
1

Recent Developments for Data Models - WS 2006/2007

Prof. Dr.-Ing. Stefan Deßloch
AG Heterogene Informationssysteme
Geb. 36, Raum 329
Tel. 0631/205 3275
dessloch@informatik.uni-kl.de

Chapter 4 – Application Programs and
Object-Relational Capabilities

Recent Developments for Data Models
- WS 2006/2007

2
© Prof.Dr.-Ing. Stefan Deßloch

Outline

Overview
I. Object-Relational Database Concepts
1. User-defined Data Types and Typed Tables
2. Object-relational Views and Collection Types
3. User-defined Routines and Object Behavior
4. Application Programs and Object-relational Capabilities
II. Online Analytic Processing
5. Data Analysis in SQL
6. Windows and Query Functions in SQL
III. XML
7. XML and Databases
8. SQL/XML
9. XQuery
IV. More Developments (if there is time left)
temporal data models, data streams, databases and uncertainty, …

2

Recent Developments for Data Models
- WS 2006/2007

3
© Prof.Dr.-Ing. Stefan Deßloch

stored procedures
user-defined functions

structured types
subtyping
methods

advanced datatypes SQL Routines
PSM
External Routines
SQL/JRT

The "Big Picture"

SQL99

ISO

2.0 SQL92

JDBC

SQL OLB
ANSI

dynamic SQL

static SQL

Client DB Server Server-side
Logic

Recent Developments for Data Models
- WS 2006/2007

4
© Prof.Dr.-Ing. Stefan Deßloch

Structured Types and External Programs

Instance of a structured type has to be made available in an external
programming language environment
SELECT c.name, c.addr INTO :name, :address
FROM store s, customers c
WHERE within(s.loc, :CA)=1 AND

(within(c.loc, s.zone)=1 OR distance(c.loc, s.loc)<100)

CID NAME INCOME ADDR LOC
CUSTOMER
S

STORE
SSID NAME ADDR LOC ZONE

%

%

%

%
%

%

%

%

%

%

%

%

%

%

%

%
%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

% %

%

%

%

%

%

%

%

%

%

%

%

%
%

Streets in downtown
Highways

% CustomersGeocd1.shp

client program

external routine

3

Recent Developments for Data Models
- WS 2006/2007

5
© Prof.Dr.-Ing. Stefan Deßloch

Approach 1: Locators

Locator in SQL
'references' an SQL data item that still lives in the SQL engine

can be used in SQL statements instead of the data item
allow access to the referenced data

generated by SQL engine, transferred to application environment
application-level concept
NOT an SQL data type!

first introduced for large objects

45000Weiss456

80000Maier123

locaddrincomenamecid

CAstate

Los Angelescity

Sunset Blvd.street

address

conceptual
copy

Maier

:address:name

transfer

generate & transfer
locator

application DBMS

Recent Developments for Data Models
- WS 2006/2007

6
© Prof.Dr.-Ing. Stefan Deßloch

UDT, Array and Multiset Locators

Host variable can be specified as a locator variable for a UDT or an
array/multiset type:
SQL TYPE IS point AS LOCATOR pointvar;
SQL TYPE IS INTEGER ARRAY[10] AS LOCATOR avar;

A unique implementation-dependent 4-octet integer locator value is
generated and passed to the host variable:
EXEC SQL
SELECT center INTO :pointvar
FROM circles WHERE ...

When locators are used in assignment statements, the UDT or the
array/multiset value corresponding to the given locator value is first found,
and the result is then used in the assignment:
EXEC SQL
UPDATE circles
SET center = :pointvar
WHERE ...

4

Recent Developments for Data Models
- WS 2006/2007

7
© Prof.Dr.-Ing. Stefan Deßloch

Array Support in JDBC

Based on array locators
Retrieving/storing arrays

get/setArray() methods on ResultSet, PreparedStatement

Array interface supports methods to:
Determine the element type
Retrieve an array as a Java array, list of Java objects
Open a result set on an array (i.e., turn array into a table)

Implicitly executes a
"SELECT * FROM UNNEST (?)"

with array locator as parameter

Recent Developments for Data Models
- WS 2006/2007

8
© Prof.Dr.-Ing. Stefan Deßloch

Locators and External Routines

A parameter of an external routine can be specified as locator parameter if its
data type is either a UDT or an array or multiset type, or the returns type of
an external function can specify AS LOCATOR if it is either a UDT or an array
or multiset type:
CREATE FUNCTION foo(p1 emp AS LOCATOR)
RETURNS emp AS LOCATOR
EXTERNAL ...

When the routine is invoked, a unique implementation-dependent 4-octet
integer locator value is generated for each input locator parameter and
passed as the argument value.
After the routine finishes execution, for each output locator parameter or
function result, the UDT or the array value corresponding to the locator value
is first found, and the result is then returned to the caller.

5

Recent Developments for Data Models
- WS 2006/2007

9
© Prof.Dr.-Ing. Stefan Deßloch

Approach 2: Transforms

Transforms are user-defined functions or methods that get invoked
automatically whenever UDT values are exchanged between SQL and
external programs.
Each UDT is associated with a collection of transform groups; each transform
group is associated with:

A from_sql function that maps a UDT value into a value of predefined type.
A to_sql function that maps a value of a predefined type into a UDT value.

45000Weiss456

80000Maier123

locaddrincomenamecid

CAstate

Los Angelescity

Sunset Blvd.street

address

input

Sunset Blv.;Los
Angeles;CA

Maier

:address:name

transfer

transfer

application DBMS

Sunset Blv.;Los
Angeles;CA

from_sql
transform

Recent Developments for Data Models
- WS 2006/2007

10
© Prof.Dr.-Ing. Stefan Deßloch

CREATE TRANSFORM

CREATE TRANSFORM statement specifies a transform for a given UDT

CREATE TRANSFORM FOR point
group1(FROM SQL WITH FUNCTION from_point1(point),

TO SQL WITH FUNCTION to_point1(char(27))
group2(FROM SQL WITH FUNCTION from_point2(point),

TO SQL WITH FUNCTION to_point2(char(50));

A transform group with a given name can be specified for only one type
within a type hierarchy
An implicit transform is created for every distinct type on its creation, based
on its cast functions

User-defined transforms can be created as well

6

Recent Developments for Data Models
- WS 2006/2007

11
© Prof.Dr.-Ing. Stefan Deßloch

Methods as Transform Functions

Both from_sql and to_sql functions can be specified as methods:
CREATE TRANSFORM FOR point

group1(FROM SQL WITH METHOD from_point1() FOR point,
TO SQL WITH METHOD to_point1(char(27) FOR point)

group2(FROM SQL WITH METHOD from_point2() FOR point,
TO SQL WITH METHOD to_point2(char(50) FOR point);

Both from_sql and to_sql methods can be overridden to define subtype-
specific transform methods.

dynamic binding rules apply, i.e., if there is an overriding method available, that
method is picked for execution.

If there is no transform available for a UDT with a given group name, then a
transform defined for one of its supertypes is picked.

Recent Developments for Data Models
- WS 2006/2007

12
© Prof.Dr.-Ing. Stefan Deßloch

Transforms in Embedded Programs

An embedded program can specify transform groups for use during the
execution of the program:

TRANSFORM GROUP group1
TRANSFORM GROUP group2 FOR TYPE point

A host variable whose data type is a UDT must specify a predefined type;
must be same as the return type of from_sql function of the transform group
specified for the UDT:

SQL TYPE IS point AS CHAR(50) pointvar

from_sql function or method is automatically invoked on the UDT value and
the result is passed to the host variable:

EXEC SQL SELECT center INTO :pointvar FROM circles WHERE ...

to_sql function or method is automatically invoked on the host variable value
and the result is passed to SQL:

EXEC SQL
UPDATE circles
SET center = :pointvar
WHERE ...

7

Recent Developments for Data Models
- WS 2006/2007

13
© Prof.Dr.-Ing. Stefan Deßloch

Transforms in Dynamic SQL

SET TRANSFORM GROUP statement sets the transform group for one or more
UDTs for use during execution of dynamic SQL statements:
SET DEFAULT TRANSFORM GROUP group1;
SET TRANSFORM GROUP FOR TYPE point group2;

Two special registers are provided to inquire about the session defaults:
CURRENT_DEFAULT_TRANSFORM_GROUP;
CURRENT_TRANSFORM_GROUP_FOR_TYPE point;

Recent Developments for Data Models
- WS 2006/2007

14
© Prof.Dr.-Ing. Stefan Deßloch

Transforms in External Routines

An external routine can specify transform groups for use during the execution
of routine:

CREATE FUNCTION foo(p1 point)
RETURNS INTEGER
EXTERNAL
TRANSFORM GROUP group1;

The parameter in the external program corresponding to 'p1' must specify a
host language type that corresponds to CHAR(27).
Transform functions for UDT parameters are picked during the creation of
external routines; once selected, the transform functions are frozen.
Type-preserving functions/methods

If a to-sql method is defined, then a new instance of the most-specific type of the
respective UDT parameter (e.g., SELF) is created, and the to-sql method is invoked
on that instance

8

Recent Developments for Data Models
- WS 2006/2007

15
© Prof.Dr.-Ing. Stefan Deßloch

Dropping Transforms

DROP TRANSFORM statement can be used to drop either a transform group
or all transform groups attached to a UDT:
DROP TRANSFORM group1 FOR point RESTRICT;
DROP TRANSFORM ALL FOR point CASCADE;

Dependencies between a transform group and the external routines that
depend on that transform group are taken into account during dropping of
transforms.

Recent Developments for Data Models
- WS 2006/2007

16
© Prof.Dr.-Ing. Stefan Deßloch

Approach 3: Complex Value Transfer

Transfer of complex values
using proprietary format
transparent to application
jointly supported by DBMS server and client API (e.g., JDBC driver)

Generic data/object structures on the application side
suitable especially for generic, dynamic applications

Type-specific mapping for user-defined types

45000Weiss456

80000Maier123

locaddrincomenamecid

CAstate

Los Angelescity

Sunset Blvd.street

address

Maier

:address:name

transfer

application DBMS

CAstate

Los Angelescity

Sunset Blvd.street

AddressClass

CA

Los Angeles

Sunset Blvd.

address

9

Recent Developments for Data Models
- WS 2006/2007

17
© Prof.Dr.-Ing. Stefan Deßloch

JDBC – Application Program Structure

String url = "jdbc:db2:mydatabase";
…
Connection con = DriverManager.getConnection(url, "dessloch",

"pass");

String sqlstr = "SELECT * FROM Employees WHERE dept = 1234";
Statement stmt = con.createStatement();

ResultSet rs = stmt.executeQuery(sqlstr);

while (rs.next()) {
String a = rs.getString(1);
String str = rs.getString(2);
System.out.print(" empno= " + a);
System.out.print(" firstname= " + str);
System.out.print("\n");

}

DriverManager

Connection

Statement

ResultSet

Recent Developments for Data Models
- WS 2006/2007

18
© Prof.Dr.-Ing. Stefan Deßloch

Structured Types – Generic Support

Generic way of handling a structured object as an array of Java objects that
represent the individual attribute values

Useful for generic applications/tools

Uses new JDBC interface 'Struct'
public interface Struct extends SQLData {

SQLType getSQLType();
Object[] getAttributes();

}
getSQLType() returns the most specific type
JDBC driver includes a new Java class implementing the Struct interface

ResultSet.getObject() will now return an object implementing the Struct
interface

Struct st = (Struct)resultset.getObject(1)

10

Recent Developments for Data Models
- WS 2006/2007

19
© Prof.Dr.-Ing. Stefan Deßloch

CREATE TYPE residence (
door INTEGER,
street VARCHAR(100),
city VARCHAR(50))

public class Residence {
public int door;
public String street;
public String city; }

Java SQL

User-defined Type Mapping Support

Materializing instances of SQL user-defined types as instances of
corresponding Java classes

manipulated using existing result set or prepared statement interfaces
get/setObject(<column>) simply "works" for structured types
Example:
ResultSet rs = stmt.executeQuery("SELECT e.addr FROM Employee e");
rs.next();
Residence addr = (Residence)rs.getObject(1);

Recent Developments for Data Models
- WS 2006/2007

20
© Prof.Dr.-Ing. Stefan Deßloch

Mapping Infrastructure

Mapping table for recording correspondence of DB UDT and Java class
Can be attached to a DB connection object
Can be used as additional parameter in get/setObject() calls

Java class implements interface SQLData
readSQL() reads attributes from an SQLInput data stream
writeSQL() writes attributes to an SQLOutput data stream

getSQLType() returns corresponding SQL type, used internally by JDBC driver
Includes handling of nested objects, type conversions, NULL attributes

SQLInput, SQLOutput interfaces
Generic 'stream-based' API for implementing the customized mapping
Used by programmers and mapping tools
Vendor-specific implementation details of object bind-out are hidden

JDBC driver activities
getObject()

creates Java object based on type mapping, invokes readSQL(sqlInput) method to
'internalize' state

setObject()
invokes writeSQL(sqlOutput) to 'externalize' the object state

11

Recent Developments for Data Models
- WS 2006/2007

21
© Prof.Dr.-Ing. Stefan Deßloch

Mapping (Example)

SQL99 type
CREATE TYPE residence (

door INTEGER,
street VARCHAR(100),
city VARCHAR(50))

Java class
public class Residence implements SQLData {

public int door;
public String street;
public String city;
public void readSQL(SQLInput stream, ...) throws SQLException {

door = stream.readInt();
street = stream.readString();
city = stream.readString(); }

public void writeSQL(SQLOutput stream, ...) throws SQLException {
stream.writeInt(door);
stream.writeString(street);
stream.writeString(city); } … }

Recent Developments for Data Models
- WS 2006/2007

22
© Prof.Dr.-Ing. Stefan Deßloch

SQL Object Language Bindings (OLB)

aka SQLJ Part 0
Static, embedded SQL in Java

Development advantages over JDBC
more concise, easier to code
static type checking, error checking at precompilation time

Example:
SQL/OLB

#sql [con] { SELECT ADDRESS INTO :addr FROM EMP
WHERE NAME=:name };

JDBC
java.sql.PreparedStatement ps = con.prepareStatement(

"SELECT ADDRESS FROM EMP WHERE NAME=?");
ps.setString(1, name);
java.sql.ResultSet names = ps.executeQuery();
names.next();
name = names.getString(1);
names.close();

Support for composite types, user-defined types based on JDBC
in addition, type mapping can be supplied in a properties file

12

Recent Developments for Data Models
- WS 2006/2007

23
© Prof.Dr.-Ing. Stefan Deßloch

User-defined Types - Example

assume distinct type ZIPCODE, structured type ADDRESS with subtypes HOME and
BUSINESS
file addrpckg/addressmap.properties:
file: addressmap.properties
class.addrpckg.Address = STRUCT ADDRESS
class.addrpckg.BusinessAddress = STRUCT BUSINESS
class.addrpckg.HomeAddress = STRUCT HOME
class.addrpckg.ZipCode = DISTINCT ZIPCODE

context declaration refers to addressmap:
#sql context Ctx with (typeMap = "addrpckg.addressmap");

assume the following table exists:
CREATE TABLE PEOPLE (

FULLNAME CHARACTER VARYING(50),
BIRTHYEAR NUMERIC(4,0),
ADDR ADDRESS)

iterator declaration for PEOPLE uses Java Address type:
#sql public iterator ByPos (String, int, addrpckg.Address);

Recent Developments for Data Models
- WS 2006/2007

24
© Prof.Dr.-Ing. Stefan Deßloch

User-defined Types - Example (cont.)

sample program for retrieving Address objects:
{

ByPos positer; // declare iterator object
String name = null;
int year = 0;
addrpckg.Address addr = null;
String url;

...
Ctx context = new Ctx(url, false);
// populate it
#sql [context] positer = { SELECT FULLNAME, BIRTHYEAR, ADDR FROM PEOPLE };
#sql { FETCH :positer INTO :name, :year, :addr};
while (!positer.endFetch())
{

System.out.println (name + " was born in "
+ year + " and lives in " addr.print());

#sql { FETCH :positer INTO :name, :year, :addr};
}

}

13

Recent Developments for Data Models
- WS 2006/2007

25
© Prof.Dr.-Ing. Stefan Deßloch

Retrieving Distinct Types and Using Transforms

Without a defined mapping
distinct and structured types will be transformed into built-in types (transform
functions)
values are accessed just like for built-in types

With a mapping defined for distinct or structured types
SQLInput/SQLOutput streams will carry only a single value for distinct types
same for structured types, if transforms are used

Recent Developments for Data Models
- WS 2006/2007

26
© Prof.Dr.-Ing. Stefan Deßloch

Summary

Approaches for exchanging complex/collection values with client applications and
external routine implementations

Locators
actual values remain in the SQL environment

+ avoid unnecessary transformation and transfer of complex values
performance and development aspect

- restricts value manipulation to SQL operations
only approach available for collection types

Transform functions for user-defined types
+ high flexibility

tailor UDT value exchange to specific application requirements
accommodate existing interchange formats

- requires additional development effort
transform functions
application code for format parsing/generation

Complex value transfer for user-defined types
+ generic application representation for dynamic applications
+ user-defined mapping support for improved language integration, productivity
(-) potential development impact for application (SQLData) in the absence of tool support
- standardized only for Java applications

Performance tradeoffs

