
1

Recent Developments for Data Models

Prof. Dr.-Ing. Stefan Deßloch
AG Heterogene Informationssysteme
Geb. 36, Raum 329
Tel. 0631/205 3275
dessloch@informatik.uni-kl.de

Chapter 2 – Object-Relational Views and
Composite Types

Recent Developments for Data Models
2

© Prof.Dr.-Ing. Stefan Deßloch

Outline

Overview
I. Object-Relational Database Concepts
1. User-defined Data Types and Typed Tables
2. Object-relational Views and Composite Types
3. User-defined Routines and Object Behavior
4. Application Programs and Object-relational Capabilities
5. Object-relational SQL and Java
II. Online Analytic Processing
6. Data Analysis in SQL
7. Windows and Query Functions in SQL
III. XML
8. XML and Databases
9. SQL/XML
10. XQuery
IV. More Developments (if there is time left)
temporal data models, data streams, databases and uncertainty, …

2

Recent Developments for Data Models
3

© Prof.Dr.-Ing. Stefan Deßloch

stored procedures
user-defined functions

structured types
subtyping
methods

advanced datatypes SQL Routines
PSM
External Routines

The "Big Picture"

SQL99/2003

ISO

2.0 SQL92

SQLJ Part 1

SQLJ Part 2

JDBC

SQL OLB
ANSI

dynamic SQL

static SQL

Client DB Server Server-side
Logic

Recent Developments for Data Models
4

© Prof.Dr.-Ing. Stefan Deßloch

Objects Meet Databases (Atkinson et. al.)

Object-oriented features to be supported by an (OO)DBMS
Extensibility

user-defined types (structure and operations) as first class citizens
strengthens some capabilities defined above (encapsulation, types)

Object identity
object exists independent of its value (i.e., identical ≠ equal)

Types and classes
"abstract data types", static type checking
class as an "object factory", extension (i.e., set of "instances")

? Type or class and view hierarchies
inheritance, specialization

? Complex objects
type constructors: tuple, set, list, array, …

Encapsulation
separate specification (interface) from implementation

Overloading, overriding, late binding
same name for different operations or implementations

Computational completeness
use DML to express any computable function (-> method implementation)

3

Recent Developments for Data Models
5

© Prof.Dr.-Ing. Stefan Deßloch

View in Relational DBMS

Important concept for
achieving logical data independence
providing an application-specific representation of (a subset of) the DB
flexible authorization

Needs to be applicable in an object-relational context, too!
be able to use the advantages of views also in the presence of typed tables, table
hierarchies, references
start exploring and exploiting object-relational capabilities on existing data (and
schema)

Recent Developments for Data Models
6

© Prof.Dr.-Ing. Stefan Deßloch

Object Views in SQL

Views have been extended to support
Typed views
View hierarchies
References on base
tables can be mapped
to references on views

properties people

propView peopleView
owner

owner

appart.

people

houses

properties
owner

table hierarchy

view hierarchy

apptView

people
View

housView

propView
owner

4

Recent Developments for Data Models
7

© Prof.Dr.-Ing. Stefan Deßloch

Object Views – Design Points

Support the creation of a "closed" set of related object views that reference
each other
Mutually recursive references among object views
Object ids (REF values in self-referencing columns) must be unique and long-
lived (just like for typed tables)
Structured types as the foundation for object views

same type can be used for typed tables, column types, object views

Types used for defining object views don't have to be related to type of
underlying typed base tables

different attributes, behavior

Object views are like "virtual typed tables"
associated type, self-referencing column, scoped references
view hierarchies

Recent Developments for Data Models
8

© Prof.Dr.-Ing. Stefan Deßloch

Object Views: Example

CREATE TYPE propViewType AS
(owner REF (person),
location address)
REF USING integer NOT FINAL

CREATE TYPE apptViewType UNDER
propVIewType ...

CREATE TYPE housViewType UNDER
propViewType ...

CREATE VIEW propView OF propVIewType
REF IS propID USER GENERATED
(owner WITH OPTIONS SCOPE peopleView)
AS (SELECT CAST (INTEGER(oid) AS
REF(propViewType)), owner, location
FROM ONLY (properties))

CREATE VIEW housView OF housViewType
UNDER propView
AS (SELECT owner, location FROM ONLY
(houses))

CREATE VIEW apptView OF apptViewType
UNDER propView
AS (SELECT owner, location FROM ONLY
(appartments))

Self-referencing column has to be
defined for the root view

if USER GENERATED is used, then the
view body has to include the oid column
only USER GENERATED and DERIVED
are supported

OIDs/references need to be cast to
compatible ref types in the view body
Values in self-referencing columns of
view hierarchies need to be unique
within the hierarchy

a view hierarchy can only be defined
over a single table hierarchy

multiple hierarchies, multiple untyped
base tables not supported

the FROM clause in the view body must
reference a single table, and must
specify ONLY for typed table reference

super/subviews must reference
corresponding proper super/subtables

apptView

people
View

housView

propView
owner

5

Recent Developments for Data Models
9

© Prof.Dr.-Ing. Stefan Deßloch

Enhanced Object View Support

Limitations in SQL 1999 Object Views
restrictions in the view body
cannot define view hierarchies over one or more untyped base tables

DB vendors have developed extensions to address these limitations
Oracle, IBM

DB2 Object Views
less restrictions in view body
view hierarchies over single or multiple "legacy" tables
algorithm for static disjointness checking for subviews

guarantee uniqueness of oids in view hierarchies

UNCHECKED option for oid uniqueness
if multiple legacy tables are involved

M.Carey, S.Rielau, B.Vance: Object View Hierarchies in DB2 UDB, Proc. EDBT 2000

Recent Developments for Data Models
10

© Prof.Dr.-Ing. Stefan Deßloch

View Hierarchy Over a Single Legacy Table

Example
CREATE VIEW vdept of Vdept_t

(REF IS oid USER GENERATED)
AS SELECT Vdept_t(dno), name,
Vempt_t(mgrno) FROM dept

CREATE VIEW vperson of Vperson_t
(REF IS oid USER GENERATED)
AS SELECT Vperson_t(eno), name
FROM emp
WHERE salary IS NULL

CREATE VIEW vemp OF Vempt_t UNDER
vperson
(dept WITH OPTIONS SCOPE vdept)
AS SELECT Vemp_t(eno), name,
Vdept_t(deptno)
FROM emp
WHERE salary < 100000

ALTER VIEW vdept
ALTER COLUMN mgr
ADD SCOPE vemp

Migration path for exploiting OR
capabilities over legacy databases
Self-referencing columns derived from
primary keys of legacy table
Foreign keys are converted into scoped
references
Disjointness check for subviews in a
hierarchy

performed by analyzing the view
predicates
done statically at view definition time
conservative algorithm

UNCHECKED option
additional option for suppressing the
disjointness check
can be used if multiple legacy tables are
involved
uniqueness is now a user responsibility!

6

Recent Developments for Data Models
11

© Prof.Dr.-Ing. Stefan Deßloch

Composite Types - Overview

homogenous elements

ordered elements

restricted
cardinality

duplicates?

ARRAY LIST MULTISET SET ROW UNION

yes

yes

yes yes

no

no

no no

Recent Developments for Data Models
12

© Prof.Dr.-Ing. Stefan Deßloch

SQL Row Types

ROW type constructor
CREATE TABLE person (

name varchar(40),
address ROW(street char(20), city char(20), state char(2), zip char(5)),
…)

ROW value constructor
INSERT INTO person

VALUES('Paul White', ROW('1234 Penny Lane', 'San Jose', 'CA', '95123')

Field access
SELECT * FROM person WHERE address.state = 'CA'

Comparison operations
requirement: same number of fields, pairwise comparable field types
ordering considers field order

7

Recent Developments for Data Models
13

© Prof.Dr.-Ing. Stefan Deßloch

SQL Collection Types

Collections are typed
all elements are instances of the specified element type
any element type admissible (including collection types)

Two kinds of collection types
Array (with optional maximum length)
Multiset

Construction of collections
by enumeration
by query

UNNESTing of collections to access elements
Manipulation of collections

general: cardinality
arrays: element access, concatenation
multisets: turn singleton into element, turn into set (eliminate duplicates), multi-set
union, intersection, difference

Multiset predicates (member, submultiset, is a set)
Collections can be compared, assigned, cast

Recent Developments for Data Models
14

© Prof.Dr.-Ing. Stefan Deßloch

Collection Types: Arrays

Array characteristics
Maximal length instead of actual length

like CHARACTER VARYING
has become optional in SQL 2003

Any element type admissible
"Arrays anywhere"

Array operations
Element access by ordinal number
Cardinality
Comparison
Constructors
Assignment
Concatenation
CAST
Declarative selection facilities over arrays

8

Recent Developments for Data Models
15

© Prof.Dr.-Ing. Stefan Deßloch

Arrays (cont.)

Tables with array-valued columns

CREATE TABLE reports
(id INTEGER,
authors VARCHAR(15) ARRAY[20],
title VARCHAR(100),
abstract FullText)

Appropriate DML operations

INSERT INTO reports(id, authors, title)
VALUES (10, ARRAY ['Date', 'Darwen'], 'A Guide to the SQL Standard')

INSERT INTO reports(id, authors, title)
VALUES (20, ARRAY (SELECT name

FROM authors
WHERE …
ORDER BY name)

'Report with many authors')

Recent Developments for Data Models
16

© Prof.Dr.-Ing. Stefan Deßloch

Access to array elements

By ordinal position
Declarative (i.e. query) facility

Implicitly transforms array into table
Selection by element content and/or position
Unnesting

Examples:

SELECT id, authors[1] AS name FROM reports

SELECT r.id, a.name
FROM reports AS r, UNNEST (r.authors) AS a (name)

SELECT r.id, a.name, a.position
FROM reports AS r,

UNNEST (r.authors) WITH ORDINALITY AS a (name, position)

9

Recent Developments for Data Models
17

© Prof.Dr.-Ing. Stefan Deßloch

Collection Types: MULTISET

Complements the (unbound) ARRAY collection type
Varying-length, unordered collections of elements having specified type
No (specified) maximum cardinality
Usage examples:

numbers INTEGER MULTISET
addresses Address MULTISET
CREATE FUNCTION FOO (BAR CHAR(6))

RETURNS CHAR(6) MULTISET
...

Recent Developments for Data Models
18

© Prof.Dr.-Ing. Stefan Deßloch

MULTISET Value Constructors

By enumeration:
MULTISET[2, 3, 5, 7]

Empty specification:
MULTISET[]

By query:
MULTISET(SELECT COL1

FROM TBL1
WHERE COL2 > 10)

Result is the multiset of resulting col1-values, not the multiset of result rows
degree of the subquery must be 1

To obtain a multiset of rows, use the ROW constructor
MULTISET(SELECT ROW(COL1, COL2)

FROM TBL1
WHERE COL2 > 10)

10

Recent Developments for Data Models
19

© Prof.Dr.-Ing. Stefan Deßloch

MULTISET Operators

Element reference (returns the only element in the multiset):
ELEMENT(MVE)

returns NULL iff
MVE is null
MVE has no elements
MVE has one element NULL

Set function (converts a multiset into a set; i.e., duplicates are eliminated):
SET(MVE)

Cardinality expression (returns the number of elements in the multiset):
CARDINALITY(MVE)

UNION, EXCEPT, and INTERSECT:
MVE1 MULTISET UNION [DISTINCT | ALL] MVE2

MVE1 MULTISET EXCEPT [DISTINCT | ALL] MVE2

MVE1 MULTISET INTERSECT [DISTINCT | ALL] MVE2

Similar to ordinary set operations, except ALL is the default

Recent Developments for Data Models
20

© Prof.Dr.-Ing. Stefan Deßloch

Using MULTISETs as Table References

UNNEST operation:
UNNEST(MVE) AS correlation_name

Example 1:
UNNEST MULTISET (2, 3, 5, 7) AS P

produces the following table P:
7
5
3
2

Example 2:
SELECT T.K, SUM (M.E)
FROM T, UNNEST (T.M) AS M(E)
GROUP BY T.K

11

Recent Developments for Data Models
21

© Prof.Dr.-Ing. Stefan Deßloch

MULTISET Predicates

Comparison predicate (only equality and inequality)
Equal means

same number of elements
possible to match up the elements in pairs

DISTINCT predicate
MEMBER predicate

test for membership

SUBMULTISET predicate
test whether multiset is a sub-multiset of another

IS A SET predicate
test whether multiset contains anz duplicates

Recent Developments for Data Models
22

© Prof.Dr.-Ing. Stefan Deßloch

MULTISET Aggregates

COLLECT
Transform the values in a group into a multiset.

SELECT Dept, COLLECT (Name)
FROM PERS
GROUP BY Dept

FUSION
Form a union of the multisets in a group.
Number of duplicates of a given value in the result is the sum of the number of
duplicates in the multisets in the rows of the group.

INTERSECTION
Form an intersection of the multisets in a group.
Number of duplicates of a given value in the result is the minimum of the number
of duplicates in the multisets in the rows of the group.

12

Recent Developments for Data Models
23

© Prof.Dr.-Ing. Stefan Deßloch

Summary

Object-oriented features for a DBMS
Type or class hierarchies

inheritance, specialization

Complex objects:type constructors
tuple/row
union
collection types

set, list, array, …

… still to come
Encapsulation
Overloading, overriding, late binding
Computational completeness

SQL:2003
Typed views and view hierarchies

based on structured types
preserves references

Row types and collection types
ROW
no support for union
collection types

ARRAY, MULTISET

… see next chapters

