
1

Recent Developments for Data Models - WS06/07

Prof. Dr.-Ing. Stefan Deßloch
AG Heterogene Informationssysteme
Geb. 36, Raum 329
Tel. 0631/205 3275
dessloch@informatik.uni-kl.de

Chapter 6 –
Windowed Tables and Window Functions

in SQL

Recent Developments for Data Models
- WS06/07

2
© Prof.Dr.-Ing. Stefan Deßloch

Outline

Overview
I. Object-Relational Database Concepts
1. User-defined Data Types and Typed Tables
2. Object-relational Views and Collection Types
3. User-defined Routines and Object Behavior
4. Application Programs and Object-relational Capabilities
II. Online Analytic Processing
5. Data Analysis in SQL
6. Windowed Tables and Window Functions in SQL
III. XML
7. XML and Databases
8. SQL/XML
9. XQuery
IV. More Developments (if there is time left)
temporal data models, data streams, databases and uncertainty, …

2

Recent Developments for Data Models
- WS06/07

3
© Prof.Dr.-Ing. Stefan Deßloch

SQL:2003 Built-in Functions for OLAP

34 new built-in functions:
7 new numeric functions
16 new aggregate functions
5 new windowed table functions
4 new hypothetical aggregate functions
2 new inverse distribution functions

Windowed table functions provide facilities for calculating moving sums,
moving averages, ranks, correlation, standard deviation, regression, etc.
Significant functionality and performance advantages for OLAP applications

Recent Developments for Data Models
- WS06/07

4
© Prof.Dr.-Ing. Stefan Deßloch

New Built-in Functions

7 new numeric functions
LN (expr)
EXP (expr)
POWER (expr, expr)
SQRT (expr)
FLOOR (expr)
CEIL[ING] (expr)
WIDTH_BUCKET(expr, expr, expr, expr)
EX: WIDTH_BUCKET (age, 0, 100, 10)

16 new aggregate functions
STDDEV_POP (expr)
STDDEV_SAMP (expr)
VAR_POP (expr)
VAR_SAMP (expr)
COVAR_POP (expr, expr)
COVAR_SAMP (expr, expr)
CORR (expr, expr)
REGR_SLOPE (expr, expr)
REGR_INTERCEPT (expr, expr)
REGR_COUNT (expr, expr)
REGR_R2 (expr, expr)
REGR_AVGX (expr, expr)
REGR_AVGY (expr, expr)
REGR_SXX (expr, expr)
REGR_SYY (expr, expr)
REGR_SXY (expr, expr)

3

Recent Developments for Data Models
- WS06/07

5
© Prof.Dr.-Ing. Stefan Deßloch

Windowed Table Functions

Windowed table function
operates on a window of a table
returns a value for every row in that window
the value is calculated by taking into consideration values from the set of rows in
that window

5 new windowed table functions
RANK () OVER ...
DENSE_RANK () OVER ...
PERCENT_RANK () OVER ...
CUME_DIST () OVER ...
ROW_NUMBER () OVER ...

In addition, 8 old aggregate functions and 16 new aggregate functions can
also be used as windowed table functions:
Example: sum(salary) OVER ...

Allows calculation of moving and cumulative aggregate values.

Recent Developments for Data Models
- WS06/07

6
© Prof.Dr.-Ing. Stefan Deßloch

Concept (Compared To Set Functions)

Set functions
(aggregate functions)

SELECT dept, AVG(salary)
FROM Employees
GROUP BY dept

Windowed Table Functions
(tuple-based aggregation)

SELECT dept, empno, salary,
AVG(salary) OVER(

PARTITION BY dept
ORDER BY age
ROWS

BETWEEN 2 PRECEEDING
AND 2 FOLLOWING)

FROM Employees

4

Recent Developments for Data Models
- WS06/07

7
© Prof.Dr.-Ing. Stefan Deßloch

Windowed Tables and Window Functions

Windowed table
table (result of a table expression) together with one or more windows
windows are independent from each other

Window
defines, for each row in the table, a set of rows (current row window) that is used
to compute additional attributes
specified using a window specification (OVER clause)
based on three main concepts

window partitioning is similar to forming groups, but rows are retained
window ordering defines an order (sequence) of rows within each partition
window frame is defined relative to each row to further restrict the set of rows

Window function
is applied for each row, over the current row window, returning a single value
used in column expressions in the select-list

Function(arg)
OVER (

partition-clause order-clause
frame-clause

)

Recent Developments for Data Models
- WS06/07

8
© Prof.Dr.-Ing. Stefan Deßloch

The Partitioning Clause

The partition-clause allows to subdivide the rows into partitions, much like the
group by clause

Without further clauses, the current row window contains all the rows of the
same partition (i.e., all the rows that are not distinct from the current row,
including the current row)

if no partitioning clause is specified, then there is a single partition that contains
the complete table

Windows do not reach across partition boundaries!

Function(arg)
OVER (

partition-clause order-clause
frame-clause

)

PARTITION BY value-expression
,

5

Recent Developments for Data Models
- WS06/07

9
© Prof.Dr.-Ing. Stefan Deßloch

Set Functions as Window Functions

The OVER clause turns a set function into a window function
Aggregated value is computed per current row window (here: per partition)

select empnum, dept, salary,
avg(salary) over (partition by dept) as dept_avg

from emptab;

8400084000-3

510005100029

51000-24

696677900038

6383353000111

638335200015

638335000011

638337800016

638337500012

638337500017

84000--0

6966755000310

6966775000312

DEPT_AVGSALARYDEPTEMPNUM

Recent Developments for Data Models
- WS06/07

10
© Prof.Dr.-Ing. Stefan Deßloch

Function(arg)
OVER (

partition-clause order-clause
frame-clause

)

ORDER BY value-expression
ASC

DESC

,

NULLS FIRST
NULLS LAST

The Order Clause

The order-clause defines an order (sequence) within a partition
May contain multiple order items

Each item includes a value-expression
NULLS FIRST/LAST defines ordering semantics for NULL values

This clause is completely independent of the query's ORDER BY clause

6

Recent Developments for Data Models
- WS06/07

11
© Prof.Dr.-Ing. Stefan Deßloch

Ranking Functions For Sequences

RANK
returns the relative position of a value in an ordered group
equal values (ties) are ranked the same

DENSE_RANK
like RANK, but no gaps in rankings in the case of ties

ROW_NUMBER
ties are non-deterministically numbered

Ordering is required!
Example:
select empnum, dept, salary,

rank() over (order by salary desc nulls last) as rank,
dense_rank() over (order by salary desc nulls last) as denserank,
row_number() over (order by salary desc nulls last) as rownum

from emptab;

Recent Developments for Data Models
- WS06/07

12
© Prof.Dr.-Ing. Stefan Deßloch

Ranking Functions Example

121012-24

9795200015

108105100029

119115000011

86853000111

131012--0

75755000310

64475000312

5447500017

4447500012

3337800016

2227900038

11184000-3

ROWNUMDENSERANKRANKSALARYDEPTEMPNUM

7

Recent Developments for Data Models
- WS06/07

13
© Prof.Dr.-Ing. Stefan Deßloch

Example: Rank with Ordering and Partitioning

Find rankings of each employee's salary within her department
select empnum, dept, salary,

rank() over (partition by dept order by salary desc nulls last)
as rank_in_dept,

rank() over (order by salary desc nulls last) as globalrank
from emptab;

1184000-3

1015100029

122-24

217900038

8453000111

955200015

1165000011

317800016

427500012

427500017

122--0

7355000310

4275000312

RANKRANK_IN_DEPTSALARYDEPTEMPNUM

Recent Developments for Data Models
- WS06/07

14
© Prof.Dr.-Ing. Stefan Deßloch

Rank on Aggregations

Windowed table functions are computed in the select list
After applying FROM, WHERE, GROUP BY, HAVING
They may not be referenced in any of these clauses
May use aggregation functions in window specification expressions
If you wish to reference them, you must nest them, or use a common table
expression

Example: Find rankings of each department's total salary
select dept, sum(salary) as sumsal,

rank() over (order by sum(salary) desc nulls last) as rankdept
from emptab
group by dept;

4510002

13830001

22090003

384000-

RANKDEPTSUMSALDEPT

8

Recent Developments for Data Models
- WS06/07

15
© Prof.Dr.-Ing. Stefan Deßloch

Cumulative Functions with Partitioning

Without a frame-clause, the current row window is now restricted to all rows
equal to or preceding the current row within the current partition

Example: Find the total sales per quarter, and cumulative sales in quarter order
PER YEAR for 1993-1995

select year, quarter, sum(s.dollars) as q_sales,
sum(sum(s.dollars)) over
(partition by year
order by quarter)

as cume_sales_year
from sales s
where year between 1993 and 1995
group by year, quarter;

4988193.451182153.0141995

3806040.441418400.6831995

2387639.761194296.1421995

1193343.621193343.6211995

4653373.781103020.4941994

3550353.291241437.7231994

2308915.571132602.7321994

1176312.841176312.8411994

4663102.631062329.9941993

3600772.641050825.4431993

2549947.201279171.4521993

1270775.751270775.7511993

CUME_SALES_YEARQ_SALESQUARTERYEAR

Recent Developments for Data Models
- WS06/07

16
© Prof.Dr.-Ing. Stefan Deßloch

Window Frames

Further refine the set of rows in a function's window when an order by is
present

Allows inclusion/exclusion of ranges of values or rows within the ordering

Function(arg)
OVER (

partition-clause order-clause
frame-clause

)

UNBOUNDED PRECEDING
unsigned-value-spec PRECEDING
CURRENT ROW
unsigned-value-spec FOLLOWING
UNBOUNDED FOLLOWING

endpoint-spec

ROWS
RANGE

endpoint-spec
BETWEEN endpoint-spec AND endpoint-spec

frame-clause

9

Recent Developments for Data Models
- WS06/07

17
© Prof.Dr.-Ing. Stefan Deßloch

Example: Curve Smoothing

Now the curve is smooth, but it is
uncentered
Centered average:
… rows between 1 preceding

and 1 following …

Find the three day historical average of IBM stock for
each day it traded

select date,symbol, close_price,
avg(close_price) over (order by date rows 2 preceding) as
smooth_cp

from stocktab
where symbol = 'IBM' and date between '1999-08-01' and '1999-09-01';

DATE SYMBOL CLOSE_PRICE SMOOTH_CP
---------- ------ ------------ -------------
08/02/1999 IBM 110.125 110.1250
08/03/1999 IBM 109.500 109.8125
08/04/1999 IBM 112.000 110.5416
08/05/1999 IBM 110.625 110.7083
08/06/1999 IBM 112.750 111.7916
08/09/1999 IBM 110.625 111.3333
08/10/1999 IBM 108.375 110.5833
08/11/1999 IBM 109.250 109.4166
08/12/1999 IBM 109.375 109.0000
08/13/1999 IBM 108.500 109.0416
08/16/1999 IBM 110.250 109.3750
08/17/1999 IBM 108.375 109.0416
08/18/1999 IBM 108.375 109.0000
08/19/1999 IBM 109.375 108.7083
08/20/1999 IBM 112.000 109.9166
08/23/1999 IBM 113.125 111.5000
08/24/1999 IBM 114.875 113.3333
08/25/1999 IBM 115.500 114.5000
08/26/1999 IBM 113.375 114.5833
08/27/1999 IBM 115.625 114.8333

104

106

108

110

112

114

116

08/02/1999 08/09/1999 08/16/1999 08/23/1999 08/30/1999

three day historical average

smooth_cp
close_price

Recent Developments for Data Models
- WS06/07

18
© Prof.Dr.-Ing. Stefan Deßloch

RANGE Based Windows

ROW based windows work great when the data is dense
duplicate values and missing rows can cause problems

In other situations, it would be nice to specify the aggregation group in terms
of values, not absolute row position

For example, the stock table doesn't have any entries for weekends
Looking at the last 6 rows gives you more than the last week

UNBOUNDED PRECEDING
unsigned-value-spec PRECEDING
CURRENT ROW
unsigned-value-spec FOLLOWING
UNBOUNDED FOLLOWING

endpoint-spec

ROWS
RANGE

endpoint-spec
BETWEEN endpoint-spec AND endpoint-spec

window-agg-
group

DATE SYMBOL CLOSE_PRICE
---------- ------ ------------
08/02/1999 IBM 110.125
08/03/1999 IBM 109.500
08/04/1999 IBM 112.000
08/05/1999 IBM 110.625
08/06/1999 IBM 112.750
values missing for the weekend!
08/09/1999 IBM 110.625
08/10/1999 IBM 108.375
08/11/1999 IBM 109.250
08/12/1999 IBM 109.375
08/13/1999 IBM 108.500
.. and here

08/16/1999 IBM 110.250

10

Recent Developments for Data Models
- WS06/07

19
© Prof.Dr.-Ing. Stefan Deßloch

For IBM stock, what is the 7 calendar day historical average, and the 7 trade day historical
average for each day in the month of August, 1999

select date,substr(dayname(date),1,9), close_price,
avg(close_price) over (order by date rows 6 preceding) as avg_7_rows,
count(close_price) over (order by date rows 6 preceding) as count_7_rows,
avg(close_price) over (order by date range interval '6' day preceding) as avg_7_range,
count(close_price) over (order by date range interval '6' day preceding) as count_7_range

from stocktab
where symbol = 'IBM' and date between '1999-08-01' and '1999-09-01';

DATE 2 CLOSE_PRICE AVG_7_ROWS COUNT_7_ROWS AVG_7_RANGE COUNT_7_RANGE
---------- --------- ------------ ---------- ------------ ----------- -------------
08/02/1999 Monday 110.125 110.12 1 110.12 1
08/03/1999 Tuesday 109.500 109.81 2 109.81 2
08/04/1999 Wednesday 112.000 110.54 3 110.54 3
08/05/1999 Thursday 110.625 110.56 4 110.56 4
08/06/1999 Friday 112.750 111.00 5 111.00 5
08/09/1999 Monday 110.625 110.93 6 111.10 5
08/10/1999 Tuesday 108.375 110.57 7 110.87 5
08/11/1999 Wednesday 109.250 110.44 7 110.32 5
08/12/1999 Thursday 109.375 110.42 7 110.07 5
08/13/1999 Friday 108.500 109.92 7 109.22 5
08/16/1999 Monday 110.250 109.87 7 109.15 5
08/17/1999 Tuesday 108.375 109.25 7 109.15 5
...

RANGE Based Window Example

Recent Developments for Data Models
- WS06/07

20
© Prof.Dr.-Ing. Stefan Deßloch

Explicit Window Definition Clause

So far, a window was specified "in-line" in the SELECT clause of a query
Alternative syntax uses an explicit WINDOW clause
select date, symbol, close_price,
avg(close_price) over w as smooth_cp
from stocktab
where symbol = 'IBM' and date between '1999-08-01' and '1999-09-01'
window w as (order by date rows 2 preceding)

Advantages
window has a name, which can be used by multiple window table function
invocations in the SELECT clause

11

Recent Developments for Data Models
- WS06/07

21
© Prof.Dr.-Ing. Stefan Deßloch

SQL Query Processing Steps incl. OLAP

SELECT …
AVG(…) …
RANK(…) OVER …

FROM …
WHERE …
GROUP BY …
HAVING …
ORDER BY …

JOIN

SELECTION

GROUPING

AGGREGATION

SELECTION

PROJECTION

SORT

PARTITION

SORT

WINDOW

AGGREGATION

PARTITION

SORT

WINDOW

AGGREGATION

…

Recent Developments for Data Models
- WS06/07

22
© Prof.Dr.-Ing. Stefan Deßloch

Additional Capabilities

Hypothetical Aggregate Functions
4 new hypothetical aggregate functions:

RANK (expr, expr ...) WITHIN GROUP (ORDER BY <sort specification list>)
DENSE_RANK (expr, expr ...) WITHIN GROUP (ORDER BY <sort specification list>)
PERCENT_RANK (expr, expr ...) WITHIN GROUP (ORDER BY <sort specification list>)
CUME_DIST (expr, expr ...) WITHIN GROUP (ORDER BY <sort specification list>)

Hypothetical aggregate functions evaluate the aggregate over the window
extended with a new row derived from the specified values.

"What if" scenarios

Inverse Distribution Functions
2 new inverse distribution functions:

PERCENTILE_DISC (expr) WITHIN GROUP (ORDER BY <sort specification list>)
PERCENTILE_CONT (expr) WITHIN GROUP (ORDER BY <sort specification list>)

Argument must evaluate to a value between 0 and 1.
Return the values of expressions specified in <sort specification list> that
correspond to the specified percentile value.

12

Recent Developments for Data Models
- WS06/07

23
© Prof.Dr.-Ing. Stefan Deßloch

Summary

OLAP-Functionality in SQL
extension of classical application of aggregation functions

Windowed tables, window functions
tuple-based, attribute-based partitioning and analysis/aggregation of data
rows in a partition are preserved/expanded

in contrast to group-by/aggregation

window order defines sequence for sequence-based analysis
cumulative aggregation, ranking

window frame defines current row window dynamically for ordered windows
moving aggregates

Multiple windows can be defined for the same table
windows are independent

SQL query execution model enhancement
This functionality provides powerful infrastructure for optimized data analysis
in the scope of OLAP

