
Distributed Information Systems -

WS06/07
24

© Prof.Dr.-Ing. Stefan Deßloch

JDOQL Examples

Sorting:
1 Query query = pm.newQuery(Author.class);
2 query.setOrdering("name ascending, firstname ascending");
3 Collection results = (Collection) query.execute();

Variable declaration
1 String filter = "books.contains(myBook) && " +
2 "(myBook.name == \"Core JDO\")";
3 Query query = pm.newQuery(Author.class, filter);
4 query.declareVariables("Book myBook");
5 Collection results = (Collection) query.execute();

13

Middleware for Heterogenous and
Distributed Information Systems -

WS06/07
25

© Prof.Dr.-Ing. Stefan Deßloch

Java Persistence API

Result of a major 'overhaul' of EJB specification for persistence, relationships,
and query support

simplified programming model
standardized object-to-relational mapping
inheritance, polymorphism, "polymorphic queries"
enhanced query capabilities for static and dynamic queries

API usage
from within an EJB environment/container
outside EJB, e.g., within a standard Java SE application

Support for pluggable, third-party persistence providers

Middleware for Heterogenous and
Distributed Information Systems -

WS06/07
26

© Prof.Dr.-Ing. Stefan Deßloch

Entities

"An entity is a lightweight persistent domain object"
entities are not remotely accessible (i.e., they are local objects)
no relationship with the EntityBeans concept, but co-existence

Simplified programming model for EJB entities
entity is a POJO (plain old Java object)

no additional local or home interfaces required
no implementation of generic EntityBean methods needed

entity state (instance variables) is encapsulated, client access only through accessor or other
methods
use of annotations for persistence and relationship aspects

no XML deployment descriptor required

Requirements on Entity Class
public, parameterless constructor
top-level class, not final, methods and persistent instance variables must not be final
entity state is made accessible to the persistence provider runtime

either via instance variables (protected or package visible)
or via (bean) properties (getProperty/setProperty methods)
consistently throughout the entity class hierarchy

collection-valued state variables have to be based on (generics of) specific classes in java.util

14

Middleware for Heterogenous and
Distributed Information Systems -

WS06/07
27

© Prof.Dr.-Ing. Stefan Deßloch

Mapping to RDBMS

Entity mapping
default table/column names for entity classes and persistent fields

can be customized using annotations, deployment descriptor

mapping may defines a primary table and one or more secondary tables for an
entity

state of an entity/object may be distributed across multiple tables

Relationship mapping
represented using primary key/foreign key relationships
table for the "owning" side of the relationship contains the foreign key
N:M-relationships represented using a relationship table

Addition capabilities for constraints, column properties

Middleware for Heterogenous and
Distributed Information Systems -

WS06/07
28

© Prof.Dr.-Ing. Stefan Deßloch

Entity Inheritance

Entities and inheritance
abstract and concrete classes can be entities
entities may extend both non-entity and entity classes, and vice versa

Polymorphism and query support
references can refer to instances of subclasses
querying a class will return instances of subclasses

Inheritance mapping strategies supported for the mapping
single table with discriminator column (default)

table has columns for all attributes of any class in the hierarchy
tables stores all instances of the class hierarchy

horizontal partitioning
one table per entity class, with columns for all attributes (incl. inherited)
table stores only the direct instances of the class

vertical partitioning
one table per entity class, with columns for newly defined attributes (i.e., attributes
specific to the class)
table stores information about all (i.e., transitive) instances of the class

15

Middleware for Heterogenous and
Distributed Information Systems -

WS06/07
29

© Prof.Dr.-Ing. Stefan Deßloch

Entity Identity and Embeddable Classes

Entities must have primary keys
defined at the root, exactly once per class hierarchy
may be simple or composite
must not be modified by the application

more strict than primary key in the RM

Embeddable classes
"fine-grained" classes used by an entity to represent state
instances are seen as embedded objects, do not have a persistent identity

mapped with the containing entities
not sharable across persistent entities

current version of the specification requires/defines only basic support for
embedding

only one level
no support for collections of embedded objects
inheritance and polymorphism of embedded classes is not required

Middleware for Heterogenous and
Distributed Information Systems -

WS06/07
30

© Prof.Dr.-Ing. Stefan Deßloch

entities are
associated with

a persistence
context

Entity Life Cycle and Persistence

new

managed

Orthogonal persistence
instances of entity classes may be transient or persistent
persistence property controlled by application/client (e.g., a SessionBean)
selective persistence-by-reachability

defined using CASCADE options on relationships

removed

detached

new()

persist()

remove()

refresh()

merge()

persistence context
ends

persist()

no persistent
ID yet

16

Middleware for Heterogenous and
Distributed Information Systems -

WS06/07
31

© Prof.Dr.-Ing. Stefan Deßloch

Entity Manager

Manages entity state and lifecycle within persistence context
persist(obj) -> INSERT
merge(obj) -> UPDATE
remove(obj) -> DELETE
find(class, pKey) -> SELECT
getReference(class, pKey) -> (lazy) SELECT

Entity state is reflected in the database at TA commit
includes

effects of persist, merge, remove operations
modifications of object state

may also happen before commit time
explicit invocation of flush()
implicitly if automatic flush mode is in effect (default)

e.g., to guarantee correct query results

immediately when state modification occurs (proprietary!)

Middleware for Heterogenous and
Distributed Information Systems -

WS06/07
32

© Prof.Dr.-Ing. Stefan Deßloch

Entity Manager (cont.)

Entity state is read from the database using the following model
persistent properties may be marked as

eager (default for properties) – read when object is accessed
lazy (default for relationships) – read when object property is accessed

objects access occurs in the following cases
invocation of find methods
object returned as a query result
object is reference through an eager relationship property, and the referencing object has
been accessed

explicit refresh(obj) invocation
will refresh the object state from the database
updates to the object that are not (yet) reflected in the database are lost

What happens at transaction roll-back?
state of entities in the application is not guaranteed to be rolled back, only the
persistent state

17

Middleware for Heterogenous and
Distributed Information Systems -

WS06/07
33

© Prof.Dr.-Ing. Stefan Deßloch

Optimistic Locking and Concurrency

Note: most DBMSs don't support optimistic concurrency control
Optimistic locking is assumed, with the following requirements for application
portability

isolation level "read committed" or equivalent for data access
declaration of a version attribute for all entities to be enabled for optimistic locking

persistence provider uses the attribute to detect and prevent lost updates

inconsistencies may arise if entities are not protected by a version attribute

Alternative: enforce pessimistic locking semantics by choosing the appropriate
isolation level

Middleware for Heterogenous and
Distributed Information Systems -

WS06/07
34

© Prof.Dr.-Ing. Stefan Deßloch

Persistence Context Lifetime

Entity manager provides a persistence context for managed objects
transaction-scoped persistence context (default in EJB containers)

scope implicitly begins and ends with transaction
after TA (and persistence context) ends, persistent objects become detached

eager state can still be accessed and modified
entity needs to be explicitly merged into a new persistence context again to make changes
persistent or to refresh the object state

appropriate for stateless session beans

extended persistence context
scope begins when entity manager is created, ends when entity manager is closed

e.g., when a stateful session bean instance using an EM is created/removed

may span multiple TAs and non-transactional invocations
context is automatically associated with a TA, if the session bean is

persist, remove, merge operations and object state modifications may occur outside the
scope of a transaction

effects are made persistent when the next transaction commits

objects are not automatically refreshed when a new transaction begins!

18

Middleware for Heterogenous and
Distributed Information Systems -

WS06/07
35

© Prof.Dr.-Ing. Stefan Deßloch

Java Persistence Query Language

Extension of EJB-QL
named (static) and dynamic queries
range across the class extensions including subclasses

a persistence unit is a logical grouping of entity classes, all to be mapped to the same DB
queries can not span across persistence units

includes support for
bulk updates and delete
outer join
projection
subqueries
group-by/having

Prefetching based on outer joins
Example:
SELECT d
FROM Department d LEFT JOIN FETCH d.employees
WHERE d.deptno = 1

Middleware for Heterogenous and
Distributed Information Systems -

WS06/07
36

© Prof.Dr.-Ing. Stefan Deßloch

Summary

Object persistence supported at various levels of abstraction
CORBA

standardised "low-level" APIs
powerful, flexible, but no uniform model for component developer

various persistence protocols
explicit vs. implicit (transparent) persistence

EJB/J2EE Entity Beans
persistent components

CMP: container responsible for persistence, maintenance of relationships
uniform programming model
transparent persistence

JDO
persistent Java objects
orthogonal persistence

Java Persistence API
successor of EJB entity beans
standardized mapping of objects to relational data stores
influenced partly by JDO
can be used outside the EJB context as well

19

Middleware for Heterogenous and
Distributed Information Systems -

WS06/07
37

© Prof.Dr.-Ing. Stefan Deßloch

Summary (2)

Query Support
CORBA: queries over object collections

no uniform query language
uses SQL, OQL

persistent object schema?

EJB-QL: queries over abstract persistence schema
limited functionality, only for definition of Finder methods
more or less a small SQL subset

JDO: queries over collections, extents
limited functionality
proprietary query language

Java Persistence Query Language
based on EJB-QL (and therefore on SQL)
numerous language extensions for query, bulk update
static and dynamic queries

Queries over multiple, distributed data sources are not mandated by the above
approaches!

