
1

Workflows und Web Services
WS 2002/2003 1

Workflows and Transactions

Workflows and Web Services
Kapitel 9

Workflows und Web Services
WS 2002/20032

AG Heterogene
Informationssysteme

ACID Transactions
ACID properties

Atomicity, consistency, isolation, durability

Distributed transactions
(distributed) two-phase commit
DTP X/Open

Transaction coordinator, resource managers
Transaction “trees”

Flat transaction model
Foundation for DBMS, TP monitors

Hidden assumption: transactions are short

2

Workflows und Web Services
WS 2002/20033

AG Heterogene
Informationssysteme

Atomic Spheres (global TAs)
Set of TAs/activities where either all TAs in a sphere commit, or none
Properties:

Each activity in an atomic sphere is transactional
Manipulates resources in RM according to DTP X/OPEN
Does not establish TA boundaries by itself

If an activity in an atomic sphere is reachable via control flow from another
activity in the same sphere, then all
activities along the control flow path
are elements of the atomic sphere
as well
If an activity is rolled back, then all
previously completed activities in
the sphere are rolled back as well

Workflows und Web Services
WS 2002/20034

AG Heterogene
Informationssysteme

Atomic Sphere (cont.)
WFMS implementation

Start global TA when control flow enters atomic sphere
All activities in sphere participate

Wait for running activies in sphere to complete when control flow leaves the
sphere, and commit global TA

If commit fails, carry out further steps (repeat, exception WF, …) based on sphere
parameters

Global Transactions: Practice
Transaction with multiple participants
Atomic committment is the issue

E.g. 2-phase-commit protocol

Efficiency problems when used across
Not realistic across organization boundaries

Not only „efficiency“ issues but additional legal-, ownership-, privacy-,... issues
Especially not in Internet scenarios

3

Workflows und Web Services
WS 2002/20035

AG Heterogene
Informationssysteme

Long Transactions
“Long“ is a couple of seconds to years

Batches
Multi-step transactions
Design activities
…

Basic characteristics are:
Must survive (planned as well as unplanned) interrupts

Including power-off

Backout of whole transaction due to local failure not tolerable

Often, corresponds to a business process

Workflows und Web Services
WS 2002/20036

AG Heterogene
Informationssysteme

Advanced Transaction
Models
Nested transactions

Top-level transaction has ACID
Closed

Subtransaction has A, I, (C)

Open
Subtransaction has A, D
Rollback of top-level TA requires compensation of committed sub-TAs

not automated

Sagas
Sequence of (Sub-)Transaction/compensating action pairs
DBMS guarantees LIFO execution of compensation actions during
abort/rollback of Saga
ACID for each sub-TA

4

Workflows und Web Services
WS 2002/20037

AG Heterogene
Informationssysteme

Compensation
Not every action has a reverse (real action)
In reality, the effects of an arbitrary action cannot be simply undone, i.e.
the initial state cannot be recreated
An action used to reverse the effects of another action is called
compensation action
Semantic Recovery: Recovery schema based on compensation
Compensation very likely one of today's most frequently exploited
techniques in transaction processing

Workflows und Web Services
WS 2002/20038

AG Heterogene
Informationssysteme

Compensation – Examples
Compensation attempts to repair actions that cannot be simply undone

E.g. an already committed update on a database, sending an email, dispensing
money by an automatic teller machine, etc.

Compensation action is often dependent on context
E.g. writing an offer and sending it via mail to a customer

If letter is still in outbasket, simply remove it from outbasket
If letter is already received by the customer, write and send a countermanding letter

Compensation often cannot recreate the same state that existed before
the proper action had been performed

E.g. canceling a flight might cost a cancellation fee
Even more complicated, the cancellation fee might depend on the point in time, i.e.
it is higher the later the cancellation is requested

5

Workflows und Web Services
WS 2002/20039

AG Heterogene
Informationssysteme

ConTracts
Extends Sagas with

Rich control structures
Sequence, fork, parallel steps, loops, …

Separate description of sub-TAs (steps) and control flow (script)
Management of a persistent context for global variables, intermediate results,
terminal output messages, …
Step synchronisation using invariants
Flexible conflict/error resolution

Target applications are long-running activities
Tolerate (planned and unplanned) outages
Forward recovery of long-running activity
Subset of steps can have ACID semantics (global transaction)
(Groups of) steps can be undone after commit using compensation functions

Still not enough for workflow?
Steps have to be transactions
No explicit data flows, staff assignment, dead path elimination, …

Wächter, H., Reuter, A.: The Contract Model, in Elmagarmid, A.K.
(Hersg.): Transaction Models for Advanced
Applications, Morgan Kaufmann, San Mateo, CA, 1992, S. 219-264.

Workflows und Web Services
WS 2002/200310

AG Heterogene
Informationssysteme

ConTracts – Example

6

Workflows und Web Services
WS 2002/200311

AG Heterogene
Informationssysteme

ConTracts – Example (script)
CONTRACT Business_Trip_Reservations
CONTEXT_DECLARATION

cost_limit, ticket_price: dollar;
from, to: city;
date: date_type;
ok: boolean;

CONTROL_FLOW_SCRIPT
S1: Travel_Data_Input (in_context: ; out_context: date, from, to, cost_limit);
PAR_FOREACH (airline: EXECSQL select airline from ... ENDSQL)
S2: Check_Flight_Schedule (in_context: airline, data, from, to; out_context: flight_no, ticket_price);

END_PAR_FOREACH;
S3: Flight_Reservation (in_context: flight, ticket_price; ...);
S4: Hotel_Reservation (in_context: “Cathedral Hill Hotel”; out_context: ok, hotel_reservation);
IF ok THEN
S5: Car_Rental (... “Avis” ...);

ELSE BEGIN
S6: Hotel_Reservation (... “Holiday Inn” ...);
IF ok THEN

S7: Car_Rental (... “Hertz” ...);
ELSE S8 : Cancel_Flight_Reservation_&_Try_Another_One (...);
END

S9: Print_Documents (...);
END_CONTROL_FLOW_SCRIPT

Workflows und Web Services
WS 2002/200312

AG Heterogene
Informationssysteme

ConTracts – Example (script)
COMPENSATIONS

C1: Do_Nothing_Step();
C2: Do_Nothing_Step();
C3: Cancel_Flight_Reservation(...);
C4: Cancel_Hotel_Reservation(...);
C5: Cancel_Car_Reservation(...);
C6: Cancel_Hotel_Reservation(...);
C7: Cancel_Car_Reservation(...);
C8: Do_Nothing_Step();
C9: Invalidate_Tickets(...);

END_COMPENSATIONS
TRANSACTIONS

T1 (S4, S5), DEPENDENCY(T1:abort −> begin:T2);
T2 (S6, S7), DEPENDENCY(T2:abort −> begin:S8);

END_TRANSACTIONS

7

Workflows und Web Services
WS 2002/200313

AG Heterogene
Informationssysteme

ConTracts – Example (script)
SYNCHRONIZATION_INVARIANTS_&_CONFLICT_RESOLUTIONS

S1: EXIT_INVARIANT (budget > cost_limit);
POLICY: check/revalidate;

S3: ENTRY_INVARIANT (budget > cost_limit) AND (cost_limit > ticket_price));
CONFLICT_RESOLUTION: S8: Cancel_Reservation (...) ;
EXIT_INVARIANT (budget > cost_limit - ticket_price);
POLICY: check/revalidate;

S4, S6: ENTRY_INVARIANT (hotel_price < budget);
CONFLICT_RESOLUTION:

S10: Call_Manager_To_Increase_Budget (...);
S5, S7: ENTRY_INVARIANT (car_price < budget);

CONFLICT_RESOLUTION:
S10: Call_Manager_To_Increase_Budget (...);

END_SYNCHRONIZATION_INVARIANTS_&_CONFLICT_RESOLUTIONS
END_CONTRACT Business_Trip_Reservations.

Workflows und Web Services
WS 2002/200314

AG Heterogene
Informationssysteme

ConTracts Programming
Model
Programming of steps is independent of creation of scripts
Step example (fragment):

STEP Flight_Reservation
DESCRIPTION: Reserve n seats of a flight and pay for them ...
IN airline: STRING;

flight_no: STRING;
date: DATE;
seats: INTEGER;
ticket_price: DOLLAR;

OUT status: INTEGER;
flight_reservation ()
{ char* flight_no;

long date;
int seats;
...
EXEC SQL

UPDATE Reservations
SET seats_taken = seats_taken + :seats
WHERE flight = :flight_no AND date = :date ...

END SQL
...

}

8

Workflows und Web Services
WS 2002/200315

AG Heterogene
Informationssysteme

ConTracts Transaction Model
Steps: ACID
Atomic units

TRANSACTIONS
T1 (S4, S5),
T2 (S6, S7),

END_TRANSACTIONS

Can be nested
T1 (T2, T3)

Dependencies
Alternative for example above:

T1 (S4, S5),
DEPENDENCY(T1:abort[1]−> begin:T1);

/* first Abort of T1 */
DEPENDENCY(T2:abort[2]−> begin:S8);

/* second Abort of T1 */

Workflows und Web Services
WS 2002/200316

AG Heterogene
Informationssysteme

Forward Recovery and
Context Management
Forward Recovery: after a crash, recover youngest step-consistent
state and “roll-forward”
Requires persistent context management

Context element attributes
Logical name, conTract identifier, step identifier, creation timestamp, version number
(multiple activations of same step), counter (parallel activations)

9

Workflows und Web Services
WS 2002/200317

AG Heterogene
Informationssysteme

ConTracts – Compensation
Compensation is directed by user

Not automatic

Rules
Every step/transaction must have a compensating transaction
At commit of a step, all data needed for compensation must have been
computed/persisted
Local data needed for compensation steps must be safe from deletion until
End-Of-Contract
Compensation of a ConTract forces rollback of all running steps and prevents
starting new steps
Compensations can be aborted

Requires repeating the compensation
No (automatic) treatment of repeated compensation failures

Workflows und Web Services
WS 2002/200318

AG Heterogene
Informationssysteme

Compensation Spheres
Set of activities that must complete successfully as a whole

Otherwise it must be undone semantically
Activities can be arbitrary

Don’t have to be realized as transactions
Each activity in the sphere or the compensation sphere itself is associated
with a compensating action

May be the NULL operation …
A compensating action may be an activity or (complex) business process
If an activity fails

Compensating actions of all completed activities in the sphere are executed in
‘reverse’ order
Compensating action associated with the compensation sphere is executed

Problems
Failure of compensating action
Advantages compared to explicit modeling of exception/failure handling steps
into the process model?

10

Workflows und Web Services
WS 2002/200319

AG Heterogene
Informationssysteme

Compensation Spheres –
Example

Workflows und Web Services
WS 2002/200320

AG Heterogene
Informationssysteme

Recoverable Messaging
Basis of asynchronous transaction processing
Important principle: enqueue/dequeue is performed within the control
sphere of the write/read transaction
Requires coordination of queue manager and TA manager

At least 2PC

MOM: message-oriented middleware

11

Workflows und Web Services
WS 2002/200321

AG Heterogene
Informationssysteme

Stratified Transactions
Application-oriented partitioning of transaction T

In T1, … Tn

Chaining: each Ti is associated with a persistent message queue Qi
Input queue, holds requests to be processed by Ti

Order can be non-linear

IMPORTANT:
All resources manipulated by Ti (including the messages) are recoverable
Requires that RMs used by Ti can participate in atomic commit operation (XA-
protocol, 2PC)

Structure of stratified transactions
Some Ti are required to commit/abort together
Disjoint, complete partitioning of T into non-empty transaction sets S1, …, Sm

Each Si is a global transaction
The Tj’s in Si are synchronized in a 2PC

Set Si of transactions is called a stratum

Workflows und Web Services
WS 2002/200322

AG Heterogene
Informationssysteme

Stratified Transactions
(cont.)

12

Workflows und Web Services
WS 2002/200323

AG Heterogene
Informationssysteme

Stratified Transactions
(cont.)
Strata of a stratified transaction T are chained in a tree structure
If a stratum commits, then all child strata will commit

Stratum commit assures that request messages to child strata will finally be
delivered
The message will finally be received and processed by a TA in child stratum
If the child stratum commits, then the messages to its child strata will be
delivered …
If the child stratum fails, then the message re-appears in its request queue
and will be re-processed

Assumption: Each stratum finally commits!
If a stratum fails repeatedly, this situation has to be resolved manually

Advantages
Early commit of strata

Release locks, …
Shorter response time for user (root stratum)
Only the Si’s are global Tas

Workflows und Web Services
WS 2002/200324

AG Heterogene
Informationssysteme

METEOR
Key concepts

Task
Coordination of task executions
Correctness of workflow

Task
Set of externally visible execution states
Set of permitted transitions between states
Transition conditions

Coordination
Task execution may depend on

Execution states of other tasks
“T1 must not start before T2 is finished”
“After T1 commits, T2 has to be aborted:

Output values of other tasks
“T1 can only start when T2’s result > 25”

External variables (usually for temporal conditions)
“T1 can only start after 9am”

Rusinkiewics, M., Sheth, A.: Specification and Execution of
Transactional Workflows, in: Kim, W. (Hrsg.): Modern Database
Systems: The Object Model, Interoperability and Beyond, Addison-
Wesley, 1994, S. 592-620.

13

Workflows und Web Services
WS 2002/200325

AG Heterogene
Informationssysteme

METEOR (cont.)
Correctness

Failure atomicity of workflow
Set of accepted termination states

Committed acceptable termination states:
workflow completed successfully
Aborted acceptable termination states:
permitted, but not successful completion of workflow

All previously completed tasks must be compensated

Execution atomicity of workflow
Serializability of workflows is too restrictive
Synchronization using invariants (conditions)

Workflows und Web Services
WS 2002/200326

AG Heterogene
Informationssysteme

METEOR – Task Structures

14

Workflows und Web Services
WS 2002/200327

AG Heterogene
Informationssysteme

METEOR (cont.)
Workflow specification consists of

Descriptions of task structure for all involved tasks
Description of input/output of tasks and filters, relationship among
input/output of different tasks
Preconditions for each controllable transition of a task

WFSL: Workflow Specification Language
Task classes
Definition of compound tasks
Inter-task dependencies

State dependencies …
[L1, done] ENABLES [L2, start];
… can be connected with value dependencies
[L1, done] & (success(L1.output1)) & (outval4 > 5) ENABLES [L2, start];

Input/output assignments
L1.output1 ->L2.input1

Workflows und Web Services
WS 2002/200328

AG Heterogene
Informationssysteme

METEOR – Example
typedef char[2000] str;
constant int ERROR = 0;
constant int PARTIAL_SUCCESS = 1;
simple_task_type A_type SIMPLE_NON_TRANSACTIONAL (input str input1; output str output1);
simple_task_type B_type TRANSACTIONAL_OPEN2PC (input int input1; output int output1);
simple_task_type A_type TRANSACTIONAL_OPEN2PC (input int input1; output int output1);
task_class A_type A_class;
task_class B_type B_class;
task_class C_type C+class;
Filter int f1(str);
Filter int f2(str);
compound_task_tyope TRANS_BC COMPOUND_TRANSACTIONAL (input str input1);
{ B_class B; C_class C;

int outB, outC;
1 [TRANS_BC, executing] ENABLES [B, start] % f1(TRANS_BC.input1) B.input1;
2 [TRANS_BC, executing] ENABLES [C, start] % f2(TRANS_BC.input1) C.input1;
3 [B, done] & [C, done] ENABLES [B, prepare] & [C, prepare] % B.output1 outB, C.output outC;
4 [B, prepared] & [C, prepared] & (outB > outC) ENABLES [B, commit] & [C, commit];
5 [B, committed] & [C, committed] ENABLES [TRANS_BC, commit];
6 [B, aborted] ENABLES [C, abort] & [TRANS_BC, abort];
7 [C, aborted] ENABLES [B, abort] & [TRANS_BC, abort];
}
task_class TRANS_BC BC_CLASS;
...

15

Workflows und Web Services
WS 2002/200329

AG Heterogene
Informationssysteme

METEOR – Example (cont.)
...
compound_task_type WORKFLOW1 COMPOUND_NON_TRANSACTIONAL (input str input1; output str output1, int output2);
{ A_class A;

BC_CLASS BC1;
8 [WORKFLOW1, executing] ENABLES [A, start] % WORKFLOW1.input1 A.input1;
9 [A, done] & (success(A.output1)) ENABLES [BC1, start] % A.output1 BC1.input1;
10 [BC1, committed] ENABLES [WORKFLOW1, done] % A.output1 WORKFLOW1.output1;
11 [A, failed] ENABLES [WORKFLOW1, fail] % ERROR WORKFLOW1.output2;
12 [BC1, aborted] ENABLES [WORKFLOW1, fail] % A.output1 WORKFLOW1.output1,
PARTIAL_SUCCESS WORKFLOW1.output2;
}

Workflows und Web Services
WS 2002/200330

AG Heterogene
Informationssysteme

METEOR (cont.)
TSL: Task Specification Language

Macros for exchanging state information with the WF engine

Example for a task specification
Database_task (Sp_rec)
SPECIAL_REC Sp_rec;
{ EXEC SQL INCLUDE SQLCA;

EXEC SQL BEGIN DECLARE SECTION;
int infor;

EXEC SQL END DECLARE SECTION;
EXEC SQL WHENEVER SQLERROR goto Failed;
TASK_EXECUTING();
info = extract_info_from_rec(Sp_rec);
EXEC SQL INSERT INTO INFO_table VALUES (:info);
EXEC SQL COMMIT;
TASK_COMMIT();

Failed:
EXEC SQL ROLLBACK;
TASK_ABORT();

}

16

Workflows und Web Services
WS 2002/200331

AG Heterogene
Informationssysteme

Conclusions
ACID is too strict!

A, I not suitable for (transactional) workflows
C is application-dependent
D only for control data

Application data needs application-specific treatment

ConTracts
Example for transactional workflows
Activities have to be ACID transactions!

Compensation spheres
Set of semantically linked transactional (sub-)activities

Strata
Recoverable messaging as basis for asynchronous transaction processing

METEOR
Transactional dependencies
Supports non-transactional (sub-)activities

