
1

Middleware for Heterogenous and Distributed Information Systems - WS06/07

Prof. Dr.-Ing. Stefan Deßloch
AG Heterogene Informationssysteme
Geb. 36, Raum 329
Tel. 0631/205 3275
dessloch@informatik.uni-kl.de

Chapter 16 - Web Service Composition

Middleware for Heterogenous and
Distributed Information Systems -

WS06/07
2

© Prof.Dr.-Ing. Stefan Deßloch

Motivation

Complex web services
Need to interact with business partners through web services
May combine/utilize existing web services

Web services composition
Ability to create new web services out of existing (web service) components
Requirements similar to BPM, Workflow Management

separate function from composition logic, …

Composition can be iterated
Composition result is again a web service
Can be used as a building block for further composition steps

Middleware for web service composition

2

Middleware for Heterogenous and
Distributed Information Systems -

WS06/07
3

© Prof.Dr.-Ing. Stefan Deßloch

Web Services Composition Middleware

Main elements
composition model and language

composed WS is expressed by a composition schema (script)

development environment
graphical end user tools

run-time environment
composition "engine"

Composition vs. coordination middleware
composition: focus is on implementation of operations in a web service

internal, private
for automation of the execution of a composite web service

coordination: focus is on conversation protocols
public, standardized protocols
external coordination for verifying compliance

Middleware for Heterogenous and
Distributed Information Systems -

WS06/07
4

© Prof.Dr.-Ing. Stefan Deßloch

Web Services vs. WFMS

Limitations of conventional composition middleware (e.g., WFMS)
Significant effort to integrate existing applications

application-specific adapters, wrappers
no standard model for component description, interoperability

Limited success of composition model standardization
WfMC standard is not widely implemented

Opportunities for Web Services
Web Services seem to be adequate components

well-defined interfaces, described using WSDL
standardized invocation (SOAP)

Significant efforts in standardizing WS composition languages
Reuse of existing WS "infrastructure" (directory, service selection, …)

WS composition tools are less expensive to develop

3

Middleware for Heterogenous and
Distributed Information Systems -

WS06/07
5

© Prof.Dr.-Ing. Stefan Deßloch

Dimensions of a Web Service Composition Model

Component model
nature of the elements to be composed

Service selection model
how a specific service is selected as a component (static, dynamic binding)

Orchestration model
abstractions, language used to define order in which services are invoked

Data and data access model
how data is specified, exchanged between components

Transactions
transactional semantics that can be associated with the composition

Exception handling
how exceptional situations are handled during execution of a composite service

Middleware for Heterogenous and
Distributed Information Systems -

WS06/07
6

© Prof.Dr.-Ing. Stefan Deßloch

Business Processes and Web Services

Business Process Execution Language for Web Services (BPEL4WS)
XML-based language for specifying business process behavior based on web
services
Describe business processes that both provide and consume web services

Steps (activities)
Implemented as an interaction with a web service

Information flow into/out of the process
Externalized as web service

Complemented by
WS Coordination specification

Allows to web services involved in a process to share information that “links” them
together

Shared coordination context

WS AtomicTransaction, WS BusinessActivity specifications
Allows to monitor the success/failure of each coordinated activity

Reliably cancel the business process, involves compensating activities

Standardization is in progress (OASIS)
based on specification proposed by IBM, Microsoft, BEA (and Siebel for BPEL 1.1)

BPEL unifies XLANG (Microsoft), WSFL (IBM)

4

Middleware for Heterogenous and
Distributed Information Systems -

WS06/07
7

© Prof.Dr.-Ing. Stefan Deßloch

BPEL4WS

BPEL can support specification of both, composition schemas and
coordination protocols

can be used in both composition and coordination middleware

Two types of processes
executable process (-> composition)

defines implementation logic for a composite web service
portable between BPEL-conformant environments

abstract process (-> coordination)
service-centric perspective on coordination protocols
describe message exchange between partners

Business process defines
potential execution order of operations (web services)
data shared between the web services
correlation information
partners involved in business process and interfaces they need to implement
joint exception handling for collection of web services

Middleware for Heterogenous and
Distributed Information Systems -

WS06/07
8

© Prof.Dr.-Ing. Stefan Deßloch

BPEL Component Model

Components are web services described using WSDL
abstract WSDL interfaces are referenced in BPEL scripts
no reference to bindings, endpoints, or services

Basic activities in BPEL represent components, correspond to WSDL
operations

Invoke
Issue an asynchronous request, or
Synchronously invoke a request/reply operation of a web service provided by a partner

Receive
Wait for a message to be received from a partner
Specifies partner from which message is to be received, as well as
The port and operation provided by the process

Used by the partner to pass the message

Reply
Synchronous response to a request corresponding to a receive activity
Combination of Receive/Reply corresponds to request-response operation in WSDL

5

Middleware for Heterogenous and
Distributed Information Systems -

WS06/07
9

© Prof.Dr.-Ing. Stefan Deßloch

Example

Customer Travel Agent Airline
itineraryMessage

itineraryMessage

ticketsMessage

receive itinerary

send
tickets

deliver
tickets

make reservation

request ticket
receive
request

receive tickets

ticketsMessage

Middleware for Heterogenous and
Distributed Information Systems -

WS06/07
10

© Prof.Dr.-Ing. Stefan Deßloch

Service Selection: Partner Links

Partner link (BPEL process definition)
identifies the web services mutually
used by the partner or process

e.g., agent process interacts with
customer, airline

references a partner link type
defines role taken by the process itself
(myRole) and role that has to be
accepted by the partner (partnerRole)

Partner link names are used in all
service interactions to identify partners

see activities for invoking/providing
services

1 <process name="ticketOrder">
2 <partnerLinks>
3 <partnerLink name="customer"
4 partnerLinkType="agentLink"
5 myRole="agentService"/>
6 <partnerLink name="airline"
7 partnerLinkType="buyerLink"
8 myRole="ticketRequester"
9 partnerRole="ticketService"/>

10 </partnerLinks>

Partner link type (WSDL extension)
defines

roles played by partners in a
conversational relationship
web service interfaces that need to be
implemented to assume a role

Assignment of endpoints for partners
at deployment time
dynamically at run time

1 <partnerLinkType name="buyerLink">
2 <role name="ticketRequester">
3 <portType name="itineraryPT"/>
4 </role>
5 <role name="ticketService">
6 <portType name="ticketOrderPT"/>
7 </role>
8 </partnerLinkType>

Partner link type definition

6

Middleware for Heterogenous and
Distributed Information Systems -

WS06/07
11

© Prof.Dr.-Ing. Stefan Deßloch

BPEL Activities – Example

<receive
partnerLink="customer"
portType="itineraryPT"
operation="sendItinerary"
variable="itinerary"/>

<invoke
partnerLink="airline"
portType="ticketOrderPT"
operation="requestTickets”
inputVariable="itinerary”/>

<receive
partnerLink="airline"
portType="itineraryPT"
operation="sendTickets”
variable="tickets"/>

<reply
partnerLink="customer"
portType="itineraryPT"
operation="sendItinerary"
variable="tickets"/>

Customer Travel Agent Airline

<invoke
partnerLink="travelAgent"
portType="itineraryPT"
operation="sendItinerary"
input variable="itinerary"
output variable="tickets" />

process 1
process 2

Middleware for Heterogenous and
Distributed Information Systems -

WS06/07
12

© Prof.Dr.-Ing. Stefan Deßloch

Orchestration Model - Structured Activities

Sequence
Enclosed activities are carried out in listed order

Switch
Selects one of several activities based on selection criteria

While
Carry out enclosed activities as long as the while condition is true

Pick
Specifies a set of activities with associated events (e.g., receipt of message)

messages can be received from the same or different partners
activity is completed when one of the events occurs

Flow activity
Defines sets of activities plus (optional) control flow

all activities can (potentially) execute in parallel
activities can be "wired together" via control links

restriction: no control flow cycles allowed

support for transition conditions, join conditions, dead path elimination

7

Middleware for Heterogenous and
Distributed Information Systems -

WS06/07
13

© Prof.Dr.-Ing. Stefan Deßloch

Process life-cycle

Start activities
receive, pick – createInstance attribute

creates a new process instance, if it doesn't exist already

Example:
<receive partner="customer",

portType="itineraryPT",
operation="sendItinerary",
variable="itinerary”
createInstance="yes"/>

each process must have at least one start activity as an initial activity

Process termination
process-level activity completes successfully
fault "arrives" at the process level (handled or not)
terminate activity is invoked

Middleware for Heterogenous and
Distributed Information Systems -

WS06/07
14

© Prof.Dr.-Ing. Stefan Deßloch

Data Types and Data Transfer

Variables can be used to define data containers
WSDL messages received from or sent to partners
Messages that are persisted by the process
XML data defining the process state

Constitute the “business context” of the process
Access to variables can be serialized to some extent

11 <variables>
12 <variable name="itinerary“ messageType="itineraryMessage"/>
13 <variable name="tickets" messageType="ticketsMessage"/>
14 </variables>

Variable assignment
Receiving a message (or a reply of an invoke activity) implicitly assigns value
Alternative: assign activity (another simple activity)

Copies fields from containers into other containers

8

Middleware for Heterogenous and
Distributed Information Systems -

WS06/07
15

© Prof.Dr.-Ing. Stefan Deßloch

Correlation

Message needs to be delivered not only to the correct port, but to the correct
instance of the business process providing the port

conversation routing
Correlation Set

one or more properties used for correlating messages
example

<correlationSets>
<correlationSet name="Booking"

properties="orderNumber"/>
…

</correlationSets>
correlation properties are like "late-bound constants"

binding happens through specially marked message send/receive activities
value must not change after the binding happens

Often, more than one correlation set is used for an entire process
example: orderNumber -> invoiceNumber
correlated message exchanges may nest, overlap
same message may carry multiple correlation sets

Middleware for Heterogenous and
Distributed Information Systems -

WS06/07
16

© Prof.Dr.-Ing. Stefan Deßloch

Properties

Property
Globally defined types
Primarily used to correlate a message with a specific process instance

E.g., order number
Usually included in the message
Often the same property is used in different messages

Can be defined in BPEL as a separate entity:
9 <property name="orderNumber" type="xsd:int"/>

Property alias
Allows to point to a dedicated field of the message that represents the property

Usually different for each message type
Can be used in expression and assignments to easily use properties

10 <propertyAlias propertyName="orderNumber"
11 messageType="ticketsMessage“
12 part="orderInfo“
13 query="/orderID"/>

9

Middleware for Heterogenous and
Distributed Information Systems -

WS06/07
17

© Prof.Dr.-Ing. Stefan Deßloch

Scope

Defines the behavior context of an activity
simple or structured (group of activities)

Can provide the following for a (regular) activity
(Local) data variables
Correlation Sets
Event handler(s)
Fault handler(s)
Compensation handler

Scope acts as a compensation sphere

Scopes can be arbitrarily nested

Middleware for Heterogenous and
Distributed Information Systems -

WS06/07
18

© Prof.Dr.-Ing. Stefan Deßloch

Fault Handlers and Compensation Handlers

Fault handlers catch and deal with faults occurring in active scope
Can catch internal faults (throw activity), WS fault messages
All active work in the scope is stopped!
After fault handler completes successfully, processing continues outside the scope

Processing of the scope is still considered to have ended abnormally

Compensation handlers reverse the work of a sucessfully completed scope
Compensation handler is "installed" after successful completion of the scope
Can be defined for each scope
Compensation activity can be any activity
Compensation handlers live in a snapshot world

When invoked, they see a snapshot of the variables at scope completion time
Cannot update “live” data variables
Can only affect external entities
Input/output parameters for compensation handler are future direction

Compensate activity
Invokes compensation handler for named scope
Can be invoked only from the fault handler or compensation handler of the
immediately enclosing scope

10

Middleware for Heterogenous and
Distributed Information Systems -

WS06/07
19

© Prof.Dr.-Ing. Stefan Deßloch

Default Compensation and Fault Handlers

Default compensation handler
Invokes compensation handlers of immediately enclosed scopes in the reverse
order of the completion of the scopes
Is used if a (enclosing) scope does not explicitly define a compensation handler
Can also be invoked explicitly

Useful if comp. action = “compensate enclosed scope in reverse order” + “additional
activities”

Default fault handler
Invokes compensation handlers of immediately enclosed scopes in the reverse
order of the completion of the scopes
Rethrows the exception

Middleware for Heterogenous and
Distributed Information Systems -

WS06/07
20

© Prof.Dr.-Ing. Stefan Deßloch

BPEL Long-Running (Business) Transactions (LRTs)

Define fault handling and compensation in an application-specific manner
Explicitly specified as part of the business protocol

E.g., order of compensation steps may be different from reverse order of completion

LRT within single, local business process, i.e., no support for LRT that spans
Distributed business process
Multiple vendors or platforms

WS-Transaction specification
Business Activities
Protocol Framework can be used to model the fault and compensation relationships
between a nested scope and its enclosing scope

11

Middleware for Heterogenous and
Distributed Information Systems -

WS06/07
21

© Prof.Dr.-Ing. Stefan Deßloch

Business Agreement Protocol

BusinessAgreementWithParticipantCompletion – State Diagram

active completed closing ended

compensating

failing

cancelling

not completing

exitingexit exited

completed close closed

compensate compensated

fail

cancel

canceled

cannot complete not completed

failed

nested scope successful

nested scope unsuccessful
fault handler successful

nested scope (re)throws fault

called by fault/comp.
handler of encl. scope

compensation successful or fault handled

due to fault in enclosing scope

Middleware for Heterogenous and
Distributed Information Systems -

WS06/07
22

© Prof.Dr.-Ing. Stefan Deßloch

BPEL – Abstract Processes

Abstract Process = Role-specific view of a protocol
only public information
no private, implementation-specific aspects

branching conditions, activity realization, …

not executable
can be used by a conversation controller to ensure protocol compliance

Properties of BPEL abstract processes
handle only protocol-relevant data

message properties

variables
do not need to be fully initialized
variables for inbound or outbound messages may be omitted from invoke, receive, reply,
if the intent is to just constrain the sequence of activities

opaque assignments
can correspond to creating a unique value for correlation properties
hide private behavior for providing the values

12

Middleware for Heterogenous and
Distributed Information Systems -

WS06/07
23

© Prof.Dr.-Ing. Stefan Deßloch

Implementing Business Protocols

Suggested path
protocol specification as a starting point
derive role-specific views of the protocol

includes all the message exchanges that involve a certain role

define abstract process for role-specific view
model interactions using receive, invoke, reply
represent additional public information, such as branching situations, parallelism

turn abstract process into an executable process to implement it

Purchase Order Request

Receipt Acknowledgement

Purchase Order Acceptance

Receipt Acknowledgement

Buyer Seller

receive

reply

invoke

invoke

receive

reply

receive

invoke
AccountsService

invoke
SalesAgentService

invoke
ShippingService

Middleware for Heterogenous and
Distributed Information Systems -

WS06/07
24

© Prof.Dr.-Ing. Stefan Deßloch

Implementing RosettaNet PIPs

Involves mapping PIP to WSDL, BPEL
types in message definitions -> types in WSDL

DTDs to XML Schema

message definitions -> WSDL message definitions
PIP actions -> operations in WSDL
PIP partner roles -> BPEL partners
PIP choreography: follow the "suggested path" on previous chart

Additional aspects
realize time-outs, etc. using BPEL events and fault handlers
additional requirements regarding security need to be resolved

WS-Security support, not integrated in BPEL

13

Middleware for Heterogenous and
Distributed Information Systems -

WS06/07
25

© Prof.Dr.-Ing. Stefan Deßloch

Summary

Web service composition
means to implement web service by reusing/combining existing services
can be supported by WS composition middleware

borrowing concepts from WFMS

BPEL
effort to standardize web service composition
allows definition of composition and coordination aspects

abstract vs. executable processes

main concepts
basic activities for web service operations
structured activities for defining service composition, control flow
blackboard approach for data flow based on variables
service selection based on partner link types, partner links, endpoints
elaborate model for transactions and exception handling

fault handler
compensation handler

supported by key industry players

