
1

Recent Developments for Data Models - WS 2006/2007

Prof. Dr.-Ing. Stefan Deßloch
AG Heterogene Informationssysteme
Geb. 36, Raum 329
Tel. 0631/205 3275
dessloch@informatik.uni-kl.de

Chapter 3 – User-defined Routines and
Object Behavior

Recent Developments for Data Models
- WS 2006/2007

2
© Prof.Dr.-Ing. Stefan Deßloch

Outline

Overview
I. Object-Relational Database Concepts
1. User-defined Data Types and Typed Tables
2. Object-relational Views and Collection Types
3. User-defined Routines and Object Behavior
4. Application Programs and Object-relational Capabilities
II. Online Analytic Processing
5. Data Analysis in SQL
6. Windows and Query Functions in SQL
III. XML
7. XML and Databases
8. SQL/XML
9. XQuery
IV. More Developments (if there is time left)
temporal data models, data streams, databases and uncertainty, …

2

Recent Developments for Data Models
- WS 2006/2007

3
© Prof.Dr.-Ing. Stefan Deßloch

stored procedures
user-defined functions

structured types
subtyping
methods

advanced datatypes SQL Routines
PSM
External Routines
SQL/JRT

The "Big Picture"

SQL99

ISO

2.0 SQL92

JDBC

SQL OLB
ANSI

dynamic SQL

static SQL

Client DB Server Server-side
Logic

Recent Developments for Data Models
- WS 2006/2007

4
© Prof.Dr.-Ing. Stefan Deßloch

User-defined Routines

Named persistent code to be invoked from SQL
Can be implemented using

procedural SQL extensions (PSM)
external programming language

Created directly in a schema
Have schema-qualified names

Supported DDL
CREATE and DROP statements
ALTER statement (limited in functionality)

Privileges
EXECUTE privilege controlled through GRANT and REVOKE statements

Described by corresponding information schema views

3

Recent Developments for Data Models
- WS 2006/2007

5
© Prof.Dr.-Ing. Stefan Deßloch

Procedures, Functions and Methods

Procedure
invoked exclusively using the SQL CALL statement
CALL getPropertiesCloseTo ('1234 Cherry Lane …', 50, :number);
may return additional results in form of result sets

Functions
invoked in an expressions within other SQL statements (e.g., a SELECT or UPDATE statement)
using function invocation syntax
SELECT price, location, distance(location, address('1234 Cherry Lane', …)) AS dist
FROM properties
ORDER BY dist

Methods
are regarded as a "special kind of function", associated with structured types
invocation similar to function, but using method invocation syntax
SELECT price, location, location.longitude(), location.latitude()
FROM properties

Reflected in additional differences in terms of
routine signature (header)

parameter mode, result
overloading, overriding
routine resolution/dispatch

Recent Developments for Data Models
- WS 2006/2007

6
© Prof.Dr.-Ing. Stefan Deßloch

Routines – General Structure

Routine header (SQL)
consists of a name and a (possibly empty) list of parameters.
parameters of procedures may specify parameter mode

IN
OUT
INOUT

parameters of functions/methods are always IN
functions/methods return a single value (which may be complex)

header must specify data type of return value via RETURNS clause

Routine body, specified in
SQL (SQL routines), using SQL procedural language extensions (PSM)
a host programming language (external routines)

may contain SQL by embedding SQL statements in host language programs or using CLI

4

Recent Developments for Data Models
- WS 2006/2007

7
© Prof.Dr.-Ing. Stefan Deßloch

SQL Procedural Language Extensions

Compound statement
SQL variable declaration
If statement
Case statement

Loop statement
While statement
Repeat statement
For statement
Leave statement
Return statement
Call statement
Assignment statement
Signal/resignal statement

BEGIN ... END;
DECLARE var CHAR (6);
IF subject (var <> 'urgent') THEN ... ELSE ...;
CASE subject (var)

WHEN 'SQL' THEN ...
WHEN ...;

LOOP < SQL statement list> END LOOP;
WHILE i<100 DO END WHILE;
REPEAT ... UNTIL i>=100 END REPEAT;
FOR result AS ... DO ... END FOR;
LEAVE ...;
RETURN 'urgent';
CALL procedure_x (1,3,5);
SET x = 'abc';
SIGNAL division_by_zero

Recent Developments for Data Models
- WS 2006/2007

8
© Prof.Dr.-Ing. Stefan Deßloch

Procedures

Creating a stored procedure
Parameter modes OUT, INOUT designate parameters that

are set/modified by the procedure itself
are accessible by the calling application after the CALL invocation

mechanism depends on programming language binding

CREATE PROCEDURE getPropertiesCloseTo
(IN addr VARCHAR(50),
IN distance INTEGER,
OUT results INTEGER)

… -- additional routine characteristics
DYNAMIC RESULT SETS 1;

A procedure can return one or more result sets to a calling application
specified using the DYNAMIC RESULT SETS clause
procedure body can

declare cursors, indicating WITH RESULTS
open the cursor (to execute a SELECT statement), and leave the cursor open

calling application can process the results sets after invocation is completed

5

Recent Developments for Data Models
- WS 2006/2007

9
© Prof.Dr.-Ing. Stefan Deßloch

User-defined Functions

Creating a user-defined function
parameter mode must be IN (optional)
must specify a result data type (RETURNS)
CREATE FUNCTION distance

(loc1 VARCHAR(50),
loc2 VARCHAR (50))

RETURNS INTEGER …;

Cannot return result sets, but may issue SQL statements

Recent Developments for Data Models
- WS 2006/2007

10
© Prof.Dr.-Ing. Stefan Deßloch

User-defined Table Functions

Motivation
Transform non-relational data into a relational table "on-the-fly" for further SQL
processing

semi-structured, …
stored as BLOB, external file, …
provided by external service

search engine, web service, …

Function returns a "multiset of rows"
Example: "docmatch" access an external search service, returns document ids
CREATE FUNCTION docmatch(idx VARCHAR(30), pattern VARCHAR(255))

RETURNS TABLE(doc_id CHAR(16)) …;

Function is used in the FROM clause of a query
Example: join the ids of matching documents with the DOCS table
SELECT T.AUTHOR, T.DOCTEXT
FROM DOCS AS T,

TABLE(docmatch('MATHEMATICS', 'ZORN''S LEMMA')) AS F
WHERE T.DOCID = F.DOC_ID

6

Recent Developments for Data Models
- WS 2006/2007

11
© Prof.Dr.-Ing. Stefan Deßloch

Table Functions vs. Views

View definitions don't support parameters
Alternative: use SQL table functions
CREATE FUNCTION propertiesCloseTo (loc VARCHAR(40), dist INTEGER)

RETURNS TABLE (price INTEGER, owner REF(person))
…

RETURN TABLE(SELECT price, owner
FROM properties p
WHERE distance(p.location, loc) < dist)

Use table function invocation in the FROM clause, instead of a view reference
SELECT *
FROM TABLE(propertiesCloseTo('1234 Cherry Lane …', 50)) AS props
WHERE props.price < 500000

Recent Developments for Data Models
- WS 2006/2007

12
© Prof.Dr.-Ing. Stefan Deßloch

Privilege Requirements

Routine invocation requires EXECUTE privilege
Whose privileges are used when the routine itself invokes SQL statements?

security characteristic can be specified when creating a routine
INVOKER

the invoker (user/role) must have the privileges to execute the statements in the routine
body

DEFINER
the definer or creator must have the required privileges
routine is dropped, if the definer loses any of these privileges at a later point
the definer also has to possess these privileges WITH GRANT OPTION in order to grant
the EXECUTE privilege to other users

7

Recent Developments for Data Models
- WS 2006/2007

13
© Prof.Dr.-Ing. Stefan Deßloch

Routine Overloading

Overloading -- multiple routines with the same unqualified name
S1.F (p1 INT, p2 REAL)
S1.F (p1 REAL, p2 INT)
S2.F (p1 INT, p2 REAL)

Within the same schema
Every overloaded routine must have a unique signature, i.e., different number of
parameters or different types for the same parameters

S1.F (p1 INT, p2 REAL)
S1.F (p1 REAL, p2 INT)

Across schemas
Overloaded routines may have the same signature

S1.F (p1 INT, p2 REAL)
S2.F (p1 INT, p2 REAL)

Functions can be overloaded by type. Procedures can only be overloaded
based on number of parameters.

Recent Developments for Data Models
- WS 2006/2007

14
© Prof.Dr.-Ing. Stefan Deßloch

Subject Routine Determination

Decides the function to invoke for a given invocation based on the
Compile-time data types of all arguments
Type precedence list of the data types of the arguments
SQL path

Always succeeds in finding a unique subject function, if one exists.
Type precedence list is a list of data type names

Predefined types -- defined by the standard based on increasing precision/length

SMALLINT: SMALLINT, INTEGER, DECIMAL, NUMERIC, REAL, FLOAT, DOUBLE
CHAR: CHAR, VARCHAR, CLOB

User-defined types -- determined by the subtype-supertype relationship
if B is a subtype of A and C is a subtype of B, then the type precedence list for C is (C, B,
A).

Invocation requires the invoker to have EXECUTE privilege on the routine --
otherwise no routine will be found for the invocation
It is not an authorization violation!!!

8

Recent Developments for Data Models
- WS 2006/2007

15
© Prof.Dr.-Ing. Stefan Deßloch

Subject Routine Determination - Path

Path is a list of schema names.
Can be specified during the creation of a schema, SQL-client module, or a SQL-
server module

CREATE SCHEMA schema5
PATH schema1,schema3
...;

Every session has a default path, which can be changed using the SET statement.

SET PATH 'schema1, schema2'

Recent Developments for Data Models
- WS 2006/2007

16
© Prof.Dr.-Ing. Stefan Deßloch

Subject Routine Determination Algorithm

1. Determine the set of candidate functions for a given function invocation, F(a1, a2, ...,
an):

Every function contained in S1 that has name F and has n parameters if the function name is
fully qualified, i.e., the function invocation is of the form S1.F(a1, a2, ..., an), where S1 is a
schema name.
Every function in every schema of the applicable path that has name F and has n parameters if
the function name is not fully qualified.

2. Eliminate unsuitable candidate functions
The invoker has no EXECUTE privilege
The data type of i-th parameter of the function is not in the type precedence list of the static
type of the i-th argument (for parameter)

3. Select the best match from the remaining functions
Examine the type of the 1st parameter of each function and keep only those functions such
that the type of their 1st parameter matches best the static type of the 1st argument (i.e.,
occurs earliest in the type precedence list of the static type of the argument), and eliminate
the rest.
Repeat Step b for the 2nd and subsequent parameters. Stop whenever there is only one
function remaining or all parameters are considered.

4. Select the "subject function"
From the remaining functions take the one whose schema appears first in the applicable path
(if there is only one function, then it is the "subject function")

9

Recent Developments for Data Models
- WS 2006/2007

17
© Prof.Dr.-Ing. Stefan Deßloch

Subject Routine Determination - Example

Assume Y is a subtype of X. Assume the following three functions (with
specific names F1, F2, and F3):
F1: F(p1 X, p2 Y)
F2: F (p1 Y, p2 Y)
F3: F(p1 X, p2 REAL)

The subject function for F(y,y) where the static type of y is Y is F2.
Now, assume the following three functions (with specific names F4, F5, and
F6):
F4: F(p1 X, p2 Y)
F5: F(p1 X, p2 X)
F6: F(p1 X, p2 REAL)

The subject function for F(y,y) where the static type of y is Y is F4.

Recent Developments for Data Models
- WS 2006/2007

18
© Prof.Dr.-Ing. Stefan Deßloch

Methods

What are methods?
SQL-invoked functions "attached" to user-defined types

How are they different from functions?
Implicit SELF parameter (called subject parameter)
Two-step creation process: signature and body specified separately.
Must be created in the type's schema
Different style of invocation, using dot-notation (e.g., UDT-value.method(...))

CREATE TYPE employee AS
(name CHAR(40),
base_salary DECIMAL(9,2),
bonus DECIMAL(9,2))
INSTANTIABLE NOT FINAL
METHOD salary() RETURNS DECIMAL(9,2);

CREATE METHOD salary() FOR employee
BEGIN
....
END;

10

Recent Developments for Data Models
- WS 2006/2007

19
© Prof.Dr.-Ing. Stefan Deßloch

Methods (cont.)

Three kinds of methods: instance, constructor, static methods
Two types of instance methods:

Original methods: methods attached to (super) type
Overriding methods: methods attached to subtypes, redefining original behavior

Signature must match with the signature of an original method, except for the subject parameter

CREATE TYPE employee AS
(name CHAR(40),
base_salary DECIMAL(9,2),
bonus DECIMAL(9,2))
INSTANTIABLE NOT FINAL
METHOD salary() RETURNS DECIMAL(9,2);

CREATE TYPE manager UNDER employee AS
(stock_option INTEGER)
INSTANTIABLE NOT FINAL
OVERRIDING METHOD salary() RETURNS DECIMAL(9,2), -- overriding
METHOD vested() RETURNS INTEGER -- original;

Recent Developments for Data Models
- WS 2006/2007

20
© Prof.Dr.-Ing. Stefan Deßloch

Instance Methods

Invoked using dot syntax (assume dept table has mgr column):
SELECT mgr.salary() FROM dept;

Subject routine determination picks the "best" method to invoke.
Same algorithm as used for regular functions
SQL path is temporarily set to a list with the schemas of the supertypes of the
static type of the self argument.

Dynamic dispatch executed at runtime
Overriding methods considered at execution time
Overriding method with the best match for the dynamic type of the self argument
is selected.
Schema evolution affects the actual method that gets invoked. If there is a new
overriding method defined it may be picked for execution.

11

Recent Developments for Data Models
- WS 2006/2007

21
© Prof.Dr.-Ing. Stefan Deßloch

Method Reference

References can be used to invoke methods on the corresponding structured
type

assumption: type 'person' has a method 'income' with the appropriate signature
SELECT prop.price, prop.owner->income(1998)
FROM properties prop
SELECT name, DEREF(oid).income(1998)
FROM people

Invocation of methods given a reference value require select privilege on the
method for the target typed table
GRANT SELECT (METHOD income FOR person) ON TABLE people TO PUBLIC

Allows the table owner to control who is authorized to invoke methods on the rows
of his/her table

Recent Developments for Data Models
- WS 2006/2007

22
© Prof.Dr.-Ing. Stefan Deßloch

Manipulating Structured Type Attributes

Attributes of structured types are implicitly associated with a pair of instance
methods
Observer and mutator methods are used to access and modify attributes

Automatically generated when type is defined
CREATE TYPE address AS (street CHAR (30), city CHAR (20), state CHAR (2), zip
INTEGER) NOT FINAL

address_expression.street () -> CHAR (30)
address_expression.city () -> CHAR (20)
address_expression.state () -> CHAR (2)
address_expression.zip () -> INTEGER
address_expression.street (CHAR (30)) -> address
address_expression.city (CHAR (20)) -> address
address_expression.state (CHAR (2)) -> address
address_expression.zip (INTEGER) -> address

12

Recent Developments for Data Models
- WS 2006/2007

23
© Prof.Dr.-Ing. Stefan Deßloch

Dot Notation

"Dot'' notation must be used to invoke methods (e.g., to access attributes)
Methods without parameters do not require use of "()"

SELECT location.street, location.city (), location.state, location.zip ()
FROM properties
WHERE price < 100000

Support for several 'levels' of dot notation (a.b.c.d.e)
Allow "navigational" access to structured types
Support for "user-friendly" assignment syntax

DECLARE r real_estate;
...
SET r.size = 2540.50; -- same as r.size (2540.50)
...
SET ... = r.location.state; -- same as r.location().state()
SET r.location.city = `LA'; -- same as r.location(r.location.city(`LA'))

Dot notation does not 'reveal' physical representation
allows the definition of 'derived' attributes

method 'longitude' is indistinguishable from attribute 'city' from an invocation perspective

Recent Developments for Data Models
- WS 2006/2007

24
© Prof.Dr.-Ing. Stefan Deßloch

Encapsulation

An object should encapsulate its state to the outside world
only the methods of an object may access the object state directly
other objects must invoke interface methods, cannot directly access the state
separate interface from implementation

Encapsulation through public interface definition (not supported by SQL!)
strict

all attributes are encapsulated
all or subset of methods are part of the interface

flexible
individual attributes and methods may be designated as private, public, protected

Encapsulation implemented through privileges (supported by SQL)
use authorization concepts to achieve arbitrary 'levels' of encapsulation
EXECUTE privilege may be granted/revoked on observer/mutator methods as well

13

Recent Developments for Data Models
- WS 2006/2007

25
© Prof.Dr.-Ing. Stefan Deßloch

Static Methods

Static Methods
have no subject (SELF) parameter
behavior associated with type, not instance
no overriding, dynamic dispatch

Created using keyword STATIC
CREATE TYPE employee ...
STATIC METHOD totalSalary(base DECIMAL(9,2), bonus DECIMAL(9,2))

RETURNS DECIMAL(9,2);

Invocation uses structured type name, "::"
syntax 'borrowed' from C++

VALUES (employee::totalSalary(70000, 10000));

Recent Developments for Data Models
- WS 2006/2007

26
© Prof.Dr.-Ing. Stefan Deßloch

Initializing Instances: Constructor

Instances are generated by the system-provided constructor function
Attributes are initialized with their default values

Attributes are modified (further initialized) by invoking the mutator functions

BEGIN
DECLARE re real_estate;
SET re = real_estate(); -- generation of a new instance
SET re.rooms = 12; -- initialization of attribute rooms
SET re.size = 2500; -- initialization of attribute size

END

BEGIN
DECLARE re real_estate;
SET re = real_estate().rooms (12).size (2500); -- same as above

END

14

Recent Developments for Data Models
- WS 2006/2007

27
© Prof.Dr.-Ing. Stefan Deßloch

User-defined Constructor Methods

Users can define any number of constructor methods and invoke them with NEW
operator

CREATE TYPE real_estate AS (....)
CONSTRUCTOR METHOD real_estate (r INTEGER, s DECIMAL(8,2)) RETURNS real_estate

CREATE CONSTRUCTOR METHOD real_estate
(r INTEGER, s DECIMAL(8,2)) RETURNS real_estate

BEGIN
SET self.rooms = r;
SET self.size = s;
RETURN re;

END

BEGIN
DECLARE re real_estate;
SET re = NEW real_estate(12, 2500); -- same as previously

END

Recent Developments for Data Models
- WS 2006/2007

28
© Prof.Dr.-Ing. Stefan Deßloch

Methods That Modify Object State

In OO-programming
a method that wants to modify the state of its object simply assigns new values to
an attribute
changes are reflected in the identical object

In SQL
value-based operations

expressions (including method invocations) always return (copies of) values
persistent data can only be updated by the respective DML operations (e.g., UPDATE),
assigning the results of expressions to the columns to be modified

a method will always operate on a copy of a complex value (i.e., instance of a
structured type)

modification of state as a pure side-effect of a method is not possible

modifying the object state will require an UPDATE statement
method returns a modified copy of the original complex value
separate UPDATE replaces old value with the new copy

15

Recent Developments for Data Models
- WS 2006/2007

29
© Prof.Dr.-Ing. Stefan Deßloch

Value-based Model in SQL

SQL functions/methods operate on a value-based model
method needs to return a modified copy of the SELF object

return type must be the ST

CREATE TYPE employee AS
(…)
INSTANTIABLE NOT FINAL
METHOD salary (DECIMAL(9, 2)) RETURNS employee;

CREATE METHOD salary (newsal DECIMAL(9, 2)) FOR employee
BEGIN

SET self.base_salary = newsal;
RETURN self;

END;

UPDATE Employees -- assumes the table has an emp column of type employee!
SET emp = emp.salary(80000)
WHERE emp.name = 'Smith';

UPDATE Employees
SET emp.salary = 80000 -- same as above
WHERE emp.name = 'Smith'

Recent Developments for Data Models
- WS 2006/2007

30
© Prof.Dr.-Ing. Stefan Deßloch

Substitutability and Value-based Model

Problems with static type checking
CREATE TYPE employee AS (…)

INSTANTIABLE NOT FINAL
METHOD salary (DECIMAL(9, 2)) RETURNS employee;

CREATE TYPE manager UNDER employee AS (…)
INSTANTIABLE NOT FINAL;

CREATE TABLE departments
(…, mgr manager, …)

UPDATE departments
SET mgr = mgr.salary(80000)
WHERE depno = 'K55';

manager inherts
method salary

method salary has static result
type 'employee';

but department.mgr has type
'manager'!

=> static type error!

16

Recent Developments for Data Models
- WS 2006/2007

31
© Prof.Dr.-Ing. Stefan Deßloch

Type-Preserving Functions/Methods

SQL-invoked function, one of whose parameters is a result SQL parameter.
The most specific type of the value returned by an invocation of a type-preserving
function is identical to the most specific type of the SQL argument value
substituted for the result SQL parameter
This can be the SELF parameter for methods

Example:
CREATE TYPE employee AS
(…)
INSTANTIABLE NOT FINAL
METHOD salary (DECIMAL(9, 2)) RETURNS employee SELF AS RESULT;

UPDATE departments
SET mgr = mgr.salary(80000)
WHERE depno = 'K55';

Type-checking succeeds, although the return type of manager.salary() is employee!

All system-generated mutator methods are type-preserving

Recent Developments for Data Models
- WS 2006/2007

32
© Prof.Dr.-Ing. Stefan Deßloch

Additional Routine Characteristics

DETERMINISTIC or NOT DETERMINISTIC
DETERMINISTIC (default)

Routine is expected to return the same result/output values for a given list of input
values. (However, no checks are done at run time.)
Gives the SQL query engine full flexibility for rewrite and optimization purposes

NOT DETERMINISTIC routines not allowed in
Constraint definitions
Assertions
In the condition part of CASE expressions
CASE statements

RETURNS NULL ON NULL INPUT or CALLED ON NULL INPUT (default)
RETURNS NULL ON NULL INPUT

An invocation returns null result/output value if any of the input values is null without
executing the routine body

17

Recent Developments for Data Models
- WS 2006/2007

33
© Prof.Dr.-Ing. Stefan Deßloch

Additional Routine Characteristics (cont.)

CONTAINS SQL, READS SQL DATA, or MODIFIES SQL DATA
External routines may in addition specify NO SQL
Implementation-defined default
For SQL routines -- check may be done at routine creation time
For both SQL and external routines -- exception raised if a routine attempts to
perform actions that violate the specified characteristic
Routines with MODIFIES SQL DATA not allowed in

Constraint definitions
Assertions
Query expressions (SELECT …)
Triggered actions of BEFORE triggers
Condition part of CASE expressions
CASE statements
searched delete statements
search condition of searched update statements (are allowed in SET clause)

Recent Developments for Data Models
- WS 2006/2007

34
© Prof.Dr.-Ing. Stefan Deßloch

External Routines

Motivation
external programming language may have better performance for computationally
extensive tasks
leverage existing program libraries

CREATE statement does not contain a method body
LANGUAGE clause

Identifies the host language in which the body is written

NAME clause
Identifies the host language code, e.g., file path in Unix

CREATE FUNCTION get_balance(IN INTEGER) RETURNS DECIMAL(15,2))
LANGUAGE C EXTERNAL NAME 'usr/McKnight/banking/balance'

18

Recent Developments for Data Models
- WS 2006/2007

35
© Prof.Dr.-Ing. Stefan Deßloch

External Routine Parameters and Implementation

Parameters
Names are optional

are not used in the routine body

Permissible data types depend on the host language of the body

RETURNS clause may specify CAST FROM clause
CREATE FUNCTION get_balance(IN INT)
RETURNS DECIMAL(15,2)) CAST FROM REAL
LANGUAGE C

C program returns a REAL value, which is then cast to DECIMAL(15,2) before
returning to the caller.

Parameter Styles
Define the signature of the corresponding programming language routine
Special provisions to handle null indicators and the status of execution
(SQLSTATE)

PARAMETER STYLE SQL (is the default)
PARAMETER STYLE GENERAL

Recent Developments for Data Models
- WS 2006/2007

36
© Prof.Dr.-Ing. Stefan Deßloch

void balance (int* acct_id,
float* rtn_val,
int* acct_id_ind,
int* rtn_ind,
char* sqlstate[6],
char* rtn_name [512],
char* spc_name [512],
char* msg_text[512])
{
...
}

PARAMETER STYLE SQL

Additional parameters necessary for null indicators and routine name, and for
returning a function result, error message, and SQLSTATE value
External language program (i.e., the body) has 2n+4 parameters for
procedures and 2n+6 parameters for functions where n is the number of
parameters of the external routine

CREATE FUNCTION get_balance(IN INTEGER)
RETURNS DECIMAL(15,2)) CAST FROM REAL
LANGUAGE C
EXTERNAL NAME 'bank\balance'
PARAMETER STYLE SQL

19

Recent Developments for Data Models
- WS 2006/2007

37
© Prof.Dr.-Ing. Stefan Deßloch

PARAMETER STYLE GENERAL

No additional parameters
External language program (i.e., the body) must have exactly the same
number of parameters
Cannot handle null values

Exception is raised if any of the arguments evaluate to null

Value is returned in an implementation-dependent manner

CREATE FUNCTION get_balance(IN INTEGER)
RETURNS DECIMAL(15,2)) CAST FROM REAL
LANGUAGE C
EXTERNAL NAME 'bank\balance'
PARAMETER STYLE GENERAL

float* balance (int* acct_id)
{
...
}

Recent Developments for Data Models
- WS 2006/2007

38
© Prof.Dr.-Ing. Stefan Deßloch

SQLJ Part 1

SQL Routines using the Java™ Programming Language
LANGUAGE JAVA PARAMETER STYLE JAVA

no additional parameters on Java method signatures required to handle null values,
errors, etc.

Java static methods used to implement SQL stored procedures and user-defined
functions

parameter type conversion, error/exception handling
stored procedures: output parameters, returning result sets
body can contain JDBC, SQLJ

SQL DDL statement changes
create procedure, create function

JAR file becomes a database "object"
built-in procedures to install, replace, remove JAR file in DB
usage privilege on JAR files

Accepted ANSI standard
ANSI NCITS 331.1:1999

Has been folded into SQL:2003 as SQL/JRT

20

Recent Developments for Data Models
- WS 2006/2007

39
© Prof.Dr.-Ing. Stefan Deßloch

Installing Java Classes in the DB

Installation
New install_jar procedure
sqlj.install_jar
('file:~/classes/routines.jar',
'routines_jar')
Parameters: URL of JAR file with Java
class and string to identify the JAR in
SQL
Install all classes in the JAR file
Uses Java reflection to determine
names, methods, signatures
Optionally uses deployment
descriptor file found in JAR to
create SQL routines

Removal
sqlj.remove_jar ('routines_jar')

Replacement
sqlj.replace_jar

('file:~/classes/routines.jar',
'routines_jar')

JAR file
class 1

method 11 (...)
method 12 (...)

class 2
method 21 (...)
method 22 (...)

class 3
method 31
method 32

class 4
method 41

class 5
class 6

method 61 (...)

Recent Developments for Data Models
- WS 2006/2007

40
© Prof.Dr.-Ing. Stefan Deßloch

Creating Procedures and UDFs

routines.jarpublic class addr{
public static voidmodifyaddr (...)

public static integer
zip (string s) ...

sqlj.install_jar ('file:~/classes/routines.jar', 'routines_jar')

Java return type 'void' -> stored procedure
otherwise -> user-defined function

CREATE PROCEDURE modify_address (ssn INTEGER, addr CHAR (40))
MODIFIES SQL DATA
EXTERNAL NAME 'routines_jar:addr.modifyaddr'
LANGUAGE JAVA
PARAMETER STYLE JAVA

CREATE FUNCTION zip (addr CHAR (40)) RETURNS INTEGER
NO SQL
DETERMINISTIC
EXTERNAL NAME 'routines_jar:addr.zip'
LANGUAGE JAVA
PARAMETER STYLE JAVA

21

Recent Developments for Data Models
- WS 2006/2007

41
© Prof.Dr.-Ing. Stefan Deßloch

Stored Procedures

OUT and INOUT parameters
CREATE PROCEDURE

avgSal (IN dept VARCHAR(30), OUT avg DECIMAL(10, 2)) ...
Java method declares them as arrays
Array acts as container that can be filled/replaced by the method implementation
to return a value
public static void averageSalary (String dept, BigDecimal[] avg) ...

Returning result set(s)
CREATE PROCEDURE ranked_emps (region INTEGER)

DYNAMIC RESULT SETS 1
Java method declares explicit parameters for returned result sets of type

array of (JDBC) ResultSet
array of (SQLJ) iterator class, prev. declared in "#sql iterator ..."

public static void ranked_emps (int region, ResultSet[] rs) ...
Java method body assigns (open) result sets as array elements of result set
parameters
Multiple result sets can be returned

Recent Developments for Data Models
- WS 2006/2007

42
© Prof.Dr.-Ing. Stefan Deßloch

Error Handling

Java method throws an SQLException to indicate error to the SQL engine
... throws new SQLException ("Invalid input parameter", "38001");
SQLSTATE value provided has to be in the "38xxx" range

Any other uncaught Java exception is turned into a SQLException "Uncaught
Java exception" with SQLSTATE "38000" by the SQL engine
Java exceptions that are caught within an SQLJ routine are internal and do
not affect SQL processing

22

Recent Developments for Data Models
- WS 2006/2007

43
© Prof.Dr.-Ing. Stefan Deßloch

Additional Features

Java "main" methods
Java signature has to have single parameter of type String[]
Corresponding SQL routine has

Either 0 or more CHAR/VARCHAR parameters,
or a single parameter of type array of CHAR/VARCHAR

NULL value treatment
Use Java object types as parameters (see JDBC)

SQL NULL turned into Java null
Specify SQL routine to return NULL if an input parameter is NULL

CREATE FUNCTION foo(integer p) RETURNS INTEGER
RETURNS NULL ON NULL INPUT

Otherwise run-time exception will be thrown
Static Java variables

Can be read inside SQL routine
Should not be modified (result is implementation-defined)

Overloading
SQL rules may be more restrictive
Map Java methods with same name to different SQL routine names

Recent Developments for Data Models
- WS 2006/2007

44
© Prof.Dr.-Ing. Stefan Deßloch

SQLJ Part 2

SQL Types using the Java™ Programming Language
Use of Java classes to define SQL structured types
Mapping of object state and behavior

Java methods become SQL methods on SQL type
Java methods can be invoked in SQL statements

Automatic mapping to Java object on fetch and method invocation
Java Serialization
JDBC 2.0 SQLData interface

Uses the procedures introduced in SQLJ Part 1 to install, remove, and replace
SQLJ JAR files
Approved ANSI standard

ANSI/NCITS 331.2-2000

Folded into SQL:2003 as SQL/JRT

23

Recent Developments for Data Models
- WS 2006/2007

45
© Prof.Dr.-Ing. Stefan Deßloch

Mapping Java Classes to SQL

Described using extended CREATE TYPE syntax
DDL statement, or
Mapping description in the deployment descriptor

Supported Mapping

SQL constructor methods
Have the same name as the type for which they are defined
Are invoked using the NEW operator (just like in Java)

SQL does not know static member variables
Mapped to a static SQL method that returns the value of the static variable
No support for modifying the static variable

Java SQL
class user-defined (structured) type
member variable attribute
method method
constructor constructor method
static method static method
static variable static observer method

Recent Developments for Data Models
- WS 2006/2007

46
© Prof.Dr.-Ing. Stefan Deßloch

Mapping Example

Java class
public class Residence implements Serializable, SQLData {

public int door;
public String street;
public String city;
public static String country = "USA";
public String printAddress() { ...};
public void changeResidence(String adr) { ... // parse and update fields ...}
// SQLData methods
public void readSQL(SQLInput in, String type) { ... };
public void writeSQL(SQLOutput out) { ... };

}

SQL DDL/descriptor statement
CREATE TYPE Address EXTERNAL NAME 'residence_jar:Residence' LANGUAGE JAVA (

number INTEGER EXTERNAL NAME 'door',
street VARCHAR(100) EXTERNAL NAME 'street',
city VARCHAR(50) EXTERNAL NAME 'city',
STATIC METHOD country() RETURNS CHAR(3)

EXTERNAL VARIABLE NAME 'country',
METHOD print() RETURNS VARCHAR(200) EXTERNAL NAME 'printAddress',
METHOD changeAddress (varchar(200)) RETURNS Address

SELF AS RESULT EXTERNAL NAME 'changeResidence'
)

24

Recent Developments for Data Models
- WS 2006/2007

47
© Prof.Dr.-Ing. Stefan Deßloch

Instance Update Methods

Remember: Java and SQL have different object update models
Java model is object-based
SQL model is value-based

SQLJ permits mapping without requiring modification of Java methods
SELF AS RESULT identifies an instance update method
Java class

public class Residence implements Serializable, SQLData {
...
public void changeResidence(String adr) { ... // parse and update fields ...}

}
SQL type

CREATE TYPE Address EXTERNAL NAME 'Residence' LANGUAGE JAVA (
...
METHOD changeAddress(varchar(200)) RETURNS Address SELF AS RESULT

EXTERNAL NAME 'changeResidence'
)

At runtime, the SQL system
Invokes the original Java method (returning void) on (a copy of) the object
Is responsible for returning the modified object

Recent Developments for Data Models
- WS 2006/2007

48
© Prof.Dr.-Ing. Stefan Deßloch

Object "Conversion" between SQL and Java

Serializable vs. SQLData
Can be specified in CREATE TYPE statement (optional clause)

CREATE TYPE Address ... LANGUAGE JAVA USING SERIALIZABLE ...
CREATE TYPE Address ... LANGUAGE JAVA USING SQLDATA ...

default is implementation-defined
implementation may only support one of the mechanisms

does not impact the application program itself
USING SERIALIZABLE

persistent object state entirely defined by Java serialization
SQL attributes have to correspond to Java public fields

Java field names have to be listed in the external name clauses
Java serialization is used for materializing the object in Java

attribute access, method invocation

USING SQLDATA
persistent state is defined by the attributes in the CREATE TYPE statement
external attribute names do not have to be specified
SQLData interface is used for materializing objects in Java

read/writeSQL methods have to read/write attributes in the order defined
Java fields might be different then the SQL attributes

Recommendations for portability
have Java class implement both Serializable and SQLData
Java class should define the complete persistent state as public fields
CREATE TYPE statement should have external names, omit USING

25

Recent Developments for Data Models
- WS 2006/2007

49
© Prof.Dr.-Ing. Stefan Deßloch

Summary

OODBMS features
Extensibility

user-defined types (structure and
operations) as first class citizens

Computational completeness
use DML to express any computable
function (-> method implementation)

Encapsulation
separate specification (interface) from
implementation

Overloading, overriding, late binding
same name for different operations or
implementations

SQL
User-defined routines

procedures, functions,
methods (instance, static, constructor)

SQL routines and external routines
use SQL/PSM procedural extensions or
external PL to implement routine

Encapsulation
observer/mutator methods and EXECUTE
privilege to achieve encapsulation

Overloading
full support for functions, methods
limited support for procedures

Overriding, late binding
supported for methods

