
Informix JDBC Driver
Programmer’s Guide
UNIX and Windows Environments
Informix Dynamic Server, Version 7.x
Informix Dynamic Server, Workgroup and Developer Editions, Version 7.x
Informix Dynamic Server with Advanced Decision Support and Extended Parallel Options, Version 8.x
Informix Dynamic Server with Universal Data Option, Version 9.x
INFORMIX-OnLine Dynamic Server, Version 5.x
INFORMIX-SE, Versions 5.x and 7.2x
Version 2.0
April 1999
Part No. 000-5292

ii Informix JDBC Driver
Published by INFORMIX Press Informix Corporation
4100 Bohannon Drive
Menlo Park, CA 94025-1032

© 1999 Informix Corporation. All rights reserved. The following are trademarks of Informix Corporation or its
affiliates:

Answers OnLineTM; CBT StoreTM; C-ISAM; Client SDKTM; ContentBaseTM; Cyber PlanetTM; DataBlade; Data
DirectorTM; Decision FrontierTM; Dynamic Scalable ArchitectureTM; Dynamic ServerTM; Dynamic ServerTM,
Developer EditionTM; Dynamic ServerTM with Advanced Decision Support OptionTM; Dynamic ServerTM with
Extended Parallel OptionTM; Dynamic ServerTM with MetaCube ROLAP Option; Dynamic ServerTM with
Universal Data OptionTM; Dynamic ServerTM with Web Integration OptionTM; Dynamic ServerTM, Workgroup
EditionTM; FastStartTM; 4GL for ToolBusTM; If you can imagine it, you can manage itSM; Illustra; INFORMIX;
Informix Data Warehouse Solutions... Turning Data Into Business AdvantageTM; INFORMIX-Enterprise
Gateway with DRDA; Informix Enterprise MerchantTM; INFORMIX-4GL; Informix-JWorksTM; InformixLink;
Informix Session ProxyTM; InfoShelfTM; InterforumTM; I-SPYTM; MediazationTM; MetaCube; NewEraTM;
ON-BarTM; OnLine Dynamic ServerTM; OnLine for NetWare; OnLine/Secure Dynamic ServerTM; OpenCase;
ORCATM; Regency Support; Solution Design LabsSM; Solution Design ProgramSM; SuperView; Universal
Database ComponentsTM; Universal Web ConnectTM; ViewPoint; VisionaryTM; Web Integration SuiteTM. The
Informix logo is registered with the United States Patent and Trademark Office. The DataBlade logo is
registered with the United States Patent and Trademark Office.

Documentation Team: June Smith, Juliet Shackell, Oakland Editing and Production

GOVERNMENT LICENSE RIGHTS

Software and documentation acquired by or for the US Government are provided with rights as follows:
(1) if for civilian agency use, with rights as restricted by vendor’s standard license, as prescribed in FAR 12.212;
(2) if for Dept. of Defense use, with rights as restricted by vendor’s standard license, unless superseded by a
negotiated vendor license, as prescribed in DFARS 227.7202. Any whole or partial reproduction of software or
documentation marked with this legend must reproduce this legend.
 Programmer’s Guide

Table of Contents

Table of
Contents
Introduction
In This Introduction 3
About This Manual 3

Organization of This Manual 3
Material Not Covered 4
Types of Users 4
Software Dependencies 4
Assumptions About Your Locale. 5

Documentation Conventions 5
Typographical Conventions 6
Icon Conventions 7

Additional Documentation 8
Printed Documentation 8
On-Line Documentation 9
Vendor-Specific Documentation 9

Compliance with Industry Standards 10
Informix Welcomes Your Comments 10

Chapter 1 Getting Started
In This Chapter 1-3
What Is JDBC? 1-3
What Is a JDBC Driver? 1-6
Overview of Informix JDBC Driver 1-6
Installing the Driver 1-8

Interactive Installation 1-8
Silent Installation 1-10

Uninstalling the Driver 1-13
Using the Driver in an Application 1-14
Using the Driver in an Applet 1-15

iv Inform
Chapter 2 Programming with Informix JDBC Driver
In This Chapter 2-3
Establishing a Connection 2-3

Loading Informix JDBC Driver 2-4
Creating a Connection 2-4
Dynamically Reading the Informix sqlhosts File 2-16
Password Encryption 2-20

Accessing Database Metadata 2-21
Querying the Database 2-22

Batch Updates 2-22
Scroll Cursors 2-23
Informix-Specific Information About Querying a Database . . 2-24
Example of Sending a Query to an Informix Database 2-25
Escape Syntax 2-26
Unsupported Methods 2-27

Handling Errors 2-28
Using the SQLException Class 2-29
Retrieving Informix Error Message Text 2-30

Internationalization 2-31
JDK 1.1 and 1.2 Internationalization Support 2-31
Support for Informix GLS Variables 2-31
Support for Date End-User Formats 2-33
Precedence Rules Regarding DATE Value End-User Formats . 2-39
Support for Code-Set Conversion 2-40

Handling Transactions 2-46
Other Informix Extensions to the JDBC API 2-47

The Auto Free Feature 2-47
Obtaining Driver Version Information 2-48

Using an HTTP Proxy Server 2-49

Chapter 3 Manipulating Informix Data Types
In This Chapter 3-5
Manipulating Informix Opaque Types 3-5

IfmxUdtSQLInput Interface 3-6
IfmxUdtSQLOutput Interface 3-7
Mapping Opaque Types 3-7
Caching Type Information 3-9
Inserting Data Examples 3-10
Retrieving Data Example 3-13
Using Smart Large Objects Examples 3-13
ix JDBC Driver Programmer’s Guide

Unsupported Methods 3-16
Manipulating Informix Distinct Types 3-16

Caching Type Information 3-17
Inserting Data Examples. 3-17
Retrieving Data Example 3-19
Unsupported Methods 3-20

Manipulating Informix BYTE and TEXT Data Types 3-20
Caching Large Objects 3-20
Inserting or Updating Data Example 3-21
Selecting Data Example 3-23

Manipulating Informix BLOB and CLOB Data Types 3-25
IfxLobDescriptor 3-26
IfxLocator 3-26
IfxSmartBlob. 3-27
IfxBblob and IfxCblob Classes 3-31
Caching Large Objects 3-33
Creating a Smart Large Object Example 3-33
Inserting Data Example 3-34
Retrieving Data Example 3-35

Manipulating Informix SERIAL and SERIAL8 Data Types . . . 3-37
Manipulating Informix INTERVAL Data Types 3-38

The Interval Class 3-39
The IntervalYM Class. 3-40
The IntervalDF Class 3-43
Interval Example 3-45

Manipulating Informix Collections and Arrays 3-45
Collection Examples 3-46
Array Example 3-49

Manipulating Informix Named and Unnamed Rows 3-50
Using the SQLData Interface 3-51
Using the Struct Interface 3-52
Interval and Collection Support 3-53
Caching Type Information 3-53
SQLData Examples 3-54
Struct Examples. 3-58
The ClassGenerator Utility 3-63
Unsupported Methods 3-65

Mapping Data Types 3-66
Mapping Between Informix and JDBC Data Types 3-66
PreparedStatement.setXXX() Extensions 3-69
Table of Contents v

vi Inform
Supported ResultSet.getXXX() Methods 3-78

Chapter 4 Troubleshooting
In This Chapter 4-3
Debugging Your JDBC API Program 4-3

Using the Debug Version of the Driver 4-3
Turning on Tracing 4-4

Performance Issues 4-5
Using the FET_BUF_SIZE Environment Variable 4-5
Memory Management of Large Objects 4-6
Reducing Network Traffic. 4-7

Appendix A Sample Code Files

Glossary

Error Messages

Index
ix JDBC Driver Programmer’s Guide

Introduction
Introduction
In This Introduction 3

About This Manual 3
Organization of This Manual 3
Material Not Covered 4
Types of Users 4
Software Dependencies 4
Assumptions About Your Locale 5

Documentation Conventions 5
Typographical Conventions 6
Icon Conventions 7

Comment Icons 7
Platform Icons 7

Additional Documentation 8
Printed Documentation 8
On-Line Documentation. 9
Vendor-Specific Documentation 9

Compliance with Industry Standards 10

Informix Welcomes Your Comments 10

2 Inform
ix JDBC Driver Programmer’s Guide

In This Introduction
This introduction provides an overview of the information in this manual
and describes the conventions it uses.

About This Manual
This guide describes how to install, load, and use Informix JDBC Driver to
connect to an Informix database from within a Java application or applet. You
can also use Informix JDBC Driver for writing user-defined routines that are
executed in the server.

This section discusses the organization of the manual, the intended audience,
and the associated software products you must have to use Informix JDBC
Driver.

Organization of This Manual
This manual includes the following chapters:

■ Chapter 1, “Getting Started,” describes Informix JDBC Driver and the
JDBC application programming interface (API) in general. It provides
essential information for programmers to immediately start using
the product, such as instructions on how to install and load the
driver.

■ Chapter 2, “Programming with Informix JDBC Driver,” explains in
more detail the Informix-specific information needed to use Informix
JDBC Driver to connect to an Informix database. This information
includes how to create a connection to an Informix database, query
tables, and handle errors.
Introduction 3

Material Not Covered
■ Chapter 3, “Manipulating Informix Data Types,” explains the
Informix-specific data types supported in Informix JDBC Driver. This
information includes how to map data types.

■ Chapter 4, “Troubleshooting,” provides troubleshooting tips to solve
programming errors and problems with the driver. It also describes
browser security issues when you use Informix JDBC Driver in a Java
applet.

■ Appendix A, “Sample Code Files,” lists examples referred to in the
guide.

A glossary of relevant terms and a list of error messages follow the chapters,
and an index directs you to areas of particular interest.

Material Not Covered
This guide does not describe all the interfaces, classes, and methods of the
JDBC API and does not provide detailed descriptions of how to use the JDBC
API to write Java applications that connect to Informix databases. The
examples in the guide provide enough information to show how to use
Informix JDBC Driver but do not provide an extensive description of the JDBC
API.

For more information about the JDBC API, visit the JavaSoft Web site at:

http://www.javasoft.com/products/jdk/1.2/docs/guide/jdbc/index.html

Types of Users
This guide is for Java programmers who use the JDBC API to connect to
Informix databases using Informix JDBC Driver. To use this guide, you should
know how to program in Java and, in particular, understand the classes and
methods of the JDBC API.

Software Dependencies
To use Informix JDBC Driver to connect to an Informix database, you must use
one of the following Informix database servers:

■ Informix Dynamic Server, Version 7.x
4 Informix JDBC Driver Programmer’s Guide

Assumptions About Your Locale
■ Informix Dynamic Server, Workgroup and Developer Editions,
Version 7.x

■ Informix Dynamic Server with Advanced Decision Support and
Extended Parallel Options, Version 8.x

■ Informix Dynamic Server with Universal Data Option, Version 9.x

■ INFORMIX-OnLine Dynamic Server, Version 5.x

■ INFORMIX-SE, Versions 5.x and 7.2x

You must also use Java Development Kit (JDK), Version 1.2 or later.

Assumptions About Your Locale
Informix products can support many languages, cultures, and code sets. All
culture-specific information is brought together in a single environment,
called a GLS (Global Language Support) locale.

The examples in this manual are written with the assumption that you are
using the default locale, en_us.8859-1. This locale supports U.S. English
format conventions for dates, times, and currency. In addition, this locale
supports the ISO 8859-1 code set, which includes the ASCII code set plus
many 8-bit characters such as é, è, and ñ.

If you plan to use nondefault characters in your data or your SQL identifiers,
or if you want to conform to the nondefault collation rules of character data,
you need to specify the appropriate nondefault locale.

For instructions on how to specify a nondefault locale, additional syntax, and
other considerations related to GLS locales, see the Informix Guide to GLS
Functionality.

Documentation Conventions
This section describes the conventions that this manual uses. These conven-
tions make it easier to gather information from this and other volumes in the
documentation set:

■ Typographical conventions

■ Icon conventions
Introduction 5

Typographical Conventions
Typographical Conventions
This manual uses the following conventions to introduce new terms, describe
command syntax, and so forth.

Tip: When you are instructed to “enter” characters or to “execute” a command,
immediately press RETURN after the entry. When you are instructed to “type” the
text or to “press” other keys, no RETURN is required.

Tip: The text and many of the examples in this manual show routine and data type
names in mixed lettercasing (uppercase and lowercase). Because Informix Dynamic
Server is case insensitive, you do not need to enter routine names exactly as shown:
you can use uppercase letters, lowercase letters, or any combination of the two.

Convention Meaning

KEYWORD All primary elements in a programming language statement
(keywords) appear in uppercase letters in a serif font.

italics
italics
italics

Within text, new terms and emphasized words appear in italics.
Within syntax and code examples, variable values that you are
to specify appear in italics.

boldface
boldface

Names of program entities (such as classes, events, and tables),
environment variables, file and pathnames, and interface
elements (such as icons, menu items, and buttons) appear in
boldface.

monospace
monospace

Information that the product displays and information that you
enter appear in a monospace typeface.

KEYSTROKE Keys that you are to press appear in uppercase letters in a sans
serif font.

♦ This symbol indicates the end of product- or platform-specific
information.

➞ This symbol indicates a menu item. For example, “Choose
Tools➞Options” means choose the Options item from the
Tools menu.
6 Informix JDBC Driver Programmer’s Guide

Icon Conventions
Icon Conventions
Throughout the documentation, you will find text that is identified by several
different types of icons. This section describes these icons.

Comment Icons

Comment icons identify three types of information, as the following table
describes. This information always appears in italics.

Platform Icons

Platform icons identify paragraphs that contain platform-specific
information.

Icon Label Description

Warning: Identifies paragraphs that contain vital instructions,
cautions, or critical information

Important: Identifies paragraphs that contain significant
information about the feature or operation that is
being described

Tip: Identifies paragraphs that offer additional details or
shortcuts for the functionality that is being described

Icon Description

Identifies information that is specific to the UNIX
environment.

Identifies information that is specific to the Windows
environment.

UNIX

Windows
Introduction 7

Additional Documentation
These icons can apply to a row in a table, one or more paragraphs, or an entire
section. A ♦ symbol indicates the end of the platform-specific information.

Additional Documentation
This section describes the following parts of the documentation set:

■ Printed documentation

■ On-line documentation

■ Vendor-specific documentation

Printed Documentation
The following related Informix documents complement the information
in this manual:

■ If you have never used Structured Query Language (SQL), read the
Informix Guide to SQL: Tutorial. It provides a tutorial on SQL as it is
implemented by Informix products. It also describes the funda-
mental ideas and terminology for planning and implementing a
relational database.

■ A companion volume to the Tutorial, the Informix Guide to SQL:
Reference, includes details of the Informix system catalog tables,
describes Informix and common environment variables that you
should set, and describes the column data types that Informix
database servers support.

■ The Informix Guide to SQL: Syntax provides information about SQL
syntax as it is implemented by Informix products.

■ Informix Error Messages is useful if you do not want to look up your
error messages on-line.
8 Informix JDBC Driver Programmer’s Guide

On-Line Documentation
On-Line Documentation
The Informix Answers OnLine CD allows you to print chapters or entire
books and perform full-text searches for information in specific books or
throughout the documentation set. You can install the documentation or
access it directly from the CD. For information about how to install, read, and
print on-line manuals, see the installation insert that accompanies Answers
OnLine. You can also obtain the same information on the Web at
http://www.informix.com/answers.

In addition to the Informix set of manuals, the following on-line files
supplement the information in this manual.

On-line files are located in $JDBCLOCATION/doc/release, where $JDBCLO-
CATION refers to the directory where you installed Informix JDBC Driver.♦

On-line files are located in %JDBCLOCATION%\doc\release, where
%JDBCLOCATION% refers to the directory where you installed Informix JDBC
Driver. ♦

Please examine these files because they contain vital information about
application and performance issues.

Vendor-Specific Documentation
For more information about the JDBC API, visit the JavaSoft Web site at:

http://www.javasoft.com/products/jdk/1.2/docs/guide/jdbc/index.html

On-Line File Purpose

JDBCREL.TXT The release notes describe any special actions required to
configure and use Informix JDBC Driver on your computer.
Additionally, this file contains information about any known
problems and their workarounds.

JDBCDOC.TXT The documentation notes describe features not covered in the
manuals or modified since publication.

UNIX

Windows
Introduction 9

Compliance with Industry Standards
Compliance with Industry Standards
The American National Standards Institute (ANSI) has established a set of
industry standards for SQL. Informix SQL-based products are fully compliant
with SQL-92 Entry Level (published as ANSI X3.135-1992), which is identical
to ISO 9075:1992. In addition, many features of Informix database servers
comply with the SQL-92 Intermediate and Full Level and X/Open SQL CAE
(common applications environment) standards.

Informix Welcomes Your Comments
Let us know what you like or dislike about our manuals. To help us with
future versions of our manuals, we want to know about any corrections or
clarifications that you would find useful. Include the following information:

■ The name and version of the manual you are using

■ Any comments you have about the manual

■ Your name, address, and phone number

Write to us at the following address:

Informix Software, Inc.
Technical Publications
300 Lakeside Dr., Suite 2700
Oakland, CA 94612

If you prefer to send electronic mail, our address is:

doc@informix.com

We appreciate your suggestions.
10 Informix JDBC Driver Programmer’s Guide

1
Chapter
Getting Started
In This Chapter . 1-3

What Is JDBC? . 1-3

What Is a JDBC Driver? 1-6

Overview of Informix JDBC Driver 1-6

Installing the Driver 1-8
Interactive Installation 1-8
Silent Installation 1-10

Uninstalling the Driver 1-13

Using the Driver in an Application 1-14

Using the Driver in an Applet 1-15

1-2 Infor
mix JDBC Driver Programmer’s Guide

In This Chapter
This chapter provides an overview of Informix JDBC Driver and the JDBC API.
It includes the following sections:

■ “What Is JDBC?”

■ “What Is a JDBC Driver?”

■ “Overview of Informix JDBC Driver”

■ “Installing the Driver”

■ “Uninstalling the Driver”

■ “Using the Driver in an Application”

■ “Using the Driver in an Applet”

What Is JDBC?
Java database connectivity (JDBC) is the JavaSoft specification of a standard
application programming interface (API) that allows Java programs to access
database management systems. The JDBC API consists of a set of interfaces
and classes written in the Java programming language.

Using these standard interfaces and classes, programmers can write applica-
tions that connect to databases, send queries written in structured query
language (SQL), and process the results.
Getting Started 1-3

What Is JDBC?
The JDBC API is consistent with the style of the core Java interfaces and
classes, such as java.lang and java.awt. The following table describes the
interfaces, classes, and exceptions that make up the JDBC API.

Interface, Class, or Exception Description

java.sql.CallableStatement Interface used to execute stored procedures.

java.sql.Connection Interface used to establish a connection to a database.
SQL statements run within the context of a
connection.

java.sql.DatabaseMetaData Interface used to return information about the
database.

java.sql.Driver Interface used to locate the driver for a particular
database management system.

java.sql.PreparedStatement Interface used to send precompiled SQL statements
to the database server and obtain results.

java.sql.ResultSet Interface used to process the results returned from
executing an SQL statement.

java.sql.ResultSetMetaData Interface used to return information about the
columns in a ResultSet object.

java.sql.Statement Interface used to send static SQL statements to the
database server and obtain results.

java.sql.Date Subclass of java.util.Date used for the SQL DATE
data type.

java.sql.DriverManager Class used to manage a set of JDBC drivers.

java.sql.DriverPropertyInfo Class used to discover and supply properties to a
connection.

java.sql.Time Subclass of java.util.Date used for the SQL TIME
data type.

java.sql.TimeStamp Subclass of java.util.Date used for the SQL
TIMESTAMP data type.

java.sql.Types Class used to define constants that are used to
identify standard SQL data types, such as
VARCHAR, INTEGER, and DECIMAL.

(1 of 2)
1-4 Informix JDBC Driver Programmer’s Guide

What Is JDBC?
Since JDBC is a standard specification, one Java program that uses the JDBC
API can connect to any database management system (DBMS), as long as a
driver exists for that particular DBMS.

For more information about the JDBC API, visit the JavaSoft Web site at:

http://www.javasoft.com/products/jdk/1.2/docs/guide/jdbc/index.html

java.sql.Array Class used to identify SET, MULTISET, and LIST
data types. These types can also be identified as
collections.

java.sql.Blob Class used to identify BLOB data types.

java.sql.Clob Class used to identify CLOB data types.

java.sql.String Class used to identify long text data types such as
LVARCHAR.

java.sql.Struct Class used to identify named and unnamed row data
types.

java.sql.DataTruncation Exception thrown or warning reported when data
has been truncated.

java.sql.SQLData Class used to support opaque types, distinct types,
and named and unnamed row data types.

java.sql.SQLInput Class used to support retrieval of opaque types and
named and unnamed row data types.

java.sql.SQLOutput Class used to support writing of opaque types and
named and unnamed row data types.

java.sql.SQLException Exception that provides information about a
database error.

java.sql.SQLWarning Warning that provides information about a database
warning.

Interface, Class, or Exception Description

(2 of 2)
Getting Started 1-5

What Is a JDBC Driver?
What Is a JDBC Driver?
The JDBC API defines the Java interfaces and classes that programmers use to
connect to databases and send queries. A JDBC driver implements these inter-
faces and classes for a particular DBMS vendor.

A Java program that uses the JDBC API loads the specified driver for a
particular DBMS before it actually connects to a database. The JDBC Driver-
Manager class then sends all JDBC API calls to the loaded driver.

There are four types of JDBC drivers:

■ JDBC-ODBC bridge plus ODBC driver, also called Type 1.

Translates JDBC API calls into Microsoft ODBC calls that are then
passed to the ODBC driver. The ODBC binary code must be loaded on
every client computer that uses this type of driver.

ODBC is an acronym for Open Database Connectivity.

■ Native-API, partly Java driver, also called Type 2.

Converts JDBC API calls into DBMS-specific client API calls. Like the
bridge driver, this type of driver requires that some binary code be
loaded on each client computer.

■ JDBC-Net, pure-Java driver, also called Type 3.

Sends JDBC API calls to a middle-tier net server that translates the
calls into the DBMS-specific network protocol. The translated calls
are then sent to a particular DBMS.

■ Native-protocol, pure-Java driver, also called Type 4.

Converts JDBC API calls directly into the DBMS-specific network
protocol without a middle tier. This allows the client applications to
connect directly to the database server.

Overview of Informix JDBC Driver
Informix JDBC Driver is a native-protocol, pure-Java driver (Type 4). This
means that when you use Informix JDBC Driver in a Java program that uses
the JDBC API to connect to an Informix database, your session connects
directly to the database or database server, without a middle tier.
1-6 Informix JDBC Driver Programmer’s Guide

Overview of Informix JDBC Driver
Informix JDBC Driver is based on Version 2.0 of the JDBC API.

Informix JDBC Driver is released as a Java class file called setup.class. For
instructions on how to install the driver, refer to “Installing the Driver” on
page 1-8.

The product (after installation) consists of the following files, some of which
are Java archive (JAR) files:

■ lib/ifxjdbc.jar

JAR file that contains the optimized implementations of the JDBC API
interfaces, classes, and methods.

The file is compiled with the -O option of the javac command.

■ lib/ifxjdbc-g.jar

Debug version of ifxjdbc.jar.

The file is compiled with the -g option of the javac command.

■ lib/ifxtools.jar

JAR file that contains the ClassGenerator utility, the lightweight
directory access protocol (LDAP) loader, and other utilities.

The file is compiled with the -O option of the javac command.

■ lib/ifxtools-g.jar

Debug version of ifxtools.jar.

The file is compiled with the -g option of the javac command.

■ demo/basic/*

demo/rmi/*

demo/stores7/*

demo/clob-blob/*

demo/udt-distinct/

demo/complex-types/*

Directories that contain the sample Java programs that use the JDBC
API. For descriptions of these sample files, see Appendix A, “Sample
Code Files.”

■ proxy/IfxJDBCProxy.class

HTTP tunneling proxy class file.
Getting Started 1-7

Installing the Driver
■ proxy/SessionMgr.class

Session manager class file supporting the HTTP tunneling proxy.

■ doc/release/*

Directory that contains the on-line release and documentation notes,
as well as the HTML and PDF versions of this programmer’s guide.

Installing the Driver
Informix JDBC Driver is released as a Java class file called setup.class.

There are two ways to install the driver: using a Setup program or using the
command line. The following sections describe the two ways for both UNIX
and Windows.

Interactive Installation
This section describes how to interactively install Informix JDBC Driver with
the Setup program.

To interactively install Informix JDBC Driver on UNIX

1. If you are installing Informix JDBC Driver from a CD-ROM, load the
disc into the CD-ROM drive.

On Hewlett-Packard platforms, you must use the -o cdcase option of
the mount command to read the CD in case-sensitive mode.

2. Copy the ifxjdbc.tar file from the Web or the CD into a temporary
directory (not the directory into which you are installing Informix
JDBC Driver).

Warning: If you copy the tar file to the same directory into which you attempt to
install the driver, the installation fails.

3. Execute the following command:
tar xvf ifxjdbc.tar

The setup.class and install.txt files appear in the temporary
directory.

UNIX
1-8 Informix JDBC Driver Programmer’s Guide

Interactive Installation
4. Be sure your CLASSPATH environment variable points to Version 1.2
or later of the Java Development Kit (JDK).

5. At the UNIX shell prompt, create a directory to hold the contents of
the driver.

For example, to create the directory /work/jdbcdriver_home,
execute the following command:

mkdir /work/jdbcdriver_home

6. Change directory to the temporary directory that contains the
setup.class file.

7. Launch the Setup program with the java command at the UNIX shell
prompt:

java setup

8. The Setup program guides you through the installation of Informix
JDBC Driver.

The following warning message might appear:
Font specified in font.properties not found [-b&h-lucida sans

typewriter-bold-r-normal-sans-*-%d-*-*-m-*-iso8859-1]

This condition does not affect the installation.

After the Welcome window, the program asks you for your serial
number and key. It then asks you to accept a licensing agreement.
The program then asks you for the name of the directory that will
hold the contents of the driver. In this example, this directory is
called /work/jdbcdriver_home and was created in Step 5 of these
instructions.

The installation is complete when you get to the Installation
Complete window. ♦

To interactively install Informix JDBC Driver on Windows

1. If you are installing Informix JDBC Driver from a CD-ROM, load the
disc into the CD-ROM drive.

2. Copy the ifxjdbc.tar file from the Web or the CD into a temporary
directory (not the directory into which you are installing Informix
JDBC Driver).

Warning: If you copy the tar file to the same directory into which you attempt to
install the driver, the installation fails.

Windows
Getting Started 1-9

Silent Installation
3. Use WinZip or a similar utility to unpack the tar file. The setup.class
and install.txt files appear in the temporary directory.

4. Be sure your CLASSPATH environment variable points to Version 1.2
or later of the Java Development Kit (JDK).

5. Using Windows Explorer, create a directory to hold the contents of
the driver.

Assume, for this example, that the new directory is called
c:\work\jdbcdriver_home.

6. Change directory to the temporary directory that contains the
setup.class file.

7. Launch the Setup program with the java command at the Windows
command prompt:

java setup

8. The Setup program guides you through the installation of Informix
JDBC Driver.

The following warning message might appear:
Font specified in font.properties not found [-b&h-lucida sans

typewriter-bold-r-normal-sans-*-%d-*-*-m-*-iso8859-1]

This condition does not affect the installation.

After the Welcome window, the program asks you for your serial
number and key. It then asks you to accept a licensing agreement.
The program then asks you for the name of the directory that will
hold the contents of the driver. In this example, this directory is
called c:\work\dbcdriver_home and was created in Step 5 of these
instructions.

The installation is complete when you get to the Installation
Complete window. ♦

Silent Installation
This section describes how to silently install Informix JDBC Driver from the
UNIX shell prompt or Windows command line.
1-10 Informix JDBC Driver Programmer’s Guide

Silent Installation
To silently install Informix JDBC Driver on UNIX

1. If you are installing Informix JDBC Driver from a CD-ROM, load the
disc into the CD-ROM drive.

On Hewlett-Packard platforms, you must use the -o cdcase option of
the mount command to read the CD in case-sensitive mode.

2. Copy the ifxjdbc.tar file from the Web or the CD into a temporary
directory (not the directory into which you are installing Informix
JDBC Driver).

Warning: If you copy the tar file to the same directory into which you attempt to
install the driver, the installation fails.

3. Execute the following command:
tar xvf ifxjdbc.tar

The setup.class and install.txt files appear in the temporary
directory.

4. Be sure your CLASSPATH environment variable points to Version 1.2
or later of the Java Development Kit (JDK).

5. At the UNIX shell prompt, create a directory to hold the contents of
the driver.

For example, to create the directory /work/jdbcdriver_home,
execute the following command:

mkdir /work/jdbcdriver_home

6. Change directory to the temporary directory that contains the
setup.class file.

UNIX
Getting Started 1-11

Silent Installation
7. Execute the following command at the UNIX shell prompt:
java setup -o <directory> serialNo=<serial_no> key=<key>

In this command, directory refers to the directory that will hold the
contents of the driver (created in Step 5 of these instructions), and
serial_no and key refer to the installation serial number and key.

The keywords serialNo and key are case sensitive. You can also use
the keywords SERIALNO, serialno, and KEY.

For example, to install Informix JDBC Driver in the directory
/work/jdbcdriver_home using a serial number of INF#J123456 and
a key of ABCDEF, execute the following command:
java setup -o /work/jdbcdriver_home serialNo=INF#J123456 key=ABCDEF

If the specified directory already contains Informix JDBC Driver files,
the command asks you if you want to overwrite them.

The installation is complete after the command has finished
executing.♦

To silently install Informix JDBC Driver on Windows

1. If you are installing Informix JDBC Driver from a CD-ROM, load the
disc into the CD-ROM drive.

2. Copy the ifxjdbc.tar file from the Web or the CD into a temporary
directory (not the directory into which you are installing Informix
JDBC Driver).

Warning: If you copy the tar file to the same directory into which you attempt to
install the driver, the installation fails.

3. Use WinZip or a similar utility to unpack the tar file. The setup.class
and install.txt files appear in the temporary directory.

4. Be sure your CLASSPATH environment variable points to Version 1.2
or later of the Java Development Kit (JDK).

5. Using Windows Explorer, create a directory to hold the contents of
the driver.

Assume, for this example, that the new directory is called
c:\work\jdbcdriver_home.

6. Change directory to the temporary directory that contains the
setup.class file.

Windows
1-12 Informix JDBC Driver Programmer’s Guide

Uninstalling the Driver
7. Execute the following command at the Windows command prompt:
java setup -o <directory> serialNo=<serial_no> key=<key>

In this command, directory refers to the directory that will hold the
contents of the driver (created in Step 5 of these instructions), and
serial_no and key refer to the installation serial number and key.

The keywords serialNo and key are case sensitive. You can also use
the keywords SERIALNO, serialno, and KEY.

For example, to install Informix JDBC Driver in the directory
c:\work\jdbcdriver_home using a serial number of INF#J123456
and a key of ABCDEF, execute the following command:
java setup -o c:\work\jdbcdriver_home serialNo=INF#J123456 key=ABCDEF

If the directory already contains Informix JDBC Driver files, the
command asks you if you want to overwrite them.

The installation is complete once the command has finished
executing.♦

Uninstalling the Driver
Uninstalling Informix JDBC Driver completely removes the driver and all of
its components from your computer. The following sections describe how to
uninstall Informix JDBC Driver on UNIX and Windows.

To uninstall Informix JDBC Driver on UNIX

1. Change to the directory in which you installed Informix JDBC Driver.

For example, if you installed the driver in the directory
/work/jdbcdriver_home, execute the following command at the
UNIX shell prompt:

cd /work/jdbcdriver_home

2. Launch the Uninstall program with the java command:
java uninstall

3. The Uninstall program guides you through the uninstallation of
Informix JDBC Driver. ♦

UNIX
Getting Started 1-13

Using the Driver in an Application
To uninstall Informix JDBC Driver on Windows

1. Change to the directory in which you installed Informix JDBC Driver.

For example, if you installed the driver in the directory
c:\work\jdbcdriver_home, execute the following command at the
command prompt:

cd c:\work\jdbcdriver_home

2. Launch the Uninstall program with the java command:
java uninstall

3. The Uninstall program guides you through the uninstallation of
Informix JDBC Driver. ♦

Important: When you uninstall Informix JDBC Driver, you always get a message
that says the ifxjdbc.jar and ifxjdbc-g.jar files have changed, even if you have never
used the driver. This is because the files are automatically written to during the
installation of the driver.

Using the Driver in an Application
To use Informix JDBC Driver in an application, you must set your CLASSPATH
environment variable to point to the driver files. The CLASSPATH
environment variable tells the Java virtual machine (JVM) and other applica-
tions where to find the Java class libraries used in a Java program.

There are two ways of setting your CLASSPATH environment variable:

■ Add the full pathname of the ifxjdbc.jar file to the CLASSPATH
environment variable, as shown in the following example:
setenv CLASSPATH /work/jdbcdriver_home/lib/ifxjdbc.jar:$CLASSPATH

To use the version of the driver that supports debugging, specify the
file ifxjdbc-g.jar instead of ifxjdbc.jar.

■ Unpack the ifxjdbc.jar file and add its directory to the CLASSPATH
environment variable, as shown in the following example:

cd /work/jdbcdriver_home/lib
jar xvf ifxjdbc.jar
setenv CLASSPATH /work/jdbcdriver_home/lib:$CLASSPATH

To use the version of the driver that supports debugging, specify the
file ifxjdbc-g.jar instead of ifxjdbc.jar. ♦

Windows

UNIX
1-14 Informix JDBC Driver Programmer’s Guide

Using the Driver in an Applet
There are two ways of setting your CLASSPATH environment variable:

■ Add the full pathname of the ifxjdbc.jar file to the CLASSPATH
environment variable, as shown in the following example:
set CLASSPATH=c:\work\jdbcdriver_home\lib\ifxjdbc.jar;%CLASSPATH%

To use the version of the driver that supports debugging, specify the
file ifxjdbc-g.jar instead of ifxjdbc.jar.

■ Unpack the ifxjdbc.jar file and add its directory to the CLASSPATH
environment variable, as shown in the following example:
cd c:\work\jdbcdriver_home\lib
jar xvf ifxjdbc.jar
set CLASSPATH=c:\work\jdbcdriver_home\lib;%CLASSPATH%

To use the version of the driver that supports debugging, specify the
file ifxjdbc-g.jar instead of ifxjdbc.jar. ♦

For more information on the jar utility, refer to the JavaSoft documentation at
http://www.javasoft.com.

Using the Driver in an Applet
You can use Informix JDBC Driver in an applet to connect to an Informix
database from a browser such as Netscape Navigator or Microsoft Internet
Explorer. The following steps show how to specify Informix JDBC Driver in
the applet and how to ensure that the driver is correctly downloaded from
the Web server.

To use Informix JDBC Driver in an applet

1. Install the ifxjdbc.jar file in the same directory as your applet class
file.

To use the version of the driver that supports debugging, install the
file ifxjdbc-g.jar instead of ifxjdbc.jar.

Windows
Getting Started 1-15

Using the Driver in an Applet
2. Specify the ifxjdbc.jar file in the ARCHIVE attribute of the APPLET
tag in your HTML file, as shown in the following example:

<APPLET ARCHIVE=ifxjdbc.jar CODE=my_applet.class
CODEBASE=http://www.myhost.com WIDTH=460 HEIGHT=160>
</APPLET>

To use the version of the driver that supports debugging, specify the
file ifxjdbc-g.jar instead of ifxjdbc.jar.

Important: A few browsers do not support the ARCHIVE attribute of the APPLET
tag. If you think this is true of the browsers that are going to download your applet,
you must unpack and install the ifxjdbc.jar file in the root directory of your Web
server.

If the browsers also do not support the JDBC API, you must install the class files
included in the java.sql package in the root directory of the Web server as well.

See your Web server documentation for information on installing files in the root
directory.

Because unsigned applets cannot access some system resources for security
reasons, the following features of Informix JDBC Driver do not work for
unsigned applets:

■ sqlhosts file and LDAP server access. The host name and port
number properties in the database URL are optional if you are refer-
encing an sqlhosts file directly or through an LDAP server. For
unsigned applets, however, the host name and the port number are
always required.

■ LOBCACHE=0. Setting the LOBCACHE environment variable to 0 in
the database URL specifies that a smart large object is always stored
in a file. This setting is not supported for unsigned applets.

Tip: You can enable these features for unsigned applets using the Microsoft Internet
Explorer browser, because this browser provides an option to configure the applet
permissions.
1-16 Informix JDBC Driver Programmer’s Guide

2
Chapter
Programming with Informix
JDBC Driver
In This Chapter . 2-3

Establishing a Connection 2-3
Loading Informix JDBC Driver 2-4
Creating a Connection 2-4

Format of Database URLs 2-6
Database Versus Database Server Connections 2-8
Specifying Environment Variables with the Properties Class . . 2-10
Supported Informix Environment Variables 2-12

Dynamically Reading the Informix sqlhosts File 2-16
Database URL Syntax 2-17
Administration Requirements 2-18
Utilities to Update the LDAP Server with sqlhosts Data . . . 2-18

Password Encryption. 2-20
Configuring the Database Server 2-20
JCE Security Package 2-20

Accessing Database Metadata 2-21

Querying the Database 2-22
Batch Updates 2-22
Scroll Cursors 2-23
Informix-Specific Information About Querying a Database. . . . 2-24
Example of Sending a Query to an Informix Database 2-25
Escape Syntax 2-26
Unsupported Methods 2-27

Handling Errors . 2-28
Using the SQLException Class 2-29
Retrieving Informix Error Message Text 2-30

2-2 Infor
Internationalization 2-31
JDK 1.1 and 1.2 Internationalization Support. 2-31
Support for Informix GLS Variables 2-31
Support for Date End-User Formats 2-33

GL_DATE Variable 2-33
DBDATE Variable. 2-36
DBCENTURY Variable 2-39

Precedence Rules Regarding DATE Value End-User Formats . . . 2-39
Support for Code-Set Conversion 2-40

Unicode to Database Code Set 2-41
Unicode to Client Code Set 2-44
Connecting to a Database with Non-ASCII Characters 2-44
Code Set Conversion for TEXT Data Types 2-45

Handling Transactions 2-46

Other Informix Extensions to the JDBC API 2-47
The Auto Free Feature 2-47
Obtaining Driver Version Information 2-48

Using an HTTP Proxy Server 2-49
mix JDBC Driver Programmer’s Guide

In This Chapter
This chapter explains the Informix-specific information you need to use
Informix JDBC Driver to connect to an Informix database. The chapter
includes the following sections:

■ “Establishing a Connection”

■ “Accessing Database Metadata”

■ “Querying the Database”

■ “Handling Errors”

■ “Internationalization”

■ “Handling Transactions”

■ “Other Informix Extensions to the JDBC API”

■ “Using an HTTP Proxy Server”

Establishing a Connection
You must first establish a connection to an Informix database server or
database before you can start sending queries and receiving results in your
Java program.

You establish a connection by completing two actions:

1. Load Informix JDBC Driver.

2. Create a connection to either a database server or a specific database.

You have the following connection options:

■ Dynamically reading the Informix sqlhosts file

■ Encrypting the password
Programming with Informix JDBC Driver 2-3

Loading Informix JDBC Driver
Loading Informix JDBC Driver
To load Informix JDBC Driver, use the Class.forName() method, passing it the
value com.informix.jdbc.IfxDriver, as shown in the following code
example from the CreateDB.java program:

try
{
Class.forName("com.informix.jdbc.IfxDriver");
}

catch (Exception e)
{
System.out.println("ERROR: failed to load Informix JDBC driver.");
e.printStackTrace();
return;
}

The Class.forName() method loads the Informix implementation of the
Driver class, IfxDriver. The IfxDriver class then creates an instance of the
driver and registers it with the DriverManager class.

Once you have loaded Informix JDBC Driver, you are ready to connect to an
Informix database or database server.

If you are writing an applet to be viewed with Microsoft Internet Explorer,
you might need to explicitly register Informix JDBC Driver to avoid platform
incompatibilities.

To explicitly register the driver, use the DriverManager.registerDriver()
method, as shown:

DriverManager.registerDriver((Driver)
Class.forName("com.informix.jdbc.IfxDriver").newInstance());

This method might register Informix JDBC Driver twice, which does not cause
a problem. ♦

Creating a Connection
To create a connection to an Informix database or database server, use the
DriverManager.getConnection() method. This method creates a Connection
object, which is later used to create SQL statements, send them to an Informix
database, and process the results.

Windows
2-4 Informix JDBC Driver Programmer’s Guide

Creating a Connection
The DriverManager class keeps track of the available drivers and handles
connection requests between appropriate drivers and databases or database
servers. The url parameter of the getConnection() method is a database URL
that specifies the subprotocol (the database connectivity mechanism), the
database or database server identifier, and a list of properties. A second
parameter to the getConnection() method, property, is the property list. See
“Specifying Environment Variables with the Properties Class” on page 2-10
for an example of how to specify a property list.

The following example shows a database URL that connects to a database
called testDB:

jdbc:informix-sqli://123.45.67.89:1533/testDB:INFORMIXSERVER=myserver;
user=rdtest;password=test

The details of the database URL syntax are described in the next section.

The following code example from the CreateDB.java program shows how to
connect to database testDB using Informix JDBC Driver. In the full example,
the url variable, described in the preceding example, is passed in as a
parameter when the program is run at the command line.

try
{
conn = DriverManager.getConnection(url);
}

catch (SQLException e)
{
System.out.println("ERROR: failed to connect!");
System.out.println("ERROR: " + e.getMessage());
e.printStackTrace();
return;
}

Important: The only connection type supported by Informix JDBC Driver is tcp.
Shared memory and other connections types are not supported. The connection type
is specified in the NETTYPE parameter of the sqlhosts or ONCONFIG file. For more
information, see the Administrator’s Guide for your database server.

Important: Not all methods of the Connection interface are supported by Informix
JDBC Driver. For a list of unsupported methods, see “Unsupported Methods” on
page 2-25.

Tip: You do not have to explicitly close a database connection. The database server
closes the connection automatically.
Programming with Informix JDBC Driver 2-5

Creating a Connection
Format of Database URLs

Informix JDBC Driver supports database URLs of the following format:

jdbc:informix-sqli://[{ip-address|host-name}:port-number][/dbname]:
INFORMIXSERVER=server-name;[user=user;password=password]
[;name=value[;name=value]...]

In the preceding syntax:

■ curly brackets ({}) together with vertical lines (|) denote more than
one choice of variable.

■ italics denote a variable value.

■ brackets ([]) denote an optional value.

■ words or symbols not enclosed in brackets are required
(INFORMIXSERVER=, for example).

Important: Blank spaces are not allowed in the database URL.
2-6 Informix JDBC Driver Programmer’s Guide

Creating a Connection
The following table describes the variable parts of the database URL.

Database
URL Variable Required? Description

ip-address

host-name

Yes, unless
SQLH_TYPE
is defined

The IP address or the host name of the computer
running the Informix database server.

An example of an IP address is 123.45.67.89.

An example of a host name is myhost.com or
myhost.informix.com.

If an LDAP server or sqlhosts file provides the IP
address or host name through the SQLH_TYPE
property, you do not have to specify them in the
database URL. For more information, see “Dynami-
cally Reading the Informix sqlhosts File” on
page 2-16.

port-number Yes, unless
SQLH_TYPE
is defined

The port number of the Informix database server.

If an LDAP server or sqlhosts file provides the port
number through the SQLH_TYPE property, you do
not have to specify it in the database URL. For more
information, see “Dynamically Reading the Informix
sqlhosts File” on page 2-16.

dbname No The name of the Informix database to which you want
to connect. If you do not specify the name of a
database, a connection is made to the Informix
database server.

(1 of 2)
Programming with Informix JDBC Driver 2-7

Creating a Connection
Database Versus Database Server Connections

Using the DriveManager.getConnection() method, you can create a
connection to either an Informix database or an Informix database server.

To create a connection to an Informix database, specify the name of the
database in the dbname variable of the database URL. If you omit the name of
a database, a connection is made to the database server specified by the
INFORMIXSERVER environment variable of the database URL or the
connection property list.

server-name Yes The name of the Informix database server to which
you want to connect. This is the value of the
INFORMIXSERVER environment variable.

The INFORMIXSERVER environment variable is
required in the database URL, unless it is included in
the property list.

user

password

Yes The name of the user that wants to connect to the
Informix database or database server, and the
password of that user. You must specify both the user
and the password.

name=value No A name-value pair that specifies a value for the
Informix environment variable contained in the name
variable, recognized by either Informix JDBC Driver
or Informix database servers. The name variable is
case insensitive.

Informix JDBC Driver reads Informix environment
variables from either the database URL or from a
connection property list, described in “Specifying
Environment Variables with the Properties Class” on
page 2-10. The user’s environment is not consulted.

Refer to “Supported Informix Environment
Variables” on page 2-12 for a list of Informix
environment variables supported by Informix JDBC
Driver.

Database
URL Variable Required? Description

(2 of 2)
2-8 Informix JDBC Driver Programmer’s Guide

Creating a Connection
If you connect directly to an Informix database server, you can execute an
SQL statement that connects to a database later in your Java program.

All connections to both databases and database servers must include the
name of an Informix database server via the INFORMIXSERVER environment
variable.

Important: If you are connecting to a 5.x database server (either INFORMIX-OnLine
Dynamic Server or INFORMIX-SE), you must specify the USEV5SERVER
environment variable in the database URL or property list. Its value must be 1, such
as USEV5SERVER=1.

The example given in “Creating a Connection” on page 2-4 shows how to
create a connection directly to the Informix database called testDB with the
database URL.

The following example from the DBConnection.java program shows how to
first create a connection to the Informix database server called myserver and
then connect to the database testDB later in the Java program using the
Statement.executeUpdate() method.

The following database URL is passed in as a parameter to the program when
the program is run at the command line; note that the URL does not include
the name of a database:

jdbc:informix-sqli://123.45.67.89:1533:INFORMIXSERVER=myserver;user=rdtest;
password=test
Programming with Informix JDBC Driver 2-9

Creating a Connection
Here is the example code:

String cmd = null;
int rc;
Connection conn = null;
try

{
Class.forName("com.informix.jdbc.IfxDriver");
}

catch (Exception e)
{
System.out.println("ERROR: failed to load Informix JDBC driver.");
}

try
{
conn = DriverManager.getConnection(newUrl);
}

catch (SQLException e)
{
System.out.println("ERROR: failed to connect!");
}

try
{
Statement stmt = conn.createStatement();
cmd = "database testDB;";
rc = stmt.executeUpdate(cmd);
stmt.close();
}

catch (SQLException e)
{
System.out.println("ERROR: execution failed - statement: " + cmd);
System.out.println("ERROR: " + e.getMessage());
}

Specifying Environment Variables with the Properties Class

Informix JDBC Driver reads Informix environment variables only from the
name-value pairs in the connection database URL or from a connection
property list. The driver does not consult the user’s environment for any
environment variables. Refer to “Supported Informix Environment
Variables” on page 2-12 for a list of supported Informix environment
variables.

To specify Informix environment variables in the name-value pairs of the
connection database URL, refer to “Format of Database URLs” on page 2-6.
2-10 Informix JDBC Driver Programmer’s Guide

Creating a Connection
To specify Informix environment variables via a property list, use the
java.util.Properties class to build the list of properties. The list of properties
might include Informix environment variables, such as INFORMIXSERVER,
as well as user and password. After you have built the property list, pass it to
the DriverManager.getConnection() method as a second parameter. You still
need to include a database URL as the first parameter, although in this case
you do not need to include the list of properties in the URL.

The following code from the optofc.java example shows how to use the
java.util.Properties class to set connection properties. It first uses the
Properties.put() method to set the environment variable OPTOFC to 1 in the
connection property list; then it connects to the database.

The DriverManager.getConnection() method in this example takes two
parameters: the database URL and the property list. The example creates a
connection similar to the example given in “Creating a Connection” on
page 2-4.

The following database URL is passed in as a parameter to the example
program when the program is run at the command line:

jdbc:informix-sqli://myhost:1533:informixserver=myserver;user=rdtest
;password=test

Here is the example program:

try
{
Class.forName("com.informix.jdbc.IfxDriver");
}

catch (Exception e)
{
System.out.println("ERROR: failed to load Informix JDBC driver.");
}

try
{
Properties pr = new Properties();
pr.put("OPTOFC","1");
conn = DriverManager.getConnection(newUrl, pr);
}

catch (SQLException e)
{
System.out.println("ERROR: failed to connect!");
}

Programming with Informix JDBC Driver 2-11

Creating a Connection
Supported Informix Environment Variables

The following table lists the Informix environment variables supported by
Informix JDBC Driver.

Supported Informix
Environment Variables Description

CLIENT_LOCALE Specifies the locale of the client that is accessing the
database. Together with the DB_LOCALE variable, the
database server uses this variable to establish the server
processing locale. This variable is available on and
optional for servers that support GLS.

DBANSIWARN Checks for Informix extensions to ANSI standard
syntax.

DBCENTURY Enables you to specify the appropriate expansion for
one- or two-digit year DATE and DATETIME values.

DBDATE Specifies the end-user formats of values in DATE
columns.

DB_LOCALE Specifies the locale of the database. Together with the
CLIENT_LOCALE variable, the database server uses
this variable to establish the server processing locale.
This variable is available on and optional for servers
that support GLS.

DBSPACETEMP Specifies the dbspaces in which temporary tables are
built.

DBUPSPACE Specifies the amount of system disk space that the
UPDATE STATISTICS statement can use when it simul-
taneously constructs multiple-column distributions.

DELIMIDENT When set to Y, specifies that strings set off by double
quotes are delimited identifiers.

ENABLE_CACHE_TYPE When set to 1, caches the data type information for
opaque, distinct, or row data instead of asking the
database server whenever a Struct or SQLData object
inserts data into a column and getSQLTypeName()
returns the type name information.

(1 of 5)
2-12 Informix JDBC Driver Programmer’s Guide

Creating a Connection
FET_BUF_SIZE Overrides the default setting for the size of the fetch
buffer for all data except large objects. The default size
is 4096 bytes.

GL_DATE Specifies the end-user formats of values in DATE
columns. This variable is supported in Informix
database server versions 7.2x and beyond.

IFX_AUTOFREE When set to 1, specifies that the Statement.close()
method does not require a network round-trip to free
the database server cursor resources if the cursor has
already been closed in the database server.

The database server automatically frees the cursor
resources after the cursor is closed, either explicitly by
the ResultSet.close() method or implicitly by the
OPTOFC environment variable.

After the cursor resources have been freed, the cursor
can no longer be referenced.

For more information, see “The Auto Free Feature” on
page 2-46.

INFORMIXCONRETRY Specifies the maximum number of additional
connection attempts that can be made to each database
server by the client during the time limit specified by
the default value of the INFORMIXCONTIME
environment variable (15 seconds).

INFORMIXCONTIME Sets the timeout period for an attempt to connect to the
database server. If a connection attempt does not
succeed in this time, the attempt is aborted and a
connection error is reported. The default value is 15
seconds.

INFORMIXOPCACHE Specifies the size of the memory cache for the staging-
area blobspace of the client application.

INFORMIXSERVER Specifies the default database server to which an
explicit or implicit connection is made by a client
application.

INFORMIXSTACKSIZE Specifies the stack size, in kilobytes, that the database
server uses for a particular client session.

Supported Informix
Environment Variables Description

(2 of 5)
Programming with Informix JDBC Driver 2-13

Creating a Connection
JDBCTEMP Specifies where temporary files for handling smart
large objects are created. You must supply an absolute
pathname.

LOBCACHE Determines the buffer size for large object data that is
fetched from the database server:

■ If LOBCACHE > 0, the maximum LOBCACHE
number of bytes is allocated in memory to hold the
data. If the data size exceeds the LOBCACHE value,
the data is stored in a temporary file. If a security
violation occurs during creation of this file, the data is
stored in memory.

■ If LOBCACHE = 0, the data is always stored in a file.
In this case, if a security violation occurs, Informix
JDBC Driver makes no attempt to store the data in
memory.

■ If LOBCACHE < 0, the data is always stored in
memory. If the required amount of memory is not
available, an error occurs.

If the LOBCACHE value is not specified, the default is
4096 bytes.

NODEFDAC When set to YES, prevents default table and routine
privileges from being granted to the PUBLIC user when
a new table or routine is created in a database that is not
ANSI compliant. Default is NO.

OPTCOMPIND Specifies the join method that the query optimizer uses.

Supported Informix
Environment Variables Description

(3 of 5)
2-14 Informix JDBC Driver Programmer’s Guide

Creating a Connection
OPTOFC When set to 1, the ResultSet.close() method does not
require a network round-trip if all the qualifying rows
have already been retrieved in the client’s tuple buffer.
The database server automatically closes the cursor
after all the rows have been retrieved.

Informix JDBC Driver might not have additional rows
in the client’s tuple buffer before the next
ResultSet.next() method is called. Therefore, unless
Informix JDBC Driver has received all the rows from the
database server, the ResultSet.close() method might
still require a network round-trip when OPTOFC is set
to 1.

PATH Specifies the directories that should be searched for
executable programs.

PDQPRIORITY Determines the degree of parallelism used by the
database server.

PLCONFIG Specifies the name of the configuration file used by the
high-performance loader.

PSORT_DBTEMP Specifies one or more directories to which the database
server writes the temporary files it uses when
performing a sort.

PSORT_NPROCS Enables the database server to improve the perfor-
mance of the parallel-process sorting package by
allocating more threads for sorting.

Supported Informix
Environment Variables Description

(4 of 5)
Programming with Informix JDBC Driver 2-15

Dynamically Reading the Informix sqlhosts File
For a detailed description of a particular environment variable, refer to
Informix Guide to SQL: Reference. You can find the on-line version of this guide
at http://www.informix.com/answers.

Dynamically Reading the Informix sqlhosts File
Informix JDBC Driver now supports the JNDI (Java naming and directory
interface). This support enables JDBC programs to access the Informix
sqlhosts file. The sqlhosts file lets a client application find and connect to an
Informix database server anywhere on the network. For more information
about this file, see the Administrator’s Guide for your database server.

You can access sqlhosts data from a local file or from an LDAP (lightweight
directory access protocol) server. The system administrator must load the
sqlhosts data into the LDAP server using an Informix-supplied utility.

Your CLASSPATH variable must reference the JNDI JAR (Java archive) files
and the LDAP SPI (service provider interface) JAR files. You must use LDAP
Version 3.0 or later, which supports the object class extensibleobject.

SECURITY=PASSWORD Protects the user-provided password using 56-bit
encryption when it is passed from the client to the
database server.

SQLH_TYPE When set to FILE, specifies that database URL infor-
mation (such as the host-name, port-number, user, and
password) is specified in an sqlhosts file. When set to
LDAP, specifies that this information is specified in an
LDAP server. For more information, see “Dynamically
Reading the Informix sqlhosts File” on page 2-16.

USEV5SERVER When set to 1, specifies that the Java program is
connecting to an INFORMIX-OnLine or INFORMIX-SE
5.x database server.

This environment variable is mandatory if you are
connecting to an INFORMIX-OnLine or INFORMIX-SE
5.x database server.

Supported Informix
Environment Variables Description

(5 of 5)
2-16 Informix JDBC Driver Programmer’s Guide

Dynamically Reading the Informix sqlhosts File
An unsigned applet cannot access the sqlhosts file or an LDAP server. For
more information, see “Using the Driver in an Applet” on page 1-15.

Database URL Syntax

You can let Informix JDBC Driver look up the host name or port number in an
LDAP server instead of specifying them in the database URL directly. You
must specify the following properties in the database URL for the LDAP
server:

■ SQLH_TYPE=LDAP

■ LDAP_URL=ldap://host-name:port-number

■ LDAP_IFXBASE=Informix-base-DN

■ LDAP_USER=user

■ LDAP_PASSWD=password

If LDAP_USER and LDAP_PASSWD are not specified, Informix JDBC Driver
uses an anonymous search to search the LDAP server. The LDAP adminis-
trator must make sure that an anonymous search is allowed on the sqlhosts
entry. For more information, see your LDAP server documentation.

Here is an example database URL:

jdbc:informix-sqli[:/dbname]:informixserver=value;SQLH_TYPE=LDAP;
LDAP_URL=ldap://davinci:329;LDAP_IFXBASE=cn=informix,
cn=software,o=kmart,c=US;LDAP_USER=abcd;LDAP_PASSWD=secret

You can also specify the sqlhosts file in the database URL. The host name and
port number are read from the sqlhosts file. You must specify the following
properties for the file:

■ SQLH_TYPE=FILE

■ SQLH_FILE=sqlhosts-filename

The sqlhosts file can be local or remote, so you can refer to it in the local file
system format or URL format. Here are some examples:

■ SQLH_FILE=http://host-name:port-number/sqlhosts.ius

■ SQLH_FILE=file://D:/local/myown/sqlhosts.ius

■ SQLH_FILE=/u/local/sqlhosts.ius
Programming with Informix JDBC Driver 2-17

Dynamically Reading the Informix sqlhosts File
Here is an example database URL:

jdbc:informix-sqli[:/dbname]:informixserver=value;SQLH_TYPE=FILE;
SQLH_FILE=/u/local/sqlhosts.ius

If the database URL references the LDAP server or sqlhosts file but also
directly specifies the IP address, host name, and port number, the IP address,
host name, and port number specified in the database URL take precedence.

Administration Requirements

If you want the LDAP server to store sqlhosts information that a JDBC
program can look up, the following requirements must be met:

■ The LDAP server must be installed on a computer that is accessible to
the client. The LDAP administrator must create an IFXBASE entry in
the LDAP server.

Refer to http://www.netscape.com for more information about
LDAP directory servers.

■ If you want to use the SqlhUpload and SqlhDelete utilities
provided by Informix, which can load or delete the sqlhosts entries
from a flat ASCII file, the servicename field in the sqlhosts file must
specify the port number. For more information, see “Utilities to
Update the LDAP Server with sqlhosts Data,” next.

■ The LDAP administrator must make sure that anonymous search is
allowed on the sqlhosts entry. For more information, see the LDAP
server documentation.

Utilities to Update the LDAP Server with sqlhosts Data

The SqlhUpload and SqlhDelete utilities are packaged in ifxtools.jar, so the
CLASSPATH variable must point to ifxtools.jar (which, by default, is in the
lib directory under the installation directory for Informix JDBC Driver). Make
sure that the CLASSPATH variable also points to the JNDI JAR files and LDAP
SPI JAR files.
2-18 Informix JDBC Driver Programmer’s Guide

Dynamically Reading the Informix sqlhosts File
Class SqlhUpload

This utility loads the sqlhosts entries from a flat ASCII file to the LDAP server
in the prescribed format. Enter the following command:

java SqlhUpload sqlhfile.txt host-name:port-number [sqlhostsRdn]

The parameters of this command have the following meanings:

■ sqlhfile.txt is the sqlhosts file to be uploaded.

■ host-name:port-number is the host name and port number of the LDAP
server.

■ sqlhostsRdn is the RDN (relative distinguished name) of the sqlhosts
node under the Informix base in LDAP. The default name is sqlhosts.

The utility prompts for other required information, such as the Informix base
DN (distinguished name) in the LDAP server, the LDAP user, and the
password.

You must convert the servicename field in the sqlhosts file to a string that
represents an integer (the port number), because the Java.Socket class cannot
accept an alphanumeric servicename for the port number. For more infor-
mation about the servicename field, see the Administrator’s Guide for your
database server.

Class SqlhDelete

This utility deletes the sqlhosts entries from the LDAP server. Enter the
following command:

java SqlhDelete host-name:port-number [sqlhostsRdn]

The parameters of this command have the same meanings as the parameters
listed for SqlhUpload on page 2-18.

The utility prompts for other required information, such as the Informix base
DN in the LDAP server, the LDAP user, and the password.
Programming with Informix JDBC Driver 2-19

Password Encryption
Password Encryption
The SECURITY environment variable specifies the security operations that
are performed when the Informix JDBC client and Informix database server
exchange data. The only SECURITY option supported in Informix JDBC
Driver is PASSWORD. By default, no SECURITY option is set. If the PASSWORD
option is specified, the user-provided password is encrypted using 56-bit
encryption when it is passed from the client to the database server.

Both the SECURITY and PASSWORD keywords are case insensitive.

Here is an example of the database URL syntax for the PASSWORD option:

String URL = "jdbc:informix-sqli://158.58.10.171:1664:user=myname;
password=mypassord;INFORMIXSERVER=myserver;SECURITY=PASSWORD";

Configuring the Database Server

The SECURITY=PASSWORD option is supported in the 7.31, 8.3, and 9.1x
versions of the Informix database server. The connection is rejected if used
with any other versions of the server.

If the SECURITY=PASSWORD option is enabled in the Informix JDBC client, the
Informix database server must also be configured to support the corre-
sponding SECURITY options requested by the client. Otherwise, an error is
returned during connection.

To use the SPWDCSM CSM option, which supports password encryption on
the database server, you must configure the server's sqlhosts SERVERNAME
option. After this option is set on the server, only clients using the
SECURITY=PASSWORD option can connect to that server name. To see if the
SPWDCSM CSM option is supported for your version of Informix database
server, check the database server release notes. See the Administrator’s Guide
for your database server for general details on how to configure the CSM
options.

JCE Security Package

To use the SECURITY=PASSWORD option, you must install a JDK Java cryptog-
raphy extension (JCE) compliant security package on the JDBC client and
include the installation directory of the security package in the CLASSPATH
variable.
2-20 Informix JDBC Driver Programmer’s Guide

Accessing Database Metadata
Informix has certified the SunJCE 1.2 security package, which you can
download free from the following Web site:

http://java.sun.com/products/jdk/1.2/jce

SunJCE is available only in the U.S. or Canada. If your site does not comply
with this or other SunJCE licensing restrictions, you can try using Informix
JDBC Driver with other JCE-certified security package providers. However,
Informix has not tested and certified that these packages work correctly with
Informix database servers configured to use the SPWDCSM CSM option.

To install the SunJCE package, download the SunJCE distribution, extract the
JAR file containing the SunJCE provider packages, and make sure the
CLASSPATH environment variable includes the extracted JAR filename.

Edit the jdk1.2/lib/security/java.security file to add the following two lines:

security.provider.1=sun.security.provider.Sun
security.provider.2=com.sun.crypto.provider.SunJCE

Accessing Database Metadata
To access information about an Informix database, use the JDBC API
DatabaseMetaData interface.

Informix JDBC Driver is completely compatible with the JDBC API specifi-
cation for accessing database metadata. The driver supports all the methods
of the DatabaseMetaData interface.

Informix JDBC Driver uses the sysmaster database to get database metadata.
If you want to use the DatabaseMetaData interface in your Java program, the
sysmaster database must exist in the Informix database server to which your
Java program is connected.

Informix JDBC Driver interprets the JDBC API term schemas to mean the names
of Informix users who own tables. The DatabaseMetaData.getSchemas()
method returns all the users found in the owner column of the systables
system catalog.
Programming with Informix JDBC Driver 2-21

Querying the Database
Similarly, Informix JDBC Driver interprets the JDBC API term catalogs to mean
the names of Informix databases. The method DatabaseMetaData.getCat-
alogs() returns the names of all the databases that currently exist in the
Informix database server to which your Java program is connected.

The example DBMetaData.java shows how to use the DatabaseMetaData
and ResultSetMetaData interfaces to gather information about a new
procedure. Refer to Appendix A, “Sample Code Files,” for more information
about this example.

Querying the Database
Informix JDBC Driver complies with the JDBC API specification for sending
queries to a database and retrieving the results. The driver supports almost
all the methods of the Statement, PreparedStatement, CallableStatement,
ResultSet, and ResultSetMetaData interfaces.

Batch Updates
The batch update feature is similar to Informix multiple SQL PREPARE state-
ments. For example, Informix supports the following statement:

PREPARE stmt FROM "insert into tab values (1); insert into tab values(2);
update table tab set col = 3 where col =2";

The batch update feature in Informix JDBC Driver follows the Sun Micro-
systems JDBC 2.0 specification, with these exceptions:

■ SQL statements

The following commands cannot be put into multistatement
PREPARE statements:

❑ SELECT (except SELECT INTO TEMP) statement

❑ DATABASE statements

❑ CONNECTION statements

For more details, refer to Informix Guide to SQL: Syntax.
2-22 Informix JDBC Driver Programmer’s Guide

Scroll Cursors
■ Statement.executeBatch() return value

The return value differs from the Sun Microsystems JDBC 2.0 specifi-
cation in the following ways:

❑ Only the update count of the first statement executed in the
batch is returned.

❑ When errors occur in a batch update executed in a Statement
object, no rows are affected by the statement; the statement is not
executed. Calling BatchUpdateException.getUpdateCounts()
returns 0 in this case.

❑ When errors occur in a batch update executed in a Prepared-
Statement object, rows that were successfully inserted or
updated on the database server do not revert to their pre-
updated state. However, the statements are not always
commited; they are still subject to the underlying autocommit
mode.

The BatchUpdate.java example file shows how to send batch updates to the
database server.

Scroll Cursors
The scroll cursors feature in Informix JDBC Driver follows the Sun Micro-
systems JDBC 2.0 specification, with these exceptions:

■ Scroll sensitivity

The Informix database server implementation of scroll cursors places
the rows fetched in a temporary table. If another process changes a
row (assuming the row is not locked) and the row is fetched again,
the changes are not visible to the client. This behavior is similar to the
scroll-insensitive description in the JDBC 2.0 specification. To see
updated rows, your client application must close and reopen the
cursor.

■ Client-side scrolling

The JDBC specification implies that the scrolling can happen on the
client-side result set. The 2.0 release of Informix JDBC Driver supports
the scrolling of the result set only according to how the database
server supports scrolling.
Programming with Informix JDBC Driver 2-23

Informix-Specific Information About Querying a Database
■ Concurrency types

The JDBC 2.0 specification states that the result set can have two types
of concurrency: read-only and updatable. A result set that uses read-
only concurrency does not allow updates of its contents. A result set
that is updatable allows updates and may use database write locks
to mediate access to the same data item by different transactions.

The Informix database server does not support updatable scroll
cursors. If a cursor is declared as SCROLL, you cannot issue an
UPDATE WHERE CURRENT OF statement.

■ Updates

The JDBC specifications provide a series of methods that an appli-
cation can use to update a fetched result set if its concurrency type is
CONCUR_UPDATABLE. According to this specification, rows can be
updated, inserted, and deleted from the result set. However,
Informix JDBC Driver supports only a read-only result set.

The ScrollCursor.java example file shows how to retrieve a result set with a
scroll cursor.

Informix-Specific Information About Querying a Database
This section describes the Informix-specific information you need to know to
use Informix JDBC Driver to query an Informix database and process the
results.

The Informix JDBC Driver implementation of the Statement.execute()
method returns a single ResultSet object. This implementation differs from
the JDBC API specification, which states that the method can return multiple
ResultSet objects.

Be sure to always explicitly close a Statement, PreparedStatement, and
CallableStatement object by calling the appropriate close() method in your
Java program when you have finished processing the results of an SQL
statement. This closure immediately deallocates the resources that have been
allocated to execute your SQL statement. Although the ResultSet.close()
method closes the ResultSet object, it does not deallocate the resources
allocated to the Statement, PreparedStatement, or CallableStatement
objects.
2-24 Informix JDBC Driver Programmer’s Guide

Example of Sending a Query to an Informix Database
Important: For best results, always call ResultSet.close() and Statement.close()
methods to indicate to Informix JDBC Driver that you are done with the statement or
result set. Otherwise, your program might not release all its resources on the database
server.

Important: The same Statement or ResultSet instance cannot be accessed concur-
rently across threads. You can, however, share a Connection object between multiple
threads.

For example, if one thread executes the Statement.executeQuery() method on a
Statement object, and another thread executes the Statement.executeUpdate()
method on the same Statement object, the results of both methods are unexpected
and depend on which method was executed last.

Similarly, if one thread executes the method ResultSet.next() and another thread
executes the same method on the same ResultSet object, the results of both methods
are unexpected and depend on which method was executed last.

Example of Sending a Query to an Informix Database
The following example from the SimpleSelect.java program shows how to
use the PreparedStatement interface to execute a SELECT statement that has
one input parameter:

try
{
PreparedStatement pstmt = conn.prepareStatement("Select * from x "

+ "where a = ?;");
pstmt.setInt(1, 11);
ResultSet r = pstmt.executeQuery();
while(r.next())

{
short i = r.getShort(1);
System.out.println("Select: column a = " + i);
}

r.close();
pstmt.close();
}

catch (SQLException e)
{
System.out.println("ERROR: Fetch statement failed: " + e.getMessage());
}

The program first uses the Connection.prepareStatement() method to
prepare the SELECT statement with its single input parameter. It then assigns
a value to the parameter using the PreparedStatement.setInt() method and
executes the query with the PreparedStatement.executeQuery() method.
Programming with Informix JDBC Driver 2-25

Escape Syntax
The program returns resulting rows in a ResultSet object, through which the
program iterates with the ResultSet.next() method. The program retrieves
individual column values with the ResultSet.getShort() method, since the
data type of the selected column is SMALLINT.

Finally, both the ResultSet and PreparedStatement objects are explicitly
closed with the appropriate close() method.

For more information on which getXXX() methods retrieve individual
column values, refer to “Supported ResultSet.getXXX() Methods” on
page 3-78.

Escape Syntax
Valid escape syntax for SQL statements is as follows:

You can put any of this syntax in an SQL statement, as follows:

executeUpdate("insert into tab1 values({d '1999-01-01'})");

Everything inside the brackets is converted into a valid Informix SQL
statement and returned to the calling function.

Type of Statement Escape Syntax

Stored procedure {call procedure}

Stored procedure {var = call procedure}

Date {d 'yyyy-mm-dd'}

Time {t 'hh:mm:ss'}

Timestamp
(Datetime)

{ts 'yyyy-mm-dd hh:mm:ss[.fffff]'}

Function call {fn func[(args)]}

Escape character {escape 'escape-char'}

Outer join {oj outer-join-statement}
2-26 Informix JDBC Driver Programmer’s Guide

Unsupported Methods
Unsupported Methods
The following JDBC API methods are not supported by Informix JDBC Driver
and cannot be used in a Java program that connects to an Informix database:

■ CallableStatement.registerOutParameter()

■ Connection.isReadOnly()

■ Connection.setCatalog()

■ Connection.setReadOnly()

■ PreparedStatement.setRef(int, Ref)

■ PreparedStatement.setUnicodeStream()

■ ResultSet.cancelRowUpdate()

■ ResultSet.deleteRow()

■ ResultSet.getFetchSize()

■ ResultSet.getRef(int)

■ ResultSet.getRef(String)

■ ResultSet.getUnicodeStream()

■ ResultSet.insertRow()

■ ResultSet.moveToCurrentRow()

■ ResultSet.moveToInsertRow()

■ ResultSet.refreshRow()

■ ResultSet.rowDeleted()

■ ResultSet.rowInserted()

■ ResultSet.rowUpdated()

■ ResultSet.setFetchSize()

■ ResultSet.updateRow()

■ ResultSet.updateXXX()

■ Statement.cancel()

■ Statement.setMaxFieldSize()

■ Statement.setQueryTimeout()

The following JDBC API methods behave differently than specified by the
JavaSoft specification:
Programming with Informix JDBC Driver 2-27

Handling Errors
■ CallableStatement.execute()

Method returns a single result set.

■ PreparedStatement.execute()

Method returns a single result set.

■ ResultSetMetaData.getCatalogName()

Method always returns the value "".

■ ResultSetMetaData.getTableName()

Method always returns the value "".

■ ResultSetMetaData.getSchemaName()

Method always returns the value "".

■ ResultSetMetaData.isDefinitelyWriteable()

Method always returns TRUE.

■ ResultSetMetaData.isReadOnly()

Method always returns FALSE.

■ ResultSetMetaData.isWriteable()

Method always returns TRUE.

■ Statement.execute()

Method returns a single result set.

Handling Errors
Use the JDBC API SQLException class to handle errors in your Java program.
The Informix-specific com.informix.jdbc.Message class can also be used
outside a Java program to retrieve the Informix error text for a given error
number.

Using the SQLException Class
Whenever an error occurs from either Informix JDBC Driver or the database
server, an SQLException is raised. Use the following methods of the SQLEx-
ception class to retrieve the text of the error message, the error code, and the
SQLSTATE value:
2-28 Informix JDBC Driver Programmer’s Guide

Using the SQLException Class
■ getMessage()

Returns a description of the error. SQLException inherits this method
from the java.util.Throwable class.

■ getErrorCode()

Returns an integer value that corresponds to the Informix database
server or Informix JDBC Driver error code.

■ getSQLState()

Returns a string that describes the SQLSTATE value. The string
follows the X/Open SQLSTATE conventions.

All Informix JDBC Driver errors have error codes of the form -79XXX, such as
-79708 Method can’t take null parameter.

For a list of Informix database server errors, refer to Informix Error Messages.
You can find the on-line version of this guide at
http://www.informix.com/answers.

The following example from the SimpleSelect.java program shows how to
use the SQLException class to catch Informix JDBC Driver or database server
errors using a try-catch block:

try
{
PreparedStatement pstmt = conn.prepareStatement("Select * from x "

+ "where a = ?;");
pstmt.setInt(1, 11);
ResultSet r = pstmt.executeQuery();
while(r.next())

{
short i = r.getShort(1);
System.out.println("Select: column a = " + i);
}

r.close();
pstmt.close();
}

catch (SQLException e)
{
System.out.println("ERROR: Fetch statement failed: " + e.getMessage());
}

Programming with Informix JDBC Driver 2-29

Retrieving Informix Error Message Text
Retrieving Informix Error Message Text
Informix provides the class com.informix.jdbc.Message for retrieving the
Informix error message text based on the Informix error number. To use this
class, call the Java interpreter java directly, passing it an Informix error
number, as shown in the following example:

java com.informix.jdbc.Message 100

The example returns the message text for Informix error 100:

100: ISAM error: duplicate value for a record with unique key.

A positive error number is returned if you specify an unsigned number when
using the com.informix.jdbc.Message class. This differs from the finderr
utility, which returns a negative error number for an unsigned number.

Internationalization
Internationalization allows you to develop software independently of the
countries or languages of its users and then to localize your software for
multiple countries or regions. Informix JDBC Driver extends the Java JDK 1.2
internationalization features by providing access to Informix databases that
are based on different locales and code sets.

JDK 1.1 and 1.2 Internationalization Support
Versions 1.1 and 1.2 of the JDK provide a rich set of APIs for developing global
applications. These internationalization APIs are based on the Unicode 2.0
code set and can adapt text, numbers, dates, currency, and user-defined
objects to any country’s conventions.

The internationalization APIs are concentrated in three packages:

■ The java.text package contains classes and interfaces for handling
text in a locale-sensitive way.

■ The java.io package contains new classes for importing and
exporting non-Unicode character data.

■ The java.util package contains the Locale class, the localization
support classes, and new classes for date and time handling.
2-30 Informix JDBC Driver Programmer’s Guide

Support for Informix GLS Variables
For more information about JDK internationalization support, consult this
Web site:

http://java.sun.com/products/jdk/1.2/docs/guide/internat/index.html

Warning: There is no connection between JDK locales and JDK code sets: you must
keep these in agreement. For example, if you select the Japanese locale ja_JP, there is
no Java method that tells you that the SJIS code set is the most appropriate.

Support for Informix GLS Variables
For general information about setting up Informix global language support
(GLS), refer to the Informix Guide to GLS Functionality.

Internationalization adds several new environment variables to Informix
JDBC Driver:

■ DB_LOCALE

■ CLIENT_LOCALE

■ GL_DATE

■ DBDATE

■ DBCENTURY

The locale environment variables are available on and optional for Informix
servers that support GLS:

■ The DB_LOCALE variable specifies the locale of the database.
Informix JDBC Driver uses this variable to perform code set
conversion between Unicode and the database locale. The database
server uses DB_LOCALE with CLIENT_LOCALE to establish the
server processing locale.

■ The CLIENT_LOCALE variable specifies the locale of the client that is
accessing the database. Informix JDBC Driver uses this variable only
to provide defaults for user-defined formats and to display error
messages.

If set, the CLIENT_LOCALE value establishes the database server
processing locale to provide defaults for user-defined formats like
the GL_DATE format, and user-defined types can use it for code-set
conversion.
Programming with Informix JDBC Driver 2-31

Support for Date End-User Formats
The DB_LOCALE and CLIENT_LOCALE values must be the same, or their
code sets must be convertible. For more information, see the Informix Guide to
GLS Functionality.

The GL_DATE, DBDATE, and DBCENTURY variables are described in the
following section.

Important: The DB_LOCALE, CLIENT_LOCALE, and GL_DATE variables are
supported only if the database server supports the Informix GLS feature. If these
environment variables are set and your application connects to a non-GLS server
(server versions earlier than 7.2), a connection exception occurs. If you connect to a
non-GLS server, the behavior is the same as for Informix JDBC Driver Version 1.22.

Support for Date End-User Formats
The date end-user format is the format in which a date appears in a string
variable. This section describes the GL_DATE, DBDATE, and DBCENTURY
variables, which specify date end-user formats. These variables are optional.

GL_DATE Variable

The GL_DATE environment variable specifies the end-user formats of values
in DATE columns. This variable is supported in Informix database servers
7.2x and beyond. A GL_DATE format string can contain the following
characters:

■ One or more white-space characters

■ An ordinary character (other than the % symbol or a white-space
character)

■ A formatting directive, which is composed of the % symbol followed
by one or two conversion characters that specify the required
replacement
2-32 Informix JDBC Driver Programmer’s Guide

Support for Date End-User Formats
Date formatting directives are defined in the following table.

Directive Replaced By

%a The abbreviated weekday name as defined in the locale

%A The full weekday name as defined in the locale

%b The abbreviated month name as defined in the locale

%B The full month name as defined in the locale

%C The century number (the year divided by 100 and truncated to an
integer) as a decimal number (00 through 99)

%d The day of the month as a decimal number (01 through 31). A single digit
is preceded by a zero (0).

%D Same as the %m/%d/%y format

%e The day of the month as a decimal number (1 through 31). A single digit
is preceded by a space.

%h Same as the %b formatting directive

%iy The year as a two-digit decade (00 through 99). It is the Informix-specific
formatting directive for %y.

%iY The year as a four-digit decade (0000 through 9999). It is the Informix-
specific formatting directive for %Y.

%m The month as a decimal number (01 through 12)

%n A NEWLINE character

%t The TAB character

%w The weekday as a decimal number (0 through 6); 0 represents the locale
equivalent of Sunday.

%x A special date representation that the locale defines

%y The year as a two-digit decade (00 through 99)

%Y The year as a four-digit decade (0000 through 9999)

%% % (to allow % in the format string)
Programming with Informix JDBC Driver 2-33

Support for Date End-User Formats
Important: GL_DATE optional date format qualifiers for field specifications (for
example %4m to display a month as a decimal number with a maximum field width of
4) are not supported.

Informix JDBC Driver does not support ALS 6.0, 5.0, or 4.0 era-based formats in the
DBDATE and GL_DATE environment variables.

The GL_DATE conversion modifier O, which indicates use of alternative digits for
alternative date formats, is not supported.

White space or other nonalphanumeric characters must appear between any
two formatting directives. If a GL_DATE variable format does not correspond
to any of the valid formatting directives, errors can result when the database
server attempts to format the date.

For example, for a U.S. English locale, you can format an internal DATE value
for 09/29/1998 using the following format:

* Sep 29, 1998 this day is:(Tuesday), a fine day *

To create this format, set the GL_DATE environment variable to this value:

* %b %d, %Y this day is:(%A), a fine day *

To insert this DATE value into a database table that has a DATE column, you
can perform the following types of inserts:

■ Nonnative SQL, in which SQL statements are sent to the database
server unchanged. Enter the DATE value exactly as expected by the
GL_DATE setting.

■ Native SQL, in which escape syntax is converted to an Informix-
specific format. Enter the DATE value in the JDBC escape format yyyy-
mm-dd; the value is converted to the GL_DATE format automatically.
2-34 Informix JDBC Driver Programmer’s Guide

Support for Date End-User Formats
The following example shows both types of inserts:

stmt = conn.createStatement();
cmd = "create table tablename (col1 date, col2 char(100));";
rc = stmt.executeUpdate(cmd);
...
String[] dateVals = {

"'* Oct 08, 1998 this day is: (Thursday), a fine day *'",
"{d '1998-09-29'}"
};

String[] charVals = {
"'* Oct 08, 1998 this day is: (Thursday), a fine day *'",
"'* Sep 29, 1998 this day is: (Tuesday), a fine day *'"
};

int numRows = dateVals.length;
for (int i = 0; i < numRows; i++)

{
cmd = "insert into tablename values(" + dateVals[i] + ", " +

charVals[i] + ")";
rc = stmt.executeUpdate(cmd);
System.out.println("Insert: column col1 (date) = " + dateVals[i]);
System.out.println("Insert: column col2 (char) = " + charVals[i]);
}

To retrieve the formatted GL_DATE DATE value from the database, call the
getString() method of the ResultSet class. To enter strings that represent
dates into database table columns of CHAR, VARCHAR, or LVARCHAR, you
can also build date objects that represent the date string value. The date string
value must be in GL_DATE format. The following example shows both ways
of selecting DATE values:

PreparedStatement pstmt = conn.prepareStatement("Select * from tablename "
+ "where col2 like ?;");

pstmt.setString(1, "%Tue%");
ResultSet r = pstmt.executeQuery();
while(r.next())

{
String s = r.getString(1);
java.sql.Date d = r.getDate(2);
System.out.println("Select: column col1 (GL_DATE format) = <"

+ s + ">");
System.out.println("Select: column col2 (JDBC Escape format) = <"

+ d + ">");
}

r.close();
pstmt.close();
Programming with Informix JDBC Driver 2-35

Support for Date End-User Formats
DBDATE Variable

Support for the DBDATE environment variable provides backward compati-
bility for client applications that are based on Informix database server
versions prior to 7.2x. Informix recommends that you use the GL_DATE
environment variable for new applications.

The DBDATE environment variable specifies the end-user formats of values
in DATE columns. End-user formats are used in the following ways:

■ When you input DATE values, Informix products use the DBDATE
environment variable to interpret the input. For example, if you
specify a literal DATE value in an INSERT statement, Informix
database servers require this literal value to be compatible with the
format specified by the DBDATE variable.

■ When you display DATE values, Informix products use the DBDATE
environment variable to format the output.

With standard formats, you can specify the following attributes:

■ The order of the month, day, and year in a DATE

■ Whether the year is printed with two digits (Y2) or four digits (Y4)

■ The separator between the month, day, and year

The format string can include the following characters:

■ Hyphen (-), dot, (.), and slash (/) are separator characters in a
date format. A separator appears at the end of a format string (for
example Y4MD-).

■ A 0 indicates that no separator is displayed.

■ D and M are characters that represent the day and the month.

■ Y2 and Y4 are characters that represent the year and the number of
digits in the year.

The following format strings are valid standard DBDATE formats:

■ DMY2

■ DMY4

■ MDY4

■ MDY2
2-36 Informix JDBC Driver Programmer’s Guide

Support for Date End-User Formats
■ Y4MD

■ Y4DM

■ Y2MD

■ Y2DM

The separator always goes at the end of the format string (for example,
DMY2/). If no separator or an invalid character is specified, the slash (/)
character is the default.

For the U.S. ASCII English locale, the default setting for DBDATE is Y4MD-,
where Y4 represents a four-digit year, M represents the month, D represents
the day, and hyphen (-) is the separator (for example, 1998-10-08).

To insert a DATE value into a database table with a DATE column, you can
perform the following types of inserts:

■ Nonnative SQL, in which SQL statements are sent to the database
server unchanged. Enter the DATE value exactly as expected by the
DBDATE setting.

■ Native SQL, in which escape syntax is converted to an Informix-
specific format. Enter the DATE value in the JDBC escape format yyyy-
mm-dd; the value is converted to the DBDATE format automatically.

The following example shows both types of inserts (the DBDATE value is
MDY2-):

stmt = conn.createStatement();
cmd = "create table tablename (col1 date, col2 varchar(20));";
rc = stmt.executeUpdate(cmd);
...
String[] dateVals = {"'08-10-98'", "{d '1998-08-11'}" };
String[] charVals = {"'08-10-98'", "'08-11-98'" };
int numRows = dateVals.length;
for (int i = 0; i < numRows; i++)

{
cmd = "insert into tablename values(" + dateVals[i] + ", " +

charVals[i] + ")";
rc = stmt.executeUpdate(cmd);
System.out.println("Insert: column col1 (date) = " + dateVals[i]);
System.out.println("Insert: column col2 (varchar) = " + charVals[i]);
}

Programming with Informix JDBC Driver 2-37

Support for Date End-User Formats
To retrieve the formatted DBDATE DATE value from the database, call the
getString method of the ResultSet class. To enter strings that represent dates
into database table columns of CHAR, VARCHAR, or LVARCHAR, you can
build date objects that represent the date string value. The date string value
needs to be in DBDATE format. The following example shows both ways to
select DATE values:

PreparedStatement pstmt = conn.prepareStatement("Select * from tablename "
+ "where col1 = ?;");

GregorianCalendar gc = new GregorianCalendar(1998, 7, 10);
java.sql.Date dateObj = new java.sql.Date(gc.getTime().getTime());
pstmt.setDate(1, dateObj);
ResultSet r = pstmt.executeQuery();
while(r.next())

{
String s = r.getString(1);
java.sql.Date d = r.getDate(2);
System.out.println("Select: column col1 (DBDATE format) = <"

+ s + ">");
System.out.println("Select: column col2 (JDBC Escape format) = <"

+ d + ">");
}

r.close();
pstmt.close();

Important: Informix JDBC Driver does not support ALS 6.0, 5.0, or 4.0 era-based
formats in the DBDATE and GL_DATE environment variables.

DBCENTURY Variable

The DBCENTURY environment variable enables you to choose the appro-
priate four-digit year expansion for one- or two-digit year DATE and
DATETIME values. See the Informix Guide to SQL: Reference for detailed infor-
mation about this environment variable.

Informix JDBC Driver accepts the DBCENTURY value but does not use it to
expand a two-digit year to a four-digit year. When you specify a two-digit
year, Informix JDBC Driver supplies the first two digits of the current year. For
example, in 1999, the driver supplies 19; in 2000, the driver supplies 20.

Informix JDBC Driver always includes four-digit years when it sends
java.sql.Date and java.sql.Timestamp values to the server. Similarly, the
server always includes four-digit years when it sends Informix DATE and
DATETIME values to Informix JDBC Driver.
2-38 Informix JDBC Driver Programmer’s Guide

Precedence Rules Regarding DATE Value End-User Formats
Informix JDBC Driver also does not use the DBCENTURY value for string-to-
date value conversion. Informix JDBC Driver performs string-to-DATE, string-
to-DATETIME, and string-to-TIMESTAMP conversions under these
circumstances:

■ If you pass a Java String object to the setObject() method to insert
data into a DATE or DATETIME column.

■ If you use the getDate() or getTimeStamp() method to retrieve data
from a string-type database column, such as CHAR.

Precedence Rules Regarding DATE Value End-User Formats
The precedence rules that define how to determine an end-user format for an
internal DATE value are listed here:

■ If a DBDATE format is specified, this format is used.

■ If a GL_DATE format is specified, a locale must be determined:

❑ If a CLIENT_LOCALE value is specified, it is used in conjunction
with the GL_DATE format string to display DATE values.

❑ If a DB_LOCALE value is specified but a CLIENT_LOCALE value
is not, the DB_LOCALE value is compared with the database
locale (read from the systables table of the user database) to
verify that the DB_LOCALE value is valid. If the DB_LOCALE
value is valid, it is used in conjunction with the GL_DATE format
string to display DATE values. If the DB_LOCALE value is not
valid, the database locale is used in conjunction with the
GL_DATE format string.

❑ If neither CLIENT_LOCALE nor DB_LOCALE values are
specified, the database locale is used in conjunction with the
GL_DATE format string to display DATE values.

■ If a CLIENT_LOCALE value is specified, the DATE formats conform to
the default formats associated with this locale.

■ If a DB_LOCALE value is specified but no CLIENT_LOCALE value is
specified, the DB_LOCALE value is compared with the database
locale to verify that the DB_LOCALE value is valid. If the
DB_LOCALE value is valid, the DB_LOCALE default formats are
used. If the DB_LOCALE value is not valid, the default formats for
dates associated with the database locale are used.
Programming with Informix JDBC Driver 2-39

Support for Code-Set Conversion
■ If neither CLIENT_LOCALE nor DB_LOCALE values are specified, all
DATE values are formatted in U.S. English format, Y4MD-.

Support for Code-Set Conversion
Code-set conversion converts character data from one code set (the source
code set) to another (the target code set). In a client/server environment,
character data might need to be converted from one code set to another if the
client and database server computers use different code sets to represent the
same characters. For detailed information about code set conversion, see the
Informix Guide to GLS Functionality.

You must specify code set conversion for the following types of character
data:

■ SQL data types (CHAR, VARCHAR, NCHAR, NVARCHAR)

■ SQL statements

■ Database objects such as database names, column names, table
names, statement identifier names, and cursor names

■ Stored procedure text

■ Command text

■ Environment variables

Informix JDBC Driver converts character data as it is sent between client and
database server. The code set (encoding) used for the conversion is specified
in the systables catalog for the opened database. You set the DB_LOCALE and
CLIENT_LOCALE values in the connection properties or database URL.

Unicode to Database Code Set

Java is Unicode based, so Informix JDBC Driver converts data between
Unicode and the Informix database code set. The code set conversion value
is extracted from the DB_LOCALE value specified at the time the connection
is made. If this DB_LOCALE value is incorrect, the database locale (stored in
the database systables catalog) is used in the connection and in the code set
conversion.
2-40 Informix JDBC Driver Programmer’s Guide

Support for Code-Set Conversion
The DB_LOCALE value must be a valid Informix locale, with a valid Informix
code set name or number as shown in the compatibility table that follows.
The following table maps the supported JDK 1.2 encodings to Informix code
sets.

Informix Code Set Name Informix Code Set Number JDK Code Set

8859-1 819 8859_1

8859-2 912 8859_2

8859-3 57346 8859_3

8859-4 57347 8859_4

8859-5 915 8859_5

8859-6 1089 8859_6

8859-7 813 8859_7

8859-8 916 8859_8

8859-9 920 8859_9

ASCII 364 ASCII

sjis-s 932 SJIS

utf8 57372 UTF8

big5 57352 Big5

CP1250 1250 Cp1250

CP1251 1251 Cp1251

CP1252 1252 Cp1252

CP1253 1253 Cp1253

CP1254 1254 Cp1254

CP1255 1255 Cp1255

CP1256 1256 Cp1256

CP1257 1257 Cp1257

(1 of 2)
Programming with Informix JDBC Driver 2-41

Support for Code-Set Conversion
You cannot use an Informix locale with a code set where there is no JDK
supported encoding. This incorrect usage results in an Encoding not
supported error message.

If the connection is made but the database server returns a warning of a
mismatch between the DB_LOCALE value sent and the real value in the
database systables catalog, the correct database locale is automatically
extracted from the systables catalog and the client uses the correct JDK
encoding for the connection.

The following table shows the supported locales.

cp949 57356 Cp949

KS5601 57356 Cp949

ksc 57356 Cp949

ujis 57351 EUC_JP

gb 57357 ISO2022CN_GB

GB2312-80 57357 ISO2022CN_GB

cp936 57357 ISO2022CN_GB

Supported Locales

ar_ae ar_bh ar_kw ar_om ar_qa

ar_sa bg_bg ca_es cs_cz da_dk

de_at de_ch de_de el_gr en_au

en_ca en_gb en_ie en_nz en_us

es_ar es_bo es_cl es_co es_cr

es_ec es_es es_gt es_mx es_pa

es_pe es_py es_sv es_uy es_ve

fi_fi fr_be fr_ca fr_ch fr_fr

(1 of 2)

Informix Code Set Name Informix Code Set Number JDK Code Set

(2 of 2)
2-42 Informix JDBC Driver Programmer’s Guide

Support for Code-Set Conversion
Unicode to Client Code Set

Because the Unicode code set includes all existing code sets, the Java virtual
machine (JVM) must render the character using the platform’s local code set.
Inside the Java program, you must always use Unicode characters. The JVM
on that platform converts input and output between Unicode and the local
code set. For example, you specify button labels in Unicode, and the JVM
converts the text to display the label correctly. Similarly, when the getText()
method gets user input from a text box, the client program gets the string in
Unicode, no matter how the user entered it.

Never read a text file one byte at a time. Always use the InputStream-
Reader() or OutputStreamWriter() methods to manipulate text files. By
default, these methods use the local encoding, but you can specify an
encoding in the constructor of the class, as follows:

InputStreamReader = new InputStreamReader (in, "SJIS");

You and the JVM are responsible for getting external input into the correct
Java Unicode string. Thereafter, the database locale encoding is used to send
the data to and from the database server.

Connecting to a Database with Non-ASCII Characters

If you do not specify the database name at connection time, the connection
must be opened with the correct DB_LOCALE value for the specified
database.

hr_hr hu_hu is_is it_ch it_it

iw_il ja_jp ko_kr mk_mk nl_be

nl_nl no_no pl_pl pt_br pt_pt

ro_ro ru_ru sh_yu sk_sk sv_se

th_th tr_tr uk_ua zh_cn zh_tw

Supported Locales

(2 of 2)
Programming with Informix JDBC Driver 2-43

Support for Code-Set Conversion
If CLOSE DATABASE and DATABASE dbname statements are issued, the
connection continues to use the original DB_LOCALE value to interpret the
database name, so if the DB_LOCALE value of the new database does not
match, an error is returned. In this case, the client program must close and
reopen the connection with the correct DB_LOCALE value for the new
database.

If you supply the database name at connection time, the DB_LOCALE value
must be set to the correct database locale.

Code Set Conversion for TEXT Data Types

Informix JDBC Driver does not automatically convert between code sets for
TEXT, BYTE, CLOB, and BLOB data types. You can convert between code sets
for TEXT data by using the getBytes(), getString(), InputStreamReader(),
and OutputStreamWriter() methods. These methods take a code set
parameter that converts to and from Unicode and the specified code set.
These methods are covered in detail in Sun’s JDK documentation.
2-44 Informix JDBC Driver Programmer’s Guide

Support for Code-Set Conversion
Here is sample code that shows how to convert a file from the client code set
to Unicode and then from Unicode to the database code set. When you
retrieve data from the database, you can use the same approach to convert the
data from the database code set to the client code set.

File infile = new File("data_jpn.dat");
File outfile = new File ("data_conv.dat");
...
pstmt = conn.prepareStatement("insert into t_text values (?)");
...
// Convert data from client encoding to database encoding
System.out.println("Converting data ...\n");
try

{
String from = "SJIS";
String to = "8859_1";
convert(infile, outfile, from, to);
}

catch (Exception e)
{
System.out.println("Failed to convert file");
}

System.out.println("Inserting data ...\n");
try

{
int fileLength = (int) outfile.length();
fin = new FileInputStream(outfile);
pstmt.setAsciiStream(1 , fin, fileLength);
pstmt.executeUpdate();
}

catch (Exception e)
{
System.out.println("Failed to setAsciiStream");
}

...
public static void convert(File infile, File outfile, String from, String to)

throws IOException
{
InputStream in = new FileInputStream(infile);
OutputStream out = new FileOutputStream(outfile);

Reader r = new BufferedReader(new InputStreamReader(in, from));
Writer w = new BufferedWriter(new OutputStreamWriter(out, to));

//Copy characters from input to output. The InputStreamReader converts
// from the input encoding to Unicode, and the OutputStreamWriter
// converts from Unicode to the output encoding. Characters that can
// not be represented in the output encoding are output as '?'

char[] buffer = new char[4096];
int len;
while ((len = r.read(buffer)) != -1)
Programming with Informix JDBC Driver 2-45

Handling Transactions
w.write(buffer, 0, len);
r.close();
w.flush();
w.close();
}

Handling Transactions
By default, all new Connection objects are in autocommit mode: a COMMIT
statement is automatically executed after each statement that is sent to the
database server. To turn autocommit mode off for a connection, explicitly call
the Connection.setAutoCommit(false) method.

When autocommit mode is off, Informix JDBC Driver implicitly starts a new
transaction when the next statement is sent to the database server. This trans-
action lasts until the user issues a COMMIT or ROLLBACK statement. If the
user has already started a transaction by executing setAutoCommit(false)
and then calls setAutoCommit(false) again, the existing transaction
continues unchanged. The Java program must explicitly terminate the trans-
action by issuing either a COMMIT or a ROLLBACK statement before it drops
the connection to the database or the database server.

If the Java program sets autocommit mode on while inside a transaction,
Informix JDBC Driver rolls back the current transaction before it actually
turns autocommit mode on.

In a database that has been created with logging, if a COMMIT statement is
sent to the database server (either with the Connection.commit() method or
directly with an SQL statement) and autocommit mode is on, the error
-255 : Not in transaction is returned by the database server because
there is currently no user transaction started.

In a database created in ANSI mode, explicitly sending a COMMIT statement
to the database server commits an empty transaction. No error is returned
because the database server automatically starts a transaction before it
executes the statement if there is no user transaction currently open.
2-46 Informix JDBC Driver Programmer’s Guide

Other Informix Extensions to the JDBC API
Other Informix Extensions to the JDBC API
This section describes the Informix-specific extensions to the JDBC API not
already covered in this guide. These extensions handle information that is
specific to Informix databases.

Another Informix extension, the com.informix.jdbc.Message class, is fully
described in “Handling Errors” on page 2-27.

The Auto Free Feature
If you enable the Informix auto free feature, the database server automati-
cally frees the cursor when it closes the cursor. Therefore, your application
does not have to send two separate requests to close and then free the
cursor—closing the cursor is sufficient.

You can enable the auto free feature by setting the IFX_AUTOFREE variable to
TRUE in the database URL, as in this example:

jdbc:informix-sqli://123.45.67.89:1533:INFORMIXSERVER=myserver;user=rdtest;
password=test;ifx_autofree=true;

You can also use one of the following methods:

■ public void setAutoFree(boolean flag);

■ public boolean getAutoFree();

The setAutoFree() method should be called before the executeQuery()
method, but the getAutoFree() method can be called before or after the
executeQuery() method.

To use these methods, your applications must import classes from the
Informix package com.informix.jdbc and cast the Statement class to the
IfmxStatement class, as shown here:

import com.informix.jdbc.*;
...
(IfmxStatement)stmt.setAutoFree(true);

The Auto Free feature is available for the following database server versions:

■ Version 7.23 and above

■ Version 9.0 and above
Programming with Informix JDBC Driver 2-47

Obtaining Driver Version Information
Obtaining Driver Version Information
There are two ways to obtain version information about Informix JDBC
Driver: from your Java program, or from the UNIX or Windows command
line. The command line method also allows you to obtain the serial number
you provided when you installed the driver on your computer.

To get version information from your Java program

1. Import the Informix package com.informix.jdbc.* into your Java
program by adding the following line to the import section:

import com.informix.jdbc.*;

2. Invoke the static method IfxDriver.getJDBCVersion(). This method
returns a String object that contains the complete version of the
current Informix JDBC Driver.

An example of a version of Informix JDBC Driver is 2.00.JC1.

The IfxDriver.getJDBCVersion() method does not return the serial
number you provided during installation of the driver.

Important: For Version X.Y of Informix JDBC Driver, the JDBC API methods
Driver.getMajorVersion() and DatabaseMetaData.getDriverMajorVersion()
always return the value X. Similarly, the methods Driver.getMinorVersion() and
DatabaseMetaData.getDriverMinorVersion() always return the value Y.

To get the version of Informix JDBC Driver from the command line, enter the
following command at the UNIX shell prompt or the Windows command
prompt:

java com.informix.jdbc.Version

The command also returns the serial number you provided when you
installed the driver. An example of a serial number is INF#J000000.

Using an HTTP Proxy Server
You might need to use an HTTP proxy server because of these features:

■ Applets. Because of security restrictions in Web browsers, if an
applet is using Informix JDBC Driver, it can only connect to a
database running on the same host as the Web server.
2-48 Informix JDBC Driver Programmer’s Guide

Using an HTTP Proxy Server
■ Firewalls. Informix JDBC Driver cannot connect to a database from
behind a firewall. The firewall prevents the browser from connecting
to the database.

The solution to both these problems is to install Informix JDBC Driver on the
same computer as the Java applet and install the HTTP proxy as a middle tier
between the Java applet and Informix database machines.

The HTTP proxy feature is not part of the JDBC 2.0 specification. The HTTP
proxy is a lightweight servlet that extracts SQL requests from the JDBC client
and transmits them to a database server. The client (the end user) is unaware
of this extra layer.

To specify a proxy, amend the database URL statement:

CURRENT_JDBC_URL;proxy=web-server-host-name:port-number

The Web server must support servlets. (For example, the Sun and Apache
Java Web servers do.)

To add a proxy servlet to a Sun Java Web server

1. Copy two class files, IfxJDBCProxy.class and SessionMgr.class, to
the servlet directory. These two class files reside in directory proxy,
which is under the installation directory for Informix JDBC Driver
after the product bundle is installed.

2. Go to the URL http://server-host-name:port-number using a Web
browser. The Java Web server administrator page appears.

3. Enter admin as the user, followed by the administrator password, to
log on to the Web server administrator management menu.

4. Choose Web Service➞Servlets➞Add.

5. Type a JDBC servlet name and class. Name the servlet for the JDBC
proxy IfxJDBCProxy.

This procedure makes the Web server aware of the proxy servlet.

The steps for adding a proxy server to other Java Web servers are similar.
Consult the documentation specific to your Web server for instructions on
how to configure the servlet.

Depending on your Web server, the proxy servlet may be loaded when the
Web server is started or the first time it is referenced in the URL of your applet
or application connection object.
Programming with Informix JDBC Driver 2-49

Using an HTTP Proxy Server
The following Web sites offer more information about proxy servlets:

■ http://jserv.javasoft.com/index.html

■ http://www.javasoft.com

■ http://www.sun.com/java

■ http://java.apache.org

Other ways to use Informix JDBC Driver in a multiple-tier environment are as
follows:

■ Remote method invocation (RMI). Informix JDBC Driver resides on
an application server that is a middle tier between the Java applet or
application and Informix database machines. An example of RMI is
included with Informix JDBC Driver; see Appendix A, “Sample Code
Files,” for details.

■ Other communication protocols, such as CORBA. Informix JDBC
Driver resides on an application server that is a middle tier between
the Java applet or application and Informix database machines.
2-50 Informix JDBC Driver Programmer’s Guide

3
Chapter
Manipulating Informix Data
Types
In This Chapter . 3-5

Manipulating Informix Opaque Types 3-5
IfmxUdtSQLInput Interface 3-6
IfmxUdtSQLOutput Interface 3-7
Mapping Opaque Types 3-7
Caching Type Information 3-9
Inserting Data Examples 3-10
Retrieving Data Example 3-13
Using Smart Large Objects Examples 3-13
Unsupported Methods 3-16

Manipulating Informix Distinct Types 3-16
Caching Type Information 3-17
Inserting Data Examples 3-17
Retrieving Data Example 3-19
Unsupported Methods 3-20

Manipulating Informix BYTE and TEXT Data Types 3-20
Caching Large Objects 3-20
Inserting or Updating Data Example 3-21
Selecting Data Example 3-23

Manipulating Informix BLOB and CLOB Data Types 3-25
IfxLobDescriptor 3-26
IfxLocator. 3-26
IfxSmartBlob. 3-27

IfxSmartBlob Methods 3-27
IfxSmartBlob Flag Values 3-30
IfxSmartBlob Whence Values. 3-31

3-2 Infor
IfxBblob and IfxCblob Classes 3-31
IfxBblob Class 3-32
IfxCblob Class 3-32

Caching Large Objects 3-33
Creating a Smart Large Object Example 3-33
Inserting Data Example 3-34
Retrieving Data Example 3-35

Manipulating Informix SERIAL and SERIAL8 Data Types 3-37

Manipulating Informix INTERVAL Data Types 3-38
The Interval Class 3-39

Variables for Binary Qualifiers 3-39
Interval Methods 3-40

The IntervalYM Class 3-40
IntervalYM Constructors 3-41
IntervalYM Methods. 3-42

The IntervalDF Class 3-43
IntervalDF Constructors 3-43
IntervalDF Methods 3-44

Interval Example 3-45

Manipulating Informix Collections and Arrays 3-45
Collection Examples 3-46
Array Example 3-49

Manipulating Informix Named and Unnamed Rows 3-50
Using the SQLData Interface 3-51
Using the Struct Interface 3-52
Interval and Collection Support 3-53
Caching Type Information 3-53
SQLData Examples 3-54
Struct Examples. 3-58
The ClassGenerator Utility 3-63

Simple Named Row 3-63
Nested Named Row 3-64

Unsupported Methods 3-65

Mapping Data Types 3-66
Mapping Between Informix and JDBC Data Types 3-66
PreparedStatement.setXXX() Extensions 3-69
mix JDBC Driver Programmer’s Guide

The Mapping Extensions 3-70
The IfxTypes Class 3-73
Extension Summary 3-75

Supported ResultSet.getXXX() Methods 3-78
Manipulating Informix Data Types 3-3

3-4 Infor
mix JDBC Driver Programmer’s Guide

In This Chapter
This chapter explains the Informix-specific data types supported in Informix
JDBC Driver. The chapter includes the following sections:

■ “Manipulating Informix Opaque Types”

■ “Manipulating Informix Distinct Types”

■ “Manipulating Informix BYTE and TEXT Data Types”

■ “Manipulating Informix BLOB and CLOB Data Types”

■ “Manipulating Informix SERIAL and SERIAL8 Data Types”

■ “Manipulating Informix INTERVAL Data Types”

■ “Manipulating Informix Collections and Arrays”

■ “Manipulating Informix Named and Unnamed Rows”

■ “Mapping Data Types”

Manipulating Informix Opaque Types
Informix has extended the JDBC 2.0 definition of the java.sql.SQLInput and
java.sql.SQLOutput methods to fully support Informix fixed binary and
variable binary opaque types. This extension includes the following
interfaces:

■ IfmxUdtSQLInput

■ IfmxUdtSQLOutput
Manipulating Informix Data Types 3-5

IfmxUdtSQLInput Interface
IfmxUdtSQLInput Interface
The com.informix.jdbc.IfmxUdtSQLInput interface extends
java.sql.SQLInput with several added methods. To use these methods, you
must cast the SQLInput references to IfmxUdtSQLInput. Here are the signa-
tures and descriptions of each added method:

public int length();

This method returns the total length of the entire data stream.
public String readString(int maxlen) throws SQLException;

This method reads the next attribute in the stream as a Java string.
This method is similar to the SQLInput.readString() method except
that a fixed length of data is read in. Since the opaque type is
unknown to the driver, you must supply a maximum length for the
driver to read in the next attribute properly.

public byte[] readBytes(int maxlen) throws SQLException;

This method reads the next attribute in the stream as Java byte array.
This method is similar to the SQLInput.readBytes() method except
that a fixed length of data is read in. Since the opaque type is
unknown to the driver, you must supply a maximum length for the
driver to read in the next attribute properly.
3-6 Informix JDBC Driver Programmer’s Guide

IfmxUdtSQLOutput Interface
IfmxUdtSQLOutput Interface
The com.informix.jdbc.IfmxUdtSQLOutput interface extends
java.sql.SQLOutput with several added methods. To use these methods, you
must cast the SQLOutput references to IfmxUdtSQLOutput. Here are the
signatures and descriptions of each added method:

public void writeString(String x, int length) throws SQLException;

This method writes the next attribute to the stream as a Java String.
This method is similar to the SQLOutput.writeString() method
except that a fixed length of data is written to the stream. If the string
passed in is shorter than the specified length, the driver pads the
string with zeros. Since the opaque type is unknown to the driver,
you must supply a length for the driver to write the next attribute
properly.

public void writeBytes(byte[] b, int length) throws SQLException;

This method writes the next attribute to the stream as a Java byte
array. This method is similar to the SQLOutput.writeBytes() method
except that a fixed length of data is written to the stream. If the array
passed in is shorter than the specified length, the driver pads the
array with zeros. Since the opaque type is unknown to the driver,
you must supply a length for the driver to write the next attribute
properly.

Mapping Opaque Types
Informix opaque types map to Java objects, which must implement the
java.sql.SQLData interface. These Java objects describe all the data members
that make up the opaque type. These Java objects are strongly typed; that is,
each read or write method in the readSQL or WriteSQL method of the Java
object must match the corresponding data member in the opaque type
definition. Informix JDBC Driver cannot perform any type conversion
because the type structure is unknown to it.
Manipulating Informix Data Types 3-7

Mapping Opaque Types
Furthermore, the driver also requires that all opaque data be transported as
Informix DataBlade API data types, as defined in incl/public/mitypes.h (this
file is included in all Informix Dynamic Server with Universal Data Option
installations). All opaque data is stored in the database server table in a C
struct, which is made up of various DataBlade API types, as defined in the
opaque type. For more information, see the DataBlade API Programmer’s
Manual.

The following table lists the mapping of DataBlade API types to their corre-
sponding Java types.

DataBlade API Type Java Type

MI_LO_HANDLE BLOB or CLOB

gl_wchar_t String

mi_boolean boolean

mi_char String

mi_char1 String

mi_date Date

mi_datetime TimeStamp

mi_decimal BigDecimal

mi_double_precision double

mi_int1 byte

mi_int8 long

mi_integer int

mi_interval Not supported

mi_money BigDecimal

mi_numeric BigDecimal

mi_real float

mi_smallint short

(1 of 2)
3-8 Informix JDBC Driver Programmer’s Guide

Caching Type Information
The C struct may contain padding bytes. The driver automatically skips these
padding bytes to make sure the next data member is properly aligned.
Therefore, your Java objects do not have to take care of alignment themselves.

In addition, you must provide a custom type map as described in “Mapping
Data Types” on page 3-65 to map this Java object to the corresponding SQL
type name.

Caching Type Information
When an SQLData object inserts data into an opaque type column and
getSQLTypeName() returns the name of the opaque type, Informix JDBC
Driver uses the type information to verify that the data provided matches the
data the database server expects. The driver asks the database server for the
type information each time.

However, you can set an environment variable in the database URL,
ENABLE_CACHE_TYPE=1, so the driver caches the type information the first
time it is retrieved. In this case, Informix JDBC Driver asks the cache for the
type information before requesting the data from the database server.

mi_string String

mi_unsigned_char1 String

mi_unsigned_int8 long

mi_unsigned_integer int

mi_unsigned_smallint short

mi_wchar String

DataBlade API Type Java Type

(2 of 2)
Manipulating Informix Data Types 3-9

Inserting Data Examples
Inserting Data Examples
You can insert an opaque type as either its original type or its cast type. Here
is an example of how to insert opaque data using the original type:

String s = "insert into charattr_tab (int_col, charattr_col) values (?, ?)";
System.out.println(s);
pstmt = conn.prepareStatement(s);
...
charattrUDT charattr = new charattrUDT();
charattr.chr1 = "a";
charattr.bold = true;
charattr.fontsize = (short)1;

pstmt.setInt(1, 1);
System.out.println("setInt...ok");

pstmt.setObject(2, charattr);
System.out.println("setObject(charattrUDT)...ok");

pstmt.executeUpdate();

If a casting function is defined and you would like to insert data as the casting
type instead of the original type, you must call the setXXX() method that
corresponds to the casting type. For example, if you have defined a function
casting CHAR or LVARCHAR to a charattrUDT column, you can use the
setString() method to insert data, as follows:

// Insert into UDT column using setString(int,String) and Java String object.
String s =

"insert into charattr_tab " +
"(decimal_col, date_col, charattr_col, float_col) " +
"values (?,?,?,?)";

writeOutputFile(s);
PreparedStatement pstmt = myConn.prepareStatement(s);
...
String strObj = "(A, f, 18)";
pstmt.setString(3, strObj);
...
3-10 Informix JDBC Driver Programmer’s Guide

Inserting Data Examples
The charattrUDT class must implement the SQLData interface, as in the
following example:

import java.sql.*;
import com.informix.jdbc.*;
/*
 * C struct of charattr_udt:
 *
 * typedef struct charattr_type
 * {
 * char chr1[4+1];
 * mi_boolean bold; // mi_boolean (1 byte)
 * mi_smallint fontsize; // mi_smallint (2 bytes)
 * }
 * charattr;
 *
 * typedef charattr charattr_udt;
 *
 */
public class charattrUDT implements SQLData
{

private String sql_type = "charattr_udt";
// an ASCII character/a multibyte character, and is null-terminated.
public String chr1;
// Is the character in boldface?
public boolean bold;
// font size of the character
public short fontsize;

 public charattrUDT() { }

public charattrUDT(String chr1, boolean bold, short fontsize)
{

this.chr1 = chr1;
this.bold = bold;
this.fontsize = fontsize;

}
public String getSQLTypeName()
{

return sql_type;
}
// reads a stream of data values and builds a Java object
public void readSQL(SQLInput stream, String type) throws SQLException
{

sql_type = type;
chr1 = ((IfmxUdtSQLInput)stream).readString(5);
bold = stream.readBoolean();
fontsize = stream.readShort();

}
// writes a sequence of values from a Java object to a stream
public void writeSQL(SQLOutput stream) throws SQLException
{

((IfmxUdtSQLOutput)stream).writeString(chr1, 5);
stream.writeBoolean(bold);
Manipulating Informix Data Types 3-11

Inserting Data Examples
stream.writeShort(fontsize);
}
// overides Object.equals()
public boolean equals(Object b)
{

return (chr1.equals(((charattrUDT)b).chr1) &&
bold == ((charattrUDT)b).bold &&
fontsize == ((charattrUDT)b).fontsize);

}
public String toString()
{

return "chr1=" + chr1 + " bold=" + bold + " fontsize=" + fontsize;
}

}

In your JDBC application, a custom type map must map the type name
charattr_udt to the charattrUDT class, as in the following example:

java.util.Map customtypemap = conn.getTypeMap();
System.out.println("getTypeMap...ok");
if (customtypemap == null)

{
System.out.println("\n***ERROR: typemap is null!");
return;
}

customtypemap.put("charattr_udt", Class.forName("charattrUDT"));
3-12 Informix JDBC Driver Programmer’s Guide

Retrieving Data Example
Retrieving Data Example
To retrieve Informix opaque types, you must use ResultSet.getObject().
Informix JDBC Driver converts the data to a Java object according to the
custom type map you provide. Using the previous example of the
charattrUDT type, you can fetch the opaque data, as in the following
example:

String s = "select int_col, charattr_col from charattr_tab order by 1";
System.out.println(s);

Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery(s);
System.out.println("execute...ok");

System.out.println("Fetching data ...");
int curRow = 0;
while (rs.next())

{
curRow++;
System.out.println("currentrow=" + curRow + " : ");

int intret = rs.getInt("int_col");
System.out.println("\tint_col " + intret);

charattrUDT charattrret = (charattrUDT)rs.getObject("charattr_col");
System.out.print("\tcharattr_col ");
if (curRow == 2 || curRow == 6)

{
if (rs.wasNull())

System.out.println("<null>");
else

System.out.println("***ERROR: " + charattrret);
}
else
System.out.println(charattrret+"");

} //while

System.out.println("total rows expected: " + curRow);
stmt.close();

Using Smart Large Objects Examples
A smart large object can be a data member within an opaque type, although
you are most likely to create a large object on the database server, outside of
the opaque type context, using the Informix BLOB and CLOB extension
classes.
Manipulating Informix Data Types 3-13

Using Smart Large Objects Examples
A large object is stored as a MI_LO_HANDLE object within the opaque type.
The MI_LO_HANDLE object is created using the methods provided in
com.informix.jdbc.IfxSmartBlob, and the large object handle obtained from
these methods becomes the data member within the opaque type. Both BLOB
and CLOB objects use the same MI_LO_HANDLE, as follows:

import java.sql.*;
import com.informix.jdbc.*;
/*
 * C struct of large_bin_udt:
 *
 * typedef struct LARGE_BIN_TYPE
 * {
 * MI_LO_HANDLE lb_handle; // handle to large object (72 bytes)
 * }
 * large_bin_udt;
 *
 */
public class largebinUDT implements SQLData
{

private String sql_type = "large_bin_udt";
public Cloblb_handle;

public largebinUDT() { }

public largebinUDT(Clob clob)
{

lb_handle = clob;
}
public String getSQLTypeName()
{

return sql_type;
}
// reads a stream of data values and builds a Java object

 public void readSQL(SQLInput stream, String type) throws SQLException
{

sql_type = type;
lb_handle = stream.readClob();

}
// writes a sequence of values from a Java object to a stream
public void writeSQL(SQLOutput stream) throws SQLException
{

stream.writeClob(lb_handle);
}

}

3-14 Informix JDBC Driver Programmer’s Guide

Using Smart Large Objects Examples
In a JDBC application, you create the MI_LO_HANDLE object using the
methods provided by the IfxSmartBlob class:

String s = "insert into largebin_tab (int_col, largebin_col, lvc_col) " +
"values (?,?,?)";

System.out.println(s);
pstmt = conn.prepareStatement(s);
...
// create a large object using IfxSmartBlob's methods
String filename = "lbin_in1.dat";
File file = new File(filename);
int fileLength = (int) file.length();
FileInputStream fin = new FileInputStream(file);

IfxLobDescriptor loDesc = new IfxLobDescriptor(conn);
System.out.println("create large object descriptor...ok");

IfxLocator loPtr = new IfxLocator();
IfxSmartBlob smb = new IfxSmartBlob((IfxConnection)conn);
int loFd = smb.IfxLoCreate(loDesc, 8, loPtr);
System.out.println("create large object...ok");

int n = smb.IfxLoWrite(loFd, fin, fileLength);
System.out.println("write file content into large object...ok");

pstmt.setInt(1, 1);
System.out.println("setInt...ok");

// initialize largebin object using the large object created
// above, before doing setObject for the large_bin_udt column.
largebinUDT largebinObj = new largebinUDT();
largebinObj.lb_handle = new IfxCblob(loPtr);
pstmt.setObject(2, largebinObj);
System.out.println("setObject(largebinUDT)...ok");

pstmt.setString(3, "Hong Kong");
System.out.println("setString...ok");

pstmt.executeUpdate();
System.out.println("execute...ok");

// close/release large object
smb.IfxLoClose(loFd);
System.out.println("close large object...ok");
smb.IfxLoRelease(loPtr);
System.out.println("release large object...ok");

See “Manipulating Informix BLOB and CLOB Data Types” on page 3-25 for
details.
Manipulating Informix Data Types 3-15

Unsupported Methods
Unsupported Methods
The following methods are not supported for opaque types:

■ java.sql.SQLInput

❑ readAsciiStream()

❑ readBinaryStream()

❑ readBytes()

❑ readCharacterStream()

❑ readObject()

❑ readRef()

❑ readString()

■ java.sql.SQLOutput

❑ writeAsciiStream(InputStream x)

❑ writeBinaryStream(InputStream x)

❑ writeBytes(byte[] x)

❑ writeCharacterStream(Reader x)

❑ writeObject(Object x)

❑ writeRef(Ref x)

❑ writeString(String x)

Manipulating Informix Distinct Types
A distinct type can map to the underlying base type or to a user-defined Java
object. For example, a distinct type of INT can map to INT or to a Java object
that encapsulates the data representation. This Java object must implement
the java.sql.SQLData interface. You must provide a custom type map as
described in “Mapping Data Types” on page 3-65 to map this Java object to
the corresponding SQL type name.
3-16 Informix JDBC Driver Programmer’s Guide

Caching Type Information
Caching Type Information
When an SQLData object inserts data into a distinct type column and
getSQLTypeName() returns the name of the distinct type, Informix JDBC
Driver uses the type information to verify that the data provided matches the
data the database server expects. The driver asks the database server for the
type information each time.

However, you can set an environment variable in the database URL,
ENABLE_CACHE_TYPE=1, so the driver caches the type information the first
time it is retrieved. In this case, Informix JDBC Driver asks the cache for the
type information before requesting the data from the database server.

Inserting Data Examples
A distinct type can map to either the underlying base type or to a user-
defined Java object that implements the SQLData interface. Here is the SQL
statement that defines the distinct type:

CREATE DISTINCT TYPE mymoney AS NUMERIC(10, 2);
CREATE TABLE distinct_tab (mymoney_col mymoney);

Here is an example of mapping to the base type:

String s = "insert into distinct_tab (mymoney_col) values (?)";
System.out.println(s);
pstmt = conn.prepareStatement(s);
...
BigDecimal bigDecObj = new BigDecimal(123.45);
pstmt.setBigDecimal(1, bigDecObj);
System.out.println("setBigDecimal...ok");
pstmt.executeUpdate();

When you map to the underlying type, Informix JDBC Driver maps to the
underlying type on the client side, because the database server provides
implicit casting between the underlying type and the distinct type.

You can also map distinct types to Java objects that implement the SQLData
interface. Here is the SQL statement that defines the distinct type:

CREATE DISTINCT TYPE mymoney AS NUMERIC(10, 2);
Manipulating Informix Data Types 3-17

Inserting Data Examples
Here is the rest of the example:

import java.sql.*;
import com.informix.jdbc.*;
public class myMoney implements SQLData
{

private String sql_type = "mymoney";
public java.math.BigDecimal value;

public myMoney() { }

public myMoney(java.math.BigDecimal value)
{

this.value = value;
}
public String getSQLTypeName()
{

return sql_type;
}
public void readSQL(SQLInput stream, String type) throws SQLException
{

sql_type = type;
value = stream.readBigDecimal();

}
public void writeSQL(SQLOutput stream) throws SQLException
{

stream.writeBigDecimal(value);
}
// overides Object.equals()
public boolean equals(Object b)
{

return value.equals(((myMoney)b).value);
}
public String toString()
{

return "value=" + value;
}

}
...
String s = "insert into distinct_tab (mymoney_col) values (?)";
pstmt = conn.prepareStatement(s);
myMoney mymoney = new myMoney();
mymoney.value = new java.math.BigDecimal(123.45);
pstmt.setObject(1, mymoney);
System.out.println("setObject(myMoney)...ok");
pstmt.executeUpdate();

In this case, you use the setObject() method instead of the setBigDecimal()
method to insert data.
3-18 Informix JDBC Driver Programmer’s Guide

Retrieving Data Example
Retrieving Data Example
You can fetch a distinct type as its underlying base type or as a Java object, if
the mapping is defined in a custom type map. Using the previous example,
you can fetch the data as a Java object as in the following example:

java.util.Map customtypemap = conn.getTypeMap();
System.out.println("getTypeMap...ok");
if (customtypemap == null)

{
System.out.println("\n***ERROR: typemap is null!");
return;
}

customtypemap.put("mymoney", Class.forName("myMoney"));
...
String s = "select mymoney_col from distinct_tab order by 1";
try

{
System.out.println("Select (i)");
System.out.println(s);

Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery(s);
System.out.println("execute...ok");

System.out.println("Fetching data ...");
int curRow = 0;
while (rs.next())

{
curRow++;
myMoney mymoneyret = (myMoney)rs.getObject("mymoney_col");
System.out.println("currentrow=" + curRow + " : " + mymoneyret);
}

System.out.println("total rows expected: " + curRow);
stmt.close();
}

catch (SQLException e)
{
System.out.println("***ERROR: " + e.getErrorCode() + " " +

e.getMessage());
e.printStackTrace();
}

Manipulating Informix Data Types 3-19

Unsupported Methods
Unsupported Methods
The following methods are not supported for distinct types:

■ java.sql.SQLInput

❑ readCharacterStream()

❑ readRef()

■ java.sql.SQLOutput

❑ writeCharacterStream(Reader x)

❑ writeRef(Ref x)

Manipulating Informix BYTE and TEXT Data Types
The section describes the Informix BYTE and TEXT data types and how to
manipulate columns of these data types with the JDBC API.

The BYTE data type is a data type for a simple large object that stores any kind
of data in an undifferentiated byte stream. Examples of binary data include
spreadsheets, digitized voice patterns, and video clips. The TEXT data type is
a data type for a simple large object that stores any kind of text data. It can
contain both single and multibyte characters.

Columns of either data type have a theoretical limit of 231 bytes and a
practical limit determined by your disk capacity.

For more detailed information about the Informix BYTE and TEXT data types,
refer to Informix Guide to SQL: Reference and Informix Guide to SQL: Syntax. You
can find the on-line version of both of these guides at
http://www.informix.com/answers.

Caching Large Objects
Whenever a BLOB, CLOB, TEXT, or BYTE object is fetched from the database
server, the data is cached into memory. If the size of the large object is bigger
than the value in the LOBCACHE environment variable, the large object data
is stored in a temporary file. For more information about the LOBCACHE
variable, see “Memory Management of Large Objects” on page 4-6.
3-20 Informix JDBC Driver Programmer’s Guide

Inserting or Updating Data Example
Inserting or Updating Data Example
To insert into or update BYTE and TEXT columns, read a stream of data from
a source, such as an operating system file, and transmit it to the database as
a java.io.InputStream object. The PreparedStatement interface provides
methods for setting an input parameter to this Java input stream. When the
statement is executed, Informix JDBC Driver makes repeated calls to the input
stream, reading its contents and transmitting those contents as the actual
parameter data to the database.

For BYTE data types, use the PreparedStatement.setBinaryStream() method
to set the input parameter to the InputStream object. For TEXT data types, use
the PreparedStatement.setAsciiStream() method.
Manipulating Informix Data Types 3-21

Inserting or Updating Data Example
The following example from the ByteType.java program shows how to insert
the contents of the operating system file data.dat into a column of data type
BYTE:

try
{
stmt = conn.createStatement();
stmt.executeUpdate("create table tab1(col1 byte)");
}

catch (SQLException e)
{
System.out.println("Failed to create table ..." + e.getMessage());
}

System.out.println("Trying to insert data using Prepare Statement ...");
try

{
pstmt = conn.prepareStatement("insert into tab1 values (?)");
}

catch (SQLException e)
{
System.out.println("Failed to Insert into tab: " + e.toString());
}

File file = new File("data.dat");
int fileLength = (int) file.length();

InputStream value = null;
FileInputStream fileinp = null;

int row = 0;
String str = null;
int rc = 0;
ResultSet rs = null;

System.out.println("Inserting data ...\n");
try

{
fileinp = new FileInputStream(file);
value = (InputStream)fileinp;
}

catch (Exception e) {}

try
{
pstmt.setBinaryStream(1,value,10); //set 1st column
}

catch (SQLException e)
{
System.out.println("Unable to set parameter");
}

set_execute();
...
public static void set_execute()

{

3-22 Informix JDBC Driver Programmer’s Guide

Selecting Data Example
try
{
pstmt.executeUpdate();
}

catch (SQLException e)
{
System.out.println("Failed to Insert into tab: " + e.toString());
e.printStackTrace();
}

}

The example first creates a java.io.File object that represents the operating
system file data.dat. The example then creates a FileInputStream object to
read from the File object. The FileInputStream object is cast to its superclass
InputStream, which is the expected data type of the second parameter to the
PreparedStatement.setBinaryStream() method. The setBinaryStream()
method is executed on the already prepared INSERT statement, which sets the
input stream parameter. Finally, the PreparedStatement.executeUpdate()
method is executed, which actually inserts the contents of the data.dat
operating system file into the BYTE column of the table.

The TextType.java program shows how to insert data into a TEXT column. It
is very similar to inserting into a BYTE column, except the method
setAsciiStream() is used to set the input parameter instead of
setBinaryStream().

Selecting Data Example
After you select from a table into a ResultSet object, you can use the
ResultSet.getBinaryStream() and ResultSet.getAsciiStream() methods to
retrieve a stream of binary or ASCII data from BYTE and TEXT columns,
respectively. Both methods return an InputStream object, which can be used
to read the data in chunks.

All the data in the returned stream in the current row must be read before you
call the next() method to retrieve the next row.
Manipulating Informix Data Types 3-23

Selecting Data Example
The following example from the ByteType.java program shows to how select
data from a BYTE column and print out the data to the standard output
device:

try
{
stmt = conn.createStatement();
rs = stmt.executeQuery("Select * from tab1");
while(rs.next())

{
row++;
value = rs.getBinaryStream(1);
System.out.println("\nResult of row #" + row + ", size = "

+ value.available() + " from getAsciiStream(1) ..\n");
dispValue(value);
}

}
catch (Exception e) { }
...
public static void dispValue(InputStream in)

{
int size;
byte buf;
int count = 0;
try

{
size = in.available();
byte ary[] = new byte[size];
buf = (byte) in.read();
while(buf!=-1)

{
ary[count] = buf;
count++;
buf = (byte) in.read();
}

System.out.println(new String(ary).trim());
}

catch (Exception e)
{
System.out.println("Error occur during reading stream ... \n");
}

}

The example first puts the result of a SELECT statement into a ResultSet
object. It then executes the method ResultSet.getBinaryStream() to retrieve
the BYTE data into a Java InputStream object.

The method dispValue(), whose Java code is also included in the example, is
used to actually print out the contents of the column to standard output
device. The dispValue() method uses byte arrays and the InputStream.read()
method to systematically read the contents of the BYTE column.
3-24 Informix JDBC Driver Programmer’s Guide

Manipulating Informix BLOB and CLOB Data Types
The TextType.java program shows how to select data from a TEXT column. It
is very similar to selecting from a BYTE column, except the getAsciiStream()
method is used instead of getBinaryStream().

Manipulating Informix BLOB and CLOB Data Types
You can access BLOB and CLOB data types in two ways:

■ You can use the standard JDBC API methods described in the JDBC 2.0
specification from Sun Microsystems.

■ If you are familiar with Informix BLOB and CLOB data types, you can
use Informix extensions that are based on smart large object support
within Informix Dynamic Server with Universal Data Option, which
are described in this section.

Support for Informix smart large object data types is only available with 9.x
versions of the database server.

The Informix extensions allow a JDBC application to create a smart large
object independently and then insert the smart large object into different
columns, even in multiple tables. Using multiple threads, an application can
write or read data from various portions of the smart large object in parallel,
which is very efficient.

Columns of either data type have a theoretical limit of 4 terabytes and a
practical limit determined by your disk capacity.

The Informix smart large object implementation is based on the following
classes:

■ IfxLobDescriptor

■ IfxLocator

■ IfxSmartBlob

■ IfxBblob and IfxCblob

These classes allow you to create, insert, and fetch large objects.
Manipulating Informix Data Types 3-25

IfxLobDescriptor
To create a smart large object

1. Create an IfxLobDescriptor object.

2. Create an IfxLocator object.

3. Create an IfxSmartBlob object that includes all the methods
necessary to create, open, read, and write to a smart large object.

4. Execute the IfxSmartBlob.IfxLoCreate() method to create a large
object on the database server. This method returns a locator handle.

5. Execute IfxSmartBlob.IfxLoWrite() to write the data to the smart
large object.

6. Execute IfxSmartBlob.IfxLoClose() to close the large object.

7. Execute IfxSmartBlob.IfxLoRelease() to release the locator.

IfxLobDescriptor
The IfxLobDescriptor class stores the internal storage characteristics for a
smart large object. Before you can create a smart large object on the database
server, you have to create an IfxLobDescriptor object, as follows:

IfxLobDescriptor loDesc = new IfxLobDescriptor(conn);

The conn is a java.sql.Connection object. The IfxLobDescriptor() constructor
sets all the default values for the object.

IfxLocator
The IfxLocator object (usually known as the locator pointer or large object
locator) is the communication link between the database server and the client
for a particular large object. Before it creates a large object or opens a large
object for reading or writing, an application must create an IfxLocator object,
as follows:

IfxLocator loPtr = new IfxLocator();
3-26 Informix JDBC Driver Programmer’s Guide

IfxSmartBlob
IfxSmartBlob
The IfxSmartBlob class provides all the methods necessary to create, open,
read, and write to a smart large object. You can create an IfxSmartBlob object
as follows:

IfxSmartBlob smb = new IfxSmartBlob(conn);

IfxSmartBlob Methods

You can use the following methods to create, open, read, and write to a smart
large object. Here are the signatures and descriptions of each method:

public int IfxLoCreate(IfxLobDescriptor lo_desc, int flag, IfxLocator loPtr)
throws SQLException

This method creates a new smart large object on the server and opens
it for access within a Java application.

The lo_desc is an IfxLobDescriptor object.

The flag is an integer value that specifies the mode in which the new
smart large object is opened on the server. A table of flag values
appears in “IfxSmartBlob Flag Values” on page 3-30.

The loPtr is an IfxLocator object.

The return value is of type integer; this integer is a large object
locator handle that you can use in subsequent read, write, seek, and
close methods. This is similar to a file handle in a file management
system.

public int IfxLoOpen(IfxLocator loPtr, int flag) throws SQLException

This method opens an existing smart large object in the database
server.

The loPtr is an IfxLocator object.

The flag is an integer value that specifies the mode in which the new
smart large object is opened on the server. A table of flag values
appears in “IfxSmartBlob Flag Values” on page 3-30.

The return value is an integer locator handle that you can use in
subsequent read, write, seek, and close methods. This is similar to a
file handle in a file management system.
Manipulating Informix Data Types 3-27

IfxSmartBlob
public void IfxLoRelease(IfxLocator loPtr) throws SQLException

This method releases an IfxLocator object after a smart large object is
closed using the IfxLoClose() method. This frees the resources on the
server.

The loPtr is an IfxLocator object.
public void IfxLoClose(int lofd) throws SQLException

This method closes the large object on the database server side. For
any further access to the same large object, you must reopen it with
the IfxLoOpen() method.

The lofd is a locator handle obtained by the IfxLoCreate() or
IfxLoOpen() method.

public long IfxLoSeek(int lofd, long offset, int whence) throws SQLException

This method sets the read or write position within an already opened
large object. The absolute position depends on the value of the
second parameter, offset, and the value of the third parameter, whence.

The lofd is a locator handle obtained by the IfxLoCreate() or
IfxLoOpen() method.

The offset is an offset from the starting seek position.

The whence identifies the starting seek position. A table of whence
values appears in “IfxSmartBlob Whence Values” on page 3-31.

The return value is a long integer representing the absolute position
within the smart large object.

public void IfxLoTruncate(int lofd, long offset) throws SQLException

This method truncates a large object at an offset defined by the
second parameter.

The lofd is a locator handle obtained by the IfxLoCreate() or
IfxLoOpen() method.

The offset is the absolute position at which the smart large object is
truncated.

public long IfxLoSize(int lofd) throws SQLException

This method returns a long integer representing the size of the large
object.

The lofd is a locator handle obtained by the IfxLoCreate() or
IfxLoOpen() method.
3-28 Informix JDBC Driver Programmer’s Guide

IfxSmartBlob
public byte[] IfxLoRead(int lofd, int nbytes) throws SQLException

This method returns nbytes bytes of data as a byte[] from the smart
large object residing on the database server. This method allocates
memory.

The lofd is a locator handle obtained by the IfxLoCreate() or
IfxLoOpen() method.

The nbytes is the number of bytes read.
public int IfxLoRead(int lofd, byte[] buffer, int nbytes) throws SQLException

This method returns nbytes bytes of data in an already allocated
buffer.

The lofd is a locator handle obtained by the IfxLoCreate() or
IfxLoOpen() method.

The buffer is the byte[] buffer where the data is read.

The nbytes is the number of bytes read.
public int IfxLoRead(int lofd, FileOutputStream fout, int nbytes) throws

SQLException

This method reads nbytes bytes of data and stores it in a FileOutput-
Stream object.

The lofd is a locator handle obtained by the IfxLoCreate() or
IfxLoOpen() method.

The fout is the FileOutputStresm object in which the data is stored.

The nbytes is the number of bytes read.

The return value is the number of bytes read.
public int IfxLoWrite(int lofd, byte[] buffer) throws SQLException

This method writes buffer.length bytes of data from the buffer into the
smart large object.

The lofd is a locator handle obtained by the IfxLoCreate() or
IfxLoOpen() method.

The buffer is the byte[] buffer where the data is read.

The return value is the number of bytes written.
Manipulating Informix Data Types 3-29

IfxSmartBlob
public int IfxLoWrite(int lofd, InputStream fin, int length) throws SQLException

This method writes length bytes of data from an InputStream object
into a smart large object.

The lofd is a locator handle obtained by the IfxLoCreate() or
IfxLoOpen() method.

The fin is the InputStream object from which data is written into the
smart large object.

The length is the number of bytes written into the smart large object.

The return value is the number of bytes written.

IfxSmartBlob Flag Values

Use the flag values in the following table with the IfxLoCreate() and
IfxLoOpen() methods to open or create smart large objects with specific
access modes.

Here is an example of how to use a LO_RDWR flag value:

IfxSmartBlob smb = new IfxSmartBlob(myConn);
int loFd = smb.IfxLoCreate(loDesc, smb.LO_RDWR, loPtr);

The loDesc and loPtr objects are previously created IfxLobDescriptor and
IfxLocator objects, respectively.

Access Mode Purpose Flag Value

Read only Allows read operations only. IfxSmartBlob.LO_RDONLY

Write only Allows write operations only. IfxSmartBlob.LO_WRONLY

Write/Append Appends data you write to the end
of the smart large object. Equiv-
alent to write-only mode followed
by a seek to the end of the object.

IfxSmartBlob.LO_APPEND

Read/Write Allows read and write operations. IfxSmartBlob.LO_RDWR
3-30 Informix JDBC Driver Programmer’s Guide

IfxBblob and IfxCblob Classes
IfxSmartBlob Whence Values

Use the whence values in the following table with the IfxLoSeek() methods to
define the position within a smart large object to start a seek operation.

Here is an example of how to use a LO_SEEK_SET whence value:

IfxLobDescriptor loDesc = new IfxLobDescriptor(myConn);
IfxLocator loPtr = new IfxLocator();
IfxSmartBlob smb = new IfxSmartBlob(myConn);
int loFd = smb.IfxLoCreate(loDesc, smb.LO_RDWR, loPtr);
System.out.println("A Smart blob is created ..");
int n = smb.IfxLoWrite(loFd, fin, fileLength);
System.out.println("Wrote data from FileInputStream ..");
smb.IfxLoClose(loFd);
System.out.println("Closed the Smart Blob ..");
loFd = smb.IfxLoOpen(loPtr, smb.LO_RDWR);
long m = smb.IfxLoSeek(loFd, 200, smb.LO_SEEK_SET);

The writing position is set at an offset of 200 bytes from the beginning of the
smart large object.

IfxBblob and IfxCblob Classes
The IfxBblob and IfxCblob classes are a bridge between the way of handling
smart large object data described in Sun’s JDBC 2.0 specification and the
Informix extensions. The Informix extensions require an IfxLocator object to
identify a smart large object.

As described in Sun’s JDBC 2.0 specification, when you query a table
containing a BLOB or CLOB column, a Blob or Clob object is returned,
depending upon the column type. You can then use the JDBC 2.0 supporting
methods for Blob and Clob objects to access the smart large object.

Starting Seek Position Whence Value

Beginning of the smart large object IfxSmartBlob.LO_SEEK_SET

Current location in the smart large object IfxSmartBlob.LO_SEEK_CUR

End of the smart large object IfxSmartBlob.LO_SEEK_END
Manipulating Informix Data Types 3-31

IfxBblob and IfxCblob Classes
IfxBblob Class

The IfxBblob class implements the java.sql.Blob interface. In addition to the
methods defined by Sun, this class has the following Informix-specific
methods to support the Informix extensions for smart binary large objects.
Here are the signatures and descriptions of each extension:

public IfxBblob(IfxLocator loPtr)

This constructor creates an IfxBblob object from the IfxLocator
object loPtr.

public IfxLocator getLocator() throws SQLException

This method returns an IfxLocator object from an IfxBblob object.
You can then open, read, and write to the smart large object using the
IfxSmartBlob.IfxLoOpen(), IfxLoRead(), and IfxLoWrite()
methods.

IfxCblob Class

The IfxCblob class implements the java.sql.Clob interface. In addition to the
methods defined by Sun, this class has the following Informix-specific
methods to support the Informix extensions for smart binary large objects.
Here are the signatures and descriptions of each extension:

public IfxCblob(IfxLocator loPtr)

This constructor creates an IfxCblob object from the IfxLocator
object loPtr.

public IfxLocator getLocator() throws SQLException

This method returns an IfxLocator object from an IfxCblob object.
You can then open, read, and write to the smart large object using the
IfxSmartBlob.IfxLoOpen(), IfxLoRead(), and IfxLoWrite()
methods.
3-32 Informix JDBC Driver Programmer’s Guide

Caching Large Objects
Caching Large Objects
Whenever a BLOB, CLOB, TEXT, or BYTE object is fetched from the database
server, the data is cached into client memory. If the size of the large object is
bigger than the value in the LOBCACHE environment variable, the large
object data is stored in a temporary file. For more information about the
LOBCACHE variable, see “Memory Management of Large Objects” on
page 4-6.

Creating a Smart Large Object Example
The example in this section illustrates the following steps.

To create a smart large object

1. Create an IfxLobDescriptor object.

2. Create an IfxLocator object.

3. Create an IfxSmartBlob object.

4. Use the IfxSmartBlob.IfxLoCreate() method to create the smart
large object.

5. Use the IfxSmartBlob.IfxLoWrite() method to write the data into the
smart large object.

6. Close the smart large object using the IfxSmartBlob.IfxLoClose()
method.

7. Release the IfxLocator object on the server using the
IfxSmartBlob.IfxLoRelease() method.
Manipulating Informix Data Types 3-33

Inserting Data Example
The following code demonstrates these steps:

file = new File("data.dat");
FileInputStream fin = new FileInputStream(file);

byte[] buffer = new byte[200];;

IfxLobDescriptor loDesc = new IfxLobDescriptor(myConn);
IfxLocator loPtr = new IfxLocator();
IfxSmartBlob smb = new IfxSmartBlob(myConn);

// Now create the large object in server. Read the data from the file
// data.dat and write to the large object.
int loFd = smb.IfxLoCreate(loDesc, smb.LO_RDWR, loPtr);
System.out.println("A smart-blob is created ");
int n = fin.read(buffer);
if (n > 0)
n = smb.IfxLoWrite(loFd, buffer);
System.out.println("Wrote: " + n +" bytes into it");

// Close the large object and release the locator.
smb.IfxLoClose(loFd);
System.out.println("Smart-blob is closed ");
smb.IfxLoRelease(loPtr);
System.out.println("Smart Blob Locator is released ");

Inserting Data Example
After creating a smart large object, you must insert it into a BLOB or CLOB
column. You must convert the IfxLocator object to an IfxBblob or IfxCblob
object, depending upon the column type.

To insert a smart large object into a BLOB or CLOB column

1. Create an IfxBblob or IfxCblob object, as follows:
IfxBblob blb = new IfxBblob(loPtr);

The loPtr is an IfxLocator object obtained from one of the previous
sets of steps.

2. Use the PreparedStatement.setBlob() or setClob() method to insert
the Blob or Clob object into the table.
3-34 Informix JDBC Driver Programmer’s Guide

Retrieving Data Example
The following code demonstrates these steps:

String s = "insert into large_tab (col1, col2) values (?,?)";
pstmt = myConn.prepareStatement(s);
file = new File("data.dat");
FileInputStream fin = new FileInputStream(file);

byte[] buffer = new byte[200];;

IfxLobDescriptor loDesc = new IfxLobDescriptor(myConn);
IfxLocator loPtr = new IfxLocator();
IfxSmartBlob smb = new IfxSmartBlob(myConn);

// Create a smart large object in server
int loFd = smb.IfxLoCreate(loDesc, smb.LO_RDWR, loPtr);
System.out.println("A smart-blob has been created ");
int n = fin.read(buffer);
if (n > 0)
n = smb.IfxLoWrite(loFd, buffer);
smb.IfxLoClose(loFd);

System.out.println("Wrote: " + n +" bytes into it");
System.out.println("Smart-blob is closed ");

Blob blb = new IfxBblob(loPtr);
pstmt.setInt(1, 2); // set the Integer column
pstmt.setBlob(2, blb); // set the blob column
pstmt.executeUpdate();
System.out.println("Binding of smart large object to table is done");

pstmt.close();
smb.IfxLoRelease(loPtr);
System.out.println("Smart Blob Locator is released ");

Retrieving Data Example
The example in this section illustrates the following steps.

To use the Informix extensions to access a smart large object

1. Cast the java.sql.Blob or java.sql.Clob object to an IfxBblob or
IfxCblob object.

2. Use the IfxBblob.getLocator() or IfxCblob.getLocator() method to
extract an IfxLocator object.

3. Create an IfxSmartBlob object.

4. Use the IfxSmartBlob.IfxLoOpen() method to open the smart large
object.
Manipulating Informix Data Types 3-35

Retrieving Data Example
5. Use the IfxSmartBlob.IfxLoRead() method to read the data from the
smart large object.

6. Close the smart large object using the IfxSmartBlob.IfxLoClose()
method.

7. Release the IfxLocator object on the server using the
IfxSmartBlob.IfxLoRelease() method.

Standard JDBC ResultSet methods such as ResultSet.getBinaryStream(),
getAsciiStream(), getString(), getBytes(), getBlob(), and getClob() can fetch
BLOB or CLOB data from a table. The Informix extension classes can then
access the data.

The following code example shows how to access the smart large object data
using Informix extension classes:

byte[] buffer = new byte[200];
System.out.println("Reading data now ...");
try

{
int row = 0;
Statement stmt = myConn.createStatement();
ResultSet rs = stmt.executeQuery("Select * from demo_14");
while(rs.next())

{
row++;
String str = rs.getString(1);
InputStream value = rs.getAsciiStream(2);
IfxBblob b = (IfxBblob) rs.getBlob(2);
IfxLocator loPtr = b.getLocator();
IfxSmartBlob smb = new IfxSmartBlob(myConn);
int loFd = smb.IfxLoOpen(loPtr, smb.LO_RDONLY);

System.out.println("The Smart Blob is Opened for reading ..");
int number = smb.IfxLoRead(loFd, buffer, buffer.length);
System.out.println("Read total " + number + " bytes");
smb.IfxLoClose(loFd);
System.out.println("Closed the Smart Blob ..");
smb.IfxLoRelease(loPtr);
System.out.println("Locator is released ..");
}

rs.close();
}

catch(SQLException e)
{
System.out.println("Select Failed ...\n" +e.getMessage());
}

3-36 Informix JDBC Driver Programmer’s Guide

Manipulating Informix SERIAL and SERIAL8 Data Types
First, the rs.getBlob() method gets a Blob object. The casting is required to
convert the returned object to an IfxBblob object. Next, the IfxBblob.getLo-
cator() method gets an IfxLocator object from the IfxBblob object. After the
IfxLocator object is available, you can instantiate an IfxSmartBlob object and
use the IfxLoOpen() and IfxLoRead() methods to read the smart large object
data. Fetching Clob data is similar, but it uses the methods rs.getClob,
IfxCblob.getLocator, and so on.

If you use getBlob() or getClob() to fetch a BLOB column, you do not need to
use the Informix extensions to retrieve the actual BLOB content as outlined in
the preceding sample code. You can simply use Java.Blob.getBinaryStream()
or Java.Clob.getAsciiStream() to retrieve the content. Informix JDBC Driver
implicitly gets the content from the database server for you, using basically
the same steps as the sample code.

Manipulating Informix SERIAL and SERIAL8 Data
Types
Informix JDBC Driver provides support for the Informix SERIAL and SERIAL8
data types via the methods getSerial() and getSerial8(), which are part of the
implementation of the java.sql.Statement interface.

Since the SERIAL and SERIAL8 data types do not have an obvious mapping to
any JDBC API data types from the java.sql.Types class, you must import
Informix-specific classes into your Java program to be able to handle SERIAL
and SERIAL8 table columns. To do this, add the following import line to your
Java program:

import com.informix.jdbc.*

Use the getSerial() and getSerial8() methods after an INSERT statement to
return the serial value that was automatically inserted into the SERIAL or
SERIAL8 column of a table, respectively. The methods return 0 if any of the
following conditions are true:

■ The last statement was not an INSERT statement.

■ The table being inserted into does not contain a SERIAL or SERIAL8
column.

■ The INSERT statement has not executed yet.
Manipulating Informix Data Types 3-37

Manipulating Informix INTERVAL Data Types
If you execute the getSerial() or getSerial8() method after a CREATE TABLE
statement, the method returns 1 by default (assuming the new table includes
a SERIAL or SERIAL8 column). If the table does not contain a SERIAL or
SERIAL8 column, the method returns 0. If you assign a new serial starting
number, the method returns that number.

If you want to use the getSerial() and getSerial8() methods, you must cast the
Statement or PreparedStatement object to IfmxStatement, the Informix-
specific implementation of the Statement interface. The following example
shows how to perform the cast:

cmd = "insert into serialTable(i) values (100)";
stmt.executeUpdate(cmd);
System.out.println(cmd+"...okay");
int serialValue = ((IfmxStatement)stmt).getSerial();
System.out.println("serial value: " + serialValue);

If you want to insert consecutive serial values into a column of data type
SERIAL or SERIAL8, specify a value of 0 for the SERIAL or SERIAL8 column in
the INSERT statement. When the column is set to 0, the database server
assigns the next-highest value.

For more detailed information about the Informix SERIAL and SERIAL8 data
types, refer to Informix Guide to SQL: Reference and Informix Guide to SQL:
Syntax. You can find the on-line version of both of these guides at
http://www.informix.com/answers.

Manipulating Informix INTERVAL Data Types
The Informix INTERVAL data type stores a value that represents a span of
time. INTERVAL data types are divided into two types: year-month intervals
and day-time intervals. A year-month interval can represent a span of years
and months, and a day-time interval can represent a span of days, hours,
minutes, seconds, and fractions of a second. For more information about the
INTERVAL data type and definitions of qualifier, precision, and fraction, refer to
the following manuals:

■ Informix Guide to SQL: Tutorial

■ Informix Guide to SQL: Reference

■ Informix Guide to SQL: Syntax
3-38 Informix JDBC Driver Programmer’s Guide

The Interval Class
The Interval Class
The com.informix.lang.Interval class is an Informix-specific extension to the
JDBC 2.0 specification from Sun Microsystems. Interval is the base class for
the INTERVAL data type. Interval has two subclasses: IntervalYM (for year-
month qualifiers) and IntervalDF (for day-time qualifiers). You use these
subclasses to actually create and manipulate INTERVAL data types.

Variables for Binary Qualifiers

You can use string qualifiers to manipulate INTERVAL data types, but using
binary qualifiers results in faster performance. The following variables are
defined in the Interval base class and represent the time unit (start and end
code) of a field in the binary qualifier.

The IntervalYM and IntervalDF classes inherit these variables from the
Interval base class.

Variable Description

TU_YEAR Time unit for the YEAR qualifier field

TU_MONTH Time unit for the MONTH qualifier field

TU_DAY Time unit for the DAY qualifier field

TU_HOUR Time unit for the HOUR qualifier field

TU_MINUTE Time unit for the MINUTE qualifier field

TU_SECOND Time unit for the SECOND qualifier field

TU_FRAC Time unit for the leading FRACTION qualifier field

TU_F1 Time unit for the ending field of the first position of FRACTION

TU_F2 Time unit for the ending field of the second position of FRACTION

TU_F3 Time unit for the ending field of the third position of FRACTION

TU_F4 Time unit for the ending field of the fourth position of FRACTION

TU_F5 Time unit for the ending field of the fifth position of FRACTION
Manipulating Informix Data Types 3-39

The IntervalYM Class
Interval Methods

You can use the following methods to extract information about binary quali-
fiers. Here are the signatures and descriptions of each method:

public static byte getEndCode(short qualifier)

This method extracts the ending field code (one of the TU_XXX
variables) from a qualifier.

public static java.lang.String getFieldName(byte code)

This method takes the TU_XXX value of part of an interval and
returns the string value. For example, getFieldName(TU_YEAR)
returns the string YEAR.

public static java.lang.String getIfxTypeName(int type, short qual)

This method takes a qualifier and returns the entire name of the
interval in string form.

public static byte getLength(short qualifier)

This method extracts the length of a qualifier.
public static short getQualifier(byte length, byte startCode, byte endCode) throws

java.sql.SQLException

This method creates a binary qualifier from a length, start code
(TU_XXX), and end code (TU_XXX). For example, getQualifier(4,
TU_YEAR, TU_MONTH) creates a binary representation of the YEAR TO
MONTH qualifier.

public static byte getScale(short qualifier)

This method returns the number of digits in the FRACTION part of a
day-time qualifier.

public static byte getStartCode(short qualifier)

This method extracts the starting field code (one of the TU_XXX
variables) from a qualifier.

The IntervalYM and IntervalDF classes inherit these methods from Interval.

The IntervalYM Class
The com.informix.lang.IntervalYM class allows you to manipulate year-
month intervals.
3-40 Informix JDBC Driver Programmer’s Guide

The IntervalYM Class
IntervalYM Constructors

The following constructors allow you to create year-month intervals. Here
are the signatures and descriptions of each constructor:

public IntervalYM() throws java.sql.SQLException

This is the default constructor.
public IntervalYM(java.sql.Timestamp t1, java.sql.Timestamp t2) throws

java.sql.SQLException

This constructor creates an interval from two timestamps.
public IntervalYM(int years, int months) throws java.sql.SQLException

This constructor creates a year-month interval from year and month
values. Large month values are converted to years.

public IntervalYM(java.sql.String string) throws java.sql.SQLException

This constructor creates a year-month interval from a string. For
information about string INTERVAL formats, refer to the Informix
Guide to SQL: Syntax.

public IntervalYM(java.sql.String string, int length, byte startCode, byte
endCode) throws java.sql.SQLException

This constructor creates a year-month interval from a string and
qualifier information. For information about string INTERVAL
formats, refer to the Informix Guide to SQL: Syntax.
Manipulating Informix Data Types 3-41

The IntervalYM Class
IntervalYM Methods

The following methods allow you to manipulate year-month intervals. Here
are the signatures and descriptions of each method:

boolean equals(java.lang.Object other)

This method compares two intervals for equality.
void fromString(java.lang.String other)

This method sets the values for the interval from a string.
long getMonths()

This method returns the number of months in the interval.
boolean greaterThan(IntervalYM other)

This method compares the first interval to the second to see if the first
is longer.

boolean lessThan(IntervalYM other)

This method compares the first interval to the second to see if the
second is longer.

void set(int years, int months)

This method sets the values for the interval from year and month
values. Large month values are converted to years.

void set(java.lang.String string)

This method sets the values for the interval from a string.
void set(java.sql.Timestamp t1, java.sql.Timestamp t2)

This method sets the values for the interval from two timestamps.
void setQualifier(int length, byte startCode, byte endCode)

This method sets the qualifier from the length, start code, and end
code.

void setQualifier(short qualifier)

This method sets the qualifier using an existing qualifier.
java.lang.String toString()

This method creates a string representation of the interval in the
format yyyy-mm. The fields present depend on the qualifier. Blanks
replace leading zeros.
3-42 Informix JDBC Driver Programmer’s Guide

The IntervalDF Class
The IntervalDF Class
The com.informix.lang.IntervalDF class allows you to manipulate day-time
intervals.

IntervalDF Constructors

The following constructors allow you to create day-time intervals. Here are
the signatures and descriptions of each constructor:

public IntervalDF() throws java.sql.SQLException

This is the default constructor.
public IntervalDF(java.sql.Timestamp t1, java.sql.Timestamp t2) throws

java.sql.SQLException

This constructor creates an interval from two timestamps.
public IntervalDF(long seconds, long nanos) throws java.sql.SQLException

This constructor creates a day-time interval from second and
nanosecond values. Large second values are converted to minutes,
hours, or days.

public IntervalDF(java.sql.String string) throws java.sql.SQLException

This constructor creates a day-time interval from a string. For infor-
mation about string INTERVAL formats, refer to the Informix Guide to
SQL: Syntax.

public IntervalDF(java.sql.String string, int length, byte startCode, byte
endCode) throws java.sql.SQLException

This constructor creates a day-time interval from a string and
qualifier information. For information about string INTERVAL
formats, refer to the Informix Guide to SQL: Syntax.
Manipulating Informix Data Types 3-43

The IntervalDF Class
IntervalDF Methods

The following methods allow you to manipulate day-time intervals. Here are
the signatures and descriptions of each method:

boolean equals(java.lang.Object other)

This method compares two intervals for equality.
void fromString(java.lang.String other)

This method sets the values for the interval from a string.
long getNanoSeconds()

This method returns the number of nanoseconds in the interval.
long getSeconds()

This method returns the number of seconds in the interval.
boolean greaterThan(IntervalDF other)

This method compares the first interval to the second to see if the first
is longer.

boolean lessThan(IntervalDF other)

This method compares the first interval to the second to see if the
second is longer.

void set(long seconds, long nanos)

This method sets the values for the interval from second and
nanosecond values. Large second values are converted to minutes,
hours, or days.

void set(java.lang.String string)

This method sets the values for the interval from a string.
void set(java.sql.Timestamp t1, java.sql.Timestamp t2)

This method sets the values for the interval from two timestamps.
void setQualifier(int length, byte startCode, byte endCode)

This method sets the qualifier from the length, start code, and end
code.

java.lang.String toString()

This method creates a string representation of the interval in the
format ddddd hh:mm:ss.nano. The fields present depend on the
qualifier. Blanks replace leading zeros.
3-44 Informix JDBC Driver Programmer’s Guide

Interval Example
Interval Example
The Intervaldemo.java program, which is included in Informix JDBC Driver,
shows how to insert into and select from the two types of INTERVAL data
types.

Manipulating Informix Collections and Arrays
Sun’s JDBC 2.0 specification describes only one method to exchange
collection data between a Java client and a relational database: an array.

Because the array interface does not include a constructor, Informix JDBC
Driver includes an extension that allows a java.util.Collection object to be
used in the PreparedStatement.setObject() and ResultSet.getObject()
methods. If you prefer to use an Array object, use the Prepared-
Statement.setArray() and ResultSet.getArray() methods.

By default, the driver maps LIST columns to java.util.ArrayList objects and
SET and MULTISET columns to java.util.HashSet objects during a fetch. You
can override these defaults, but the class you use must implement the
java.util.Collection interface.

To override this default mapping, you can use other classes in the
java.util.Collection interface, such as the TreeSet class. You can also create
your own classes that implement the java.util.Collection interface. In either
case, you must provide a customized type map using the
Connection.setTypeMap() method.

During an INSERT operation, any java.util.Collection object that is an
instance of the java.util.Set interface is mapped to an Informix MULTISET
data type. An instance of the java.util.List interface is mapped to an Informix
LIST data type. You can override these defaults by creating a customized type
mapping.

For information about customized type mappings, see “Mapping Data
Types” on page 3-65.
Manipulating Informix Data Types 3-45

Collection Examples
Important: Sets are by definition unordered. If you select collection data using a
HashSet object, the order of the elements in the HashSet object might not be the
same as the order specified when the set was inserted. For example, if the data on the
database server is the set {1, 2, 3}, it might be retrieved into the HashSet object as
{3, 2, 1} or any other order.

Collection Examples
Here is the database schema:

create table tab (a set(integer not null), b integer);
insert into tab values ("set{1, 2, 3}", 10);

Here is a fetch example using a java.util.HashSet object. The complete
demonstration is in the demo5.java file in the complex-types directory. For
more information, see Appendix A, “Sample Code Files.”

java.util.HashSet set;

PreparedStatement pstmt;
ResultSet rs;
pstmt = conn.prepareStatement("select * from tab");
System.out.println("prepare ... ok");
rs = pstmt.executeQuery();
System.out.println("executeQuery ... ok");

rs.next();
set = (HashSet) rs.getObject(1);
System.out.println("getObject() ... ok");

/* The user can now use HashSet.iterator() to extract
 * each element in the collection.
 */
Iterator it = set.iterator();
Object obj;
Class cls = null;
int i = 0;
while (it.hasNext())

{
obj = it.next();
if (cls == null)

{
cls = obj.getClass();
System.out.println(" Collection class: " + cls.getName());
}

System.out.println(" element[" + i + "] = " +
obj.toString());
i++;
}

pstmt.close();
3-46 Informix JDBC Driver Programmer’s Guide

Collection Examples
In the set = (HashSet) rs.getObject(1) statement of this example,
Informix JDBC Driver gets the type for column 1. Because it is a SET type, a
HashSet object is instantiated. Next, each collection element is converted into
a Java object and inserted into the collection.
Manipulating Informix Data Types 3-47

Collection Examples
Here is a fetch example using a java.util.TreeSet object. The complete
demonstration is in the demo6.java file in the complex-types directory. For
more information, see Appendix A, “Sample Code Files.”

java.util.TreeSet set;

PreparedStatement pstmt;
ResultSet rs;

/*
 * Fetch a SET as a TreeSet instead of the default
 * HashSet. In this example a new java.util.Map object has
 * been allocated and passed in as a parameter to getObject().
 * Connection.getTypeMap() could have been used as well.
 */
java.util.Map map = new HashMap();
map.put("set", Class.forName("java.util.TreeSet"));
System.out.println("mapping ... ok");

pstmt = conn.prepareStatement("select * from tab");
System.out.println("prepare ... ok");
rs = pstmt.executeQuery();
System.out.println("executeQuery ... ok");

rs.next();
set = (TreeSet) rs.getObject(1, map);
System.out.println("getObject(Map) ... ok");

/* The user can now use HashSet.iterator() to extract
 * each element in the collection.
 */
Iterator it = set.iterator();
Object obj;
Class cls = null;
int i = 0;
while (it.hasNext())

{
obj = it.next();
if (cls == null)

{
cls = obj.getClass();
System.out.println(" Collection class: " + cls.getName());
}

System.out.println(" element[" + i + "] = " +
obj.toString());
i++;
}

pstmt.close();

In the map.put("set", Class.forName("java.util.TreeSet"));
statement, the default mapping of set = HashSet is overridden.
3-48 Informix JDBC Driver Programmer’s Guide

Array Example
In the set = (TreeSet) rs.getObject(1, map) statement, Informix JDBC
Driver gets the type for column 1 and finds that it is a SET object. Then the
driver looks up the type mapping information, finds TreeSet, and instan-
tiates a TreeSet object. Next, each collection element is converted into a Java
object and inserted into the collection.

Here is an example of an insert. The complete demonstration is in the
demo7.java file in the complex-types directory. For more information, see
Appendix A, “Sample Code Files.”

java.util.HashSet set = new HashSet();
Integer intObject;
int i;

/* Populate the Java collection */
for (i=0; i < 5; i++)

{
intObject = new Integer(i);
set.add(intObject);
}

System.out.println("populate java.util.HashSet...ok");

PreparedStatement pstmt = conn.prepareStatement
("insert into tab values (?, 20)");

System.out.println("prepare...ok");

pstmt.setObject(1, set);
System.out.println("setObject()...ok");
pstmt.executeUpdate();
System.out.println("executeUpdate()...ok");
pstmt.close();

The pstmt.setObject(1, set) method in this example first serializes each
element of the collection. Next, the type information is constructed as each
element is converted into a Java object. If the types of any elements in the
collection do not match the type of the first element, an exception is thrown.
The type information is sent to the database server.

Array Example
Here is the database schema:

create table tab (a set(integer not null), b integer);
insert into tab values ("set{1, 2, 3}", 10);
Manipulating Informix Data Types 3-49

Manipulating Informix Named and Unnamed Rows
Here is a fetch example using a java.sql.Array object. The complete demon-
stration is in the demo8.java file in the complex-types directory. For more
information, see Appendix A, “Sample Code Files.”

PreparedStatement pstmt = conn.prepareStatement("select a from tab");
System.out.println("prepare ... ok");
ResultSet rs = pstmt.executeQuery();
System.out.println("executeQuery ... ok");

rs.next();
java.sql.Array array = rs.getArray(1);
System.out.println("getArray() ... ok");
pstmt.close();

/*
 * The user can now materialize the data into either
 * an array or else a ResultSet. If the collection elements
 * are primitives then the array should be an array of primitives,
 * not Objects. Mapping data can be provided at this point.
 */
Object obj = array.getArray((long) 1, 2);

int [] intArray = (int []) obj;// cast it to an array of ints
int i;
for (i=0; i < intArray.length; i++)

{
System.out.println("integer element = " + intArray[i]);
}

pstmt.close();

The java.sql.Array array = rs.getArray(1) statement instantiates a
java.sql.Array object. Data is not converted at this point.

The Object obj = array.getArray((long) 1, 2); statement converts
data into an array of integers (primitive int types, not Integer objects).
Because the getArray() method has been called with index and count values,
only a subset of data is returned.

Manipulating Informix Named and Unnamed Rows
Sun’s JDBC 2.0 specification refers to an SQL type called a structured type or
struct, which is equivalent to an Informix named row. The specification defines
two approaches to exchange structured type data between a Java client and
a relational database:
3-50 Informix JDBC Driver Programmer’s Guide

Using the SQLData Interface
■ Using the SQLData interface. A single Java class per named row
type implements the SQLData interface. The class has a member for
each element in the named row.

■ Using the Struct interface. This interface instantiates the necessary
Java object for each element in the named row and constructs an
array of java.util.Object Java objects.

Whether Informix JDBC Driver instantiates a Java object or a Struct object for
a fetched named row depends on whether there is a customized type-
mapping entry or not, as follows:

■ If there is an entry for a named row in the Connection.getTypeMap()
map, or if you provided a type mapping using the getObject()
method, a single Java object is instantiated.

■ If there is no entry for a named row in the Connection.getTypeMap()
map, and if you have not provided a type mapping using the
getObject() method, a Struct object is instantiated.

Unnamed rows are always fetched into Struct objects.

Important: Regardless of whether you use the SQLData or Struct interface, if a
named or unnamed row contains an opaque data type column, there must be a type-
mapping entry for it. If you are using the Struct interface to access a row that
contains an opaque data type column, you need a customized type map for the opaque
data type column, but not for the row as a whole.

For more information about custom type mapping, see “Mapping Data
Types” on page 3-65.

Using the SQLData Interface
The Java class for the named row must implement the SQLData interface.
The class must have a member for each element in the named row. The class
can have other members in addition to these. The members can be in any
order and need not be public. The class must implement the writeSQL(),
readSQL(), and getSQLTypeName() methods as defined in the SQLData
interface, and can implement additional methods. You can use the ClassGen-
erator utility to create the class; for more information, see “The
ClassGenerator Utility” on page 3-62.
Manipulating Informix Data Types 3-51

Using the Struct Interface
To link this Java class with the named row, create a customized type mapping
using the Connection.setTypeMap() method or the getObject() method. For
more information about type mapping, see “Mapping Data Types” on
page 3-65.

You cannot use the SQLData interface to access unnamed rows.

Using the Struct Interface
The JDBC 2.0 documentation does not specify that Struct objects can be
parameters to the PreparedStatement.setObject() method. However,
Informix JDBC Driver can handle any object passed by the Prepared-
Statement.setObject() or ResultSet.getObject() method that implements the
java.sql.Struct interface.

You must use the Struct interface to access unnamed rows.

You do not need to create your own class to implement the Struct interface.
However, if you do not create your own class, you must perform a fetch to
retrieve the ROW data and type information before you can insert or update
the ROW data.

If you create your own class to implement the java.sql.Struct interface, the
class you create has to implement all the java.sql.Struct methods, including
the getSQLTypeName() method.

If you do not create your own Struct class, Informix JDBC Driver automati-
cally calls the getSQLTypeName() method. In this case, this method returns
the type name for a named row or the row definition for an unnamed row. If
you create your own class, however, you can choose what the getSQL-
TypeName() method returns.

You have to return the row definition for unnamed rows, but you can return
the row name or the row definition for named rows. Each has advantages:

■ Row definition. The driver does not need to query the database
server for the type information. In addition, the row definition
returned does not have to match the named row definition exactly,
because the database server provides casting, if needed. This is
useful if you want to use strings to insert into an opaque type in a
row, for example.
3-52 Informix JDBC Driver Programmer’s Guide

Interval and Collection Support
■ Row name. If a user-defined routine takes a named row as a
parameter, the signature has to match, so you must pass in a named
row. For more information about user-defined routines, see the
Informix Guide to SQL: Reference or the Informix Guide to SQL: Syntax.

Important: If you use the Struct interface for a named row and provide type-
mapping information for the named row, a ClassCastException message is
generated when the ResultSet.getObject() method is called, because Java cannot
cast between an SQLData object and a Struct object.

Interval and Collection Support
Informix has extended the java.sql.SQLOutput and java.sql.SQLInput
methods to support Collection and Interval objects in named and unnamed
rows. These extensions include the following methods:

■ The com.informix.jdbc.IfmxComplexSQLInput.readObject()
method returns the appropriate java.util.Collection object if the data
is a SET, LIST, or MULTISET data type. This method returns the appro-
priate IntervalYM or IntervalDF object for an INTERVAL data type,
depending on the qualifier.

■ The com.informix.jdbc.IfmxComplexSQLOutput.writeObject()
method accepts objects derived from the java.util.Collection
interface or from IntervalYM and IntervalDF objects.

Caching Type Information
When a Struct or SQLData object inserts data into a ROW column and
getSQLTypeName() returns the name of a named row, Informix JDBC Driver
uses the type information to verify that the data provided matches the data
the database server expects. The driver asks the database server for the type
information each time.

However, you can set an environment variable in the database URL,
ENABLE_CACHE_TYPE=1, so the driver caches the type information the first
time it is retrieved. In this case, Informix JDBC Driver asks the cache for the
type information before it requests the data from the database server.
Manipulating Informix Data Types 3-53

SQLData Examples
SQLData Examples
The following example includes a Java class that implements the
java.sql.SQLData interface.

Here is the database schema:

Create row type fullname_t (first char(20), last char(20));
Create row type person_t (id int, name fullname_t, age int);
Create table teachers (person person_t, dept char (20));
Insert into teachers values ("row(100, row('Bill', 'Smith'), 27)", "physics");

Here is the fullname Java class:

import java.sql.*;
public class fullname implements SQLData
{

public String first;
public String last;
private String sql_type = "fullname_t";

public String getSQLTypeName()
{

return sql_type;
}
public void readSQL (SQLInput stream, String type) throws SQLException
{

sql_type = type;
first = stream.readString();
last = stream.readString();

}
public void writeSQL (SQLOutput stream) throws SQLException
{

stream.writeString(first);
stream.writeString(last);

}
/*

 * Function not required by SQLData interface, but makes
 * it easier for displaying results.
 */

public String toString()
{

String s = "fullname: ";
s += "first: " + first + " last: " + last;
return s;

}
}

Here is the person Java class:

import java.sql.*;
public class person implements SQLData
{

3-54 Informix JDBC Driver Programmer’s Guide

SQLData Examples
public int id;
 public fullname name;
 public int age;
 private String sql_type = "person_t";

public String getSQLTypeName()
{

return sql_type;
}
public void readSQL (SQLInput stream, String type) throws SQLException
{

sql_type = type;
id = stream.readInt();
name = (fullname)stream.readObject();
age = stream.readInt();

}
public void writeSQL (SQLOutput stream) throws SQLException
{

stream.writeInt(id);
stream.writeObject(name);
stream.writeInt(age);

}
public String toString()
{

String s = "person:";
s += "id: " + id + "\n";
s += " name: " + name.toString() + "\n";
s += " age: " + age + "\n";
return s;

}
}

Manipulating Informix Data Types 3-55

SQLData Examples
Here is an example of fetching a named row. The complete demonstration is
in the demo1.java file in the complex-types directory. For more information,
see Appendix A, “Sample Code Files.”

java.util.Map map = conn.getTypeMap();
conn.setTypeMap(map);
map.put("fullname_t", Class.forName("fullname"));
map.put("person_t", Class.forName("person"));
...
PreparedStatement pstmt;
ResultSet rs;
pstmt = conn.prepareStatement("select person from teachers");
System.out.println("prepare ...ok");

rs = pstmt.executeQuery();
System.out.println("executetQuery()...ok");

while (rs.next())
{
person who = (person) rs.getObject(1);
System.out.println("getObject()...ok");
System.out.println("Data fetched:");
System.out.println("row: " + who.toString());
}

pstmt.close();

The conn.getTypeMap() method returns the named row mapping infor-
mation from the java.util.Map object through the Connection object.

The map.put() method registers the mappings between the nested named
row on the database server, fullname_t, and the Java class fullname, and
between the named row on the database server, person_t, and the Java class
person.

The person who = (person) rs.getObject(1) statement retrieves the
named row into the Java object who. Informix JDBC Driver recognizes that
this object who is a named row, a distinct type, or an opaque type, because
the information sent by the database server has an extended name of
person_t. The driver looks up person_t and finds out it is a named row. The
driver calls the map.get() method with the key person_t, which returns the
person class object. An object of class person is instantiated.

The readSQL() method in the person class calls methods defined in the
SQLInput interface to convert each field in the ROW column into a Java
object and assign each to a member in the person class.
3-56 Informix JDBC Driver Programmer’s Guide

SQLData Examples
Here is an example method for inserting a Java object into a named row
column using the setObject() method. The complete demonstration is in the
demo2.java file in the complex-types directory. For more information, see
Appendix A, “Sample Code Files.”

java.util.Map map = conn.getTypeMap();
map.put("fullname_t", Class.forName("fullname"));
map.put("person_t", Class.forName("person"));
...
PreparedStatement pstmt;
System.out.println("Populate person and fullname objects");
person who = new person();
fullname name = new fullname();
name.last = "Jones";
name.first = "Sarah";
who.id = 567;
who.name = name;
who.age = 17;

String s = "insert into teachers values (?, 'physics')";
pstmt = conn.prepareStatement (s);
System.out.println("prepared...ok");

pstmt.setObject(1, who);
System.out.println("setObject()...ok");

int rowcount = pstmt.executeUpdate();
System.out.println("executeUpdate()...ok");
pstmt.close();

The conn.getTypeMap() method returns the named row mapping infor-
mation from the java.util.Map object through the Connection object.

The map.put() method registers the mappings between the nested named
row on the database server, fullname_t, and the Java class fullname, and
between the named row on the database server, person_t, and the Java class
person.

Informix JDBC Driver recognizes that the object who implements the
SQLData interface, so it is either a named row, a distinct type, or an opaque
type. Informix JDBC Driver calls the getSQLTypeName() method for this
object (required for classes implementing the SQLData interface), which
returns person_t. The driver looks up person_t and finds out it is a named
row.
Manipulating Informix Data Types 3-57

Struct Examples
The writeSQL() method in the person class calls the corresponding
SQLOutput.writeXXX() method for each member in the class, each of which
maps to one field in the named row person_t. The writeSQL() method in the
class contains calls to the SQLOutput.writeObject(name) and
SQLOutput.writeInt(id) methods. Each member of the class person is
serialized and written into a stream.

Struct Examples
This example fetches an unnamed ROW column. Here is the database
schema:

Create table teachers
(
person row(

id int,
name row(first char(20), last char(20)),
age int
),

dept char(20)
);

Insert into teachers values ("row(100, row('Bill', 'Smith'), 27)", "physics");
3-58 Informix JDBC Driver Programmer’s Guide

Struct Examples
Here is the rest of the example. The complete demonstration is in the
demo3.java file in the complex-types directory. For more information, see
Appendix A, “Sample Code Files.”

PreparedStatement pstmt;
ResultSet rs;
pstmt = conn.prepareStatement("select person from teachers");
System.out.println("prepare ...ok");
rs = pstmt.executeQuery();
System.out.println("executetQuery()...ok");

rs.next();
Struct person = (Struct) rs.getObject(1);
System.out.println("getObject()...ok");
System.out.println("\nData fetched:");

Integer id;
Struct name;
Integer age;
Object[] elements;

/* Get the row description */
String personRowType = person.getSQLTypeName();
System.out.println("person row description: " + personRowType);
System.out.println("");

/* Convert each element into a Java object */
elements = person.getAttributes();

/*
 * Run through the array of objects in 'person' getting out each structure
 * field. Use the class Integer instead of int, because int is not an object.
 */
id = (Integer) elements[0];
name = (Struct) elements[1];
age = (Integer) elements[2];
System.out.println("person.id: " + id);
System.out.println("person.age: " + age);
System.out.println("");

/* Convert 'name' as well. */
/* get the row definition for 'name' */
String nameRowType = name.getSQLTypeName();
System.out.println("name row description: " + nameRowType);

/* Convert each element into a Java object */
elements = name.getAttributes();

/*
 * run through the array of objects in 'name' getting out each structure
 * field.
 */
String first = (String) elements[0];
String last = (String) elements[1];
Manipulating Informix Data Types 3-59

Struct Examples
System.out.println("name.first: " + first);
System.out.println("name.last: " + last);
pstmt.close();

The Struct person = (Struct) rs.getObject(1) statement instantiates
a Struct object if column 1 is a ROW type and there is no extended data type
name (if it is a named row).

The elements = person.getAttributes(); statement performs the
following actions:

■ Allocates an array of java.lang.Object objects with the correct
number of elements.

■ Converts each element in the row into a Java object. If the element is
an opaque type, you must provide type mapping in the Connection
object or pass in a java.util.Map object in the call to the getAt-
tributes() method.

The String personrowType = person.getSQLTypeName(); statement
returns the row type information. If this type is a named row, the statement
returns the name. Because the type is not a named row, the statement returns
the row definition: row(int id, row(first char(20), last char(20)) name, int
age).

The example then goes through the same steps for the unnamed row name
as it did for the unnamed row person.
3-60 Informix JDBC Driver Programmer’s Guide

Struct Examples
The following example uses a user-created class, GenericStruct, that imple-
ments the java.sql.Struct interface. As an alternative, you can use a Struct
object returned from the ResultSet.getObject() method instead of the Gener-
icStruct class.

import java.sql.*;
import java.util.*;
public class GenericStruct implements java.sql.Struct
{

private Object [] attributes = null;
private String typeName = null;

/*
 * Constructor
 */
GenericStruct() { }

GenericStruct(String name, Object [] obj)
{

typeName = name;
attributes = obj;

}
public String getSQLTypeName()
{

return typeName;
}
public Object [] getAttributes()
{

return attributes;
}
public Object [] getAttributes(Map map) throws SQLException
{

// this class shouldn't be used if there are elements
// that need customized type mapping.
return attributes;

}
public void setAttributes(Object [] objArray)
{

attributes = objArray;
}
public void setSQLTypeName(String name)
{

typeName = name;
}

} /* GenericStruct class */
Manipulating Informix Data Types 3-61

Struct Examples
The following Java program inserts a ROW column. The complete demon-
stration is in the demo4.java file in the complex-types directory. For more
information, see Appendix A, “Sample Code Files.”

PreparedStatement pstmt;
ResultSet rs;
GenericStruct gs;
String rowType;

pstmt = conn.prepareStatement("insert into teachers values (?, 'Math')");
System.out.println("prepare insert...ok\n");

System.out.println("Populate name struct...");
Object[] name = new Object[2];

// populate inner row first
name[0] = new String("Jane");
name[1] = new String("Smith");

rowType = "row(first char(20), last char(20))";
gs = new GenericStruct(rowType, name);
System.out.println("Instantiate GenericStructObject...okay\n");

System.out.println("Populate person struct...");
// populate outer row next
Object[] person = new Object[3];
person[0] = new Integer(99);
person[1] = gs;
person[2] = new Integer(56);

rowType = "row(id int, " +
"name row(first char(20), last char(20)), " +
"age int)";

gs = new GenericStruct(rowType, person);
System.out.println("Instantiate GenericStructObject...okay\n");

pstmt.setObject(1, gs);
System.out.println("setObject()...okay");
pstmt.executeUpdate();
System.out.println("executeUpdate()...okay");
pstmt.close();

At the pstmt.setObject(1, struct) method in this example, Informix JDBC
Driver determines that the information is to be transported from the client to
the database server as a ROW column, because the GenericStruct object is an
instance of the java.sql.Struct interface.

Each element in the array is serialized, verifying that each element matches
the type as defined by the getSQLTypeName() method.
3-62 Informix JDBC Driver Programmer’s Guide

The ClassGenerator Utility
The ClassGenerator Utility
The ClassGenerator utility generates a Java class for a named row type
defined in the system catalog. It is an Informix extension to Sun’s JDBC 2.0
specification.

The created Java class implements the java.sql.SQLData interface. The class
has members for each field in the named row, and the readSQL(),
writeSQL(), and SQLData.readSQL() methods read the attributes in the
order in which they appear in the definition of the named row type in the
database. Similarly, writeSQL() writes the data to the stream in that order.

ClassGenerator is packaged in the ifxtools.jar file, so the CLASSPATH
environment variable must point to ifxtools.jar.

Here is the ClassGenerator usage:

java ClassGenerator rowtypename [-u URL] [-c classname]

The default value for classname is the value for rowtypename.

If the URL parameter is not specified, the required information is retrieved
from the setup.std file in the home directory.

Here is the structure of setup.std:

URL jdbc:host-name:port-number
informixserver informixservername
database database
user user
passwd password

Simple Named Row

First you create the named row on the database server:

create row type employee (name char (20), age int);

Next, you run the class generation:

java ClassGenerator employee
Manipulating Informix Data Types 3-63

The ClassGenerator Utility
The class generator generates employee.java, as shown next, and retrieves
the database URL information from setup.std, which has the following
contents:

URL jdbc:davinci:1528
database test
user scott
passwd tiger
informixserver picasso_ius

Here is the generated .java file:

import java.sql.*;
import java.math.*;
public class employee implements SQLData
{

public String name;
public int age;
private String sql_type;

public String getSQLTypeName() { return "employee"; }

public void readSQL (SQLInput stream, String type) throws SQLException
{

sql_type = type;
name = stream.readString();
age = stream.readInt();

}

public void writeSQL (SQLOutput stream) throws SQLException
{

stream.writeString(name);
stream.writeInt(age);

}
}

Nested Named Row

First, you create the named row on the database server:

create row type manager (emp employee, salary int);

Next, you run the class generation. In this case, the setup.std file is not
consulted, because you provide all the needed information at the command
line:

java ClassGenerator manager -c Manager -u "jdbc:davinci:1528/test:user=scott;
password=tiger;informixserver=picasso_ius"
3-64 Informix JDBC Driver Programmer’s Guide

Unsupported Methods
The -c option defines the Java class you are creating, which is Manager (with
uppercase M).

The preceding command generates the following Java class:

import java.sql.*;
import java.math.*;
public class Manager implements SQLData
{

public employee emp;
public int salary;
private String sql_type;

public String getSQLTypeName() { return "manager"; }

public void readSQL (SQLInput stream, String type) throws SQLException
{

sql_type = type;
emp = (employee)stream.readObject();
salary = stream.readInt();

}

public void writeSQL (SQLOutput stream) throws SQLException
{

stream.writeObject(emp);
stream.writeInt(salary);

}
}

Unsupported Methods
The following SQLInput methods are not supported for selecting a ROW
column into a Java object that implements SQLData:

■ readByte()

■ readCharacterStream()

■ readRef()

The following SQLOutput methods are not supported for inserting a Java
object that implements SQLData into a ROW column:

■ writeByte(byte)

■ writeCharacterStream(java.io.Reader x)

■ writeRef(Ref x)
Manipulating Informix Data Types 3-65

Mapping Data Types
Mapping Data Types
This section discusses mapping issues between data types defined in a Java
program and the data types supported by the Informix database server. In
particular, it covers the following topics:

■ Mapping between JDBC API data types and Informix data types, next

■ PreparedStatement.setXXX() methods supported by Informix JDBC
Driver on page 3-68.

■ ResultSet.getXXX() methods supported by Informix JDBC Driver on
page 3-77.

Mapping Between Informix and JDBC Data Types
Since there are variations between the SQL data types supported by each
database vendor, the JDBC API defines a set of generic SQL data types in the
class java.sql.Types. Use these JDBC API data types to reference generic SQL
types in your Java programs that use the JDBC API to connect to Informix
databases.

The following table shows the Informix data type to which each JDBC API
data type maps.

JDBC API Data Type Informix Data Type

BIGINT INT8

BINARY BYTE

BIT Not supported

CHAR CHAR(n)

DATE DATE

DECIMAL DECIMAL

DOUBLE FLOAT

FLOAT SMALLFLOAT

(1 of 2)
3-66 Informix JDBC Driver Programmer’s Guide

Mapping Between Informix and JDBC Data Types
The LONGVARBINARY and LONGVARCHAR JDBC types can also map to
Informix BLOB and CLOB types, respectively.

Important: Informix JDBC Driver maps java.sql.Timestamp to the Informix type
DATETIME YEAR TO FRACTION(5) and java.sql.Time to the Informix type
DATETIME HOUR TO SECOND. Informix DATETIME types are very restrictive and
are not interchangeable. If you attempt to map java.sql.Time to DATETIME YEAR
TO FRACTION(5) or java.sql.Timestamp to DATETIME HOUR TO SECOND, you
might get an error from the Informix database server. Any other DATETIME quali-
fiers are not supported.

Important: The Ref type is not supported by Informix servers.

INTEGER INTEGER

LONGVARBINARY BYTE

LONGVARCHAR TEXT

NUMERIC DECIMAL

REAL SMALLFLOAT

SMALLINT SMALLINT

TIME DATETIME

TIMESTAMP DATETIME

TINYINT SMALLINT

VARBINARY BYTE

VARCHAR VARCHAR(m,r)

JDBC API Data Type Informix Data Type

(2 of 2)
Manipulating Informix Data Types 3-67

Mapping Between Informix and JDBC Data Types
The following table lists mappings between the extended data types
supported in Informix Dynamic Server with Universal Data Option and the
corresponding Java and JDBC types.

JDBC Type Java Object Type Informix Type

java.sql.Types.OTHER

java.sql.Types.SMALLINT

boolean

smallint

BOOLEAN

IfxTypes.IFX_TYPE_BOOL

java.sql.Types.LONGVARCHAR java.sql.String

java.io.inputStream

LVARCHAR

IfxTypes.IFX_TYPE_LVARCHAR

java.sql.Types.JAVA_OBJECT java.sql.SQLData opaque type

IfxTypes.IFX_TYPE_UDTFIXED

IfxTypes.IFX_TYPE_UDTVAR

java.sql.Types.LONGVARBINARY

java.sql.Types.BLOB

java.sql.Blob

java.io.inputStream

byte[]

BLOB

IfxTypes.IFX_TYPE_BLOB

java.sql.Types.LONGVARCHAR

java.sql.Types.CLOB

java.sql.Clob

java.io.inputStream

java.lang.String

CLOB

IfxTypes.IFX_TYPE_CLOB

java.sql.Types.LONGVARBINARY

java.sql.Types.BLOB

java.io.inputStream

java.sql.Blob

byte[]

BYTE

IfxTypes.IFX_TYPE_BYTE

java.sql.Types.LONGVARCHAR

java.sql.Types.CLOB

java.io.InputStream

java.sql.Clob

java.sql.String

TEXT

IfxTypes.IFX_TYPE_TEXT

java.sql.Types.JAVA_OBJECT

java.sql.Types.STRUCT

java.sql.SQLData

java.sql.Struct

named row

IfxTypes.IFX_TYPE_ROW

(1 of 2)
3-68 Informix JDBC Driver Programmer’s Guide

PreparedStatement.setXXX() Extensions
A Java boolean object can map to a smallint object or an Informix BOOLEAN
data type. Informix JDBC Driver attempts to map it according to the column
type. However, in cases such as PreparedStatement host variables, Informix
JDBC Driver cannot access the column types, so the mapping is somewhat
limited. Refer to “PreparedStatement.setXXX() Extensions,” next, for more
details on data type mapping.

PreparedStatement.setXXX() Extensions
Informix Dynamic Server with Universal Data Option introduces many
extended data types, such as BLOB, CLOB, BOOLEAN, LVARCHAR, and
opaque types. As a result, there can be multiple mappings between a JDBC or
Java data type and the corresponding Informix data type.

For example, you can use PreparedStatement.setAsciiStream() to insert into
either a TEXT column or a CLOB column. Similarly, you can also use
PreparedStatement.setBinaryStream() to insert into a BYTE column or a
BLOB column. Because the actual column information is not available to
Informix JDBC Driver at all times, there can be ambiguity for the driver when
it maps data types.

Normally, with INSERT, SELECT, or DELETE statements, the column infor-
mation is available to the driver, so the driver can determine how the data can
be sent to the database server.

java.sql.Types.STRUCT java.sql.Struct unnamed row

IfxTypes.IFX_TYPE_ROW

java.sql.Types.ARRAY

java.sql.Types.OTHER

java.sql.Array

java.util.LinkedList

java.util.HashSet

java.util.TreeSet

SET, MULTISET

IfxTypes.IFX_TYPE_SET

IfxTypes.IFX_TYPE_MULTISET

java.sql.Types.ARRAY

java.sql.Types.OTHER

java.sql.Array

java.util.ArrayList

java.util.LinkedList

LIST

IfxTypes.IFX_TYPE_LIST

JDBC Type Java Object Type Informix Type

(2 of 2)
Manipulating Informix Data Types 3-69

PreparedStatement.setXXX() Extensions
However, when the data is referenced in an UPDATE statement or inside a
WHERE clause, Informix JDBC Driver does not have access to the column
information. In those cases, unless you use the extended methods listed next,
the driver maps those data columns using the corresponding pre-Universal
Data Option data types listed in the table on page 3-65. For the Prepared-
Statement.setAsciiStream() method, the driver tries to map to a TEXT data
type, and for the PreparedStatement.setBinaryStream() method, it tries to
map to a BYTE data type.

To direct the driver to map to a certain data type (so there is no ambiguity in
UPDATE statements and WHERE clauses), you can use extensions to the
PreparedStatement.setXXX() methods. The Informix type must be the last
parameter to the standard JDBC PreparedStatement.setXXX() interface.

The only data types that might have ambiguity are BOOLEAN, LVARCHAR,
TEXT, BYTE, BLOB, and CLOB. Refer to the data type mapping table on page
3-67 for more details on how these extended data types are mapped to Java
and JDBC types.

The Mapping Extensions

The java.sql.PreparedStatement interface enables you to map to a specific
Informix data type in cases that might result in ambiguity when you are
inserting or updating data. The extensions are listed here. Each extension is
followed by its full signature.

The setXXX Methods

IfmxPreparedStatement.setArray()

public void setArray(int parameterIndex, java.sql.Array x, int ifxType) throws
SQLException

IfmxPreparedStatement.setAsciiStream()

public void setAsciiStream(int i, InputStream x, int length, int ifxType) throws
SQLException

IfmxPreparedStatement.setBigDecimal()

public void setBigDecimal(int i, java.math.BigDecimal x, int ifxType)
throws SQLException
3-70 Informix JDBC Driver Programmer’s Guide

PreparedStatement.setXXX() Extensions
IfmxPreparedStatement.setBinaryStream()

public void setBinaryStream(int i, InputStream x, int length, int ifxType) throws
SQLException

IfmxPreparedStatement.setBlob()

public void setBlob(int parameterIndex, Blob x, int ifxType) throws SQLException

IfmxPreparedStatement.setBoolean()

public void setBoolean(int i, boolean x, int ifxType) throws SQLException

IfmxPreparedStatement.setByte()

public void setByte(int i, byte x, int ifxType) throws SQLException

IfmxPreparedStatement.setBytes()

public void setBytes(int i, byte x[], int ifxType) throws SQLException

IfmxPreparedStatement.setCharacterStream()

public void setCharacterStream(int parameterIndex, java.io.Reader reader,
int length, int ifxType) throws SQLException

IfmxPreparedStatement.setClob()

public void setClob(int parameterIndex, Clob x, int ifxType) throws SQLException

IfmxPreparedStatement.setDate()

public void setDate(int i, Date x, int ifxType) throws SQLException

IfmxPreparedStatement.setDate()

public void setDate(int parameterIndex, java.sql.Date x, Calendar Cal,
int ifxType) throws SQLException

IfmxPreparedStatement.setDouble()

public void setDouble(int i, double x, int ifxType) throws SQLException

IfmxPreparedStatement.setFloat()

public void setFloat(int i, float x, int ifxType) throws SQLException

IfmxPreparedStatement.setInt()

public void setInt(int i, int x, int ifxType) throws SQLException

IfmxPreparedStatement.setLong()

public void setLong(int i, long x, int ifxType) throws SQLException
Manipulating Informix Data Types 3-71

PreparedStatement.setXXX() Extensions
IfmxPreparedStatement.setNull()

public void setNull(int i, int sqlType, int ifxType) throws SQLException

IfmxPreparedStatement.setShort()

public void setShort(int i, short x, int ifxType) throws SQLException

IfmxPreparedStatement.setString()

public void setString(int i, String x, int ifxType) throws SQLException

IfmxPreparedStatement.setTime()

public void setTime(int i, Time x, int ifxType) throws SQLException

IfmxPreparedStatement.setTime()

public void setTime(int parameterIndex, java.sql.Time x, Calendar Cal,
int ifxType) throws SQLException

IfmxPreparedStatement.setTimestamp()

public void setTimestamp(int i, Timestamp x, int ifxType) throws SQLException

IfmxPreparedStatement.setTimestamp()

public void setTimestamp(int parameterIndex, java.sql.Timestamp x, Calendar Cal)
throws SQLException

The IfxSetObject Methods

IfmxPreparedStatement.IfxSetObject()

public void IfxSetObject(int i, Object x, int scale, int ifxType) throws
SQLException

IfmxPreparedStatement.IfxSetObject()

public void IfxSetObject(int i, Object x, int ifxType) throws SQLexception

For the IfmxPreparedStatement.IfxSetObject extension, you cannot simply
overload the method signature with an added ifxType parameter, because
such overloading creates method ambiguity. You must name the method to
IfxSetObject instead.
3-72 Informix JDBC Driver Programmer’s Guide

PreparedStatement.setXXX() Extensions
To use the preceding methods, you must cast your PreparedStatement refer-
ences to IfmxPreparedStatement:

File file = new File("sblob_06.dat");
int fileLength = (int)file.length();
byte[] buffer = new byte[fileLength];
FileInputStream fin = new FileInputStream(file);
fin.read(buffer,0,fileLength);
String str = new String(buffer);

writeOutputFile("Prepare");
PreparedStatement p_stmt = myConn.prepareStatement(

"insert into sblob_t20(c1) values(?)");

writeOutputFile("IfxSetObject");
((IfmxPreparedStatement)p_stmt).IfxSetObject(

1,str,30,IfxTypes.IFX_TYPE_CLOB);

The IfxTypes Class

The extended IfmxPreparedStatement methods require you to pass in the
Informix data type to which you want to map. These types are part of the
com.informix.lang.IfxTypes class. The following table shows the IfxTypes
constants and the corresponding Informix data types.

IfxTypes Constant Informix Data Type

IfxTypes.IFX_TYPE_CHAR CHAR

IfxTypes.IFX_TYPE_SMALLINT SMINT

IfxTypes.IFX_TYPE_INT INT

IfxTypes.IFX_TYPE_FLOAT FLOAT

IfxTypes.IFX_TYPE_SMFLOAT SMFLOAT

IfxTypes.IFX_TYPE_DECIMAL DECIMAL

IfxTypes.IFX_TYPE_SERIAL SERIAL

IfxTypes.IFX_TYPE_DATE DATE

IfxTypes.IFX_TYPE_MONEY MONEY

IfxTypes.IFX_TYPE_NULL NULL

(1 of 3)
Manipulating Informix Data Types 3-73

PreparedStatement.setXXX() Extensions
IfxTypes.IFX_TYPE_DATETIME DATETIME

IfxTypes.IFX_TYPE_BYTE BYTES

IfxTypes.IFX_TYPE_TEXT TEXT

IfxTypes.IFX_TYPE_VARCHAR VARCHAR

IfxTypes.IFX_TYPE_INTERVAL SQLINTERVAL

IfxTypes.IFX_TYPE_NCHAR NCHAR

IfxTypes.IFX_TYPE_NVCHAR NVCHAR

IfxTypes.IFX_TYPE_INT8 INT8

IfxTypes.IFX_TYPE_SERIAL8 SERIAL8

IfxTypes.IFX_TYPE_SET SQLSET

IfxTypes.IFX_TYPE_MULTISET SQLMULTISET

IfxTypes.IFX_TYPE_LIST SQLLIST

IfxTypes.IFX_TYPE_ROW SQLROW

IfxTypes.IFX_TYPE_COLLECTIO
N

COLLECTION

IfxTypes.IFX_TYPE_UDTVAR UDTVAR

IfxTypes.IFX_TYPE_UDTFIXED UDTFIXED

IfxTypes.IFX_TYPE_REFSER8 REFSER8

IfxTypes.IFX_TYPE_LVARCHAR LVARCHAR

IfxTypes.IFX_TYPE_SENDRECV SENDRECV

IfxTypes.IFX_TYPE_BOOL BOOL

IfxTypes.IFX_TYPE_IMPEXP IMPEXP

IfxTypes Constant Informix Data Type

(2 of 3)
3-74 Informix JDBC Driver Programmer’s Guide

PreparedStatement.setXXX() Extensions
Extension Summary

The following table lists the PreparedStatement.setXXX() methods that
Informix JDBC Driver supports for nonextended data types. The top heading
lists the standard JDBC API data types defined in the java.sql.Types class.
These translate to specific Informix data types, as shown in the table on page
3-65. The table lists the setXXX() methods you can use to write data of a
particular JDBC API data type.

An uppercase and bold X indicates the setXXX() method Informix recom-
mends you use; a lowercase x indicates other setXXX() methods supported
by Informix JDBC Driver.

IfxTypes.IFX_TYPE_IMPEXPBIN IMPEXPBIN

IfxTypes.IFX_TYPE_CLOB CLOB

IfxTypes.IFX_TYPE_BLOB BLOB

IfxTypes Constant Informix Data Type

(3 of 3)

setXXX() Method

JDBC API Data Types from java.sql.Types

TI
NY

IN
T

SM
AL

LI
NT

IN
TE

GE
R

BI
GI

NT

RE
AL

FL
OA

T

DO
UB

LE

DE
CI

M
AL

NU
M

ER
IC

BI
T

CH
AR

VA
RC

HA
R

LO
NG

VA
RC

HA
R

BI
NA

RY

VA
RB

IN
AR

Y

LO
NG

VA
RB

IN
AR

Y

DA
TE

TI
M

E

TI
M

ES
TA

M
P

setByte() X x x x x x x x x x1 x1

setShort() x X x x x x x x x x1 x1

setInt() x x X x x x x x x x1 x1

setLong() x x x X x x x x x x1 x1

setFloat() x x x x X x x x x x1 x1

setDouble() x x x x x X X x x x1 x1

setBigDecimal() x x x x x x x X X x x

(1 of 2)
Manipulating Informix Data Types 3-75

PreparedStatement.setXXX() Extensions
The setNull() method writes an SQL null value.

The following table lists the PreparedStatement.setXXX() methods that
Informix JDBC Driver supports for the Informix extended data types, the
mappings for which are shown in the table on page 3-67. The table lists the
setXXX() methods you can use to write data of a particular extended data
type.

setBoolean() x x x x x x x x x x x

setString() x x x x x x x x x X X x x x x x x x

setBytes() x X X x

setDate() x x X x

setTime() x x X x

setTimestamp() x x x X

setAsciiStream() X x x x

setUnicodeStream()

setBinaryStream() x x x X

setObject() x x x x x x x x x x x x2 x x x2 x x3 x

Notes:
1 The column value must match the type of setXXX() exactly, or an SQLException is raised. If the column
value is not within the allowed value range, the setXXX() method raises an exception instead of converting
the data type. For example, setByte(1) raises an SQLException if the value being written is 1000.
2 A byte array is written.
3 A Timestamp object is written instead of a Time object.

setXXX() Method

JDBC API Data Types from java.sql.Types

TI
NY

IN
T

SM
AL

LI
NT

IN
TE

GE
R

BI
GI

NT

RE
AL

FL
OA

T

DO
UB

LE

DE
CI

M
AL

NU
M

ER
IC

BI
T

CH
AR

VA
RC

HA
R

LO
NG

VA
RC

HA
R

BI
NA

RY

VA
RB

IN
AR

Y

LO
NG

VA
RB

IN
AR

Y

DA
TE

TI
M

E

TI
M

ES
TA

M
P

(2 of 2)
3-76 Informix JDBC Driver Programmer’s Guide

PreparedStatement.setXXX() Extensions
An uppercase and bold X indicates the setXXX() method Informix recom-
mends you use; a lowercase x indicates other setXXX() methods supported
by Informix JDBC Driver. The table does not include setXXX() methods that
you cannot use with any of the Informix extended data types.

The setNull() method writes an SQL null value.

setXXX() Method

Informix Extended Data Types

BO
OL

EA
N

LV
AR

CH
AR

Op
aq

ue
 ty

pe
s

BL
OB

CL
OB

BY
TE

TE
XT

NA
M

ED
 R

OW

UN
NA

M
ED

 R
OW

SE
T

or
 M

UL
TI

SE
T

LI
ST

setByte() x x

setShort() x

setInt() x

setBoolean() X

setString() X x x

setBytes() x x

setAsciiStream() x x X

setBinaryStream() x x X

setObject() x x X x x x x X X x x

setArray() x x

setBlob() X

setClob() X
Manipulating Informix Data Types 3-77

Supported ResultSet.getXXX() Methods
Supported ResultSet.getXXX() Methods
Use the ResultSet.getXXX() methods to transfer data from an Informix
database to a Java program that uses the JDBC API to connect to an Informix
database. For example, use the ResultSet.getString() method to get the data
stored in a column of data type LVARCHAR.

Important: If you use an expression within an SQL statement—for example, SELECT
mytype::LVARCHAR FROM mytab—you might not be able to use
ResultSet.getXXX(columnName) to retrieve the value. Use
ResultSet.getXXX(columnIndex) to retrieve the value instead.

The following table lists the ResultSet.getXXX() methods that Informix JDBC
Driver supports for nonextended data types. The top heading lists the
standard JDBC API data types defined in the java.sql.Types class. These
translate to specific Informix data types, as shown in the table on page 3-65.
The table lists the getXXX() methods you can use to retrieve data of a
particular JDBC API data type.

An uppercase and bold X indicates the getXXX() method Informix recom-
mends you use; a lowercase x indicates other getXXX() methods supported
by Informix JDBC Driver.

getXXX() Method

JDBC API Data Types from java.sql.Types

TI
NY

IN
T

SM
AL

LI
NT

IN
TE

GE
R

BI
GI

NT

RE
AL

FL
OA

T

DO
UB

LE

DE
CI

M
AL

NU
M

ER
IC

BI
T

CH
AR

VA
RC

HA
R

LO
NG

VA
RC

HA
R

BI
NA

RY

VA
RB

IN
AR

Y

LO
NG

VA
RB

IN
AR

Y

DA
TE

TI
M

E

TI
M

ES
TA

M
P

getByte() X x x x x x x x x x1 x1

getShort() x X x x x x x x x x1 x1

getInt() x x X x x x x x x x1 x1

getLong() x x x X x x x x x x1 x1

getFloat() x x x x X x x x x x1 x1

getDouble() x x x x x X X x x x1 x1

(1 of 2)
3-78 Informix JDBC Driver Programmer’s Guide

Supported ResultSet.getXXX() Methods
The getXXX() methods return a null value if the retrieved column value is an
SQL null value.

The following table lists the ResultSet.getXXX() methods that Informix JDBC
Driver supports for the Informix extended data types, the mappings for
which are shown in the table on page 3-67. The table lists the getXXX()
methods you can use to retrieve data of a particular extended data type.

getBigDecimal() x x x x x x x X X x x

getBoolean() x x x x x x x x x x x

getString() x x x x x x x x x X X x x x x x x x

getBytes() x X X x

getDate() x x X x

getTime() x x X x

getTimestamp() x x x X

getAsciiStream() X x x x

getUnicodeStream()

getBinaryStream() x x x X

getObject() x x x x x x x x x x x x2 x x x2 x x3 x

Notes:
1 The column value must match the type of getXXX() exactly, or an SQLException is raised. If the column
value is not within the allowed value range, the getXXX() method raises an exception instead of converting
the data type. For example, getByte(1) raises an SQLException if the column value is 1000.
2 A byte array is returned.
3 A Timestamp object is returned instead of a Time object.

getXXX() Method

JDBC API Data Types from java.sql.Types

TI
NY

IN
T

SM
AL

LI
NT

IN
TE

GE
R

BI
GI

NT

RE
AL

FL
OA

T

DO
UB

LE

DE
CI

M
AL

NU
M

ER
IC

BI
T

CH
AR

VA
RC

HA
R

LO
NG

VA
RC

HA
R

BI
NA

RY

VA
RB

IN
AR

Y

LO
NG

VA
RB

IN
AR

Y

DA
TE

TI
M

E

TI
M

ES
TA

M
P

(2 of 2)
Manipulating Informix Data Types 3-79

Supported ResultSet.getXXX() Methods
An uppercase and bold X indicates the getXXX() method Informix recom-
mends you use; a lowercase x indicates other getXXX() methods supported
by Informix JDBC Driver. The table does not include getXXX() methods that
you cannot use with any of the Informix extended data types.

The getXXX() methods return a null value if the retrieved column value is an
SQL null value.

getXXX() Method

Informix Extended Data Types

BO
OL

EA
N

LV
AR

CH
AR

Op
aq

ue
 ty

pe
s

BL
OB

CL
OB

BY
TE

TE
XT

NA
M

ED
 R

OW

UN
NA

M
ED

 R
OW

SE
T

or
 M

UL
TI

SE
T

LI
ST

getByte() x x

getShort() x

getInt() x

getBoolean() X

getString() X x x

getBytes() x x

getAsciiStream() x x X

getBinaryStream() x x X

getObject() x x X x x x x X X x x

getArray() x x

getBlob() X

getClob() X
3-80 Informix JDBC Driver Programmer’s Guide

4
Chapter
Troubleshooting
In This Chapter . 4-3

Debugging Your JDBC API Program 4-3
Using the Debug Version of the Driver. 4-3
Turning on Tracing 4-4

Performance Issues 4-5
Using the FET_BUF_SIZE Environment Variable 4-5
Memory Management of Large Objects 4-6
Reducing Network Traffic 4-7

4-2 Infor
mix JDBC Driver Programmer’s Guide

In This Chapter
This chapter provides troubleshooting tips for Informix JDBC Driver. It covers
the following topics:

■ “Debugging Your JDBC API Program”

■ “Performance Issues”

Debugging Your JDBC API Program
If your Java program contains JDBC API programming errors, you might
want to use the debug version of Informix JDBC Driver instead of the
optimized version to try to find where the errors occur in your program.

Using the Debug Version of the Driver
The debug version of Informix JDBC Driver, called ifxjdbc-g.jar, is exactly the
same as the optimized version (called ifxjdbc.jar), except that it has been
compiled with the -g option instead of the -O option.

The difference in compilation options also means that the debug version of
Informix JDBC Driver has been embedded with tracing information. When
you use the debug version of the driver, you can turn on tracing and get a
better idea of what the JDBC API portion of your Java program is actually
doing.

For instructions on how to use the debug version of Informix JDBC Driver in
a Java application or Java applet, refer to “Using the Driver in an Appli-
cation” on page 1-14 or “Using the Driver in an Applet” on page 1-15,
respectively.
Troubleshooting 4-3

Turning on Tracing
Turning on Tracing
Trace output consists of the following two kinds of information:

■ General information from Informix JDBC Driver

■ Informix native SQLI protocol messages sent between your Java
program and the Informix database server

To turn on tracing, specify the environment variables TRACE, TRACEFILE,
PROTOCOLTRACE, and PROTOCOLTRACEFILE in the database URL or the
property list when you establish a connection to an Informix database or
database server. The following table describes the tracing environment
variables.

Environment Variable Description

TRACE Traces general information from Informix JDBC Driver.

Can be set to one of the following levels:

■ 0. Tracing not enabled. This is the default value.

■ 1. Traces the entry and exit points of methods.

■ 2. Same as Level 1, except generic error messages are
also traced.

■ 3. Same as Level 2, except data variables are also traced.

TRACEFILE Specifies the full pathname of the operating system file on
the client computer to which the TRACE messages are
written.

PROTOCOLTRACE Traces the SQLI protocol messages sent between your
Java program and the Informix database server.

Can be set to the following levels:

■ 0. Protocol tracing not enabled. This is the default
value.

■ 1. Traces message IDs.

■ 2. Same as Level 1, except the data in the message
packets is also traced.

PROTOCOLTRACFILE Specifies the full pathname of the operating system file on
the client computer to which the PROTOCOLTRACE
messages are written.
4-4 Informix JDBC Driver Programmer’s Guide

Performance Issues
The following example of a database URL specifies the highest level of
protocol tracing and sets tracing output to the operating system file
/tmp/trace.out:

String url = "jdbc:informix-
sqli://123.45.67.89:1533:informixserver=myserver;user=rdtest;password=test;
PROTOCOLTRACE=2;PROTOCOLTRACEFILE=/tmp/trace.out";

For more information on establishing a connection to an Informix database
or database server using a database URL or a property list, refer to “Estab-
lishing a Connection” on page 2-3.

Performance Issues
This section describes issues that might affect the performance of your
queries: the FET_BUF_SIZE environment variable, memory management of
the Informix TEXT and BYTE data types, memory management of the
Informix BLOB and CLOB data types, and reducing network traffic.

Using the FET_BUF_SIZE Environment Variable
When a SELECT statement is sent from a Java program to an Informix
database, the returned rows, or tuples, are stored in a tuple buffer in Informix
JDBC Driver. The default size of the tuple buffer is the larger of the returned
tuple size or 4096 bytes.

You can use the Informix FET_BUF_SIZE environment variable to override the
default size of the tuple buffer. Increasing the size of the tuple buffer can
reduce network traffic between your Java program and the database, often
resulting in better performance of queries.

FET_BUF_SIZE can be set to any positive integer less than or equal to 32,767.
If the FET_BUF_SIZE environment variable is set, and its value is larger than
the default tuple buffer size, the tuple buffer size is set to the value of
FET_BUF_SIZE.
Troubleshooting 4-5

Memory Management of Large Objects
There are times, however, when increasing the size of the tuple buffer can
actually degrade the performance of queries. This could happen if your Java
program has many active connections to a database or if the swap space on
your computer is limited. If this is true for your Java program or computer,
you might not want to use the FET_BUF_SIZE environment variable to
increase the size of the tuple buffer.

For more information on setting Informix environment variables, see “Estab-
lishing a Connection” on page 2-3.

Memory Management of Large Objects
Whenever a large object (a BYTE, TEXT, BLOB, or CLOB data type) is fetched
from the database server, the data is either cached into memory or stored in
a temporary file (if it exceeds the memory buffer). A JDBC applet can cause a
security violation if it tries to create a temporary file on the local computer. In
this case, the entire large object must be stored in memory.

You can specify how large object data is stored by using an environment
variable, LOBCACHE, that you include as one of the name-value pairs in the
database URL syntax, as follows:

■ To set the maximum number of bytes allocated in memory to hold
the data, set the LOBCACHE value to that number of bytes. If the data
size exceeds the LOBCACHE value, the data is stored in a temporary
file. If a security violation occurs during creation of this file, the data
is stored in memory.

■ To always store the data in a file, set the LOBCACHE value to 0. In this
case, if a security violation occurs, Informix JDBC Driver makes no
attempt to store the data in memory. This setting is not supported for
unsigned applets. For more information, see “Using the Driver in an
Applet” on page 1-15.

■ To always store the data in memory, set the LOBCACHE value to a
negative number. If the required amount of memory is not available,
Informix JDBC Driver throws the SQLException message Out of
Memory.

If the LOBCACHE size is invalid or not defined, the default size is 4096.
4-6 Informix JDBC Driver Programmer’s Guide

Reducing Network Traffic
You can set the LOBCACHE value through the database URL, as follows:

URL ="jdbc:158.58.9.37:711test:user=guest;password=iamaguest;
informixserver=oltapshm;lobcache=4096";

The preceding example stores the large object in memory if the size is 4096
bytes or fewer. If the large object exceeds 4096 bytes, Informix JDBC Driver
tries to create a temporary file. If a security violation occurs, memory is
allocated for the entire large object. If that fails, the driver throws an SQLEx-
ception message.

Here is another example:

URL = "jdbc:informix-sqli://icarus:7110/testdb:user=guest:passwd=whoknows;
informixserver=olserv01;lobcache=0";

The preceding example uses a temporary file for storing the fetched large
object.

Here is a third example:

URL = "jdbc:informix-sqli://icarus:7110/testdb:user=guest:passwd=whoknows;
informixserver=olserv01;lobcache=-1";

The preceding example always uses memory to store the fetched large object.

For programming information on how to use the TEXT and BYTE data types
in a Java program, refer to “Manipulating Informix BYTE and TEXT Data
Types” on page 3-20. For programming information on how to use the BLOB
and CLOB data types in a Java program, refer to “Manipulating Informix
BLOB and CLOB Data Types” on page 3-25.

Reducing Network Traffic
The two environment variables OPTOFC and IFX_AUTOFREE can be used to
reduce network traffic when you close Statement and ResultSet objects.

Set OPTOFC to 1 to specify that the ResultSet.close() method does not require
a network round-trip if all the qualifying rows have already been retrieved in
the client’s tuple buffer. The database server automatically closes the cursor
after all the rows have been retrieved.
Troubleshooting 4-7

Reducing Network Traffic
Informix JDBC Driver might or might not have additional rows in the client’s
tuple buffer before the next ResultSet.next() method is called. Therefore,
unless Informix JDBC Driver has received all rows from the database server,
the ResultSet.close() method might still require a network round-trip when
OPTOFC is set to 1.

Set IFX_AUTOFREE to 1 to specify that the Statement.close() method does not
require a network round-trip to free the database server cursor resources if
the cursor has already been closed in the database server.

You can also use the setAutoFree(boolean flag) and getAutoFree() methods
to free database server cursor resources. For more information, see “The Auto
Free Feature” on page 2-47.

The database server automatically frees the cursor resources right after the
cursor is closed, either explicitly by the ResultSet.close() method or
implicitly by the OPTOFC environment variable.

When the cursor resources have been freed, the cursor can no longer be
referenced.

For examples of how to use the OPTOFC and IFX_AUTOFREE environment
variables, see the autofree.java and optofc.java demonstration examples
described in Appendix A, “Sample Code Files.” In these examples, the
variables are set with the Properties.put() method.

For more information on setting Informix environment variables, refer to
“Establishing a Connection” on page 2-3.
4-8 Informix JDBC Driver Programmer’s Guide

A
Appendix
Sample Code Files
This appendix lists and describes the code examples provided
with Informix JDBC Driver.

The main examples are located in the following directories:

■ $JDBCLOCATION/demo/basic

■ $JDBCLOCATION/demo/clob-blob

■ $JDBCLOCATION/demo/udt-distinct

■ $JDBCLOCATION/demo/complex-types

JDBCLOCATION refers to the directory where you installed
Informix JDBC Driver.

Another set of examples is located in the directory $JDBCLO-
CATION/demo/stores7. A README file in the demo directory
explains the various demonstration files and how to execute
them.

An RMI example is located in the directory $JDBCLO-
CATION/demo/rmi. A README file in the demo directory
explains how to execute the example.

Example output files of the ClassGenerator utility are located in
the directory $JDBCLOCATION/demo/tools/classgenerator. A
README file in the classgenerator directory explains how to use
the example. ♦

The main examples are located in the following directories:

■ %JDBCLOCATION%\demo\basic

■ %JDBCLOCATION%\demo\clob-blob

■ %JDBCLOCATION%\demo\udt-distinct

UNIX

Windows

■ %JDBCLOCATION%\demo\complex-types

JDBCLOCATION refers to the directory where you installed Informix JDBC
Driver.

Another set of examples is located in the directory %JDBCLO-
CATION%\demo\stores7. A README file in the demo directory explains the
various demonstration files and how to execute them.

An RMI example is located in the directory %JDBCLOCATION%\demo\rmi.
A README file in the demo directory explains how to execute the example.

Example output files of the ClassGenerator utility are located in the directory
%JDBCLOCATION%\demo\tools\classgenerator. A README file in the
classgenerator directory explains how to use the example. ♦

The following table lists the files in the basic directory. For each code
example, the table displays the name of the Java program and a brief
description of what the program does.

Demo Program Name Description

autofree.java Shows how to use the AUTOFREE environment variable.

BatchUpdate.java Shows how to send batch updates to the server.

ByteType.java Shows how to insert into and select from a table that contains a column of data
type BYTE.

CreateDB.java Creates a database called testDB.

DBCENTURYSelect.java Shows how to retrieve a date string representation that has a four-digit year
expansion based on the DBCENTURY property value from the URL string.

DBConnection.java Creates connections to both a database and a database server.

DBDATESelect.java Shows how to retrieve a date object and a date string representation from the
database based on the DBDATE property value from the URL string.

DBMetaData.java Shows how to retrieve information about a database with the
DatabaseMetaData interface.

DropDB.java Drops a database called testDB.

(1 of 2)
A-2 Informix JDBC Driver Programmer’s Guide

GLDATESelect.java Shows how to retrieve a date object and a date string representation from the
database based on the GL_DATE property value from the URL string.

Intervaldemo.java Shows how to insert and select Informix INTERVAL data.

LOCALESelect.java Shows how to retrieve a date object and a date string representation from the
database based on the CLIENT_LOCALE property value from the URL string.

MultiRowCall.java Shows how to return multiple rows in a stored procedure call.

OptimizedSelect.java Shows how to use the FET_BUF_SIZE environment variable to adjust the
Informix JDBC Driver tuple buffer size.

optofc.java Shows how to use the OPTOFC environment variable.

PropertyConnection.java Shows how to specify connection environment variables via a property list.

RSMetaData.java Shows how to retrieve information about a result set with the ResultSet-
MetaData interface.

ScrollCursor.java Shows how to retrieve a result set with a scroll cursor.

Serial.java Shows how to insert and select Informix SERIAL and SERIAL8 data.

SimpleCall.java Shows how to call a stored procedure.

SimpleConnection.java Shows how to connect to a database or database server.

SimpleSelect.java Shows how to send a simple SELECT query to the database server.

TextConv.java Shows how to convert a file from the client code set to Unicode and then from
Unicode to the database code set.

TextType.java Shows how to insert into and select from a table that contains a column of data
type TEXT.

Demo Program Name Description

(2 of 2)
Sample Code Files A-3

The following table lists the files in the clob-blob directory. For each code
example, the table displays the name of the Java program and a brief
description of what the program does.

The following table lists the files in the udt-distinct directory. For each code
example, the table displays the name of the Java program and a brief
description of what the program does.

Demo Program Name Description

demo1.java Shows how to create two tables with BLOB and CLOB columns and compare
the data.

demo2.java Shows how to create one table with BYTE and TEXT columns and a second
table with BLOB and CLOB columns and how to compare the data.

demo3.java Shows how to create one table with BLOB and CLOB columns and a second
table with BYTE and TEXT columns and how to compare the data.

demo4.java Shows how to create two tables with BYTE and TEXT columns and compare the
data.

demo5.java Shows how to store data from a file into a BLOB table column.

demo6.java Shows how to read a portion of the data in a smart large object.

demo_11.java Shows how to read data from a file into a buffer and write the contents of the
buffer into a smart large object.

demo_13.java Shows how to write data into a smart large object and then insert the smart
large object into a table.

demo_14.java Shows how to fetch smart large object data from a table.

Demo Program Name Description

charattrUDT.java Shows how to implement an opaque fixed-length type using SQLData.

createDB.java Creates a database that the other udt-distinct demonstration files use.

createTypes.java Shows how to create opaque and distinct types in the database.

distinct_d1.java Shows how to create a distinct type without using SQLData.

(1 of 2)
A-4 Informix JDBC Driver Programmer’s Guide

The following table lists the files in the complex-types directory. For each
code example, the table displays the name of the Java program and a brief
description of what the program does.

distinct_d2.java Shows how to create a second distinct type without using SQLData.

dropDB.java Drops the database that the other udt-distinct demonstration files use.

largebinUDT.java Shows how to implement an opaque type (smart large object embedded) using
SQLData.

myMoney.java Shows how to implement a distinct type using SQLData.

udt_d1.java Shows how to create a fixed-length opaque type.

udt_d2.java Shows how to create an opaque type (smart large object embedded).

Demo Program Name Description

(2 of 2)

Demo Program Name Description

createDB.java Creates a database with named rows.

list1.java Inserts and selects a simple collection using both the java.sql.Array and
java.util.Collection classes.

list2.java Inserts and selects a collection with a nested row element. Uses both the
java.sql.Array and java.util.Collection classes for the collection and both the
SQLData and Struct interfaces for the nested row.

r1_t.java Defines the SQLData class for named row r1_t.

r2_t.java Defines the SQLData class for named row r2_t.

GenericStruct.java Instantiates a java.sql.Struct object for inserting into named or unnamed rows.

row1.java Inserts and selects a simple named row using both the SQLData and Struct
interfaces.

row2.java Inserts and selects a named row with a nested collection using both the
SQLData and Struct interfaces. The SQLData interface uses the Informix
IfmxComplexSQLOutput.writeObject() and
IfmxComplexSQLOutput.readObject() extension methods to write and read
the nested collection.

(1 of 2)
Sample Code Files A-5

row3.java Inserts and selects an unnamed row with a nested collection.

fullname.java Contains the SQLData class for the named row fullname_t. Used by the
demo1.java and demo2.java files.

person.java Contains the SQLData class for the named row person_t. Used by the
demo1.java and demo2.java files.

demo1.java Fetches a named row into an SQLData object.

demo2.java Inserts an SQLData object into a named row column.

demo3.java Fetches an unnamed row column into a Struct object.

demo4.java Inserts a Struct object into a named row column.

demo5.java Fetches an Informix SET column into a java.util.HashSet object.

demo6.java Fetches an Informix SET column into a java.util.TreeSet object. A customized
type mapping is provided to override the default.

demo7.java Inserts a java.util.HashSet object into an Informix SET column.

demo8.java Fetches an Informix SET column into a java.sql.Array object.

dropDB.java Drops the database.

Demo Program Name Description

(2 of 2)
A-6 Informix JDBC Driver Programmer’s Guide

Glossary
Glossary
applet A program created with Java classes that is not intended to be
run on its own, but rather to be embedded in another applica-
tion, such as a browser.

autocommit
mode

A mode in which a COMMIT statement is automatically executed
after each statement sent to the database server.

BLOB A smart large object data type that stores any kind of binary data,
including images. The database server performs no interpreta-
tion on the contents of a BLOB column.

See also smart large object.

blobpage The unit of disk allocation within a blobspace. The size of a
blobpage is determined by the DBA and can vary from blobspace
to blobspace.

blobspace A logical collection of chunks that is used to store TEXT and BYTE
data.

See also dbspace.

built-in data type A fundamental data type defined by the database server: for
example, INTEGER, CHAR, or SERIAL8.

BYTE A built-in data type for a simple large object that stores any type
of binary data and can be as large as 231 bytes.

cast A mechanism that the database server uses to convert data from
one data type to another. The server provides built-in casts that
it performs automatically. Users can create both implicit and
explicit casts.

See also explicit cast, implicit cast.

cast function A function that is used to implement an implicit or explicit cast. A cast func-
tion performs the necessary operations for conversion between two data
types. It must be registered as a cast with the CREATE CAST statement before
it can be used.

CLASSPATH An environment variable that tells the Java virtual machine (JVM) and other
applications where to find the Java class libraries used in a Java program.

CLOB A smart large object data type that stores blocks of text items, such as ASCII
or PostScript files.

See also smart large object.

code set A character set of one or more natural-language alphabets with symbols for
digits, punctuation, and diacritical marks. Each character set has at least one
code set, which maps its characters to unique bit patterns. ASCII, ISO8559-1,
Microsoft 1252, and EBCDIC are examples of code sets for the English lan-
guage.

collection An instance of a collection data type; a group of elements of the same data
type stored in a SET, MULTISET, or LIST.

See also collection data type.

collection data
type

A complex data type that groups values, called elements, of a single data type
in a column. Collection data types consist of the SET, MULTISET, or LIST type
constructor and an element type, which can be any data type, including a
complex data type.

complex data
type

A data type that is built from a combination of other data types using an SQL
type constructor or the CREATE ROW TYPE statement, and whose compo-
nents can be accessed through SQL statements. Complex data types include
collection data types and row data types.

concurrency The ability of two or more processes to access the same database
simultaneously.

connection An association between an application and a database environment, created
by a CONNECT or DATABASE statement. Database servers can also have con-
nections to one another.

See also explicit connection, implicit connection.

constructed data
type

A complex data type created with a type constructor: for example, a collec-
tion data type or an unnamed row data type.
2 Informix JDBC Driver Programmer’s Guide

CORBA (Common Object Request Broker Architecture) The CORBA 2.0 specification
describes a convention called Object Request Broker (ORB), the infrastructure
for distributed-object computing. CORBA enables client applications to com-
municate with remote objects and invoke operations statically or dynami-
cally.

cursor An SQL object that points to a row in the results table returned by a SELECT
statement. A cursor enables an application to process data from multiple data
sets simultaneously rather than sequentially.

cursor function A user-defined function that returns one or more rows of data and requires a
cursor to execute. An SPL function is a cursor function when its RETURN
statement contains the WITH RESUME keywords. An external function is a
cursor function when it is defined as an iterator function.

database URL A URL passed to the DriverManager.getConnection() method that specifies
the subprotocol (the database connectivity mechanism), the database or data-
base server identifier, and a list of properties that can include Informix envi-
ronment variables.

data type See built-in data type, extended data type.

DataBlade API The C application programming interface (API) for Informix Dynamic Server
with Universal Data Option. The DataBlade API is used for the development
of DataBlade module applications that access data stored in this kind of data-
base. The DataBlade API sends SQL command strings to the server for execu-
tion and processes results returned by the server to the application.

DataBlade API
data types

A set of Informix-provided C data types that correspond to some of the Infor-
mix SQL data types, including extended data types. Informix recommends
that you use these data types instead of the standard C data types to ensure
portable applications.

dbspace A logical collection of one or more chunks of contiguous disk space within
which you store databases and tables. Because chunks represent specific
regions of disk space, the creators of databases and tables can control where
their data is physically located by placing databases or tables in specific
dbspaces. Large objects are stored in sbspaces.

delimiter The boundary of an input field, or the terminator for a database column or
row. Some files and prepared objects require a semicolon (;), comma (,),
pipe (|), space, or tab delimiter between statements.
Glossary 3

distinct data type A data type that is created with the CREATE DISTINCT TYPE statement. A dis-
tinct data type is based on an existing opaque, built-in, distinct, or named
row data type, known as its source type. The distinct data type has the same
internal storage representation as its source type, but it has a different name.
To compare a distinct data type with its source type requires an explicit cast.
A distinct data type inherits all routines that are defined on its source type.

explicit cast A cast that requires a user to specify the CAST AS keyword or cast operator
(::) to convert data from one data type to another. An explicit cast requires a
function if the internal storage representations of the two data types are not
equivalent.

explicit
connection

A connection made to a database environment that uses the CONNECT
statement.

See also implicit connection.

extended data
type

A term used to refer to data types that are not built-in: namely, collection data
types, row data types, opaque data types, and distinct data types.

fundamentaldata
type

A data type that cannot be broken into smaller pieces by the database server
using SQL statements: for example, built-in data types and opaque data
types.

Global Language
Support (GLS)

An application environment that allows Informix application-programming
interfaces (APIs) and database servers to handle different languages, cultural
conventions, and code sets. Developers use the GLS libraries to manage all
string, currency, date, and time data types in their code. Using GLS, you can
add support for a new language, character set, and encoding by editing
resource files, without access to the original source code, and without
rebuilding the client software.

host variable A C or COBOL program variable that is referenced in an embedded statement.
A host variable is identified by the dollar sign ($) or colon (:) that precedes
it.

implicit cast A cast that the database server automatically performs to convert data from
one data type to another.

See also explicit cast.

implicit
connection

A connection made using a database statement (DATABASE, CREATE
DATABASE, START DATABASE, DROP DATABASE).
4 Informix JDBC Driver Programmer’s Guide

See also explicit connection.

IP address The unique ID of every computer on the Internet. The format consists of four
numerical strings separated by dots, such as 123.45.67.89.

jar utility A JavaSoft utility that creates Java archive, or JAR, files. JAR is a platform-
independent file format that aggregates many files into one.

keyword A word that has meaning to a programming language. In Informix SQL, key-
words are shown in syntax diagrams in all uppercase letters. They must be
used in SQL statements exactly as shown in the syntax although they can be
in either uppercase or lowercase letters.

large object A data object that exceeds 255 bytes in length. A large object is logically
stored in a table column but physically stored independently of the column,
because of its size. Large objects can contain non-ASCII data. The Universal
Data Option recognizes two kinds of large objects: simple large objects (TEXT,
BYTE) and smart large objects (CLOB, BLOB).

See also simple large object, smart large object.

LIST data type A collection data type in which elements are ordered and duplicates are
allowed.

See also collection data type.

locale A set of files that define the native-language behavior of the program at run-
time. The rules are usually based on the linguistic customs of the region or
the territory. The locale can be set through an environment variable that dic-
tates output formats for numbers, currency symbols, dates, and time as well
as collation order for character strings and regular expressions.

See also Global Language Support (GLS).

LVARCHAR A built-in data type that stores varying-length character data greater than 256
bytes. It is used for input and output casts for opaque data types. LVARCHAR
supports code-set order for comparisons of character data.

metadata Data about data. Metadata provides information about data in the database
or used in the application. Metadata can be data attributes, such as name,
size, and data type, or descriptive information about data.

MULTISET data
type

A collection data type in which elements are not ordered and duplicates are
allowed.
Glossary 5

See also collection data type.

named row data
type

A row data type that is created with the CREATE ROW TYPE statement and
has a name. A named row data type can be used to construct a typed table
and can be part of a type or table hierarchy.

See also row data type, unnamed row data type.

opaque data type A fundamental data type of a predefined fixed or variable length whose
internal structure is not accessible through SQL statements. Opaque data
types are created with the SQL statement CREATE OPAQUE TYPE. Support
functions must always be defined for opaque types.

RMI (Remote Method Invocation) A method for creating distributed Java-to-Java
applications, in which the methods of remote Java objects can be invoked
from other Java virtual machines, possibly on different hosts.

row data type A complex data type consisting of a group of ordered data elements (fields)
of the same or different data types. The fields of a row type can be of any sup-
ported built-in or extended data type, including complex data types, except
SERIAL and SERIAL8 and, in certain situations, TEXT and BYTE.

There are two kinds of row data types:

■ Named row types, created using the CREATE ROW TYPE statement

■ Unnamed row types, created using the ROW constructor

See also named row data type, unnamed row data type.

scroll cursor A cursor that can fetch the next row or any prior row, so it can read rows mul-
tiple times.

servlet An extension method for many common protocols, especially HTTP. Servlets
are modules that run inside request/response-oriented servers. Servlets are
similar to applets in that their classes might be dynamically loaded, either
across the network or from local storage. However, servlets differ from
applets in that they lack a graphical interface.

SET data type A collection data type in which elements are not ordered and duplicates are
not allowed.

See also collection data type.
6 Informix JDBC Driver Programmer’s Guide

simple large
object

A large object that is stored in a blobspace, is not recoverable, and does not
obey transaction isolation modes. Simple large objects include TEXT and
BYTE data types.

See also TEXT, BYTE.

smart large
object

A large object that:

■ is stored in an sbspace, a logical storage area that contains one or more
chunks.

■ has read, write, and seek properties similar to a UNIX file.

■ is recoverable.

■ obeys transaction isolation modes.

■ can be retrieved in segments by an application.

Smart large objects include CLOB and BLOB data types.

sqlhosts file An Informix file containing information that lets a client application find and
connect to an Informix database server anywhere on the network. You must
supply one line for each type of connection to each database server.

SQLSTATE A variable that contains status values about the outcome of SQL statements.

support functions The functions that the database server automatically invokes to process a
data type.

The database server uses a support function to perform operations (such as
converting to and from the internal, external, and binary representations of
the type) on opaque data types.

An index access method uses a support function in an operator class to per-
form operations (such as building or searching) on an index.

sysmaster
database

A master database created and maintained by every Informix database
server. The sysmaster database contains the ON-Archive catalog tables and
system monitoring interface (SMI) tables. Informix recommends you do not
modify this database.

system catalog A group of database tables that contain information about the database itself,
such as the names of tables or columns in the database, the number of rows
in a table, the information about indexes and database privileges, and so on.
Glossary 7

system-defined
cast

A cast that is built into the database server. A system-defined cast performs
automatic conversions between different built-in data types.

TEXT A built-in data type for a simple large object that stores text data and can be
as large as 231 bytes.

tuple buffer The section of Informix JDBC Driver memory that stores the retrieved rows
from a SELECT statement.

unnamed row
data type

A row type created with the ROW constructor that has no defined name and
no inheritance properties. Two unnamed row types are equivalent if they
have the same number of fields and if corresponding fields have the same
data type, even if the fields have different names.
8 Informix JDBC Driver Programmer’s Guide

Error
Messages
Error Messages
-79700 Method not supported

Informix JDBC Driver does not support this JDBC method.

-79702 Can’t create new object

The software could not allocate memory for a new String object.

-79703 Row/column index out of range

The row or column index is out of range. Compare the index to
the number of rows and columns expected from the query to
ensure that it is within range.

-79704 Can’t load driver

Informix JDBC Driver could not create an instance of itself and
register it in the DriverManager class. The rest of the SQLEx-
ception text describes what failed.

-79705 Incorrect URL format

The database URL you have submitted is invalid. Informix JDBC
Driver does not recognize the syntax. Check the syntax and try
again.

-79706 Incomplete input

An invalid character was found during conversion of a String
value to an IntervalDF or IntervalYM object. Check “Manipu-
lating Informix INTERVAL Data Types” on page 3-38 for correct
values.

-79707 Invalid qualifier

An error was found during construction of an Interval qualifier from atomic
elements: length, start, or end values. Check the length, start, and end values
to verify that they are correct. See “Manipulating Informix INTERVAL Data
Types” on page 3-38 for correct values.

-79708 Can’t take null input

The string you have provided is null. Informix JDBC Driver does not under-
stand null input in this case. Check the input string to ensure that it has the
proper value.

-79709 Error in date format

The expected input is a valid date string in the following format: yyyy-mm-dd.
Check the date and verify that it has a four-digit year, followed by a valid
two-digit month and two-digit day. The delimiter must be a hyphen (-).

-79710 Syntax error in SQL escape clause

Invalid syntax was passed to a JDBC escape clause. Valid JDBC escape clause
syntax is demarcated by curly braces and a keyword: for example, {keyword
syntax}. Check the JDBC 2.0 documentation from Sun Microsystems for a list
of valid escape clause keywords and syntax.

-79711 Error in time format

An invalid time format was passed to a JDBC escape clause. The escape clause
syntax for time literals has the following format: {t ’hh:mm:ss’}.

-79712 Error in timestamp format

An invalid timestamp format was passed to a JDBC escape clause. The escape
clause syntax for timestamp literals has the following format: {ts ’yyyy-mm-
dd hh:mm:ss.f...’}.

-79713 Incorrect number of arguments

An incorrect number of arguments was passed to the scalar function escape
syntax. The correct syntax is {fn function(arguments)}. Verify that the correct
number of arguments was passed to the function.
2 Informix JDBC Driver Programmer’s Guide

-79714 Type not supported

You have specified a data type that is not supported by Informix JDBC Driver.
Check your program to make sure the data type used is among those
supported by the driver.

-79715 Syntax error

Invalid syntax was passed to a JDBC escape clause. Valid JDBC escape clause
syntax is demarcated by curly braces and a keyword: {keyword syntax}. Check
the JDBC 2.0 documentation from Sun Microsystems for a list of valid escape
clause keywords and syntax.

-79716 System or internal error

An operating or runtime system error or a driver internal error occurred. The
accompanying message describes the problem.

-79717 Invalid qualifier length

The length value for an Interval object is incorrect. See “Manipulating
Informix INTERVAL Data Types” on page 3-38 for correct values.

-79718 Invalid qualifier start code

The start value for an Interval object is incorrect. See “Manipulating Informix
INTERVAL Data Types” on page 3-38 for correct values.

-79719 Invalid qualifier end code

The end value for an Interval object is incorrect. See “Manipulating Informix
INTERVAL Data Types” on page 3-38 for correct values.

-79720 Invalid qualifier start or end code

The start or end value for an Interval object is incorrect. See “Manipulating
Informix INTERVAL Data Types” on page 3-38 for correct values.

-79721 Invalid interval string

An error occurred during conversion of a String value to an IntervalDF or
IntervalYM object. Check “Manipulating Informix INTERVAL Data Types”
on page 3-38 for the correct format.
Error Messages 3

-79722 Numeric character(s) expected

An error occurred during conversion of a String value to an IntervalDF or
IntervalYM object. A numeric value was expected and not found. Check
“Manipulating Informix INTERVAL Data Types” on page 3-38 for the correct
format.

-79723 Delimiter character(s) expected

An error occurred during conversion of a String value to an IntervalDF or
IntervalYM object. A delimiter was expected and not found. Check the
“Manipulating Informix INTERVAL Data Types” on page 3-38 for the correct
format.

-79724 Character(s) expected

An error occurred during conversion of a String value to an IntervalDF or
IntervalYM object. End of string was encountered before conversion was
complete. Check “Manipulating Informix INTERVAL Data Types” on
page 3-38 for the correct format.

-79725 Extra character(s) found

An error occurred during conversion of a String value to an IntervalDF or
IntervalYM object. End of string was expected, but there were more
characters in the string. Check “Manipulating Informix INTERVAL Data
Types” on page 3-38 for the correct format.

-79726 Null SQL statement

The SQL statement passed in was null. Check the SQL statement string of
your program to make sure it contains a valid statement.

-79727 Statement was not prepared

The SQL statement was not prepared properly. If you use host variables (for
example, insert into mytab values (?, ?);) in your SQL statement, you
must use connection.prepareStatement() to prepare the SQL statement
before you can execute it.
4 Informix JDBC Driver Programmer’s Guide

-79728 Unknown object type

If this is a null opaque type, the type is unknown and cannot be processed. If
this is a complex type, the data in the collection or array are of an unknown
type and cannot be mapped to an Informix type. If this is a row, one of the
elements in the row cannot be mapped to an Informix type. Verify the
customized type mapping or data type of the object.

-79729 Method cannot take argument

The method does not take an argument. Refer to your Java API specification
or the appropriate section of this guide to make sure you are using the
method properly.

-79730 Connection not established

A connection was not established. You must obtain the connection by calling
the DriverManager.getConnection() method first.

-79731 MaxRows out of range

You have specified an out-of-range maxRow value. Make sure you specify a
value between 0 and Integer.MAX_VALUE.

-79732 Illegal cursor name

The cursor name specified is not valid. Make sure the string passed in is not
null or empty.

-79733 No active result

The statement does not contain an active result. Check your program logic to
make sure you have called the executeXXX() method before you attempt to
refer to the result.

-79734 INFORMIXSERVER has to be specified

INFORMIXSERVER is a property required for connecting to an Informix
database. You can specify it in the database URL or as part of a Properties
object that is passed to the connect() method.

-79735 Can’t instantiate protocol

An internal error occurred during a connection attempt. Call Informix
technical support.
Error Messages 5

-79736 No connection/statement establish yet

There is no current connection or statement. Check your program to make
sure a connection was properly established or a statement was created.

-79737 No meta data

There is no metadata available for this SQL statement. Make sure the
statement generates a result set before you attempt to use it.

-79738 No such column name

The column name specified does not exist. Make sure the column name is
correct.

-79739 No current row

The cursor is not properly positioned. You must first position the cursor
within the result set by using a method such as resultset.next(),
resultset.beforefirst(), resultset.first(), or resultset.absolute().

-79740 No statement created

There is no current statement. Make sure the statement was properly created.

-79741 Can’t convert to

There is no data conversion possible from the column data type to the one
specified. The actual data type is appended to the end of this message.
Review your program logic to make sure that the conversion you have asked
for is supported. Refer to “Mapping Data Types” on page 3-66 for the data
mapping matrix.

-79742 Can’t convert from

No data conversion is possible from the data type you specified to the
column data type. The actual data type is appended to the end of this
message. Check your program logic to make sure that the conversion you
have asked for is supported. Refer to “Mapping Data Types” on page 3-66 for
the data mapping matrix.
6 Informix JDBC Driver Programmer’s Guide

-79744 Transactions not supported

The user has tried to call commit() or rollback() on a database that does not
support transactions or has tried to set autoCommit to false on a non-logging
database. Verify that the current database has the correct logging mode and
review the program logic.

-79745 Read only mode not supported

Informix does not support read-only mode.

-79746 No Transaction Isolation on non-logging db’s

Informix does not support setting the transaction isolation level on non-
logging databases.

-79747 Invalid transaction isolation level

If the database server could not complete the rollback, this error occurs. See
the rest of the SQLException message for more details about why the rollback
failed.

This error also occurs if an invalid transaction level is passed to setTransac-
tionIsolation(). The valid values are:

■ TRANSACTION_READ_UNCOMMITTED

■ TRANSACTION_READ_COMMITTED

■ TRANSACTION_REPEATABLE_READ

■ TRANSACTION_SERIALIZABLE

-79748 Can’t lock the connection

Informix JDBC Driver normally locks the connection object just before
beginning the data exchange with the database server. The driver could not
obtain the lock. Only one thread at a time should use the connection object.

-79749 Number of input values does not match number of question marks

The number of variables that you set using the PreparedStatement.setXXX()
methods in this statement does not match the number of ? placeholders that
you wrote into the statement. Locate the text of the statement and verify the
number of placeholders and then check the calls to
PreparedStatement.setXXX().
Error Messages 7

-79750 Method only for queries

The Statement.executeQuery(String) and PreparedStatement.execute-
Query() methods should only be used if the statement is a SELECT statement.
For other statements, use the Statement.execute(String), Statement.execute-
Batch(), Statement.executeUpdate(String), Statement.getUpdateCount(),
Statement.getResultSet(), or PreparedStatement.executeUpdate() method.

-79751 Forward fetch only. [in JDBC 1.2]

The result set is not set to FETCH_FORWARD. Call Resultset.setFetchDi-
rection(ResultSet.FETCH_FORWARD) to reset the direction.

-79755 Object is null.

The object passed in is null. Check your program logic to make sure your
object reference is valid.

-79756 must start with ’jdbc’

The first token of the database URL must be the keyword JDBC (case insen-
sitive), as in the following example:

URL: jdbc:informix-sqli://mymachine:1234/mydatabase:user=me:password=secret

-79757 Invalid sub-protocol

The current valid subprotocol supported by Informix is informix-sqli.

-79758 Invalid ip address

When you connect to an Informix database server via an IP address, the IP
address must be valid. A valid IP address is set of four numbers between 0
and 255, separated by dots (.): for example, 127.0.0.1.

-79759 Invalid port number

The port number must be a valid four-digit number, as follows:

URL: jdbc:informix-sqli://mymachine:1234/mydatabase:user=me:password=secret

In this example, 1234 is the port number.

-79760 Invalid database name

This statement contains the name of a database in some invalid format.
8 Informix JDBC Driver Programmer’s Guide

The maximum length for database names and cursor names depends on the
version of the database server. In 7.x, 8.x, and 9.1x versions of the Informix
database server, the maximum length is 18 characters.

For INFORMIX-SE, database names should be no longer than 10 characters
(fewer in some host operating systems).

Both database and cursor names must begin with a letter and contain only
letters, numbers, and underscore characters. In the 6.0 and later versions of
the database server, database and cursor names can begin with an
underscore.

In MS-DOS systems, filenames can be a maximum of eight characters plus a
three-character extension.

-79761 Invalid Property format

The database URL accepts property values in key=value pairs. For example,
user=informix:password=informix adds the key=value pairs to the list of
properties that are passed to the connection object. Check the syntax of the
key=value pair for syntax errors. Make sure there is only one = sign; that
there are no spaces separating the key, value, or =; and that key=value pairs
are separated by one colon (:), again with no spaces.

-79762 Attempt to connect to a non 5.x server

When connecting to a Version 5.x database server, the user must set the
database URL property USE5SERVER to any non-null value. If a connection is
then made to a Version 6.0 or later database server, this exception is thrown.
Verify that the version of the database server is correct and modify the
database URL as needed.

-79763 Only CONCUR_READ_ONLY is supported

Informix JDBC Driver supports only the ResultSet.CONCUR_READ_ONLY
method. You can only call the Connection.createStatement(int, int),
Connection.prepareStatement(String, int, int), or
Connection.CallableStatement(String, int, int) method with a result set
concurrency value of CONCUR_READ_ONLY.
Error Messages 9

-79764 Invalid Fetch Direction value

An invalid fetch direction was passed as an argument to the
Statement.setFetchDirection() or ResultSet.setFetchDirection() method.
Valid values are FETCH_FORWARD, FETCH_REVERSE, and
FETCH_UNKNOWN.

-79765 ResultSet Type is TYPE_FETCH_FORWARD, direction can only be
FETCH_FORWARD

The result set type has been set to TYPE_FORWARD_ONLY, but the setFetch-
Direction() method has been called with a value other than
FETCH_FORWARD. The direction specified must be consistent with the result
type specified.

-79766 Incorrect Fetch Size value

The Statement.setFetchSize() method has been called with an invalid value.
Verify that the value passed in is greater than 0. If the setMaxRows method
has been called, the fetch size must not exceed that value.

-79767 ResultSet Type is TYPE_FORWARD_ONLY

A method such as ResultSet.beforeFirst(), ResultSet.afterLast(),
ResultSet.first(), ResultSet.last(), ResultSet.absolute(), ResultSet.relative(),
ResultSet.current(), or ResultSet.previous() has been called, but the result
set type is TYPE_FORWARD_ONLY. Call only the ResultSet.next() method if
the result set type is TYPE_FORWARD_ONLY.

-79768 Incorrect row value

The ResultSet.absolute(int) method has been called with a value of 0. The
parameter must be greater than 0.

-79769 A customized type map is required for this data type

You must register a customized type map to use any opaque types.

-79770 Cannot find the SQLTypeName specified in the SQLData or Struct

The SQLTypename object you specified in the SQLData or Struct class does
not exist in the database. Make sure that the type name is valid.
10 Informix JDBC Driver Programmer’s Guide

-79771 Input value is not valid

The input value is not accepted for this data type. Make sure this is a valid
input for this data type.

-79772 No more data to read. Verify your SQLdata class or getSQLTypeName()

You have asked for more data than is available. Check your SQLData class to
make sure it matches what is in the database schema. The SQLTypeName
object might also be incorrect.

-79774 Unable to create local file

Large object data read from the database server can be stored either in
memory or in a local file. If the LOBCACHE value is 0 or the large object size
is greater than the LOBCACHE value, the large object data from the database
server is always stored in a file. In this case, if a security exception occurs,
Informix JDBC Driver makes no attempt to store the large object into memory
and throws this exception.

-79775 Only TYPE_SCROLL_INSENSITIVE and TYPE_FORWARD_ONLY are
supported.

Informix JDBC Driver only supports a result set type of
TYPE_SCROLL_INSENSITIVE and TYPE_FORWARD_ONLY. Only these values
should be used.

-79776 Type requested (%s) does not match row type information (%s) type

Row type information was acquired either through the system catalogs or
through the supplied row definition. The row data provided does not match
this row element type. The type information must be modified, or the data
must be provided.

-79777 readObject/writeObject() only supports UDT’s, Distincts and complex types

The SQLData.writeObject() method was called for an object that is not a
user-defined, distinct, or complex type. Verify that you have provided
customized type-mapping information.

-79778 Type mapping class must be a java.util.Collection implementation

You provided a type mapping to override the default for a SET, LIST, or
MULTISET data type, but the class does not implement the
java.util.Collection interface.
Error Messages 11

-79780 Data within a collection must all be the same Java class and length.

Verify that all the objects in the collection are of the same class.

-79781 Index/Count out of range

Array.getArray() or Array.getResultSet() was called with index and count
values. Either the index is out of range or the count is too big. Verify that the
number of elements in the array is sufficient for the index and count values.

-79782 Method can be called only once

Make sure methods like Statement.getUpdateCount() and Statement.getRe-
sultSet() are called only once per result.

-79783 Encoding or code set not supported

The encoding or code set entered in the DB_LOCALE or CLIENT_LOCALE
variable is not valid. Check “Internationalization” on page 2-31 for valid
code sets.

-79784 Locale not supported

The locale entered in the DB_LOCALE or CLIENT_LOCALE variable is not
valid. Check “Internationalization” on page 2-31 for valid locales.

-79785 Unable to convert JDBC escape format date string to localized date string

The JDBC escape format for date values must be specified in the format {d
’yyyy-mm-dd’}. Verify that the JDBC escape date format specified is correct.
Verify the DBDATE and GL_DATE settings for the correct date string format
if either of these was set to a value in the connection database URL string or
property list.

-79786 Unable to build a Date object based on localized date string representation

The localized date string representation specified in a CHAR, VARCHAR, or
LVARCHAR column is not correct, and a date object cannot be built based on
the year, month, and day values. Verify that the date string representation
conforms to the DBDATE or GL_DATE date formats if either one of these is
specified in a connection database URL string or property list. If neither
DBDATE or GL_DATE is specified but a CLIENT_LOCALE or DB_LOCALE is
explicitly set in a connection database URL string or property list, verify that
the date string representation conforms to the JDK short default format
(DateFormat.SHORT).
12 Informix JDBC Driver Programmer’s Guide

-79788 User name must be specified

The user name is required to establish a connection with Informix JDBC
Driver. Make sure you pass in user=your_user_name as part of the database
URL or one of the properties.

-79789 Server does not support GLS variables DB_LOCALE, CLIENT_LOCALE or
GL_DATE

These variables can only be used if the database server supports GLS. Check
the documentation for your database server version and omit these variables
if they are not supported.

-79790 Invalid complex type definition string

The value returned by the getSQLtypeName() method is either null or
invalid. Check the string to verify that it is either a valid named-row name or
a valid row type definition.

-79792 Row must contain data

The Array.getAttributes() or Array.getAttributes(Map) method has
returned 0 elements. These methods must return a nonzero number.

-79793 Data in array does not match getBaseType() value

The Array.getArray() or Array.getArray(Map) method returns an array
where the element type does not match the JDBC base type.

-79794 Row length provided (%s) doesn’t match row type information (%s)

Data in the row does not match the length in the row type information. You
do not have to pad string lengths to match what is in the row definition, but
lengths for other data types should match.

-79795 Row extended id provided (%s) doesn’t match row type information (%s)

The extended ID of the object in the row does not match the extended ID as
defined in row type information. Either update the row information (if you
are providing the row definition) or check the type mapping information.

-79796 Cannot find UDT, distinct or named row (%s) in database

The getSQLTypeName() method has returned a name that can not be found
in the database. Verify that the Struct or SQLData object returns the correct
information.
Error Messages 13

-79797 DBDATE setting must be at least 4 characters and no longer than 6 characters.

This error occurs because the DBDATE format string that is passed to the
database server either has too few characters or too many. To fix the problem,
verify the DBDATE format string with the user documentation and make sure
that the correct year, month, day, and possibly era parts of the DBDATE
format string are correctly identified.

-79798 A numerical year expansion is required after 'Y' character in DBDATE string.

This error occurs because the DBDATE format string has a year designation
(specified by the character Y), but there is no character following the year
designation to denote the numerical year expansion (2 or 4). To fix the
problem, modify the DBDATE format string to include the numerical year
expansion value after the Y character.

-79799 An invalid character is found in the DBDATE string after the 'Y' character.

This error occurs because the DBDATE format string has a year designation
(specified by the character Y), but the character following the year desig-
nation is not a 2 or 4 (for two-digit years and four-digit years, respectively).
To fix the problem, modify the DBDATE format string to include the required
numerical year expansion value after the Y character. Only a 2 or 4 character
should immediately follow the Y character designation.

-79800 No 'Y' character is specified before the numerical year expansion value.

This error occurs because the DBDATE format string has a numerical year
expansion (2 or 4 to denote two-digit years or four-digit years, respectively),
but the year designation character (Y) was not found immediately before the
numerical year expansion character specified. To fix the problem, modify the
DBDATE format string to include the required Y character immediately before
the numerical year expansion value requested.

-79801 An invalid character is found in DBDATE format string.

This error occurs because the DBDATE format string has a character that is
not allowed. To fix the problem, modify the DBDATE format string to only
include the correct date part designations: year (Y), numerical year expansion
value (2 or 4), month (M), and day (D). Optionally, you can include an era
designation (E) and a default separator character (hyphen, dot, or slash),
which is specified at the end of the DBDATE format string. Refer to the user
documentation for further information on correct DBDATE format string
character designations.
14 Informix JDBC Driver Programmer’s Guide

-79802 Not enough tokens are specified in the string representation of a date value.

This error occurs because the date string specified does not have the
minimum number of tokens or separators needed to form a valid date value
(composed of year, month, and day numerical parts). For example, 12/15/98
is a valid date string representation with the slash character as the separator
or token. But 12/1598 is not a valid date string representation, because there
are not enough separators or tokens. To fix the problem, modify the date
string representation to include a valid format for separating the day, month,
and year parts of a date value.

-79803 Date string index out of bounds during date format parsing to build Date
object.

This error occurs because there is not a one-to-one correspondence between
the date string format required by DBDATE or GL_DATE and the actual date
string representation you defined. For example, if GL_DATE is set to %b %D
%y and you specify a character string of Oct, there is a definite mismatch
between the format required by GL_DATE and the actual date string. To fix
the problem, modify the date string representation of the DBDATE or
GL_DATE setting so that the date format specified matches one-to-one with
the required date string representation.

-79804 No more tokens are found in DBDATE string representation of a date value.

This error occurs because the date string specified does not have any more
tokens or separators needed to form a valid date value (composed of year,
month, and day numerical parts) based on the DBDATE format string. For
example, 12/15/98 is a valid date string representation when DBDATE is set
to MDY2/. But 12/1598 is not a valid date string representation, because
there are not enough separators or tokens. To fix the problem, modify the
date string representation to include a valid format for separating the day,
month, and year parts of a date value based on the DBDATE format string
setting.
Error Messages 15

-79805 No era designation found in DBDATE/GL_DATE string representation of date
value.

This error occurs because the date string specified does not have a valid era
designation as required by the DBDATE or GL_DATE format string setting.
For example, if DBDATE is set to Y2MDE-, but the date string representation
specified by the user is 98-12-15, this is an error because there is no era
designation at the end of the date string value. To fix the problem, modify the
date string representation to include a valid era designation based on the
DBDATE or GL_DATE format string setting. In this example, a date string
representation of 98-12-15 AD would probably suffice, depending on the
locale.

-79806 Numerical day value can not be determined from date string based on
DBDATE.

This error occurs because the date string specified does not have a valid
numerical day designation as required by the DBDATE format string setting.
For example, if DBDATE is set to Y2MD-, but the date string representation
you specify is 98-12-blah, this is an error, because blah is not a valid
numerical day representation. To fix the problem, modify the date string
representation to include a valid numerical day designation (1-31) based on
the DBDATE format string setting.

-79807 Numerical month value can not be determined from date string based on
DBDATE.

This error occurs because the date string specified does not have a valid
numerical month designation as required by the DBDATE format string
setting. For example, if DBDATE is set to Y2MD-, but the date string represen-
tation you specify is 98-blah-15, this is an error, because blah is not a valid
numerical month representation. To fix the problem, modify the date string
representation to include a valid numerical month designation (1-12) based
on the DBDATE format string setting.
16 Informix JDBC Driver Programmer’s Guide

-79808 Not enough tokens specified in %D directive representation of date string.

This error occurs because the date string specified does not have the correct
number of tokens or separators needed to form a valid date value based on
the GL_DATE %D directive (mm/dd/yy format). For example, 12/15/98 is a
valid date string representation based on the GL_DATE %D directive, but
12/1598 is not a valid date string representation, because there are not
enough separators or tokens. To fix the problem, modify the date string repre-
sentation to include a valid format for the GL_DATE %D directive.

-79809 Not enough tokens specified in %x directive representation of date string.

This error occurs because the date string specified does not have the correct
number of tokens or separators needed to form a valid date value based on
the GL_DATE %x directive (format required is based on day, month, and year
parts, and the ordering of these parts is determined by the specified locale).
For example, 12/15/98 is a valid date string representation based on the
GL_DATE %x directive for the U.S. English locale, but 12/1598 is not a valid
date string representation, because there are not enough separators or tokens.
To fix the problem, modify the date string representation to include a valid
format for the GL_DATE %x directive based on the locale.
Error Messages 17

@

Index

O QCA B D E F G H I J K L M N P R S T U V W X Y Z
Index
A
Accessing a database remotely 2-49
Anonymous search of sqlhosts

information 2-17
ANSI compliance

level Intro-10
APPLET tag 1-16
Applets

and database access 2-49
unsigned, features unavailable

for 1-16
using Informix JDBC Driver

in 1-15
ARCHIVE attribute of APPLET

tag 1-16
Array class 3-50
ArrayList class 3-45
Arrays 3-45, 3-49
Autocommit 2-46
AUTOFREE environment

variable A-2
autofree.java example

program 4-8, A-2
Automatically freeing the

cursor 2-13, 2-47, 4-8

B
Batch updates to the database 2-22
BatchUpdateException

interface 2-23
BatchUpdate.java example

program 2-23, A-2
Binary qualifiers for INTERVAL

data types 3-39

BLOB data type
caching 3-20, 3-33, 4-6
examples of

column insertion 3-34
creation 3-33
data retrieval 3-35

extensions for 3-25
Blob interface 3-32
Boldface type Intro-6
BOOLEAN data type 3-69
Browsers 1-15
BYTE data type

caching 4-6
examples for

data inserts and updates 3-21
data retrieval 3-23

extensions for 3-20
ByteType.java example

program 3-22, 3-24, A-2

C
Caching large objects 4-6
CallableStatement interface 2-22
cancelRowUpdate() method 2-27
cancel() method 2-27
Catalogs

Informix JDBC Driver
interpretation 2-22

systables 2-21, 2-41, 2-43
charattrUDT.java example

program A-4
Classes

Array 3-50
ArrayList 3-45
extensibleobject 2-16

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
HashSet 3-45, 3-46
IfmxStatement 2-48
IfxBblob 3-32
IfxCblob 3-32
IfxDriver 2-4
IfxJDBCProxy 2-49, 2-50
IfxLobDescriptor 3-26
IfxSmartBlob 3-27
IfxTypes 3-73
Interval 3-39
IntervalDF 3-43
IntervalYM 3-40
Java.Socket 2-19
Locale 2-31
Message 2-30
Properties 2-11
ResultSet 2-36, 2-38
SessionMgr 2-49
SQLException 2-30, 3-76, 3-79
SqlhDelete 2-19
SqlhUpload 2-19
TreeSet 3-48
Version 2-48

ClassGenerator utility 1-7, 3-63,
A-1, A-2

CLASSPATH environment
variable 1-14, 3-63

Class.forName() method 2-4
Client hosts

specifying the locale of 2-32
CLIENT_LOCALE environment

variable 2-12, 2-32, 2-39
CLOB data type

caching 3-20, 3-33, 4-6
examples of

column insertion 3-34
creation 3-33
data retrieval 3-35

extensions for 3-25
Clob interface 3-32
close() method 2-24, 2-25
Code sets

conversion of 2-40, 2-45
synchronizing with locales 2-31
table of 2-41

Collection data type
examples of

using the array interface 3-49

using the collection
interface 3-46

extensions for 3-45
in named and unnamed

rows 3-53
Collection interface 3-45
Comment icons Intro-7
Compliance with industry

standards Intro-10
Concurrency

and multiple threads 2-25
of scroll cursors 2-24

Connection interface 2-25, 2-46
Connections

creating 2-4, 2-8
establishing 2-3
to a database with non-ASCII

characters 2-44
Constructors

IntervalDF() 3-43
IntervalYM() 3-41

Contents of Informix JDBC
Driver 1-7

CORBA 2-50
CreateDB.java example

program A-2
createDB.java example

program A-4, A-5
createTypes.java example

program A-4
Creating a connection 2-4, 2-8
CSM option 2-20
Cursors

automatically freeing 2-13, 2-47,
4-8

scroll 2-23

D
Data types

BLOB 4-6
BOOLEAN 3-69
BYTE 3-20, 4-6
CLOB 4-6
collection 3-45
DataBlade API 3-8
DATETIME 3-67
distinct 3-16

INTERVAL 3-38
LVARCHAR 3-68, 3-78
mapping between Informix and

JDBC API 3-66
named row 3-50
opaque 3-5
SERIAL 3-37
SERIAL8 3-37
TEXT 3-20, 4-6
unnamed row 3-50

Database server name, setting in
database URLs 2-8

DatabaseMetaData interface 2-21,
2-48

Databases
batch updates of 2-22
names of, setting in database

URLs 2-7
querying 2-22
remote access options 2-49
specifying the locale of 2-32
URL 2-5, 2-6
with non-ASCII characters 2-44

DataBlade API data types 3-8
Dates

DBDATE formats of 2-36
formatting directives for 2-33
four-digit year expansion 2-39
GL_DATE formats of 2-33
inserting values 2-35, 2-37
native SQL formats of 2-35, 2-37
nonnative SQL formats of 2-35,

2-37
precedence rules for end-user

formats 2-39
represented by strings 2-36
retrieving values 2-36, 2-38
string-to-date conversion 2-39
support for end-user formats 2-33

DATETIME type 3-67
DBANSIWARN environment

variable 2-12
DBCENTURY environment

variable 2-12, 2-39
DBCENTURYSelect.java example

program A-2
DBConnection.java example

program 2-9, A-2
2 Informix JDBC Driver Programmer’s Guide

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
DBDATE environment
variable 2-12, 2-36, 2-39

DBDATESelect.java example
program A-2

DBMetaData.java example
program A-2

DBSPACETEMP environment
variable 2-12

DBUPSPACE environment
variable 2-12

DB_LOCALE environment
variable 2-12, 2-32, 2-40

Deallocating resources 2-24
Debugging 4-3
Default locale Intro-5
deleteRow() method 2-27
DELIMIDENT environment

variable 2-12
demo1.java example program A-4
demo2.java example program A-4
demo3.java example program A-4
demo4.java example program A-4
demo5.java example program A-4
demo6.java example program A-4
demo_11.java example

program A-4
demo_13.java example

program A-4
demo_14.java example

program A-4
Directives, formatting, for

dates 2-33
Distinct data type

examples for
inserting data 3-17
retrieving data 3-19

extensions for 3-16
unsupported methods for 3-20

distinct_d1.java example
program A-4

distinct_d2.java example
program A-5

Driver interface 2-48
DriverManager interface 1-6, 2-4,

2-8, 2-11
DropDB.java example

program A-2
dropDB.java example

program A-5, A-6

E
ENABLE_CACHE_TYPE

environment variable 2-12, 3-9,
3-17, 3-53

Encryption of the database
password 2-20

End-user formats for dates
precedence rules for 2-39
support for 2-33

Environment variables Intro-6
AUTOFREE A-2
CLASSPATH 1-14, 3-63
CLIENT_LOCALE 2-12, 2-32,

2-39
DBANSIWARN 2-12
DBCENTURY 2-12, 2-39
DBDATE 2-12, 2-36, 2-39
DBSPACETEMP 2-12
DBUPSPACE 2-12
DB_LOCALE 2-12, 2-32, 2-40
DELIMIDENT 2-12
ENABLE_CACHE_TYPE 2-12,

3-9, 3-17, 3-53
FET_BUF_SIZE 2-13, 4-5, A-3
GL_DATE 2-13, 2-33, 2-39
IFX_AUTOFREE 2-13, 4-7
INFORMIXCONRETRY 2-13
INFORMIXCONTIME 2-13
INFORMIXOPCACHE 2-13
INFORMIXSERVER 2-8, 2-13
INFORMIXSTACKSIZE 2-13
JDBCTEMP 2-14
LOBCACHE 2-14, 3-20, 3-33, 4-6
NODEFDAC 2-14
OPTCOMPIND 2-14
OPTOFC 2-15, 4-7, A-3
PATH 2-15
PDQPRIORITY 2-15
PLCONFIG 2-15
PROTOCOLTRACE 4-4
PROTOCOLTRACEFILE 4-4
PSORT_DBTEMP 2-15
PSORT_NPROCS 2-15
SECURITY 2-16, 2-20
specifying 2-8, 2-10
SQLH_TYPE 2-16
supported 2-12
TRACE 4-4

TRACEFILE 4-4
USEV5SERVER 2-16

en_us.8859-1 locale Intro-5
equals() method 3-42, 3-44
Errors 2-28, 2-29, 2-30
Escape syntax 2-26
Establishing a connection 2-3
Examples

autofree.java 4-8, A-2
BatchUpdate.java 2-23, A-2
BLOB and CLOB data types

column insertion 3-34
creation 3-33
data retrieval 3-35

BYTE and TEXT data types 3-21,
3-23

ByteType.java 3-22, 3-24, A-2
charattrUDT.java A-4
collection data types

using the array interface 3-49
using the collection

interface 3-46
CreateDB.java A-2
createDB.java A-4, A-5
createTypes.java A-4
DBCENTURYSelect.java A-2
DBConnection.java 2-9, A-2
DBDATESelect.java A-2
DBMetaData.java A-2
demo1.java A-4
demo2.java A-4
demo3.java A-4
demo4.java A-4
demo5.java A-4
demo6.java A-4
demo_11.java A-4
demo_13.java A-4
demo_14.java A-4
distinct data types

inserting data 3-17
retrieving data 3-19

distinct_d1.java A-4
distinct_d2.java A-5
DropDB.java A-2
dropDB.java A-5, A-6
GenericStruct.java A-5
GLDATESelect.java A-3
Intervaldemo.java 3-45, A-3
largebinUDT.java A-5
Index 3

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
list1.java A-5
list2.java A-5
LOCALESelect.java A-3
MultiRowCall.java A-3
myMoney.java A-5
named and unnamed rows

creating a Struct class for 3-61
using the SQLData interface for

a named row 3-54
using the Struct interface 3-58

opaque data types
inserting data 3-10
large objects 3-13
retrieving data 3-13

OptimizedSelect.java A-3
optofc.java 2-11, 4-8, A-3
PropertyConnection.java A-3
r1_t.java A-5
r2_t.java A-5
row1.java A-5
row2.java A-5
row3.java A-6
RSMetaData.java A-3
ScrollCursor.java 2-24, A-3
Serial.java A-3
SimpleCall.java A-3
SimpleConnection.java A-3
SimpleSelect.java A-3
TextConv.java A-3
TextType.java 3-23, 3-25, A-3
udt_d1.java A-5
udt_d2.java A-5

executeBatch() method 2-23
executeQuery() method 2-25, 2-47
executeUpdate() method 2-9, 3-23
execute() method 2-24, 2-28
extensibleobject class 2-16

F
FET_BUF_SIZE environment

variable 2-13, 4-5, A-3
File interface 3-23
FileInputStream interface 3-23
Files

IfxJDBCProxy.class 1-7, 2-49
java.io 2-31
java.security 2-21

java.text 2-31
java.util 2-31
mitypes.h 3-8
SessionMgr.class 1-8, 2-49
setup.std 3-63
sqlhosts 2-16

Firewalls and database access 2-49
Formatting directives for

dates 2-33
fromString() method 3-42, 3-44

G
GenericStruct.java example

program A-5
getArray() method 3-45, 3-50
getAsciiStream() method 3-36
getAttributes() method 3-60
getAutoFree() method 2-47, 4-8
getBinaryStream() method 3-36
getBlob() method 3-36
getBytes() method 2-45, 3-36
getCatalogName() method 2-28
getCatalogs() method 2-22
getClob() method 3-36
getConnection() method 2-4, 2-8,

2-11
getEndCode() method 3-40
getErrorCode() method 2-29
getFetchSize() method 2-27
getFieldName() method 3-40
getIfxTypeName() method 3-40
getJDBCVersion() method 2-48
getLength() method 3-40
getMajorVersion() method 2-48
getMessage() method 2-29
getMinorVersion() method 2-48
getMonths() method 3-42
getNanoSeconds() method 3-44
getObject() method 3-45, 3-51, 3-52
getQualifier() method 3-40
getRef() method 2-27
getScale() method 3-40
getSchemaName() method 2-28
getSchemas() method 2-21
getSeconds() method 3-44
getSerial8() method 3-37
getSerial() method 3-37

getSQLTypeName() method 3-51,
3-52, 3-57, 3-60, 3-62

getStartCode() method 3-40
getString() method 2-36, 2-38, 2-45,

3-36
getTableName() method 2-28
getText() method 2-44
getTypeMap() method 3-51, 3-56,

3-57
getUnicodeStream() method 2-27
getUpdateCounts() method 2-23
getXXX() method 2-26, 3-78
GLDATESelect.java example

program A-3
Global Language Support

(GLS) Intro-5, 2-31
GL_DATE environment

variable 2-13, 2-33, 2-39
greaterThan() method 3-42, 3-44

H
HashSet class 3-45, 3-46
Host names, setting in database

URLs 2-7
HTTP proxy 2-49

I
Icons

Important Intro-7
platform Intro-7
Tip Intro-7
Warning Intro-7

IfmxComplexSQLInput.readObject
() method 3-53

IfmxComplexSQLOutput.writeObj
ect() method 3-53

IfmxStatement class 2-48
IfmxUdtSQLInput interface 3-6
IfmxUdtSQLOutput interface 3-7
IfxBblob class 3-32
IfxCblob class 3-32
IfxDriver class 2-4
ifxjdbc-g.jar 4-3
ifxjdbc-g.jar file 1-7, 1-15
IfxJDBCProxy class 2-49, 2-50
IfxJDBCProxy.class file 1-7, 2-49
4 Informix JDBC Driver Programmer’s Guide

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
ifxjdbc.jar file 1-7, 1-15
IfxLobDescriptor class 3-26
IfxLocator object 3-26
IfxLoClose() method 3-28
IfxLoCreate() method 3-27
IfxLoOpen() method 3-27
IfxLoRead() method 3-29
IfxLoRelease() method 3-28
IfxLoSeek() method 3-28
IfxLoSize() method 3-28
IfxLoTruncate() method 3-28
IfxLoWrite() method 3-29
IfxSetObject() method 3-72
IfxSmartBlob class 3-27
ifxtools-g.jar file 1-7
ifxtools.jar file 1-7, 3-63
IfxTypes class 3-73
IFX_AUTOFREE environment

variable 2-13, 4-7
Important paragraphs, icon

for Intro-7
Industry standards, compliance

with Intro-10
Informix base distinguished

name 2-19
Informix JDBC Driver

contents of 1-7
installing interactively 1-8
installing silently 1-10
loading 2-4
overview of 1-6
registering 2-4
tracing 4-4
uninstalling 1-13
using debug version of 4-3
using in an applet 1-15, 2-4
using in an application 1-14

INFORMIXCONRETRY
environment variable 2-13

INFORMIXCONTIME
environment variable 2-13

INFORMIXOPCACHE
environment variable 2-13

INFORMIXSERVER environment
variable 2-8, 2-13

INFORMIXSTACKSIZE
environment variable 2-13

InputStream interface 3-21

InputStreamReader() method 2-44,
2-45

Inserting DATE values 2-35
Inserting date values 2-37
insertRow() method 2-27
Installing Informix JDBC

Driver 1-8, 1-10
Interfaces

BatchUpdateException 2-23
Blob 3-32
CallableStatement 2-22
Clob 3-32
Collection 3-45
Connection 2-25, 2-46
DatabaseMetaData 2-21, 2-48
Driver 2-48
DriverManager 1-6, 2-4, 2-8, 2-11
File 3-23
FileInputStream 3-23
IfmxUdtSQLInput 3-6
IfmxUdtSQLOutput 3-7
InputStream 3-21
List 3-45
PreparedStatement 2-22, 2-23,

2-25, 3-69 to 3-78
ResultSet 2-22, 2-24, 2-26,

3-78 to 3-80, 4-7
ResultSetMetaData 2-22
Set 3-45
SQLData 3-7, 3-51, 3-57, 3-63
SQLInput 3-56
Statement 2-9, 2-22, 2-23, 4-7
Struct 3-51, 3-52
Types 3-37, 3-66

Internationalization 2-31 to 2-46
Interval class 3-39
INTERVAL data type

binary qualifiers for 3-39
extensions for 3-38
in named and unnamed

rows 3-53
Intervaldemo.java example

program 3-45, A-3
IntervalDF class 3-43
IntervalDF() constructor 3-43
IntervalYM class 3-40
IntervalYM() constructor 3-41
IP address, setting in database

URL 2-7

isDefinitelyWriteable()
method 2-28

ISO 8859-1 code set Intro-5
isReadOnly() method 2-27, 2-28
isWriteable() method 2-28

J
JAR files

for JNDI 2-16
for LDAP SPI 2-16
ifxjdbc-g.jar 1-7, 1-15, 4-3
ifxjdbc.jar 1-7, 1-15
ifxtools-g.jar 1-7
ifxtools.jar 1-7, 3-63

jar utility 1-15
Java naming and directory interface

(JNDI)
and the sqlhosts file 2-16
JAR files for 2-16

Java virtual machine (JVM) 1-14
javac, Java compiler 1-7
JavaSoft 1-3, 1-15
java.io file 2-31
java.security file 2-21
Java.Socket class 2-19
java.text file 2-31
java.util file 2-31
JCE security package 2-20
JDBC API 1-3, 1-4
JDBC driver, general 1-6
JDBCTEMP environment

variable 2-14

L
largebinUDT.java example

program A-5
lessThan() method 3-42, 3-44
Lightweight directory access

protocol (LDAP) server
administration requirements

for 2-18
and the sqlhosts file 2-16
and unsigned applets 1-16
JAR files for 2-16
loader for 1-7
URL syntax for 2-17
Index 5

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
utilities for 2-18
version requirement 2-16

List interface 3-45
list1.java example program A-5
list2.java example program A-5
Loading Informix JDBC Driver 2-4
LOBCACHE environment

variable 2-14, 3-20, 3-33, 4-6
Locale class 2-31
Locales

assumptions about Intro-5
client, specifying 2-32
database, specifying 2-32
synchronizing with code sets 2-31
table of 2-43

LOCALESelect.java example
program A-3

Localization 2-31
Locator object 3-26
LVARCHAR data type 3-68, 3-78

M
Mapping

between Informix and JDBC API
data types 3-66

opaque data types 3-7
map.put() method 3-56, 3-57
Message class 2-30
Metadata, accessing database 2-21
Methods

cancelRowUpdate() 2-27
cancel() 2-27
Class.forName() 2-4
close() 2-24, 2-25
deleteRow() 2-27
equals() 3-42, 3-44
executeBatch() 2-23
executeQuery() 2-25, 2-47
executeUpdate() 2-9, 3-23
execute() 2-24, 2-28
fromString() 3-42, 3-44
getArray() 3-45, 3-50
getAsciiStream() 3-36
getAttributes() 3-60
getAutoFree() 2-47, 4-8
getBinaryStream() 3-36
getBlob() 3-36

getBytes() 2-45, 3-36
getCatalogName() 2-28
getCatalogs() 2-22
getClob() 3-36
getConnection() 2-4, 2-8, 2-11
getEndCode() 3-40
getErrorCode() 2-29
getFetchSize() 2-27
getFieldName() 3-40
getIfxTypeName() 3-40
getJDBCVersion() 2-48
getLength() 3-40
getMajorVersion() 2-48
getMessage() 2-29
getMinorVersion() 2-48
getMonths() 3-42
getNanoSeconds() 3-44
getObject() 3-45, 3-51, 3-52
getQualifier() 3-40
getRef() 2-27
getScale() 3-40
getSchemaName() 2-28
getSchemas() 2-21
getSeconds() 3-44
getSerial8() 3-37
getSerial() 3-37
getSQLTypeName() 3-51, 3-52,

3-57, 3-60, 3-62
getStartCode() 3-40
getString() 2-36, 2-38, 2-45, 3-36
getTableName() 2-28
getText() 2-44
getTypeMap() 3-51, 3-56, 3-57
getUnicodeStream() 2-27
getUpdateCounts() 2-23
getXXX() 2-26, 3-78
greaterThan() 3-42, 3-44
IfmxComplexSQLInput.readObje

ct() 3-53
IfmxComplexSQLOutput.writeO

bject() 3-53
IfxLoClose() 3-28
IfxLoCreate() 3-27
IfxLoOpen() 3-27
IfxLoRead() 3-29
IfxLoRelease() 3-28
IfxLoSeek() 3-28
IfxLoSize() 3-28
IfxLoTruncate() 3-28

IfxLoWrite() 3-29
IfxSetObject() 3-72
InputStreamReader() 2-44, 2-45
insertRow() 2-27
isDefinitelyWriteable() 2-28
isReadOnly() 2-27, 2-28
isWriteable() 2-28
lessThan() 3-42, 3-44
map.put() 3-56, 3-57
moveToCurrentRow() 2-27
moveToInsertRow() 2-27
next() 2-26, 3-23
OutputStreamWriter() 2-44, 2-45
prepareStatement() 2-25
put() 2-11
readAsciiStream() 3-16
readBinaryStream() 3-16
readBytes() 3-16
readByte() 3-65
readCharacterStream() 3-16,3-20,

3-65
readObject() 3-16
readRef() 3-16, 3-20, 3-65
readSQL() 3-7, 3-51, 3-56, 3-63
readString() 3-16
refreshRow() 2-27
registerDriver() 2-4
registerOutParameter() 2-27
rowDeleted() 2-27
rowInserted() 2-27
rowUpdated() 2-27
setArray() 3-45, 3-70
setAsciiStream() 3-21, 3-70
setAutoCommit() 2-46
setAutoFree() 2-47, 4-8
setBigDecimal() 3-70
setBinaryStream() 3-21, 3-71
setBlob() 3-71
setBoolean() 3-71
setBytes() 3-71
setByte() 3-71
setCatalog() 2-27
setCharacterStream() 3-71
setClob() 3-71
setDate() 3-71
setDouble() 3-71
setFetchSize() 2-27
setFloat() 3-71
setInt() 2-25, 3-71
6 Informix JDBC Driver Programmer’s Guide

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
setLong() 3-71
setMaxFieldSize() 2-27
setNull() 3-72
setObject() 3-45, 3-52, 3-57, 3-62
setQualifier() 3-42, 3-44
setQueryTimeout() 2-27
setReadOnly() 2-27
setRef() 2-27
setShort() 3-72
setString() 3-72
setTimestamp() 3-72
setTime() 3-72
setTypeMap() 3-45
setUnicodeStream() 2-27
setXXX() 3-70, 3-75
set() 3-42, 3-44
SQLInput() 3-5, 3-53
SQLOutput() 3-5, 3-53
toString() 3-42, 3-44
unsupported

for distinct data types 3-20
for named rows 3-65
for opaque data types 3-16
for querying the database 2-27

updateRow() 2-27
updateXXX() 2-27
writeAsciiStream() 3-16
writeBinaryStream() 3-16
writeBytes() 3-16
writeByte() 3-65
writeCharacterStream() 3-16,

3-20, 3-65
writeInt() 3-58
writeObject() 3-16, 3-58
writeRef() 3-16, 3-20, 3-65
WriteSQL() 3-7
writeSQL() 3-51, 3-58, 3-63
writeString() 3-16
writeXXX() 3-58

mitypes.h file 3-8
moveToCurrentRow()

method 2-27
moveToInsertRow() method 2-27
MultiRowCall.java example

program A-3
myMoney.java example

program A-5

N
Named row data type

caching type information 3-9,
3-17, 3-53

examples of
creating a Struct class for 3-61
using the SQLData

interface 3-54
using the Struct interface 3-58

extensions for 3-50
generating using the

ClassGenerator utility 3-63
intervals and collections in 3-53
opaque data type columns in 3-51
unsupported methods for 3-65
using the SQLData interface

for 3-51
using the Struct interface for 3-52

Name-value pairs of database
URL 2-8

Native SQL date formats 2-35, 2-37
next() method 2-26, 3-23
NODEFDAC environment

variable 2-14
Nonnative SQL date formats 2-35,

2-37

O
Objects

IfxLocator 3-26
Locator 3-26

ODBC 1-6
Opaque data type

examples of
inserting data 3-10
large objects 3-13
retrieving data 3-13

extensions for 3-5
mappings for 3-7
unsupported methods 3-16

OPTCOMPIND environment
variable 2-14

OptimizedSelect.java example
program A-3

Options
CSM 2-20

SERVERNAME 2-20
SPWDCSM 2-20

OPTOFC environment
variable 2-15, 4-7, A-3

optofc.java example program 2-11,
4-8, A-3

OutputStreamWriter()
method 2-44, 2-45

P
Passwords

configuring the server for 2-20
encryption of 2-20
JCE security package for 2-20
URL syntax of 2-8, 2-20
versions of the server

supporting 2-20
PATH environment variable 2-15
PDQPRIORITY environment

variable 2-15
Performance 4-5
Platform icons Intro-7
PLCONFIG environment

variable 2-15
Port numbers

setting in database URL 2-7
setting in sqlhosts file or LDAP

server 2-17
Precedence rules for date

formats 2-39
PREPARE statements, executing

multiple 2-22
PreparedStatement interface 2-22,

2-23, 2-25, 3-69 to 3-78
prepareStatement() method 2-25
Properties class 2-11
Property lists 2-11
PropertyConnection.java example

program A-3
PROTOCOLTRACE environment

variable 4-4
PROTOCOLTRACEFILE

environment variable 4-4
Proxy server 2-49
PSORT_DBTEMP environment

variable 2-15
Index 7

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
PSORT_NPROCS environment
variable 2-15

put() method 2-11

Q
Qualifiers, binary, for INTERVAL

data types 3-39
Querying the database 2-22

R
r1_t.java example program A-5
r2_t.java example program A-5
readAsciiStream() method 3-16
readBinaryStream() method 3-16
readBytes() method 3-16
readByte() method 3-65
readCharacterStream()

method 3-16, 3-20, 3-65
readObject() method 3-16
readRef() method 3-16, 3-20, 3-65
readSQL() method 3-7, 3-51, 3-56,

3-63
readString() method 3-16
Ref type 3-67
refreshRow() method 2-27
registerDriver() method 2-4
Registering Informix JDBC

Driver 2-4
registerOutParameter()

method 2-27
Relative distinguished name

(RDN) 2-19
Remote database access 2-49
Remote method invocation

(RMI) 2-50, A-1, A-2
ResultSet class 2-36, 2-38
ResultSet interface 2-22, 2-24, 2-26,

3-78 to 3-80, 4-7
ResultSetMetaData interface 2-22
Retrieving

database names 2-22
date values 2-36, 2-38
Informix error message text 2-30
user names 2-21
version information 2-48

RMI 2-50, A-1, A-2

row1.java example program A-5
row2.java example program A-5
row3.java example program A-6
rowDeleted() method 2-27
rowInserted() method 2-27
rowUpdated() method 2-27
RSMetaData.java example

program A-3

S
Schemas, Informix JDBC Driver

interpretation 2-21
Scroll cursors 2-23
ScrollCursor.java example

program 2-24, A-3
Search, anonymous, of sqlhosts

information 2-17
SECURITY environment

variable 2-16, 2-20
Security, JCE package for 2-20
SERIAL data type 3-37
SERIAL8 data type 3-37
Serial.java example program A-3
SERVERNAME option 2-20
Service provider interface

(SPI) 2-16
Servlets 2-49
SessionMgr class 2-49
SessionMgr.class file 1-8, 2-49
Set interface 3-45
setArray() method 3-45, 3-70
setAsciiStream() method 3-21, 3-70
setAutoCommit() method 2-46
setAutoFree() method 2-47, 4-8
setBigDecimal() method 3-70
setBinaryStream() method 3-21,

3-71
setBlob() method 3-71
setBoolean() method 3-71
setBytes() method 3-71
setByte() method 3-71
setCatalog() method 2-27
setCharacterStream() method 3-71
setClob() method 3-71
setDate() method 3-71
setDouble() method 3-71
setFetchSize() method 2-27

setFloat() method 3-71
setInt() method 2-25, 3-71
setLong() method 3-71
setMaxFieldSize() method 2-27
setNull() method 3-72
setObject() method 3-45, 3-52, 3-57,

3-62
setQualifier() method 3-42, 3-44
setQueryTimeout() method 2-27
setReadOnly() method 2-27
setRef() method 2-27
setShort() method 3-72
setString() method 3-72
setTimestamp() method 3-72
setTime() method 3-72
Setting

autocommit 2-46
properties 2-11
the CLASSPATH environment

variable 1-14, 1-15
setTypeMap() method 3-45
setUnicodeStream() method 2-27
setup.class class file 1-7, 1-8, 1-10,

1-11, 1-12
setup.std file 3-63
setXXX() method 3-70, 3-75
set() method 3-42, 3-44
SimpleCall.java example

program A-3
SimpleConnection.java example

program A-3
SimpleSelect.java example

program A-3
Specifying

environment variables 2-8, 2-10
the client locale 2-32
the database locale 2-32

SPWDCSM option 2-20
SQL date formats

native 2-35, 2-37
nonnative 2-35, 2-37

SQLData interface 3-7, 3-51, 3-57,
3-63

SQLException class 2-30, 3-76, 3-79
SqlhDelete utility 2-19
sqlhosts file

administration requirements
for 2-18

and password support 2-20
8 Informix JDBC Driver Programmer’s Guide

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
and unsigned applets 1-16
reading 2-16
URL syntax for 2-17
utilities for 2-18

SqlhUpload utility 2-19
SQLH_TYPE environment

variable 2-16
SQLInput interface 3-56
SQLInput() method 3-5, 3-53
SQLOutput() method 3-5, 3-53
Statement interface 2-9, 2-22, 2-23,

4-7
Strings, representing dates

using 2-36
Struct interface 3-51, 3-52
Structured type (Struct) 3-50
Supported environment

variables 2-12
Syntax of database URLs 2-6
sysmaster database 2-21
systables catalog

and code set conversion 2-41,
2-43

and metadata 2-21

T
TEXT data type

caching 4-6
code set conversion for 2-45
examples for

data inserts and updates 3-21
data retrieval 3-23

extensions for 3-20
TextConv.java example

program A-3
TextType.java example

program 3-23, 3-25, A-3
Threads, multiple, and

concurrency 2-25
Tip icons Intro-7
toString() method 3-42, 3-44
TRACE environment variable 4-4
TRACEFILE environment

variable 4-4
Tracing 4-4
Transactions, handling 2-46
TreeSet class 3-48

Tuple buffer 2-13, 4-5
TU_DAY variable 3-39
TU_F1 variable 3-39
TU_F2 variable 3-39
TU_F3 variable 3-39
TU_F4 variable 3-39
TU_F5 variable 3-39
TU_FRAC variable 3-39
TU_HOUR variable 3-39
TU_MINUTE variable 3-39
TU_MONTH variable 3-39
TU_SECOND variable 3-39
TU_YEAR variable 3-39
Types interface 3-37, 3-66

U
udt_d1.java example program A-5
udt_d2.java example program A-5
Unicode

and internationalization
APIs 2-31

and the client code set 2-44
and the database code set 2-41

Uninstalling Informix JDBC
Driver 1-13

Unnamed row data type
examples of

creating a Struct class for 3-61
using the Struct interface 3-58

extensions for 3-50
intervals and collections in 3-53
using the Struct interface for 3-52

Unsupported methods
for distinct data types 3-20
for named rows 3-65
for opaque data types 3-16
for querying the database 2-27

updateRow() method 2-27
Updates, batch 2-22
updateXXX() method 2-27
URLs

database 2-5, 2-6
for a proxy server 2-49
syntax for LDAP server and

sqlhosts file 2-17
User names, setting in database

URLs 2-8

User-defined routine 3-53
USEV5SERVER environment

variable 2-16
Using debug version of Informix

JDBC Driver 4-3
Using Informix JDBC Driver

in an applet 1-15, 2-4
in an application 1-14

Using INFORMIX-OnLine 5.x
database servers 2-16

Using INFORMIX-SE 5.x database
servers 2-16

Utilities
ClassGenerator 1-7, 3-63
jar 1-15
SqlhDelete 2-19
SqlhUpload 2-19

V
Variables for binary qualifiers 3-39
Version class 2-48
Version, of Informix JDBC

Driver 2-48

W
Warning icons Intro-7
writeAsciiStream() method 3-16
writeBinaryStream() method 3-16
writeBytes() method 3-16
writeByte() method 3-65
writeCharacterStream()

method 3-16, 3-20, 3-65
writeInt() method 3-58
writeObject() method 3-16, 3-58
writeRef() method 3-16, 3-20, 3-65
WriteSQL() method 3-7
writeSQL() method 3-51, 3-58, 3-63
writeString() method 3-16
writeXXX() method 3-58

X
X/Open compliance level Intro-10
Index 9

	Answers OnLine Web Site
	Table of Contents
	Introduction
	In This Introduction
	About This Manual
	Organization of This Manual
	Material Not Covered
	Types of Users
	Software Dependencies
	Assumptions About Your Locale

	Documentation Conventions
	Typographical Conventions
	Icon Conventions
	Comment Icons
	Platform Icons

	Additional Documentation
	Printed Documentation
	On-Line Documentation
	Vendor-Specific Documentation

	Compliance with Industry Standards
	Informix Welcomes Your Comments

	Getting Started
	In This Chapter
	What Is JDBC?
	What Is a JDBC Driver?
	Overview of Informix JDBC Driver
	Installing the Driver
	Interactive Installation
	Silent Installation

	Uninstalling the Driver
	Using the Driver in an Application
	Using the Driver in an Applet

	Programming with Informix JDBC Driver
	In This Chapter
	Establishing a Connection
	Loading Informix JDBC Driver
	Creating a Connection
	Format of Database URLs
	Database Versus Database Server Connections
	Specifying Environment Variables with the Properties Class
	Supported Informix Environment Variables

	Dynamically Reading the Informix sqlhosts File
	Database URL Syntax
	Administration Requirements
	Utilities to Update the LDAP Server with sqlhosts Data

	Password Encryption
	Configuring the Database Server
	JCE Security Package

	Accessing Database Metadata
	Querying the Database
	Batch Updates
	Scroll Cursors
	Informix-Specific Information About Querying a Database
	Example of Sending a Query to an Informix Database
	Escape Syntax
	Unsupported Methods

	Handling Errors
	Using the SQLException Class
	Retrieving Informix Error Message Text

	Internationalization
	JDK 1.1 and 1.2 Internationalization Support
	Support for Informix GLS Variables
	Support for Date End-User Formats
	GL_DATE Variable
	DBDATE Variable
	DBCENTURY Variable

	Precedence Rules Regarding DATE Value End-User Formats
	Support for Code-Set Conversion
	Unicode to Database Code Set
	Unicode to Client Code Set
	Connecting to a Database with Non-ASCII Characters
	Code Set Conversion for TEXT Data Types

	Handling Transactions
	Other Informix Extensions to the JDBC API
	The Auto Free Feature
	Obtaining Driver Version Information

	Using an HTTP Proxy Server

	Manipulating Informix Data Types
	In This Chapter
	Manipulating Informix Opaque Types
	IfmxUdtSQLInput Interface
	IfmxUdtSQLOutput Interface
	Mapping Opaque Types
	Caching Type Information
	Inserting Data Examples
	Retrieving Data Example
	Using Smart Large Objects Examples
	Unsupported Methods

	Manipulating Informix Distinct Types
	Caching Type Information
	Inserting Data Examples
	Retrieving Data Example
	Unsupported Methods

	Manipulating Informix BYTE and TEXT Data Types
	Caching Large Objects
	Inserting or Updating Data Example
	Selecting Data Example

	Manipulating Informix BLOB and CLOB Data Types
	IfxLobDescriptor
	IfxLocator
	IfxSmartBlob
	IfxSmartBlob Methods
	IfxSmartBlob Flag Values
	IfxSmartBlob Whence Values

	IfxBblob and IfxCblob Classes
	IfxBblob Class
	IfxCblob Class

	Caching Large Objects
	Creating a Smart Large Object Example
	Inserting Data Example
	Retrieving Data Example

	Manipulating Informix SERIAL and SERIAL8 Data Types
	Manipulating Informix INTERVAL Data Types
	The Interval Class
	Variables for Binary Qualifiers
	Interval Methods

	The IntervalYM Class
	IntervalYM Constructors
	IntervalYM Methods

	The IntervalDF Class
	IntervalDF Constructors
	IntervalDF Methods

	Interval Example

	Manipulating Informix Collections and Arrays
	Collection Examples
	Array Example

	Manipulating Informix Named and Unnamed Rows
	Using the SQLData Interface
	Using the Struct Interface
	Interval and Collection Support
	Caching Type Information
	SQLData Examples
	Struct Examples
	The ClassGenerator Utility
	Simple Named Row
	Nested Named Row

	Unsupported Methods

	Mapping Data Types
	Mapping Between Informix and JDBC Data Types
	PreparedStatement.setXXX() Extensions
	The Mapping Extensions
	The IfxTypes Class
	Extension Summary

	Supported ResultSet.getXXX() Methods

	Troubleshooting
	In This Chapter
	Debugging Your JDBC API Program
	Using the Debug Version of the Driver
	Turning on Tracing

	Performance Issues
	Using the FET_BUF_SIZE Environment Variable
	Memory Management of Large Objects
	Reducing Network Traffic

	Sample Code Files
	Glossary
	Error Messages
	Index

