
Informix Guide to SQL
Reference
Informix Extended Parallel Server, Version 8.3
Informix Dynamic Server.2000, Version 9.2
December 1999
Part No. 000-6526

ii Informix Guide to SQL
Published by Informix Press Informix Corporation
4100 Bohannon Drive
Menlo Park, CA 94025-1032

© 1999 Informix Corporation. All rights reserved. The following are trademarks of Informix Corporation
or its affiliates, one or more of which may be registered in the United States or other jurisdictions:

Answers OnLineTM; C-ISAM; Client SDKTM; DataBlade; Data DirectorTM; Decision FrontierTM;
Dynamic Scalable ArchitectureTM; Dynamic ServerTM; Dynamic ServerTM, Developer EditionTM;
Dynamic ServerTM with Advanced Decision Support OptionTM; Dynamic ServerTM with Extended
Parallel OptionTM; Dynamic ServerTM with MetaCube; Dynamic ServerTM with Universal Data OptionTM;
Dynamic ServerTM with Web Integration OptionTM; Dynamic ServerTM, Workgroup EditionTM;
Dynamic Virtual MachineTM; Extended Parallel ServerTM; FormationTM; Formation ArchitectTM;
Formation Flow EngineTM; Gold Mine Data Access; IIF.2000TM; i.ReachTM; i.SellTM; Illustra; Informix;
Informix 4GL; Informix InquireSM; Informix Internet Foundation.2000TM; InformixLink;
Informix Red Brick Decision ServerTM; Informix Session ProxyTM; Informix VistaTM; InfoShelfTM;
InterforumTM; I-SpyTM; MediazationTM; MetaCube; NewEraTM; ON-BarTM; OnLine Dynamic ServerTM;
OnLine/Secure Dynamic ServerTM; OpenCase; OrcaTM; PaVERTM; Red Brick and Design;
Red Brick Data MineTM; Red Brick Mine BuilderTM; Red Brick DecisionscapeTM; Red Brick ReadyTM;
Red Brick Systems; Regency Support; Rely on Red BrickSM; RISQL; Solution DesignSM; STARindexTM;
STARjoinTM; SuperView; TARGETindexTM; TARGETjoinTM; The Data Warehouse Company;
The one with the smartest data wins.TM; The world is being digitized. We’re indexing it.SM;
Universal Data Warehouse BlueprintTM; Universal Database ComponentsTM; Universal Web ConnectTM;
ViewPoint; VisionaryTM; Web Integration SuiteTM. The Informix logo is registered with the United States
Patent and Trademark Office. The DataBlade logo is registered with the United States Patent and
Trademark Office.

Documentation Team: Brian Deutscher, Mary Kraemer, Jennifer Leland

GOVERNMENT LICENSE RIGHTS

Software and documentation acquired by or for the US Government are provided with rights as follows:
(1) if for civilian agency use, with rights as restricted by vendor’s standard license, as prescribed in FAR 12.212;
(2) if for Dept. of Defense use, with rights as restricted by vendor’s standard license, unless superseded by a
negotiated vendor license, as prescribed in DFARS 227.7202. Any whole or partial reproduction of software or
documentation marked with this legend must reproduce this legend.
: Reference

Table of Contents

Table of
Contents
Introduction
In This Introduction 3
About This Manual 3

Types of Users 3
Software Dependencies 4
Assumptions About Your Locale. 4
Demonstration Databases 5

New Features . 5
New Features in Version 8.3 6
New Features in Version 9.2 6

Documentation Conventions 6
Typographical Conventions 7
Icon Conventions 7
Command-Line Conventions 9
Sample-Code Conventions 12

Additional Documentation 12
On-Line Manuals 13
Printed Manuals 13
Error Message Documentation 13
Documentation Notes, Release Notes, Machine Notes 14
Related Reading 15

Compliance with Industry Standards 15
Informix Welcomes Your Comments 16

iv Inform
Chapter 1 System Catalog
In This Chapter 1-5
Objects That the System Catalog Tables Track 1-5
Using the System Catalog 1-6

Accessing the System Catalog 1-12
Updating System Catalog Data 1-13

Structure of the System Catalog 1-14
SYSAGGREGATES 1-16
SYSAMS. 1-17
SYSATTRTYPES 1-23
SYSBLOBS 1-24
SYSCASTS 1-25
SYSCHECKS 1-26
SYSCOLATTRIBS 1-27
SYSCOLAUTH 1-28
SYSCOLDEPEND 1-29
SYSCOLUMNS 1-30
SYSCONSTRAINTS 1-36
SYSDEFAULTS 1-37
SYSDEPEND 1-38
SYSDISTRIB 1-39
SYSERRORS 1-41
SYSEXTCOLS 1-42
SYSEXTDFILES 1-43
SYSEXTERNAL 1-44
SYSFRAGAUTH 1-45
SYSFRAGMENTS 1-46
SYSINDEXES 1-49
SYSINDICES 1-51
SYSINHERITS. 1-53
SYSLANGAUTH 1-53
SYSLOGMAP 1-54
SYSNEWDEPEND 1-54
SYSOBJSTATE 1-55
SYSOPCLASSES 1-56
SYSOPCLSTR 1-57
SYSPROCAUTH 1-59
SYSPROCBODY 1-60
SYSPROCEDURES 1-61
ix Guide to SQL: Reference

SYSPROCPLAN 1-65
SYSREFERENCES 1-66
SYSREPOSITORY 1-67
SYSROLEAUTH 1-68
SYSROUTINELANGS 1-68
SYSSYNONYMS 1-69
SYSSYNTABLE 1-70
SYSTABAMDATA 1-71
SYSTABAUTH 1-72
SYSTABLES 1-73
SYSTRACECLASSES 1-75
SYSTRACEMSGS 1-76
SYSTRIGBODY 1-77
SYSTRIGGERS 1-78
SYSUSERS 1-79
SYSVIEWS 1-80
SYSVIOLATIONS 1-81
SYSXTDDESC 1-82
SYSXTDTYPEAUTH 1-83
SYSXTDTYPES 1-84

Information Schema 1-86
Generating the Information Schema Views 1-86
Accessing the Information Schema Views 1-87
Structure of the Information Schema Views 1-87

Chapter 2 Data Types
In This Chapter 2-5
Summary of Data Types 2-5
Description of Data Types 2-9

BLOB . 2-9
BOOLEAN 2-11
BYTE . 2-12
CHAR(n) 2-13
CHARACTER(n) 2-14
CHARACTER VARYING(m,r) 2-15
CLOB . 2-15
DATE . 2-16
DATETIME 2-17
DEC. 2-21
Table of Contents v

vi Inform
DECIMAL 2-21
Distinct . 2-23
DOUBLE PRECISION 2-24
FLOAT(n) 2-24
INT . 2-25
INT8 . 2-25
INTEGER 2-26
INTERVAL 2-26
LIST(e) . 2-30
LVARCHAR 2-31
MONEY(p,s) 2-32
MULTISET(e) 2-33
Named Row 2-34
NCHAR(n) 2-34
NUMERIC(p,s) 2-34
NVARCHAR(m,r) 2-34
Opaque . 2-35
REAL . 2-35
Row, Named 2-36
Row, Unnamed 2-37
SERIAL(n) 2-39
SERIAL8. 2-40
SET(e). 2-42
SMALLFLOAT 2-43
SMALLINT. 2-44
TEXT . 2-44
Unnamed Row 2-46
VARCHAR(m,r) 2-46

Built-In Data Types 2-48
Large-Object Data Types 2-49
Time Data Types 2-52

Extended Data Types 2-58
Complex Data Types 2-59
Distinct Data Types 2-62
Opaque Data Types 2-62
ix Guide to SQL: Reference

Data Type Casting and Conversion 2-63
Using Built-in Casts 2-64
Using User-Defined Casts 2-67
Determining Which Cast to Apply 2-68
Casts for Distinct Types 2-69
What Extended Data Types Can Be Cast? 2-70

Operator Precedence 2-71

Chapter 3 Environment Variables
In This Chapter 3-5
Types of Environment Variables 3-6
Where to Set Environment Variables in UNIX 3-7
Where to Set Environment Variables in Windows NT 3-7
Using Environment Variables in UNIX 3-8

Setting Environment Variables in an
Environment-Configuration File 3-8

Setting Environment Variables at Login Time 3-9
Syntax for Setting Environment Variables 3-10
Unsetting Environment Variables 3-10
Modifying an Environment-Variable Setting 3-11
Viewing Your Environment-Variable Settings 3-12
Checking Environment Variables with the chkenv Utility . . 3-12
Rules of Precedence 3-13

Using Environment Variables in Windows NT 3-14
Setting Environment Variables for Native

Windows Applications 3-14
Setting Environment Variables for

Command-Prompt Utilities 3-15
Rules of Precedence 3-18

List of Environment Variables 3-19
Environment Variables 3-24

AC_CONFIG 3-24
ARC_CONFIG 3-25
ARC_DEFAULT 3-25
ARC_KEYPAD 3-26
COCKPITSERVICE 3-27
CPFIRST 3-28
DBACCNOIGN. 3-29
DBANSIWARN 3-30
DBBLOBBUF 3-31
Table of Contents vii

viii Infor
DBCENTURY 3-32
DBDATE 3-36
DBDELIMITER 3-39
DBEDIT . 3-40
DBFLTMASK 3-41
DBLANG 3-42
DBMONEY. 3-44
DBONPLOAD. 3-45
DBPATH. 3-46
DBPRINT 3-48
DBREMOTECMD 3-49
DBSPACETEMP 3-50
DBTEMP 3-52
DBTIME . 3-53
DBUPSPACE 3-56
DELIMIDENT 3-57
ENVIGNORE 3-58
FET_BUF_SIZE 3-59
IFMX_SMLTBL_BROADCAST_SIZE 3-60
IFX_DIRECTIVES 3-61
IFX_LONGID 3-62
IFX_NETBUF_PVTPOOL_SIZE 3-63
IFX_NETBUF_SIZE 3-63
IFX_UPDDESC 3-64
INFORMIXC 3-64
INFORMIXCONCSMCFG 3-65
INFORMIXCONRETRY 3-66
INFORMIXCONTIME 3-66
INFORMIXCPPMAP 3-68
INFORMIXDIR 3-68
INFORMIXKEYTAB. 3-69
INFORMIXOPCACHE 3-70
INFORMIXSERVER 3-70
INFORMIXSHMBASE 3-72
INFORMIXSQLHOSTS. 3-73
INFORMIXSTACKSIZE 3-74
INFORMIXTERM 3-75
INF_ROLE_SEP 3-76
ISM_COMPRESSION 3-77
mix Guide to SQL: Reference

ISM_DEBUG_FILE 3-77
ISM_DEBUG_LEVEL 3-78
ISM_ENCRYPTION 3-79
ISM_MAXLOGSIZE 3-79
ISM_MAXLOGVERS 3-80
LD_LIBRARY_PATH 3-80
LIBPATH 3-81
NODEFDAC 3-81
ONCONFIG 3-82
OPTCOMPIND 3-83
OPTMSG 3-84
OPTOFC 3-85
OPT_GOAL 3-86
PATH . 3-87
PDQPRIORITY 3-88
PLCONFIG 3-90
PLOAD_LO_PATH 3-91
PLOAD_SHMBASE 3-91
PSORT_DBTEMP 3-92
PSORT_NPROCS 3-93
SHLIB_PATH 3-94
STMT_CACHE 3-95
TERM . 3-96
TERMCAP 3-96
TERMINFO 3-97
THREADLIB. 3-98
XFER_CONFIG 3-98

Index of Environment Variables 3-99

Appendix A The stores_demo Database

Appendix B The sales_demo and superstores_demo Databases

Glossary

Index
Table of Contents ix

Introduction
Introduction
In This Introduction 3

About This Manual 3
Types of Users 3
Software Dependencies 4
Assumptions About Your Locale 4
Demonstration Databases 5

New Features . 5
New Features in Version 8.3 6
New Features in Version 9.2 6

Year 2000 Compliance 6
Version 9.2 Features from Dynamic Server 7.30 6

Documentation Conventions 6
Typographical Conventions 7
Icon Conventions 7

Comment Icons 8
Feature, Product, and Platform Icons 8

Command-Line Conventions 9
How to Read a Command-Line Diagram 11

Sample-Code Conventions 12

Additional Documentation 12
On-Line Manuals 13
Printed Manuals 13
Error Message Documentation 13
Documentation Notes, Release Notes, Machine Notes 14
Related Reading 15

2 Inform
Compliance with Industry Standards. 15

Informix Welcomes Your Comments 16
ix Guide to SQL: Reference

In This Introduction
This Introduction provides an overview of the information in this manual
and describes the conventions it uses.

About This Manual
This manual includes information about system catalog tables, data types,
and environment variables that Informix products use. It also includes a
glossary that contains definitions of common terms found in Informix
documentation and a description of the demonstration databases that
Version 9.2 of Informix Dynamic Server 2000 and Version 8.3 of Informix
Extended Parallel Server provide.

This manual is one of a series of manuals that discusses the Informix imple-
mentation of SQL. The Informix Guide to SQL: Syntax contains all the syntax
descriptions for SQL and stored procedure language (SPL). The Informix Guide
to SQL: Tutorial shows how to use basic and advanced SQL and SPL routines
to access and manipulate the data in your databases.The Informix Guide to
Database Design and Implementation shows how to use SQL to implement and
manage your databases.

Types of Users
This manual is written for the following users:

■ Database users

■ Database administrators

■ Database server administrators
Introduction 3

Software Dependencies
■ Database-application programmers

■ Performance engineers

This manual assumes that you have the following background:

■ A working knowledge of your computer, your operating system,
and the utilities that your operating system provides

■ Some experience working with relational databases or exposure to
database concepts

■ Some experience with computer programming

■ Some experience with database server administration, operating-
system administration, or network administration

If you have limited experience with relational databases, SQL, or your
operating system, refer to the Getting Started manual for your database server
for a list of supplementary titles.

Software Dependencies
This manual assumes that you are using one of the following database
servers:

■ Informix Extended Parallel Server, Version 8.3

■ Informix Dynamic Server 2000, Version 9.2

Assumptions About Your Locale
Informix products can support many languages, cultures, and code sets. All
culture-specific information is brought together in a single environment,
called a Global Language Support (GLS) locale.

This manual assumes that you use the U.S. 8859-1 English locale as the
default locale. The default is en_us.8859-1 (ISO 8859-1) on UNIX platforms or
en_us.1252 (Microsoft 1252) for Windows NT environments. This locale
supports U.S. English format conventions for dates, times, and currency, and
also supports the ISO 8859-1 or Microsoft 1252 code set, which includes the
ASCII code set plus many 8-bit characters such as é, è, and ñ.
4 Informix Guide to SQL: Reference

Demonstration Databases
If you plan to use nondefault characters in your data or your SQL identifiers,
or if you want to conform to the nondefault collation rules of character data,
you need to specify the appropriate nondefault locale.

For instructions on how to specify a nondefault locale, additional syntax, and
other considerations related to GLS locales, see the Informix Guide to GLS
Functionality.

Demonstration Databases
The DB-Access utility, which is provided with your Informix database server
products, includes one or more of the following demonstration databases:

■ The stores_demo database illustrates a relational schema with infor-
mation about a fictitious wholesale sporting-goods distributor.
Many examples in Informix manuals are based on the stores_demo
database.

■ The sales_demo database illustrates a dimensional schema for data-
warehousing applications. For conceptual information about dimen-
sional data modeling, see the Informix Guide to Database Design and
Implementation. ♦

■ The superstores_demo database illustrates an object-relational
schema. The superstores_demo database includes examples of
extended data types, type and table inheritance, and user-defined
routines. ♦

For information about how to create and populate the demonstration
databases, see the DB-Access User’s Manual. For descriptions of the databases
and their contents, see this manual.

The scripts that you use to install the demonstration databases reside in the
$INFORMIXDIR/bin directory on UNIX platforms and in the
%INFORMIXDIR%\bin directory in Windows environments.

New Features
For a comprehensive list of new database server features, see the release
notes. This section lists new features relevant to this manual.

XPS

IDS
Introduction 5

New Features in Version 8.3
New Features in Version 8.3
This manual describes the DBCENTURY environment variable, which is a
Year 2000 compliance feature in Version 8.3 of Extended Parallel Server.

New Features in Version 9.2
This manual describes new features in Version 9.2 of Dynamic Server. The
features fall into the following areas:

■ Year 2000 Compliance

■ Version 9.2 features from Version 7.30 of Dynamic Server

Year 2000 Compliance

This manual describes the DBCENTURY environment variable in Version 9.2
of Dynamic Server.

Version 9.2 Features from Dynamic Server 7.30

This manual also describes the IFX_UPDDESC environment variable, which
was first released in Version 7.30.

Documentation Conventions
This section describes the conventions that this manual uses. These
conventions make it easier to gather information from this and other volumes
in the documentation set.

The following conventions are discussed:

■ Typographical conventions

■ Icon conventions

■ Command-line conventions

■ Sample-code conventions
6 Informix Guide to SQL: Reference

Typographical Conventions
Typographical Conventions
This manual uses the following conventions to introduce new terms,
illustrate screen displays, describe command syntax, and so forth.

Tip: When you are instructed to “enter” characters or to “execute” a command,
immediately press RETURN after the entry. When you are instructed to “type” the
text or to “press” other keys, no RETURN is required.

Icon Conventions
Throughout the documentation, you will find text that is identified by several
different types of icons. This section describes these icons.

Convention Meaning

KEYWORD All primary elements in a programming language statement
(keywords) appear in uppercase letters in a serif font.

italics
italics
italics

Within text, new terms and emphasized words appear in italics.
Within syntax and code examples, variable values that you are
to specify appear in italics.

boldface
boldface

Names of program entities (such as classes, events, and tables),
environment variables, file and pathnames, and interface
elements (such as icons, menu items, and buttons) appear in
boldface.

monospace
monospace

Information that the product displays and information that you
enter appear in a monospace typeface.

KEYSTROKE Keys that you are to press appear in uppercase letters in a sans
serif font.

♦ This symbol indicates the end of one or more product- or
platform-specific paragraphs.

➞ This symbol indicates a menu item. For example, “Choose
Tools➞Options” means choose the Options item from the
Tools menu.
Introduction 7

Icon Conventions
Comment Icons

Comment icons identify three types of information, as the following table
describes. This information always appears in italics.

Feature, Product, and Platform Icons

Feature, product, and platform icons identify paragraphs that contain
feature-specific, product-specific, or platform-specific information.

Icon Label Description

Warning: Identifies paragraphs that contain vital instructions,
cautions, or critical information

Important: Identifies paragraphs that contain significant
information about the feature or operation that is
being described

Tip: Identifies paragraphs that offer additional details or
shortcuts for the functionality that is being described

Icon Description

Identifies information that relates to the Informix Global
Language Support (GLS) feature

Identifies information that is specific to Informix Dynamic
Server 2000

 (1 of 2)

GLS

IDS
8 Informix Guide to SQL: Reference

Command-Line Conventions
These icons can apply to an entire section or to one or more paragraphs
within a section. If an icon appears next to a section heading, the information
that applies to the indicated feature, product, or platform ends at the next
heading at the same or higher level. A ♦ symbol indicates the end of feature-,
product-, or platform-specific information that appears within one or more
paragraphs within a section.

Command-Line Conventions
This section defines and illustrates the format of commands that are available
in Informix products. These commands have their own conventions, which
might include alternative forms of a command, required and optional parts
of the command, and so forth.

Each diagram displays the sequences of required and optional elements that
are valid in a command. A diagram begins at the upper-left corner with a
command. It ends at the upper-right corner with a vertical line. Between
these points, you can trace any path that does not stop or back up. Each path
describes a valid form of the command. You must supply a value for words
that are in italics.

Identifies information that is specific to UNIX platforms

Identifies information that is specific to the Windows NT
environment

Identifies information or syntax that is specific to Informix
Extended Parallel Server

Icon Description

 (2 of 2)

UNIX

WIN NT

XPS
Introduction 9

Command-Line Conventions
You might encounter one or more of the following elements on a command-
line path.

Element Description

command This required element is usually the product name or
other short word that invokes the product or calls the
compiler or preprocessor script for a compiled Informix
product. It might appear alone or precede one or more
options. You must spell a command exactly as shown
and use lowercase letters.

variable A word in italics represents a value that you must
supply, such as a database, file, or program name. A table
following the diagram explains the value.

-flag A flag is usually an abbreviation for a function, menu, or
option name, or for a compiler or preprocessor
argument. You must enter a flag exactly as shown,
including the preceding hyphen.

.ext A filename extension, such as .sql or .cob, might follow
a variable that represents a filename. Type this extension
exactly as shown, immediately after the name of the file.
The extension might be optional in certain products.

(. , ; + * - /) Punctuation and mathematical notations are literal
symbols that you must enter exactly as shown.

' ' Single quotes are literal symbols that you must enter as
shown.

A reference in a box represents a subdiagram. Imagine
that the subdiagram is spliced into the main diagram at
this point. When a page number is not specified, the
subdiagram appears on the same page.

A shaded option is the default action.

Syntax within a pair of arrows indicates a subdiagram.

The vertical line terminates the command.

 (1 of 2)

Privileges
p. 5-17

Privileges

ALL
10 Informix Guide to SQL: Reference

Command-Line Conventions
How to Read a Command-Line Diagram

Figure 1 shows a command-line diagram that uses some of the elements that
are listed in the previous table.

To construct a command correctly, start at the top left with the command.
Follow the diagram to the right, including the elements that you want. The
elements in the diagram are case sensitive.

Figure 1 illustrates the following steps:

1. Type setenv.

2. Type INFORMIXC.

3. Supply either a compiler name or a pathname.

After you choose compiler or pathname, you come to the terminator.
Your command is complete.

4. Press RETURN to execute the command.

A branch below the main path indicates an optional
path. (Any term on the main path is required, unless a
branch can circumvent it.)

A loop indicates a path that you can repeat. Punctuation
along the top of the loop indicates the separator symbol
for list items.

A gate () on a path indicates that you can only use
that path the indicated number of times, even if it is part
of a larger loop. You can specify size no more than three
times within this statement segment.

Element Description

 (2 of 2)

ON

-f OFF

variable

,

size3

, 3

Figure 1
Example of a Command-Line Diagram

pathname

compilersetenv INFORMIXC
Introduction 11

Sample-Code Conventions
Sample-Code Conventions
Examples of SQL code occur throughout this manual. Except where noted,
the code is not specific to any single Informix application development tool.
If only SQL statements are listed in the example, they are not delimited by
semicolons. For instance, you might see the code in the following example:

CONNECT TO stores_demo
...

DELETE FROM customer
WHERE customer_num = 121

...

COMMIT WORK
DISCONNECT CURRENT

To use this SQL code for a specific product, you must apply the syntax rules
for that product. For example, if you are using DB-Access, you must delimit
multiple statements with semicolons. If you are using an SQL API, you must
use EXEC SQL at the start of each statement and a semicolon (or other appro-
priate delimiter) at the end of the statement.

Tip: Ellipsis points in a code example indicate that more code would be added in a
full application, but it is not necessary to show it to describe the concept being
discussed.

For detailed directions on using SQL statements for a particular application
development tool or SQL API, see the manual for your product.

Additional Documentation
For additional information, you might want to refer to the following types of
documentation:

■ On-line manuals

■ Printed manuals

■ Error message documentation

■ Documentation notes, release notes, and machine notes

■ Related reading
12 Informix Guide to SQL: Reference

On-Line Manuals
On-Line Manuals
An Answers OnLine CD that contains Informix manuals in electronic format
is provided with your Informix products. You can install the documentation
or access it directly from the CD. For information about how to install, read,
and print on-line manuals, see the installation insert that accompanies
Answers OnLine.

Informix on-line manuals are also available on the following Web site:

www.informix.com/answers

Printed Manuals
To order printed manuals, call 1-800-331-1763 or send email to
moreinfo@informix.com. Please provide the following information when
you place your order:

■ The documentation that you need

■ The quantity that you need

■ Your name, address, and telephone number

Error Message Documentation
Informix software products provide ASCII files that contain all of the
Informix error messages and their corrective actions.

To read error messages and corrective actions on UNIX, use one of the
following utilities.

To read error messages and corrective actions in Windows environments, use
the Informix Find Error utility. To display this utility, choose
Start➞Programs➞Informix from the Task Bar. ♦

Utility Description

finderr Displays error messages on line

rofferr Formats error messages for printing

♦

UNIX

WIN NT
Introduction 13

Documentation Notes, Release Notes, Machine Notes
Instructions for using the preceding utilities are available in Answers
OnLine. Answers OnLine also provides a listing of error messages and
corrective actions in HTML format.

Documentation Notes, Release Notes, Machine Notes
In addition to printed documentation, the following sections describe the on-
line files that supplement the information in this manual. Please examine
these files before you begin using your database server. They contain vital
information about application and performance issues.

On UNIX platforms, the following on-line files appear in the
$INFORMIXDIR/release/en_us/0333 directory. Replace x.y in the filenames
with the version number of your database server.

On-Line File Purpose

SQLRDOC_x.y The documentation notes file for your version of this manual
describes topics that are not covered in the manual or that were
modified since publication.

SERVERS_x.y The release notes file describes feature differences from earlier
versions of Informix products and how these differences might
affect current products. This file also contains information about
any known problems and their workarounds.

IDS_x.y or
XPS_x.y

The machine notes file describes any special actions that you
must take to configure and use Informix products on your
computer. Machine notes are named for the product described.

♦

UNIX
14 Informix Guide to SQL: Reference

Related Reading
The following items appear in the Informix folder. To display this folder,
choose Start➞Programs➞Informix from the Task Bar.

The machine notes do not apply to Windows environments. ♦

Related Reading
For a list of publications that provide an introduction to database servers and
operating-system platforms, refer to your Getting Started manual.

Compliance with Industry Standards
The American National Standards Institute (ANSI) has established a set of
industry standards for SQL. Informix SQL-based products are fully compliant
with SQL-92 Entry Level (published as ANSI X3.135-1992), which is identical
to ISO 9075:1992. In addition, many features of Informix database servers
comply with the SQL-92 Intermediate and Full Level and X/Open SQL CAE
(common applications environment) standards.

Program Group Item Description

Documentation Notes This item includes additions or corrections to manuals
and information about features that might not be
covered in the manuals or that have been modified since
publication.

Release Notes This item describes feature differences from earlier
versions of Informix products and how these differ-
ences might affect current products. This file also
contains information about any known problems and
their workarounds.

WIN NT
Introduction 15

Informix Welcomes Your Comments
Informix Welcomes Your Comments
Let us know what you like or dislike about our manuals. To help us with
future versions of our manuals, we want to know about any corrections or
clarifications that you would find useful. Include the following information:

■ The name and version of the manual that you are using

■ Any comments that you have about the manual

■ Your name, address, and phone number

Send electronic mail to us at the following address:

doc@informix.com

The doc alias is reserved exclusively for reporting errors and omissions in our
documentation.

We appreciate your suggestions.
16 Informix Guide to SQL: Reference

1
Chapter
System Catalog
In This Chapter . 1-5

Objects That the System Catalog Tables Track. 1-5

Using the System Catalog 1-6
Accessing the System Catalog 1-12
Updating System Catalog Data 1-13

Structure of the System Catalog 1-14
SYSAGGREGATES 1-16
SYSAMS . 1-17
SYSATTRTYPES 1-23
SYSBLOBS . 1-24
SYSCASTS . 1-25
SYSCHECKS 1-26
SYSCOLATTRIBS 1-27
SYSCOLAUTH 1-28
SYSCOLDEPEND 1-29
SYSCOLUMNS 1-30
SYSCONSTRAINTS 1-36
SYSDEFAULTS 1-37
SYSDEPEND 1-38
SYSDISTRIB . 1-39
SYSERRORS . 1-41
SYSEXTCOLS 1-42
SYSEXTDFILES. 1-43
SYSEXTERNAL 1-44
SYSFRAGAUTH 1-45
SYSFRAGMENTS 1-46

1-2 Infor
SYSINDEXES 1-49
SYSINDICES . 1-51
SYSINHERITS 1-53
SYSLANGAUTH 1-53
SYSLOGMAP 1-54
SYSNEWDEPEND. 1-54
SYSOBJSTATE 1-55
SYSOPCLASSES 1-56
SYSOPCLSTR 1-57
SYSPROCAUTH 1-59
SYSPROCBODY 1-60
SYSPROCEDURES. 1-61
SYSPROCPLAN 1-65
SYSREFERENCES 1-66
SYSREPOSITORY 1-67
SYSROLEAUTH 1-68
SYSROUTINELANGS 1-68
SYSSYNONYMS 1-69
SYSSYNTABLE 1-70
SYSTABAMDATA 1-71
SYSTABAUTH 1-72
SYSTABLES . 1-73
SYSTRACECLASSES 1-75
SYSTRACEMSGS 1-76
SYSTRIGBODY 1-77
SYSTRIGGERS 1-78
SYSUSERS . 1-79
SYSVIEWS . 1-80
SYSVIOLATIONS 1-81
SYSXTDDESC 1-82
SYSXTDTYPEAUTH 1-83
SYSXTDTYPES 1-84
mix Guide to SQL: Reference

Information Schema 1-86
Generating the Information Schema Views 1-86
Accessing the Information Schema Views 1-87
Structure of the Information Schema Views. 1-87

The tables Information Schema View 1-88
The columns Information Schema View 1-88
The sql_languages Information Schema View 1-90
The server_info Information Schema View. 1-90
System Catalog 1-3

1-4 Infor
mix Guide to SQL: Reference

In This Chapter
The system catalog consists of tables that describe the structure of the
database. Each system catalog table contains specific information about an
element in the database.

This chapter details the following material:

■ Objects that the system catalog tables track

■ Using the system catalog (page 1-6)

■ Structure of the system catalog (page 1-13)

■ Information Schema (page 1-86)

Objects That the System Catalog Tables Track
The system catalog tables track the following objects:

■ Tables and constraints

■ Views

■ Triggers

■ Authorized users and privileges associated with every table that you
create

■ User-defined routines

■ Data types

■ Casts
System Catalog 1-5

Using the System Catalog
■ Access methods and operator classes

■ Error, warning, and informational messages associated with user-
defined routines

■ Inheritance relationships ♦

Using the System Catalog
Informix database servers automatically generate the system catalog tables
when you create a database. You can query them as you would query any
other table in the database. For a newly created database, the system catalog
tables for the database reside in a common area of the disk called a dbspace.

Every database has its own system catalog tables. All tables in the system
catalog have the prefix sys (for example, the systables system catalog table).

Not all tables that have the prefix sys are true system catalog tables. For
example, a common DataBlade builds a table called sysbuiltintypes that
looks like a system table and contains similar information. However, it has
an id > 99. System catalog tables all have an id < 99.

Tip: Do not confuse the system catalog tables of a database with the tables in the
sysmaster database. The sysmaster tables also have the sys prefix, but they contain
information about an entire database server, which might manage many databases.
The information in the sysmaster tables is primarily useful for database adminis-
trators (DBAs). For more information about the sysmaster tables, see the
“Administrator’s Guide.”

IDS
1-6 Informix Guide to SQL: Reference

Using the System Catalog
The database server accesses the system catalog constantly. Each time an SQL
statement is processed, the database server accesses the system catalog to
determine system privileges, add or verify table names or column names,
and so on. For example, the following CREATE SCHEMA block adds the
customer table, with its respective indexes and privileges, to the
stores_demo database. This block also adds a view, california, that restricts
the view in the customer table to only the first and last names of the customer,
the company name, and the phone number for all customers who reside in
California.

CREATE SCHEMA AUTHORIZATION maryl
CREATE TABLE customer

(customer_num SERIAL(101), fname CHAR(15), lname CHAR(15), company CHAR(20),
address1 CHAR(20), address2 CHAR(20), city CHAR(15), state CHAR(2),
zipcode CHAR(5), phone CHAR(18))

GRANT ALTER, ALL ON customer TO cathl WITH GRANT OPTION AS maryl
GRANT SELECT ON CUSTOMER TO public
GRANT UPDATE (fname, lname, phone) ON customer TO nhowe
CREATE VIEW california AS

SELECT fname, lname, company, phone FROM customer WHERE state = 'CA'
CREATE UNIQUE INDEX c_num_ix ON customer (customer_num)
CREATE INDEX state_ix ON customer (state)

To process this CREATE SCHEMA block, the database server first accesses the
system catalog to verify the following information:

■ The new table and view names do not already exist in the database.
(If the database is ANSI compliant, the database server verifies that
the table and view names do not already exist for the specified
owners.)

■ The user has permission to create the tables and grant user
privileges.

■ The column names in the CREATE VIEW and CREATE INDEX
statements exist in the customer table.

In addition to verifying this information and creating two new tables, the
database server adds new rows to the following system catalog tables:

■ systables

■ syscolumns

■ sysviews

■ systabauth
System Catalog 1-7

Using the System Catalog
■ syscolauth

■ sysindexes ♦
■ sysindices ♦

The following two new rows of information are added to the systables
system catalog table after the CREATE SCHEMA block is run, as page 1-7
shows.

tabname customer
owner maryl
partnum 16778361
tabid 101
rowsize 134
ncols 10
nindexes 2
nrows 0
created 01/26/1999
version 1
tabtype T
locklevel P
npused 0
fextsize 16
nextsize 16
flags 0
site
dbname

tabname california
owner maryl
partnum 0
tabid 102
rowsize 134
ncols 4
nindexes 0
nrows 0
created 01/26/1999
version 0
tabtype V
locklevel B
npused 0
fextsize 0
nextsize 0
flags 0
site
dbname

XPS

IDS
1-8 Informix Guide to SQL: Reference

Using the System Catalog
Each table recorded in the systables system catalog table is assigned a tabid,
a system-assigned sequential ID number that uniquely identifies each table in
the database. The system catalog tables receive tabid numbers 1 through 24,
and the user-created tables receive tabid numbers that begin with 100.

The CREATE SCHEMA block adds 14 rows to the syscolumns system catalog
table. These rows correspond to the columns in the table customer and the
view california, as the following example shows.

In the syscolumns system catalog table, each column within a table is
assigned a sequential column number, colno, that uniquely identifies the
column within its table. In the colno column, the fname column of the
customer table is assigned the value 2 and the fname column of the view
california is assigned the value 1. The colmin and colmax columns contain
no entries. These two columns contain values when a column is the first key
in a composite index or is the only key in the index, has no null or duplicate
values, and the UPDATE STATISTICS statement has been run.

colname tabid colno coltype collength colmin colmax

customer_num 101 1 262 4
fname 101 2 0 15
lname 101 3 0 15
company 101 4 0 20
address1 101 5 0 20
address2 101 6 0 20
city 101 7 0 15
state 101 8 0 2
zipcode 101 9 0 5
phone 101 10 0 18

fname 102 1 0 15
lname 102 2 0 15
company 102 3 0 20
phone 102 4 0 18
System Catalog 1-9

Using the System Catalog
The rows that the following example shows are added to the sysviews
system catalog table. These rows correspond to the CREATE VIEW portion of
the CREATE SCHEMA block.

The sysviews system catalog table contains the CREATE VIEW statement that
creates the view. Each line of the CREATE VIEW statement in the current
schema is stored in this table. In the viewtext column, the x0 that precedes the
column names in the statement (for example, x0.fname) operates as an alias
name that distinguishes among the same columns that are used in a self-join.

The CREATE SCHEMA block also adds rows to the systabauth system catalog
table. These rows correspond to the user privileges granted on customer and
california tables, as the following example shows.

The tabauth column of this table specifies the table-level privileges granted
to users on the customer and california tables. This column uses an 8-byte
pattern, such as s (select), u (update), * (column-level privilege), i (insert),
d (delete), x (index), a (alter), and r (references), to identify the type of
privilege. In this example, the user nhowe has column-level privileges on the
customer table.

If the tabauth privilege code is uppercase (for example, S for select), the user
who is granted this privilege can also grant it to others. If the tabauth
privilege code is lowercase (for example, s for select), the user who has this
privilege cannot grant it to others.

tabid seqview text
102 1 ,address1, address2, city, state,zipcode,phone) a

s select x0.custom
102 2 er_num, x0.fname, x0.lname, x0.company,

x0.address1, x0.address2
102 3 ,x0.city, x0.state, x0.zipcode, x0.phone from

'maryl'.customer
102 4 x0 where (x0.state = 'CA');

grantor grantee tabid tabauth
maryl public 101 su-idx--
maryl cathl 1 01 SU-IDXAR
maryl nhowe 101 --*-----

maryl 102 SU-ID---
1-10 Informix Guide to SQL: Reference

Using the System Catalog
In addition, three rows are added to the syscolauth system catalog table.
These rows correspond to the user privileges that are granted on specific
columns in the customer table, as the following example shows.

The colauth column specifies the column-level privileges that are granted on
the customer table. This column uses a 3-byte pattern, such as s (select),
u (update), and r (references), to identify the type of privilege. For example,
the user nhowe has update privileges on the second column (because the
colno value is 2) of the customer table (indicated by tabid value of 101).

The CREATE SCHEMA block adds two rows to the sysindexes system catalog
table (the sysindices system catalog table for Informix Dynamic Server 2000.)
These rows correspond to the indexes created on the customer table, as the
following example shows.

grantor grantee tabid colno colauth

maryl nhowe 101 2 -u-
maryl nhowe 101 3 -u-
maryl nhowe 101 10 -u-

idxname c_num_ix state_ix
owner maryl maryl
tabid 101 101
idxtype U D
clustered
part1 1 8
part2 0 0
part3 0 0
part4 0 0
part5 0 0
part6 0 0
part7 0 0
part8 0 0
part9 0 0
part10 0 0
part11 0 0
part12 0 0
part13 0 0
part14 0 0
part15 0 0
part16 0 0
levels
leaves
nunique
clust
System Catalog 1-11

Accessing the System Catalog
In this table, the idxtype column identifies whether the created index is
unique or a duplicate. For example, the index c_num_ix that is placed on the
customer_num column of the customer table is unique.

Accessing the System Catalog
Normal user access to the system catalog is read only. Users with Connect or
Resource privileges cannot alter the system catalog. They can, however,
access data in the system catalog tables on a read-only basis using standard
SELECT statements. For example, the following SELECT statement displays all
the table names and corresponding table ID numbers of user-created tables in
the database:

SELECT tabname, tabid FROM systables WHERE tabid > 99

When you use DB-Access, only the tables that you created are displayed. To
display the system catalog tables, enter the following statement:

SELECT tabname, tabid FROM systables WHERE tabid < 100

You can use SUBSTR or SUBSTRING function to select only part of a source
string. To display the list of database tables in columns, enter the following
statement:

SELECT SUBSTR(tabname, 1, 18), tabid FROM systables

Warning: Although user informix and DBAs can modify most system catalog tables
(only user informix can modify systables), Informix strongly recommends that you
do not update, delete, or insert any rows in them. Modifying the system catalog tables
can destroy the integrity of the database. Informix supports the use of the ALTER
TABLE statement to modify the size of the next extent of system catalog tables.

However, in certain cases with Dynamic Server, it is valid to add entries to the
system catalog tables. For instance, in the case of the syserrors system catalog table
and the systracemsgs system catalog table, a developer of DataBlade modules can
add message entries that appear in these system catalog tables. ♦

IDS
1-12 Informix Guide to SQL: Reference

Updating System Catalog Data
Updating System Catalog Data
The optimizer in Informix database servers determines the most efficient
strategy for executing SQL queries. The optimizer allows you to query the
database without having to fully consider which tables to search first in a join
or which indexes to use. The optimizer uses information from the system
catalog to determine the best query strategy.

If you use the UPDATE STATISTICS statement to update the system catalog,
you can ensure that the information provided to the optimizer is current.
When you delete or modify a table, the database server does not automati-
cally update the related statistical data in the system catalog. For example, if
you delete rows in a table with the DELETE statement, the nrows column in
the systables system catalog table, which holds the number of rows for that
table, is not updated.

The UPDATE STATISTICS statement causes the database server to recalculate
data in the systables, sysdistrib, syscolumns, and sysindexes (sysindices for
Dynamic Server) system catalog tables. After you run UPDATE STATISTICS,
the systables system catalog table holds the correct value in the nrows
column. If you use the medium or high mode with the UPDATE STATISTICS
statement, the sysdistrib system catalog table holds the updated data-distri-
bution data after you run UPDATE STATISTICS.

Whenever you modify a table extensively, use the UPDATE STATISTICS
statement to update data in the system catalog. For more information on the
UPDATE STATISTICS statement, see the Informix Guide to SQL: Syntax.
System Catalog 1-13

Structure of the System Catalog
Structure of the System Catalog
The following system catalog tables describe the structure of an Informix
database.

System Catalog Table XPS IDS Page

sysaggregates ✔ 1-16

sysams ✔ 1-17

sysattrtypes ✔ 1-22

sysblobs ✔ ✔ 1-23

syscasts ✔ 1-24

syschecks ✔ ✔ 1-25

syscolattribs ✔ 1-26

syscolauth ✔ ✔ 1-28

syscoldepend ✔ ✔ 1-29

syscolumns ✔ ✔ 1-30

sysconstraints ✔ ✔ 1-36

sysdefaults ✔ ✔ 1-37

sysdepend ✔ ✔ 1-38

sysdistrib ✔ ✔ 1-39

syserrors ✔ 1-41

sysextcols ✔ 1-42

sysextdfiles ✔ 1-43

sysexternal ✔ 1-44

sysfragauth ✔ 1-45

sysfragments ✔ ✔ 1-46

 (1 of 3)
1-14 Informix Guide to SQL: Reference

Structure of the System Catalog
sysindexes ✔ 1-49

sysindices ✔ 1-51

sysinherits ✔ 1-53

syslangauth ✔ 1-53

syslogmap 1-54

sysnewdepend ✔ 1-54

sysobjstate ✔ ✔ 1-55

sysopclasses ✔ 1-56

sysopclstr ✔ 1-57

sysprocauth ✔ ✔ 1-59

sysprocbody ✔ ✔ 1-60

sysprocedures ✔ ✔ 1-61

sysprocplan ✔ ✔ 1-65

sysreferences ✔ ✔ 1-66

sysrepository ✔ 1-67

sysroleauth ✔ 1-68

sysroutinelangs ✔ 1-68

syssynonyms 1-69

syssyntable ✔ ✔ 1-70

systabamdata ✔ 1-71

systabauth ✔ ✔ 1-72

systables ✔ ✔ 1-73

systraceclasses ✔ 1-75

systracemsgs ✔ 1-76

System Catalog Table XPS IDS Page

 (2 of 3)
System Catalog 1-15

SYSAGGREGATES
In a database whose collation order is locale dependent, all character infor-
mation in the system catalog tables is stored in NCHAR rather than CHAR
columns. However, for those databases where the collation order is code-set
dependent, all character information in the system catalog tables is stored in
CHAR columns. For more information on collation orders and NCHAR and
NVARCHAR data types, see the Informix Guide to GLS Functionality. For
information about data types, see Chapter 2 of this manual. ♦

SYSAGGREGATES
The sysaggregates system catalog table records user-defined aggregates
(UDAs). The sysaggregates system catalog table has the following columns.

systrigbody ✔ 1-77

systriggers ✔ 1-78

sysusers ✔ ✔ 1-79

sysviews ✔ ✔ 1-80

sysviolations ✔ ✔ 1-81

sysxtddesc ✔ 1-82

systdtypeauth ✔ 1-83

sysxtdtypes ✔ 1-84

Column Name Type Explanation

name NVARCHAR(128) Aggregate name

owner NCHAR(32) Aggregate owner

aggid SERIAL Aggregate identifier

init_func NVARCHAR(128) Name of initialization UDR

iter_func NVARCHAR(128) Name of iterator UDR

 (1 of 2)

System Catalog Table XPS IDS Page

 (3 of 3)

XPSGLS

IDS
1-16 Informix Guide to SQL: Reference

SYSAMS
Each UDA has one entry in sysaggregates that is uniquely identified by its
aggregate identifier (the aggid column). Only new aggregates (aggregates
that are not built in) have entries in sysaggregates.

SYSAMS
The sysams system catalog table contains information that is needed to use
built-in access methods as well as those created by the CREATE ACCESS
METHOD SQL statement that is described in the Virtual-Table Interface
Programmer’s Manual. The sysams table has the following columns.

combine_func NVARCHAR(128) Name of combine UDR

final_func NVARCHAR(128) Name of finalization UDR

handlesnulls BOOLEAN Whether nulls should be considered

Column Name Type Explanation

am_name NVARCHAR(128) Name of the access method

am_owner NCHAR(32) Owner of the access method

am_id INTEGER Unique identifier for the access method. This
value corresponds to the am_id in the systables
system catalog table and to the am_id in the
sysindices and sysopclasses system catalog
tables.

am_type NCHAR(1) Type of access method:

P = Primary

S = Secondary

 (1 of 6)

Column Name Type Explanation

 (2 of 2)

IDS
System Catalog 1-17

SYSAMS
am_sptype NCHAR(3) Type(s) of space(s) in which the access method
can live:

D or d = dbspaces only

X or x = extspaces only

S or s = sbspaces only (smart-large-object
space)

A or a = all types: extspaces, dbspaces, or
sbspaces. If the access method is not user
defined (that is, if it is built-in or registered
during database creation by the server), it
supports dbspaces.

am_defopclass INTEGER Default-operator class identifier. The opclassid
from the entry for this operator class in the
sysopclasses system catalog table.

am_keyscan INTEGER Whether a secondary access method supports
a key scan

An access method supports a key scan if it can
return a key as well as a rowid from a call to
the am_getnext function

Non-Zero = access method supports key
scan

Zero = access method does not support key
scan

am_unique INTEGER Whether a secondary access method can
support unique keys

Non-Zero = access method supports unique
keys

Zero = access method does not support
unique keys

Column Name Type Explanation

 (2 of 6)
1-18 Informix Guide to SQL: Reference

SYSAMS
am_cluster INTEGER Whether a primary access method supports
clustering

Non-Zero = access method supports
clustering

Zero = access method does not support
clustering

am_rowids INTEGER Whether a primary access method supports
rowids

Non-Zero = access method supports rowids

Zero = access method does not support
rowids

am_readwrite INTEGER Whether a primary access method is
read/write

Non-Zero = access method is read/write

Zero = access method is read only

am_parallel INTEGER Whether an access method supports parallel
execution

Non-Zero = access method supports
parallel execution

Zero = access method does not support
parallel execution

am_costfactor SMALLFLOAT The value to be multiplied by the cost of a scan
in order to normalize it to costing done for
built-in access methods. The scan cost is the
output of the am_scancost function

am_create INTEGER The routine specified for the AM_CREATE
purpose for this access method

The value of am_create is the procid for the
routine in the sysprocedures system catalog
table

Column Name Type Explanation

 (3 of 6)
System Catalog 1-19

SYSAMS
am_drop INTEGER The routine specified for the AM_DROP
purpose for this access method

The value of am_drop is the procid listed for
the routine in the sysprocedures system
catalog table

am_open INTEGER The routine specified for the AM_OPEN
purpose for this access method

The value of am_open is the procid listed for
the routine in the sysprocedures system
catalog table

am_close INTEGER The routine specified for the AM_CLOSE
purpose for this access method

The value of am_close is the procid listed for
the routine in the sysprocedures system
catalog table

am_insert INTEGER The routine specified for the AM_INSERT
purpose for this access method

The value of am_insert is the procid listed for
the routine in the sysprocedures system
catalog table

am_delete INTEGER The routine specified for the AM_DELETE
purpose for this access method

The value of am_delete is the procid listed for
the routine in the sysprocedures system
catalog table

am_update INTEGER The routine specified for the AM_UPDATE
purpose for this access method

The value of am_update is the procid listed for
the routine in the sysprocedures system
catalog table

am_stats INTEGER The routine specified for the AM_STATS
purpose for this access method

The value of am_stats is the procid listed for the
routine in the sysprocedures system catalog
table

Column Name Type Explanation

 (4 of 6)
1-20 Informix Guide to SQL: Reference

SYSAMS
am_scancost INTEGER The routine specified for the AM_SCANCOST
purpose for this access method

The value of am_scancost is the procid listed
for the routine in the sysprocedures system
catalog table

am_check INTEGER The routine specified for the AM_CHECK
purpose for this access method

The value of am_check is the procid listed for
the routine in the sysprocedures system
catalog table

am_beginscan INTEGER The routine specified for the
AM_BEGINSCAN purpose for this access
method

The value of am_beginscan is the procid listed
for the routine in the sysprocedures system
catalog table

am_endscan INTEGER The routine specified for the AM_ENDSCAN
purpose for this access method

The value of am_endscan is the procid listed for
the routine in the sysprocedures system
catalog table

am_rescan INTEGER The routine specified for the AM_RESCAN
purpose for this access method

The value of am_rescan is the procid listed for
the routine in the sysprocedures system
catalog table

am_getnext INTEGER The routine specified for the AMGETNEXT
purpose for this access method

The value of am_getnext is the procid listed for
the routine in the sysprocedures system
catalog table

Column Name Type Explanation

 (5 of 6)
System Catalog 1-21

SYSAMS
The composite index for the am_name and am_owner columns in this table
allows only unique values. The am_id column is indexed and must contain
unique values.

The am_sptype column can have multiple entries. For example:

■ A means the access method supports extspaces and sbspaces. If the
access method is built-in, such as a b-tree, it also supports dbspaces.

■ DS means the access method supports dbspaces and sbspaces.

■ sx means the access method supports sbspaces and extspaces.

For information about access method functions, refer to the documentation
for your custom access method.

am_getbyid INTEGER The routine specified for the AM_GETBYID
purpose for this access method

The value of am_getbyid is the procid listed for
the routine in the sysprocedures system
catalog tables

am_build Reserved for future use

am_init INTEGER For internal use

Column Name Type Explanation

 (6 of 6)
1-22 Informix Guide to SQL: Reference

SYSATTRTYPES
SYSATTRTYPES
The sysattrtypes system catalog table contains information about members
of a complex data type. Each row of sysattrtypes contains information about
elements of a collection data type or fields of a row data type. The
sysattrtypes system catalog table has the following columns.

The two indexes on the extended_id column and the xtd_type_id column,
respectively, allow duplicate values. The composite index on extended_id
and seqno columns allows only unique values.

Column Name Type Explanation

extended_id INTEGER Identifier for extended data types, same as in
sysxtdtypes

seqno SMALLINT Value to order and identify entries for specific
values of extended_id

levelno SMALLINT Position of member in collection hierarchy

parent_no SMALLINT Value in the seqno column of the complex type
that contains this member

fieldname NVARCHAR(128) Name of the field in a row type. Null for other
complex types

fieldno SMALLINT Field number sequentially assigned by the
system (from left to right within each row
type)

type SMALLINT Identifier of the data type. For a complete list
of values associated with different data types,
see the coltype column entries in the
syscolumns system catalog table.

length SMALLINT Length of the data type

xtd_type_id INTEGER The identifier used for this data type in the
extended_id column of the sysxtdtypes system
catalog table

IDS
System Catalog 1-23

SYSBLOBS
SYSBLOBS
The title sysblobs is a legacy name based on a term that was used to refer to
BYTE and TEXT columns (also known as simple large objects).

The sysblobs system catalog table specifies the storage location of a BYTE or
TEXT column. It contains one row for each BYTE or TEXT column in a table.
The sysblobs system catalog table has the following columns.

A composite index for the tabid and colno columns allows only unique
values.

For information about the location and size of chunks of blobspaces,
dbspaces, and sbspaces for TEXT, BYTE, BLOB, and CLOB columns, see your
Administrator’s Guide and the Administrator’s Reference.

Column Name Type Explanation

spacename NVARCHAR(128) Partition BYTE or TEXT data, dbspace, or
family name

type NCHAR(1) Media type:

M = Magnetic

O = Optical. Only available for Dynamic
Server

tabid INTEGER Table identifier

colno SMALLINT Column number
1-24 Informix Guide to SQL: Reference

SYSCASTS
SYSCASTS
The syscasts system catalog table describes the casts in the database. It
contains one row for each built-in cast and one row for each implicit or
explicit cast that a user defines. The syscasts system catalog table has the
following columns.

If routine_name and routine_owner have null values, it indicates that the
cast is defined without a routine.

The index on columns argument_type, argument_xid, result_type, and
result_xid allows only unique values. The index on columns argument_type
and argument_xid allows duplicate values.

Column Name Type Explanation

owner NCHAR(32) Owner of cast (user informix for built-in casts
and user name for implicit and explicit casts)

argument_type SMALLINT Source data type on which the cast operates

argument_xid INTEGER Data type identifier of the source data type
named in the argument_type column

result_type SMALLINT Data type returned by the cast

result_xid INTEGER Data type identifier of the data type named in
the result_type column

routine_name NVARCHAR(128) Function or procedure used to implement the
cast (might be null if the data types named in
the argument_type and result_type columns
have the same length and alignment and are
both passed either by reference or by value)

routine_owner NCHAR(32) User name of the owner of the function or
procedure named in the routine_name
column

class NCHAR Type of cast:

E = Explicit cast

I = Implicit cast

S = Built-in cast

IDS
System Catalog 1-25

SYSCHECKS
SYSCHECKS
The syschecks system catalog table describes each check constraint defined
in the database. Because the syschecks system catalog table stores both the
ASCII text and a binary encoded form of the check constraint, it contains
multiple rows for each check constraint. The syschecks system catalog table
has the following columns.

A composite index for the constrid, type, and seqno columns allows only
unique values.

The text in the checktext column associated with B type in the type column
is in computer-readable format. To view the text associated with a particular
check constraint, use the following query with the appropriate constraint ID:

SELECT * FROM syschecks WHERE constrid=10 AND type='T'

Each check constraint described in the syschecks system catalog table also
has its own row in the sysconstraints system catalog table.

Column Name Type Explanation

constrid INTEGER Constraint identifier

type NCHAR(1) Form in which the check constraint is stored:

B = Binary encoded

T = ASCII text

seqno SMALLINT Line number of the check constraint

checktext NCHAR(32) Text of the check constraint
1-26 Informix Guide to SQL: Reference

SYSCOLATTRIBS
SYSCOLATTRIBS
The syscolattribs system catalog table describes the characteristics of smart
large objects, namely CLOB and BLOB data types. It contains one row for each
characteristic. The syscolattribs system catalog table has the following
columns.

Column
Name Type

Explanation

tabid INTEGER Table identifier

colno SMALLINT Column number

extentsize INTEGER Pages in smart-large-object extent, expressed in
kilobytes

flags INTEGER An integer representation of the combination
(addition) of hexadecimal values of the following
parameters:

LO_NOLOG The smart large
object is not
logged.

LO_LOG Logging of smart-
large-object data
is done in accor-
dance with the
current database
log mode.

LO_KEEP_LASTACCESS_TIME A record is kept
of the most recent
access of this
smart-large-
object column by
a user.

LO_NOKEEP_LASTACCESS_TIME No record is kept
of the most recent
access of this
smart-large-
object column by
a user.

 (1 of 2)

IDS
System Catalog 1-27

SYSCOLAUTH
SYSCOLAUTH
The syscolauth system catalog table describes each set of privileges granted
on a column. It contains one row for each set of column privileges granted in
the database. The syscolauth system catalog table has the following columns.

HI_INTEG Data pages have
headers and
footers to detect
incomplete
writes and data
corruption.

MODERATE_INTEG

(Not available at this time)
Data pages do
not have headers
and footers.

flags1 INTEGER Reserved for future use

sbspace NVARCHAR(128) Name of sbspace

Column Name Type Explanation

grantor NCHAR(32) Grantor of privilege

grantee NCHAR(32) Grantee of privilege

tabid INTEGER Table identifier

colno SMALLINT Column number

colauth NCHAR(3) 3-byte pattern that specifies column privileges:

s = Select

u = Update

r = References

Column
Name Type

Explanation

 (2 of 2)
1-28 Informix Guide to SQL: Reference

SYSCOLDEPEND
If the colauth privilege code is uppercase (for example, S for select), a user
who has this privilege can also grant it to others. If the colauth privilege code
is lowercase (for example, s for select), the user who has this privilege cannot
grant it to others.

A composite index for the tabid, grantor, grantee, and colno columns allows
only unique values. A composite index for the tabid and grantee columns
allows duplicate values.

SYSCOLDEPEND
The syscoldepend system catalog table tracks the table columns specified in
check and not null constraints. Because a check constraint can involve more
than one column in a table, the syscoldepend table can contain multiple rows
for each check constraint. One row is created in the syscoldepend table for
each column involved in the constraint. The syscoldepend system catalog
table has the following columns.

A composite index for the constrid, tabid, and colno columns allows only
unique values. A composite index for the tabid and colno columns allows
duplicate values.

Column Name Type Explanation

constrid INTEGER Constraint identifier

tabid INTEGER Table identifier

colno SMALLINT Column number
System Catalog 1-29

SYSCOLUMNS
SYSCOLUMNS
The syscolumns system catalog table describes each column in the database.
One row exists for each column that is defined in a table or view.

Column Name Type Explanation

colname NVARCHAR(128
)

Column name

tabid INTEGER Table identifier

colno SMALLINT Column number that the system sequentially
assigns (from left to right within each table)

coltype SMALLINT Code for column data type:

0 = CHAR 14 = INTERVAL

1 = SMALLINT 15 = NCHAR

2 = INTEGER 16 = NVARCHAR

3 = FLOAT 17 = INT8

4 = SMALLFLOAT 18 = SERIAL8 *

5 = DECIMAL 19 = SET

6 = SERIAL * 20 = MULTISET

7 = DATE 21 = LIST

8 = MONEY 22 = rOW (unnamed)

9 = NULL 23 = COLLECTION

10 = DATETIME 24 = ROWREF

11 = BYTE 40 = Variable-length
opaque type

12 = TEXT 41 = Fixed-length
opaque type

13 = VARCHAR 4118 = Named row
type

 (1 of 2)
1-30 Informix Guide to SQL: Reference

SYSCOLUMNS
A composite index for the tabid and colno columns allows only unique
values.

The coltype 4118 for named row types is the decimal representation of the
hexadecimal value 0x1016, which is the same as the hexadecimal coltype
value for an unnamed row type (0 x 016), with the named-row type bit set.

Null-Valued Columns

If the coltype column contains a value greater than 256, it does not allow null
values. To determine the data type for a coltype column that contains a value
greater than 256, subtract 256 from the value and evaluate the remainder,
based on the possible coltype values. For example, if a column has a coltype
value of 262, subtracting 256 from 262 leaves a remainder of 6, which
indicates that this column uses a SERIAL data type.

The next sections provide the following additional information about infor-
mation in the syscolumns system catalog table:

■ How the coltype and collength columns encode the type and length
values, respectively, for certain data types.

■ How the colmin and colmax columns store column values.

collength SMALLINT Column length (in bytes)

colmin INTEGER Second minimum value

colmax INTEGER Second maximum value

minlen INTEGER Minimum column length (in bytes)

maxlen INTEGER Maximum column length (in bytes)

extended_id INTEGER Type identifier, from the sysxtdtypes system
catalog table, of the data type named in the
coltype column

* An offset value of 256 is added to these columns to indicate that they do not allow
null values.

Column Name Type Explanation

 (2 of 2)
System Catalog 1-31

SYSCOLUMNS
Storing Column Data Type

The database server stores the column data type as an integer value. For a list
of the column data type values, see the description of the coltype column in
the preceding table. The following sections provide additional information
on data type values.

The following data types are implemented by the database server as built-in
opaque types:

■ BLOB

■ CLOB

■ BOOLEAN

■ LVARCHAR

A built-in opaque data type is one for which the database server provides the
type definition. Because these data types are built-in opaque types, they do
not have a unique coltype value. Instead, they have one of the coltype values
for opaque types: 41 (fixed-length opaque type), or 40 (varying-length
opaque type). The different fixed-length opaque types are distinguished by
the extended_id column in the sysxtdtypes system catalog table.

The following table summarizes the coltype values for the predefined data
types.

Storing Column Length

The value that the collength column holds depends on the data type of the
column.

Predefined Data Type Value for coltype Column

BLOB 41

CLOB 41

BOOLEAN 41

LVARCHAR 40

♦

IDS
1-32 Informix Guide to SQL: Reference

SYSCOLUMNS
Length of Integer-Based Columns

A collength value for a SMALLINT, INTEGER, or INT8 column is not machine-
dependent. The database server uses the following lengths for SQL integer-
based data types.

The database server stores a SERIAL data type as an INTEGER value and a
SERIAL8 data type as an INT8 value. Therefore, SERIAL has the same length as
INTEGER (4 bytes) and SERIAL8 has the same length as INT8 (8 bytes).

Length of Fixed-Point Columns

A collength value for a MONEY or DECIMAL column is determined using the
following formula:

(precision * 256) + scale

Length of Varying-Length Character Columns

For columns of type VARCHAR, the max_size and min_space values are
encoded in the collength column using one of the following formulas:

■ If the collength value is positive:
collength = (min_space * 256) + max_size

■ If the collength value is negative:
collength + 65536 = (min_space * 256) + max_size

The database server uses the preceding formulas to encode the collength
column for an NVARCHAR data type. For more information about the
NVARCHAR data type, see the Informix Guide to GLS Functionality. ♦

Integer-Based Data Type Length (in bytes)

SMALLINT 2

INTEGER 4

INT8 8

GLS
System Catalog 1-33

SYSCOLUMNS
Length for Time Data Types

For columns of type DATETIME or INTERVAL, collength is determined using
the following formula:

(length * 256) + (largest_qualifier_value * 16) + smallest_qualifier_value

The length is the physical length of the DATETIME or INTERVAL field, and
largest_qualifier and smallest_qualifier have the values that the following table
shows.

For example, if a DATETIME YEAR TO MINUTE column has a length of 12
(such as YYYY:DD:MM:HH:MM), a largest_qualifier value of 0 (for YEAR), and a
smallest_qualifier value of 8 (for MINUTE), the collength value is 3080 or
(256 * 12) + (0 * 16) + 8.

Length of Simple-Large-Object Columns

If the data type of the column is BYTE or TEXT, collength holds the length of
the descriptor.

Field Qualifier Value

YEAR 0

MONTH 2

DAY 4

HOUR 6

MINUTE 8

SECOND 10

FRACTION(1) 11

FRACTION(2) 12

FRACTION(3) 13

FRACTION(4) 14

FRACTION(5) 15
1-34 Informix Guide to SQL: Reference

SYSCOLUMNS
Storing Maximum and Minimum Values

The colmin and colmax column values hold the second-smallest and second-
largest data values in the column, respectively. For example, if the values in
an indexed column are 1, 2, 3, 4, and 5, the colmin value is 2 and the colmax
value is 4. Storing the second-smallest and second-largest data values lets the
database server make assumptions about the range of values in a given
column and, in turn, further optimize searching strategies.

The colmin and colmax columns contain values only if the column is indexed
and you have run the UPDATE STATISTICS statement. If you store BYTE or
TEXT data in the tblspace, the colmin value is -1. The values for all other
noninteger column types are the initial 4 bytes of the maximum or minimum
value, which are treated as an integer.

The database server does not calculate colmin and colmax values for
user-defined data types. However, these columns have values for user-
defined data types if a user-defined secondary access method supplies them.
♦

IDS
System Catalog 1-35

SYSCONSTRAINTS
SYSCONSTRAINTS
The sysconstraints system catalog table lists the constraints placed on the
columns in each database table. An entry is also placed in the sysindexes
(sysindices for Dynamic Server) system catalog table for each unique,
primary key, or referential constraint that you create, if the constraint does
not already have a corresponding entry in the sysindexes or sysindices
system catalog table. Because indexes can be shared, more than one
constraint can be associated with an index. The sysconstraints system
catalog table has the following columns.

A composite index for the constrname and owner columns allows only
unique values. The index for the tabid column allows duplicate values, and
the index for the constrid column allows only unique values.

For check constraints (where constrtype = C), the idxname is always null.
Additional information about each check constraint is contained in the
syschecks system catalog table.

Column Name Type Explanation

constrid SERIAL System-assigned sequential identifier

constrname NVARCHAR(128) Constraint name

owner NCHAR(32) User name of owner

tabid INTEGER Table identifier

constrtype NCHAR(1) Constraint type:

C = Check constraint

P = Primary key

R = Referential

U = Unique

N = Not null

idxname NVARCHAR(128) Index name
1-36 Informix Guide to SQL: Reference

SYSDEFAULTS
SYSDEFAULTS
The sysdefaults system catalog table lists the user-defined defaults that are
placed on each column in the database. One row exists for each user-defined
default value. If a default is not explicitly specified in the CREATE TABLE
statement, no entry exists in this table. The sysdefaults system catalog table
has the following columns.

If you specify a literal for the default value, it is stored in the default column
as ASCII text. If the literal value is not of type NCHAR, the default column
consists of two parts. The first part is the 6-bit representation of the binary
value of the default value structure. The second part is the default value in
English text. A space separates the two parts.

If the data type of the column is not NCHAR or NVARCHAR, a binary
representation is encoded in the default column. A composite index for the
tabid, colno, and class columns allows only unique values.

Column Name Type Explanation

tabid INTEGER Table identifier

colno SMALLINT Column identifier

type NCHAR(1) Default type:

L = Literal default

U = User

C = Current

N = Null

T = Today

S = Dbservername

default NCHAR(256) If default type = L, the literal default value

class CHAR(1) Type of column:

T = table

t = row type
System Catalog 1-37

SYSDEPEND
SYSDEPEND
The sysdepend system catalog table describes how each view or table
depends on other views or tables. One row exists in this table for each depen-
dency, so a view based on three tables has three rows. The sysdepend system
catalog table has the following columns.

The btabid and dtabid columns are indexed and allow duplicate values.

Column Name Type Explanation

btabid INTEGER Table identifier of base table or view

btype NCHAR(1) Base object type:

T = Table

V = View

dtabid INTEGER Table identifier of dependent table

dtype NCHAR(1) Dependent object type (V = View); currently, only
view is implemented
1-38 Informix Guide to SQL: Reference

SYSDISTRIB
SYSDISTRIB
The sysdistrib system catalog table stores data-distribution information for
the database server to use. Data distributions provide detailed table-column
information to the optimizer to improve the choice of execution paths of SQL
SELECT statements.

Information is stored in the sysdistrib system catalog table when an UPDATE
STATISTICS statement with mode MEDIUM or HIGH is run for a table.
(UPDATE STATISTICS LOW does not insert a value in the mode column of
sysdistrib.)

The sysdistrib system catalog table has the following columns.

Column Name Type Explanation

tabid INTEGER Table identifier of the table where data was
gathered

colno SMALLINT Column number in the source table

seqno INTEGER Sequence number for multiple entries

constructed DATE Date when the data distribution was created

mode NCHAR(1) Optimization level:

M = Medium

H = High

resolution FLOAT Specified in the UPDATE STATISTICS statement

confidence FLOAT Specified in the UPDATE STATISTICS statement

encdat STAT Statistics information

type NCHAR(1) Type of statistics:

A = encdat has ASCII-encoded histogram in
fixed-length character field

S = encdat has-user defined statistics

udtstat STAT UDT statistics information
System Catalog 1-39

SYSDISTRIB
You can select any column from sysdistrib except encdat and udtstat. Only
user informix can select the encdat and udtstat columns.

Each row in the sysdistrib system catalog table is keyed by the tabid and
colno for which the statistics are collected.

For built-in data type columns, the type field is set to A. The encdat column
stores an ASCII-encoded histogram that is broken down into multiple rows,
each of which contains 256 bytes.

For UDT columns, the type field is set to S. The encdat column stores the
statistics collected by the statcollect UDR in multirepresentational form. Only
one row is stored for each tabid and colno pair.

The sysdistrib system catalog table supports extensions for user-defined
statistics in Dynamic Server only. ♦

IDS
1-40 Informix Guide to SQL: Reference

SYSERRORS
SYSERRORS
The syserrors system catalog table stores information about error, warning,
and informational messages returned by DataBlade modules and user-
defined routines using the mi_db_error_raise() DataBlade API function.

To create a new message, insert a row directly into the syserrors system
catalog table. By default, all users can view this table, but only users with the
DBA privilege can modify it. The syserrors system catalog table has the
following columns.

The composite index on columns sqlstate, locale, level and seqno allows
only unique values.

Column Name Type Explanation

sqlstate NCHAR(5) SQLSTATE value associated with the error. For
more information about SQLSTATE values and
their meanings, see the GET DIAGNOSTICS
statement in the Informix Guide to SQL: Syntax.

locale NCHAR(36) The locale with which this version of the message
is associated (for example, ‘en_us.8859-1’)

level Reserved for future use

seqno Reserved for future use

message NVARCHAR(255) Message text

IDS
System Catalog 1-41

SYSEXTCOLS
SYSEXTCOLS
The sysextcols system catalog table contains a row that describes each of the
internal columns in external table tabid of format type (fmttype) FIXED. No
entries are stored in sysextcols for DELIMITED or Informix-format external
files.

You can use DBSCHEMA to write out the description of the external tables. To
query these catalogs about an external table, use the tabid as stored in
systables with tabtype = ‘E’.

Column Type Description

tabid INTEGER Table identifier

colno SMALLINT Column identifier

exttype SMALLINT External column type

extstart SMALLINT Starting position of column in the external data
file

extlength SMALLINT External column length in bytes

nullstr NCHAR(256) Represents null in external data

picture NCHAR(256) Reserved for future use

decimal SMALLINT Precision for external decimals

extstype NCHAR(18) The external type name

XPS
1-42 Informix Guide to SQL: Reference

SYSEXTDFILES
SYSEXTDFILES
For each external table, at least one row exists in the sysextdfiles system
catalog table.

You can use DBSCHEMA to write out the description of the external tables. To
query these system catalogs about an external table, use the tabid as stored in
systables with tabtype = ‘E’.

Column Type Description

tabid INTEGER Table identifier

dfentry NCHAR(152) Data file entry

XPS
System Catalog 1-43

SYSEXTERNAL
SYSEXTERNAL
For each external table, a single row exists in the sysexternal system catalog
table. The tabid column associates the external table in this system catalog
table with an entry in systables.

You can use DBSCHEMA to write out the description of the external tables. To
query these catalogs about an external table, use the tabid as stored in
systables with tabtype = ‘E’.

Column Type Description

tabid INTEGER Table identifier

fmttype NCHAR(1) ‘D’ (delimiter), ‘F’ (fixed), ‘I’ (Informix)

recdelim NCHAR(4) The record delimiter

flddelim NCHAR(4) The field delimiter

codeset NCHAR(18) ASCII, EBCDIC

datefmt NCHAR(8) Reserved for future use

moneyfmt NCHAR(20) Reserved for future use

maxerrors INTEGER Number of errors to allow per coserver

relectfile NCHAR(128) Name of reject file

flags INTEGER Optional load flags

ndfiles INTEGER Number of data files in sysextdfiles

XPS
1-44 Informix Guide to SQL: Reference

SYSFRAGAUTH
SYSFRAGAUTH
The sysfragauth system catalog table stores information about the privileges
that are granted on table fragments.

The sysfragauth system catalog table has the following columns.

If a code in the fragauth column is lowercase (such as u for Update), the
grantee cannot grant the privilege to other users. If a code in the fragauth
column is uppercase (such as U for Update), the grantee can grant the
privilege to other users.

A composite index for the tabid, grantor, grantee, and fragment columns
allows only unique values. A composite index on the tabid and grantee
columns allows duplicate values.

Column Name Type Explanation

grantor NCHAR(32) Grantor of privilege

grantee NCHAR(32) Grantee of privilege

tabid INTEGER Table identifier of the table that contains the
fragment named in the fragment column.

fragment NVARCHAR
(128)

Name of dbspace where fragment is stored.
Identifies the fragment on which privileges are
granted.

fragauth NCHAR(6) A 6-byte pattern that specifies fragment-level privi-
leges (including 3 bytes reserved for future use).
This pattern contains one or more of the following
codes:

u = Update

i = Insert

d = Delete

IDS
System Catalog 1-45

SYSFRAGMENTS
The following example displays the fragment-level privileges for one base
table, as they appear in the sysfragauth system catalog table. The grantee ted
can grant the UPDATE, DELETE, and INSERT privileges to other users.

SYSFRAGMENTS
The sysfragments system catalog table stores fragmentation information for
tables and indexes. One row exists for each table or index fragment.

The sysfragments table has the following columns.

grantor grantee tabid fragment fragauth

dba dick 101 dbsp1 -ui---

dba jane 101 dbsp3 --i---

dba mary 101 dbsp4 --id--

dba ted 101 dbsp2 -UID--

Column Name Type Explanation

fragtype NCHAR(1) Fragment type:

I = Index

T = Table

B = TEXT or BYTE data
(Extended Parallel Server)

i = Index fragments of a duplicated table
(Extended Parallel Server)

d = data fragments of a duplicated table
(Extended Parallel Server)

tabid INTEGER Table identifier

indexname NVARCHAR(128) Index identifier

 (1 of 3)
1-46 Informix Guide to SQL: Reference

SYSFRAGMENTS
colno INTEGER TEXT or BYTE column identifier

Replica identifier (Extended Parallel Server)

partn INTEGER Physical location identifier

strategy NCHAR(1) Distribution scheme type:

R = Round-robin strategy was used to
distribute the fragments

E = Expression-based strategy was used to
distribute the fragments

T = Table-based strategy was used to
distribute the fragments

I = IN DBSPACE clause specified a specific
location as part of the fragmentation
strategy

H = hash-based strategy was used to
distribute the fragments
(Extended Parallel Server)

location NCHAR(1) Reserved for future use; shows L for local

servername NVARCHAR(128) Reserved for future use

evalpos INTEGER Position of fragment in the fragmentation list

exprtext TEXT Expression that was entered for fragmentation
strategy

For Extended Parallel Server, contains the
names of the columns that are hashed.
Contains composite information for hybrid
fragmentation strategies; shows hashed
columns followed by the fragmentation
expression of the dbslice.

exprbin BYTE Binary version of expression

exprarr BYTE Range-partitioning data used to optimize
expression in range-expression fragmentation
strategy

Column Name Type Explanation

 (2 of 3)
System Catalog 1-47

SYSFRAGMENTS
The strategy type T is used for attached indexes (where index fragmentation
is the same as the table fragmentation).

The composite index on the fragtype, tabid, indexname, and evalpos
columns allows duplicate values.

The hybdpos field is the last field of the composite key in the fraginfo index
on the SYSFRAGMENTS table.

flags INTEGER Used internally

For Extended Parallel Server, a bit value
indicates the existence of a hybrid fragmen-
tation strategy (value = 0x10). Also, an
additional flag (value = 0x20) will be set on the
first fragment of a globally detached index.

dbspace NVARCHAR(128) Dbspacename for fragment

levels SMALLINT Number of B+ tree index levels

npused INTEGER For table-fragmentation strategy, npused repre-
sents the number of data pages; for index-
fragmentation strategy, npused represents the
number of leaf pages.

nrows INTEGER For tables, nrows represents the number of
rows in the fragment; for indexes, nrows repre-
sents the number of unique keys.

clust INTEGER Degree of index clustering; smaller numbers
correspond to greater clustering

hybdpos INTEGER Contains the relative position of the hybrid
fragment within a dbslice or list of dbspaces
associated with a particular expression. The
hybrid fragmentation strategy and the set of
fragments against which the hybrid strategy is
applied determines the relative position. The
first fragment has a hybdpos value of zero (0).
(Extended Parallel Server)

Column Name Type Explanation

 (3 of 3)

XPS
1-48 Informix Guide to SQL: Reference

SYSINDEXES
SYSINDEXES
The sysindexes system catalog table describes the indexes in the database. It
contains one row for each index that is defined in the database. The
sysindexes system catalog table has the following columns.

Column Name Type Explanation

idxname NVARCHAR(18) Index name

owner NCHAR(32) Owner of index (user informix for system catalog
tables and user name for database tables)

tabid INTEGER Table identifier

idxtype NCHAR(1) Index type:

U = Unique

G = Nonbitmap generalized-key index
(Extended Parallel Server only)

D = Duplicates

g = Bitmap generalized-key index
(Extended Parallel Server only)

u = unique, bitmap
(Extended Parallel Server only)

d = nonunique, bitmap
(Extended Parallel Server only)

clustered NCHAR(1) Clustered or nonclustered index (C = Clustered)

part1 SMALLINT Column number (colno) of a single index or the
1st component of a composite index

part2 SMALLINT 2nd component of a composite index

part3 SMALLINT 3rd component of a composite index

part4 SMALLINT 4th component of a composite index

part5 SMALLINT 5th component of a composite index

part6 SMALLINT 6th component of a composite index

 (1 of 2)

XPS
System Catalog 1-49

SYSINDEXES
Changes that affect existing indexes are reflected in this table only after you
run the UPDATE STATISTICS statement.

Each partnth column component of a composite index (the part1 through
part16 columns in this table) holds the column number (colno) of each part
of the 16 possible parts of a composite index. If the component is ordered in
descending order, the colno is entered as a negative value.

The clust column is blank until the UPDATE STATISTICS statement is run on
the table. The maximum value is the number of rows in the table, and the
minimum value is the number of data pages in the table.

part7 SMALLINT 7th component of a composite index

part8 SMALLINT 8th component of a composite index

part9 SMALLINT 9th component of a composite index

part10 SMALLINT 10th component of a composite index

part11 SMALLINT 11th component of a composite index

part12 SMALLINT 12th component of a composite index

part13 SMALLINT 13th component of a composite index

part14 SMALLINT 14th component of a composite index

part15 SMALLINT 15th component of a composite index

part16 SMALLINT 16th component of a composite index

levels SMALLINT Number of B+ tree levels

leaves INTEGER Number of leaves

nunique INTEGER Number of unique keys in the first column

clust INTEGER Degree of clustering: smaller numbers corre-
spond to greater clustering

idxflags INTEGER Stores the current locking mode of the index:

Normal = 0x01
Coarse = 0x02

Column Name Type Explanation

 (2 of 2)
1-50 Informix Guide to SQL: Reference

SYSINDICES
The tabid column is indexed and allows duplicate values. A composite index
for the idxname, owner, and tabid columns allows only unique values.

SYSINDICES
The sysindices system catalog table describes the indexes in the database. It
contains one row for each index that is defined in the database. The
sysindices system catalog table has the following columns.

Column Name Type Explanation

idxname NVARCHAR(128) Index name

owner NCHAR(32) Owner of index (user informix for system
catalog tables and user name for database
tables)

tabid INTEGER Table identifier

idxtype NCHAR(1) Index type:

U = Unique

D = Duplicates

clustered NCHAR(1) Clustered or nonclustered index
(C = Clustered)

levels SMALLINT Number of tree levels

leaves INTEGER Number of leaves

nunique INTEGER Number of unique keys in the first column

clust INTEGER Degree of clustering: smaller numbers corre-
spond to greater clustering. The maximum
value is the number of rows in the table, and the
minimum value is the number of data pages in
the table.

This column is blank until the UPDATE
STATISTICS statement is run on the table.

nrows INTEGER Estimated number of rows in the table (zero
until UPDATE STATISTICS is run on the table).

 (1 of 2)

IDS
System Catalog 1-51

SYSINDICES
Tip: This system catalog table is changed from the system catalog table in the 7.2 ver-
sion of the Informix database server. The previous version of this system catalog table
is still available as a view and can be accessed under its original name: sysindexes.
The columns part1 through part16 in sysindexes are filled in for B-tree indexes that
do not use user-defined types or functional indexes. For generic B-trees and all other
access methods, the part1 to part16 columns contain zeros.

Changes that affect existing indexes are reflected in this system catalog table
only after you run the UPDATE STATISTICS statement.

The tabid column is indexed and allows duplicate values. A composite index
for the idxname, owner, and tabid columns allows only unique values.

The system indexes tabid and idxname are used to index sysindices.

indexkeys INDEXKEYARRAY This column has a maximum of three fields,
displayed in the following form:

<function id>(col1, ..., coln) [operator class id]

The function id shows only if the index is on
return values of a function defined over the
columns of the table; that is, if it is a functional
index. The function id is the same as the procid
of the function showing in the sysprocedures
system catalog table. The list of the columns
(col1,..., coln) in the second field gives columns
over which the index is defined. The operator
class id signifies the particular secondary access
method used to build and search the index.

amid INTEGER Identifier of the access method used to
implement this index. It is the value of the
am_id for that access method in the sysams
system catalog table.

amparam LVARCHAR List of parameters used to customize the
behavior of this access method.

Column Name Type Explanation

 (2 of 2)
1-52 Informix Guide to SQL: Reference

SYSINHERITS
SYSINHERITS
The sysinherits system catalog table stores information about table and type
inheritance. Every supertype, subtype, supertable, and subtable in the data-
base has a corresponding row in the sysinherits table. The sysinherits
system catalog table has the following columns.

SYSLANGAUTH
The syslangauth system catalog table contains the authorization information
on computer languages that are used to write user-defined routines (UDRs).

Column Name Type Explanation

child INTEGER Identifier of the subtable or subtype in an
inheritance relationship

parent INTEGER Identifier of the supertable or supertype in
an inheritance relationship

class NCHAR(1) Inheritance class:

 t = named row type

T = table

Column Name Type Explanation

grantor NCHAR(32) The grantor of the language authorization

grantee NCHAR(32) The grantee of the language authorization

langid INTEGER The language id reference to the sysroutinelangs
system catalog table

langauth NCHAR(1) The language authorization

u = Usage permission granted

U = Usage permission granted WITH GRANT
OPTION

IDS

IDS
System Catalog 1-53

SYSLOGMAP
A nonunique index on the langid and grantee columns is created for faster
access to the syslangauth table.

SYSLOGMAP
The syslogmap system catalog table is not implemented in this version.

SYSNEWDEPEND
The sysnewdepend system catalog table contains information about gener-
alized-key indexes that is not available in the sysindexes system catalog
table. The dependencies between a generalized-key index and the tables in
the FROM clause of the CREATE INDEX statement are stored in the
sysnewdepend system catalog table. The sysnewdepend system catalog
table has the following columns.

Column Name Type Explanation

tabloc Reserved for future use

tabid Reserved for future use

fragid Reserved for future use

flags Reserved for future use

Column Name Type Explanation

scrid1 CHAR The name of the generalized-key index

scrid2 INTEGER The tableid of the indexed table

type INTEGER The type of generalized-key index

destid1 INTEGER The tableid of the table that the generalized-key
index depends

destid2 INTEGER The column name in the table that the
generalized-key index depends

XPS
1-54 Informix Guide to SQL: Reference

SYSOBJSTATE
SYSOBJSTATE
The sysobjstate system catalog table stores information about the state
(object mode) of database objects. The types of database objects listed in this
table are indexes, triggers, and constraints.

Every index, trigger, and constraint in the database has a corresponding row
in the sysobjstate table if a user creates the object. Indexes that the database
server creates on the system catalog tables are not listed in the sysobjstate
table because their object mode cannot be changed.

The sysobjstate system catalog table has the following columns.

A composite index for the objtype, name, owner, and tabid columns allows
only unique values.

Column Name Type Explanation

objtype NCHAR(1) The type of database object. This column has
one of the following codes:

C = Constraint

I = Index

T = Trigger

owner NCHAR(32) The owner of the database object

name NVARCHAR(128) The name of the database object

tabid INTEGER Table identifier of the table on which the
database object is defined

state NCHAR(1) The current state (object mode) of the database
object. This column has one of the following
codes:

D = Disabled

E = Enabled

F = Filtering with no integrity-violation
errors

G = Filtering with integrity-violation errors
System Catalog 1-55

SYSOPCLASSES
SYSOPCLASSES
The sysopclasses system catalog table contains information about operator
classes associated with secondary access methods. It contains one row for
each operator class that has been defined. The sysopclasses system catalog
table has the following columns.

The sysopclasses system catalog table has two indexes. There is a composite
index on opclassname and owner columns and an index on opclassid
column. Both indexes allow only unique values.

Column Name Type Explanation

opclassname NVARCHAR(128) Name of the operator class

owner NCHAR(32) Owner of the operator class

amid INTEGER Identifier of the secondary access method
associated with this operator class

opclassid SERIAL Identifier of the operator class. This identifier
is used in the sysams system catalog table to
specify the default operator class
(am_defopclass) for the access method.

ops LVARCHAR List of names of the operators that belong to
this operator class

support LVARCHAR List of names of support functions defined for
this operator class

IDS
1-56 Informix Guide to SQL: Reference

SYSOPCLSTR
SYSOPCLSTR
The sysopclstr system catalog table defines each optical cluster in the
database. It contains one row for each optical cluster.

The sysopclstr system catalog table has the following columns.

Column Name Type Explanation

owner NCHAR(32) Owner of the cluster

clstrname NVARCHAR(128) Name of the cluster

clstrsize INTEGER Size of the cluster

tabid INTEGER Table identifier

blobcol1 SMALLINT BYTE or TEXT column number 1

blobcol2 SMALLINT BYTE or TEXT column number 2

blobcol3 SMALLINT BYTE or TEXT column number 3

blobcol4 SMALLINT BYTE or TEXT column number 4

blobcol5 SMALLINT BYTE or TEXT column number 5

blobcol6 SMALLINT BYTE or TEXT column number 6

blobcol7 SMALLINT BYTE or TEXT column number 7

blobcol8 SMALLINT BYTE or TEXT column number 8

blobcol9 SMALLINT BYTE or TEXT column number 9

blobcol10 SMALLINT BYTE or TEXT column number 10

blobcol11 SMALLINT BYTE or TEXT column number 11

blobcol12 SMALLINT BYTE or TEXT column number 12

blobcol13 SMALLINT BYTE or TEXT column number 13

blobcol14 SMALLINT BYTE or TEXT column number 14

blobcol15 SMALLINT BYTE or TEXT column number 15

blobcol16 SMALLINT BYTE or TEXT column number 16

 (1 of 2)

IDS
System Catalog 1-57

SYSOPCLSTR
A composite index for both the clstrname and owner columns allows only
unique values. The tabid column allows duplicate values.

clstrkey1 SMALLINT Cluster key number 1

clstrkey2 SMALLINT Cluster key number 2

clstrkey3 SMALLINT Cluster key number 3

clstrkey4 SMALLINT Cluster key number 4

clstrkey5 SMALLINT Cluster key number 5

clstrkey6 SMALLINT Cluster key number 6

clstrkey7 SMALLINT Cluster key number 7

clstrkey8 SMALLINT Cluster key number 8

clstrkey9 SMALLINT Cluster key number 9

clstrkey10 SMALLINT Cluster key number 10

clstrkey11 SMALLINT Cluster key number 11

clstrkey12 SMALLINT Cluster key number 12

clstrkey13 SMALLINT Cluster key number 13

clstrkey14 SMALLINT Cluster key number 14

clstrkey15 SMALLINT Cluster key number 15

clstrkey16 SMALLINT Cluster key number 16

Column Name Type Explanation

 (2 of 2)
1-58 Informix Guide to SQL: Reference

SYSPROCAUTH
SYSPROCAUTH
The sysprocauth system catalog table describes the privileges granted on a
procedure or function. It contains one row for each set of privileges that are
granted. The sysprocauth system catalog table has the following columns.

A composite index for the procid, grantor, and grantee columns allows only
unique values. The composite index for the procid and grantee columns
allows duplicate values.

Column Name Type Explanation

grantor NCHAR(32) Grantor of routine

grantee NCHAR(32) Grantee of routine

procid INTEGER Routine identifier

procauth NCHAR(1) Type of routine permission granted:

e = Execute permission on routine

E = Execute permission and the ability to grant
it to others
System Catalog 1-59

SYSPROCBODY
SYSPROCBODY
The sysprocbody system catalog table describes the compiled version of each
procedure or function in the database. Because the sysprocbody system
catalog table stores the text of the routine, each routine can have multiple
rows. The sysprocbody system catalog table has the following columns.

Although the datakey column indicates the type of data that is stored, the
data column contains the actual data, which can be one of the following
types:

■ Encoded return values list

■ Encoded symbol table

■ Constant data

■ Compiled code for the routine

■ Text of the routine and its documentation

A composite index for the procid, datakey, and seqno columns allows only
unique values.

Column Name Type Explanation

procid INTEGER Routine identifier

datakey NCHAR(1) Data-descriptor type:

D = User document text

T = Actual routine source

R = Return value type list

S = Routine symbol table

L = Constant routine data string (that is, literal
numbers or quoted strings)

P = Interpreter instruction code

seqno INTEGER Line number of the routine

data NCHAR(256) Actual text of the routine
1-60 Informix Guide to SQL: Reference

SYSPROCEDURES
SYSPROCEDURES
The sysprocedures system catalog table lists the characteristics for each
function and procedure in the database. It contains one row for each routine.

For Extended Parallel Server, the sysprocedures system catalog table has the
following columns.

Column Name Type Explanation

procname NVARCHAR(128) Routine name

owner NCHAR(32) Owner name

procid SERIAL Routine identifier

mode NCHAR(1) Mode type:

D, d = DBA

O, o = Owner

P, p = Protected

R, r = Restricted

retsize INTEGER Compiled size (in bytes) of values

symsize INTEGER Compiled size (in bytes) of symbol table

datasize INTEGER Compiled size (in bytes) constant data

codesize INTEGER Compiled size (in bytes) of routine instruction
code

numargs INTEGER Number of routine arguments

XPS
System Catalog 1-61

SYSPROCEDURES
For Dynamic Server, the sysprocedures system catalog table has the
following columns.

Column Name Type Explanation

procname NVARCHAR(128) Routine name

owner NCHAR(32) Owner name

procid SERIAL Routine identifier

mode NCHAR(1) Mode type:

D, d = DBA

O, o = Owner

P, p = Protected

R, r = Restricted

retsize INTEGER Compiled size (in bytes) of values

symsize INTEGER Compiled size (in bytes) of symbol table

datasize INTEGER Compiled size (in bytes) constant data

codesize INTEGER Compiled size (in bytes) of routine instruction
code

numargs INTEGER Number of routine arguments

isproc NCHAR(1) Whether the routine is a procedure or a
function

t = procedure

f = function

specificname NVARCHAR(128) The specific name for the routine

externalname NVARCHAR(255) Location of the external routine. This item is
language-specific in content and format.

paramstyle NCHAR(1) Parameter style

I = Informix

 (1 of 3)

IDS
1-62 Informix Guide to SQL: Reference

SYSPROCEDURES
langid INTEGER Language identifier (from the sysroutinelangs
system catalog table)

paramtypes rtnparamtypes Data types of the parameters; rtnparamtypes
indicates a built-in data type

variant BOOLEAN Indicates whether the routine is VARIANT or
not

t = is variant

f = is not variant

handlesnulls BOOLEAN Null handling indicator:

t = handles nulls

f = does not handle nulls

percallcost INTEGER Amount of CPU per call; integer cost to execute
UDR: cost/call - 0 -(2^31-1)

commutator NVARCHAR(128) Field commutator

negator NVARCHAR(128) Negator function name

selfunc NVARCHAR(128) Function used to estimate function selectivity

iterator BOOLEAN Iterator routine

internal BOOLEAN Whether the routine can be called from SQL

t = routine is internal, not callable from SQL

f = routine is external, can be called from
SQL

class NCHAR(18) CPU class in which the routine should be
executed

stack INTEGER Stack size in bytes required per invocation

costfunc NVARCHAR(128) Name of cost function for UDR

selconst INTEGER Selectivity constant for UDR

Column Name Type Explanation

 (2 of 3)
System Catalog 1-63

SYSPROCEDURES
♦

A unique index on the procid column indexes the routine id. A composite
index on the procname, isproc, numargs, and owner columns maintains the
uniqueness of the routines in the database. This index allows duplicate
values. The index on the specificname and owner columns maintains the
uniqueness of the routines with specific names. It allows duplicate values.

For the sysprocedures system catalog table, the R mode is a special case of
the O mode. A routine is in restricted (R) mode if it was created with a
specified owner that is different from the routine creator. If routine state-
ments involving a remote database are executed, the database server uses the
permissions of the user that executes the routine instead of the permissions
of the routine owner. In all other scenarios, R mode routines behave the same
as O mode routines.

Starting with Version 9.x, protected routines (which cannot be deleted) are
indicated differently in the mode column. In earlier versions, protected
routines were simply indicated by a P. Currently, protected routines are
treated as DBA routines and cannot be Owner routines. Thus D and O indicate
DBA and Owner routines, and d and o indicate protected DBA and protected
Owner routines.

Important: After a SET SESSION AUTHORIZATION is done, all owner routines
created while using the new identity are given a restricted mode.

A database server can create protected routines for internal use. The
sysprocedures table identifies these protected routines with the letter P or p
in the mode column. You cannot modify or drop protected routines or
display them through dbschema.

parallelizable BOOLEAN Parallelization indicator for UDR:

t = Parallelizable

f = Not parallelizable

Column Name Type Explanation

 (3 of 3)
1-64 Informix Guide to SQL: Reference

SYSPROCPLAN
SYSPROCPLAN
The sysprocplan system catalog table describes the query-execution plans
and dependency lists for data-manipulation statements within each routine.
If new plans are generated during the execution of a routine, the new plans
are also recorded in sysprocplan. Because different parts of a routine plan can
be created on different dates, the table can contain multiple rows for each
routine.

It is possible to delete all the plans for a particular routine with the DELETE
statement on sysprocplan. When the routine is executed, new plans are
automatically generated and recorded in sysprocplan.

Only Dynamic Server stores plans in sysprocplan. ♦

The sysprocplan system catalog table has the following columns.

A composite index for the procid, planid, datakey, and seqno columns
allows only unique values.

Column Name Type Explanation

procid INTEGER Routine identifier

planid INTEGER Plan identifier

datakey NCHAR(1) Identifier routine plan part:

D = Dependency list

Q = Execution plan

seqno INTEGER Line number of plan

created DATE Date plan created

datasize INTEGER Size (in bytes) of the list or plan

data NCHAR(256) Encoded (compiled) list or plan

IDS
System Catalog 1-65

SYSREFERENCES
SYSREFERENCES
The sysreferences system catalog table lists the referential constraints that
are placed on columns in the database. It contains a row for each referential
constraint in the database. The sysreferences system catalog table has the
following columns.

The constrid column is indexed and allows only unique values. The primary
column is indexed and allows duplicate values.

Column Name Type Explanation

constrid INTEGER Constraint identifier

primary INTEGER Constraint identifier of the corresponding
primary key

ptabid INTEGER Table identifier of the primary key

updrule NCHAR(1) Reserved for future use; displays an R

delrule NCHAR(1) Displays cascading delete or restrict rule:

C = Cascading delete

R = Restrict (default)

matchtype NCHAR(1) Reserved for future use; displays an N

pendant NCHAR(1) Reserved for future use; displays an N
1-66 Informix Guide to SQL: Reference

SYSREPOSITORY
SYSREPOSITORY
The sysrepository system catalog table contains information about
generalized-key indexes that is not available in the sysindexes system
catalog table. The sysrepository system catalog table contains the CREATE
statement for each generalized-key index in the database in its desc column.
The contents of the sysrepository system catalog table are useful when a
generalized-key index has to be rebuilt during a recovery or if a user wants
to see the CREATE statement for a specific generalized-key index.

Column Name Type Explanation

id1 NCHAR Index from the generalized-key index

id2 INTEGER Tabid of table with the generalized-key index

type INTEGER Integer representing object type

In this release, the only integer that shows is 1,
indicating generalized-key index type.

seqid INTEGER For future use

desc TEXT The CREATE statement used for each gener-
alized-key index in the database

bin BYTE Internal representation of the generalized-key
index

XPS
System Catalog 1-67

SYSROLEAUTH
SYSROLEAUTH
The sysroleauth system catalog table describes the roles that are granted to
users. It contains one row for each role that is granted to a user in the
database. The sysroleauth system catalog table has the following columns.

The rolename and grantee columns are indexed and allow only unique
values. The is_grantable column indicates whether the role was granted with
the WITH GRANT OPTION on the GRANT statement.

SYSROUTINELANGS
The sysroutinelangs system catalog table contains the supported languages
for writing user-defined routines (UDRs).

Column Name Type Explanation

rolename NCHAR(32) Name of the role

grantee NCHAR(32) Grantee of role

is_grantable NCHAR(1) Specifies whether the role is grantable:

Y = Grantable

N = Not grantable

Column Name Type Explanation

langid SERIAL Identifies the supported language

langname NCHAR(30) The name of the language, such as C or SPL

langinitfunc NVARCHAR(128) The name of the initialization function for the
language

langpath NCHAR(255) The path for the UDR language

langclass NCHAR(18) The class of the UDR language

IDS

IDS
1-68 Informix Guide to SQL: Reference

SYSSYNONYMS
SYSSYNONYMS
Important: Version 4.0 or later Informix products no longer use this table; however,
any syssynonyms entries made before Version 4.0 remain in this table. See the
discussion of syssyntable.

The syssynonyms system catalog table lists the synonyms for each table or
view. It contains a row for every synonym defined in the database. The
syssynonyms system catalog table has the following columns.

A composite index for the owner and synonym columns allows only unique
values. The tabid column is indexed and allows duplicate values.

Column Name Type Explanation

owner NCHAR(32) User name of owner

synname NVARCHAR(128) Synonym identifier

created DATE Date synonym created

tabid INTEGER Table identifier
System Catalog 1-69

SYSSYNTABLE
SYSSYNTABLE
The syssyntable system catalog table outlines the mapping between each
synonym and the object that it represents. It contains one row for each entry
in the systables table that has a tabtype of S. The syssyntable system catalog
table has the following columns.

If you define a synonym for a table that is in your current database, only the
tabid and btabid columns are used. If you define a synonym for a table that
is external to your current database, the btabid column is not used, but the
tabid, servername, dbname, owner, and tabname columns are used.

The tabid column maps to the tabid column in systables. With the tabid
information, you can determine additional facts about the synonym from
systables.

An index for the tabid column allows only unique values. The btabid column
is indexed to allow duplicate values.

Column Name Type Explanation

tabid INTEGER Table identifier

servername NVARCHAR(128) Server name

dbname NVARCHAR(128) Database name

owner NCHAR(32) User name of owner

tabname NVARCHAR(128) Name of table

btabid INTEGER Table identifier of base table or view
1-70 Informix Guide to SQL: Reference

SYSTABAMDATA
SYSTABAMDATA
The systabamdata system catalog table stores the parameterization option
choices (table-specific hashing parameters) that you make when you create a
table using a primary access method. It stores configuration parameters that
determine how a primary access method accesses a particular table. The table
might reside in a cooked file, a different database, or an sbspace within the
database server.

The systabamdata system catalog table has the following columns.

The tabid column, the key to the systables system catalog table, is indexed
and must contain unique values. Each configuration parameter in the
am_param list has the format keyword=value or keyword.

Column Name Type Explanation

tabid INTEGER Table identifier

am_param NCHAR(256) Access method parameterization option
choices

am_space NVARCHAR(128) The name of the space where the table data is
stored

IDS
System Catalog 1-71

SYSTABAUTH
SYSTABAUTH
The systabauth system catalog table describes each set of privileges that are
granted in a table. It contains one row for each set of table privileges that are
granted in the database. The systabauth system catalog table has the
following columns.

If the tabauth privilege code is uppercase (for example, S for select), a user
who has this privilege can grant it to others. If the tabauth privilege code is
lowercase (for example, s for select), the user who has this privilege cannot
grant it to others.

A composite index for the tabid, grantor, and grantee columns allows only
unique values. The composite index for the tabid and grantee columns
allows duplicate values.

Column Name Type Explanation

grantor NCHAR(32) Grantor of privilege

grantee NCHAR(32) Grantee of privilege

tabid INTEGER Table identifier

tabauth NCHAR(9) 9-byte pattern that specifies table privileges:

s = Select

u = Update

* = Column-level privilege

i = Insert

d = Delete

x = Index

a = Alter

r = References

n = Under privilege

N = Under privilege with grant option
1-72 Informix Guide to SQL: Reference

SYSTABLES
SYSTABLES
The systables system catalog table describes each table in the database. It
contains one row for each table, view, or synonym that is defined in the
database. The information in the systables system catalog table includes all
database tables and the system catalog tables. The systables system catalog
table has the following columns

Column Name Type Explanation

tabname NVARCHAR(128) Name of table, view, or synonym

owner NCHAR(32) Owner of table (user informix for system
catalog tables and user name for database
tables)

partnum INTEGER Physical location identifier

tabid SERIAL System-assigned sequential ID number
(system tables: 1-24, user tables: 100-nnn)

rowsize SMALLINT Row size

ncols SMALLINT Number of columns

nindexes SMALLINT Number of indexes

nrows INTEGER Number of rows

created DATE Date created

version INTEGER Number that changes when table is altered

tabtype NCHAR(1) Table type:

T = Table

V = View

P = Private synonym

S = Public synonym (not available in an
ANSI-compliant database)

 (1 of 2)
System Catalog 1-73

SYSTABLES
locklevel NCHAR(1) Lock mode for a table:

B = Page

P = Page

R = Row

T = Table (Extended Parallel Server only)

npused INTEGER Number of data pages in use

fextsize INTEGER Size of initial extent (in kilobytes)

nextsize INTEGER Size of all subsequent extents (in kilobytes)

flags SMALLINT Has a unique value for the following types of
permanent tables:

ST_RAW represents a raw (nonlogging
permanent) table in a logging database

RAW 0x00000002 (Extended Parallel Server
only)

STATIC 0x00000004 (Extended Parallel
Server only)

OPERATIONAL 0x00000010 (Extended
Parallel Server only)

STANDARD 0x00000020 (Extended Parallel
Server only)

EXTERNAL 0x00000020 (Extended Parallel
Server only)

site NVARCHAR(128) Reserved for future use (used to store database
collation and C-type information)

dbname NVARCHAR(128) Reserved for future use

am_id INTEGER Access method ID (key to sysams table); null
value or 0 indicates built-in storage manager
used

Column Name Type Explanation

 (2 of 2)
1-74 Informix Guide to SQL: Reference

SYSTRACECLASSES
Each table recorded in the systables system catalog table is assigned a tabid,
which is a system-assigned sequential number that uniquely identifies each
table in the database. The first tabid numbers up to 99 are reserved for system
catalog tables. The user-created tabid numbers begin with 100.

The tabid column is indexed and must contain unique values. A composite
index for the tabname and owner columns allows only unique values. The
version column contains an encoded number that is put in the systables
system catalog table when the table is created. Portions of the encoded value
are incremented when data-definition statements, such as ALTER INDEX,
ALTER TABLE, DROP INDEX, and CREATE INDEX, are performed.

When a prepared statement is executed, the version number is checked to
make sure that nothing has changed since the statement was prepared. If the
version number has changed, your statement does not execute, and you
must prepare your statement again.

The npused column does not reflect BYTE or TEXT data used.

The systables system catalog table has two additional rows to store the
database locale: GL_COLLATE with a tabid of 90 and GL_CTYPE with a tabid
of 91. To view these rows, enter the following SELECT statement:

SELECT tabname, tabid FROM systables

SYSTRACECLASSES
The systraceclasses system catalog table contains the names and identifiers
of trace classes. A trace class is a category of trace messages that you can use
in the development and testing of new DataBlade modules and user-defined
routines. Developers use the tracing facility by calling the appropriate
DataBlade API routines within their code.

To create a new trace class, insert a row directly into the systraceclasses
system catalog table. By default, all users can view this table, but only users
with the DBA privilege can modify it.

A unique index on the name column ensures that each trace class has a
unique name. The database server also assigns each class a sequential
identifier. Therefore, the index on the classid column also allows only unique
values.

GLS

IDS
System Catalog 1-75

SYSTRACEMSGS
The systraceclasses system catalog table has the following columns.

SYSTRACEMSGS
The systracemsgs system catalog table stores internationalized trace
messages that you can use in debugging user-defined routines. DataBlade
module developers create a trace message by inserting a row directly into the
systracemsgs system catalog table. Once a message is created, the devel-
opment team can specify it either by name or by ID, using trace statements
that the DataBlade API provides.

To create a trace message, you must specify its name, locale, and text. By
default, all users can view the systracemsgs table, but only users with the
DBA privilege can modify it.

The systracemsgs system catalog table has the following columns.

A unique index defined on columns name and locale. A unique index is also
on the msgid column.

Column Name Type Explanation

name NCHAR(18) Name of the class of trace messages

classid SERIAL Trace class identifier

Column Name Type Explanation

name NVARCHAR(128) The name of the message

msgid SERIAL The message template identifier

locale NCHAR(36) The locale with which this version of the
message is associated (for example,
en_us.8859-1)

seqno Reserved for future use

message NVARCHAR(255) The message text

IDS
1-76 Informix Guide to SQL: Reference

SYSTRIGBODY
SYSTRIGBODY
The systrigbody system catalog table contains the English text of the trigger
definition and the linearized code for the trigger. Linearized code is binary
data and code that is represented in ASCII format.

Warning: The database server uses the linearized code that is stored in systrigbody.
You must not alter the content of rows that contain linearized code.

The systrigbody system catalog table has the following columns.

A composite index for the trigid, datakey, and seqno columns allows only
unique values.

Column Name Type Explanation

trigid INT Trigger identifier

datakey NCHAR Type of data:

D = English text for the header, trigger definition

A = English text for the body, triggered actions

H = Linearized code for the header

S = Linearized code for the symbol table

B = Linearized code for the body

seqno INT Sequence number

data NCHAR(256) English text or linearized code

IDS
System Catalog 1-77

SYSTRIGGERS
SYSTRIGGERS
The systriggers system catalog table contains miscellaneous information
about the SQL triggers in the database. This information includes the trigger
event and the correlated reference specification for the trigger. The
systriggers system catalog table has the following columns.

A composite index for the trigname and owner columns allows only unique
values. The trigid column is indexed and must contain unique values. An
index for the tabid column allows duplicate values.

Column Name Type Explanation

trigid SERIAL Trigger identifier

trigname NVARCHAR(128) Trigger name

owner NCHAR(32) Owner of trigger

tabid INT ID of triggering table

event NCHAR Triggering event:

I = Insert trigger

U = Update trigger

D = Delete trigger

S = Select trigger

old NVARCHAR(128) Name of value before update

new NVARCHAR(128) Name of value after update

mode NCHAR Reserved for future use

IDS
1-78 Informix Guide to SQL: Reference

SYSUSERS
SYSUSERS
The sysusers system catalog table describes each set of privileges that are
granted in the database. It contains one row for each user who has privileges
in the database. The sysusers system catalog table has the following columns.

The username column is indexed and allows only unique values. The
username can be the name of a role.

Column Name Type Explanation

username NCHAR(32) Name of the database user or role

usertype NCHAR(1) Specifies database-level privileges:

D = DBA (all privileges)

R = Resource (create permanent tables, user-
defined data types, and indexes)

G = Role

C = Connect (work within existing tables)

priority SMALLINT Reserved for future use

password NCHAR(16 Reserved for future use
System Catalog 1-79

SYSVIEWS
SYSVIEWS
The sysviews system catalog table describes each view that is defined in the
database. Because the sysviews system catalog table stores the SELECT
statement that you use to create the view, it can contain multiple rows for
each view in the database. The sysviews system catalog table has the
following columns.

A composite index for the tabid and seqno columns allows only unique
values.

Column Name Type Explanation

tabid INTEGER Table identifier

seqno SMALLINT Line number of the SELECT statement

viewtext NCHAR(64) Actual SELECT statement used to create the view
1-80 Informix Guide to SQL: Reference

SYSVIOLATIONS
SYSVIOLATIONS
The sysviolations system catalog table stores information about the con-
straint violations for base tables. Every table in the database that has a
violations table and a diagnostics table associated with it has a corresponding
row in the sysviolations table. The sysviolations system catalog table has the
following columns.

The primary key of the sysviolations table is the targettid column. Unique
indexes are also defined on the viotid and diatid columns.

Extended Parallel Server does not use the diagnostic table when a constraint
violation occurs. Rather, the database server stores additional information in
the violations table. The violations table contains the data that the transaction
refused and an indication of the cause. ♦

Column Name Type Explanation

targettid INTEGER Table identifier of the target table. The target table
is the base table on which the violations table and
the diagnostic table are defined.

viotid INTEGER Table identifier of the violations table

diatid INTEGER Table identifier of the diagnostics table

maxrows INTEGER Maximum number of rows that can be inserted in
the diagnostics table during a single insert, update,
or delete operation on a target table that has a
filtering mode object defined on it.

Also signifies the maximum number of rows that
can be inserted in the diagnostics table during a
single operation that enables a disabled object or
sets a disabled object to filtering mode (provided
that a diagnostics table exists for the target table).

For Extended Parallel Server, indicates the
maximum number of rows that are allowed in the
violations table for each coserver.

If no maximum is specified for the diagnostics or
violations table, this column contains a null value.

XPS
System Catalog 1-81

SYSXTDDESC
SYSXTDDESC
The sysxtddesc system catalog table provides a text description of each user-
defined data type (opaque, distinct, and complex (named row types,
unnamed row types, and collection types)) that you define in the database.
The sysxtddesc system catalog table has the following columns.

Column Name Type Explanation

extended_id SERIAL Unique identifier for extended data types

seqno SMALLINT Value to order and identify one line of description
for specific values of extended_id. A new
sequence is created only if the text string is larger
than the 255 limit of the text string.

description NCHAR(256) Textual description of the extended data type

IDS
1-82 Informix Guide to SQL: Reference

SYSXTDTYPEAUTH
SYSXTDTYPEAUTH
The sysxtdtypeauth system catalog table provides privileges for each user-
defined data type (opaque and distinct) and for each named row type that
you define in the database. The table contains one row for each set of privi-
leges granted.

The sysxtdtypeauth system catalog table has the following columns.

If the sysxtdtypeauth privilege code is uppercase (for example, 'U' for usage),
a user who has this privilege can also grant it to others. If the sysxtdtypeauth
privilege code is lowercase (for example, 'u' for usage), the user who has this
privilege cannot grant it to others.

A composite index for the type, grantor, and grantee columns allows only
unique values. The composite index for the type and grantee columns allows
duplicate values.

Column Name Type Explanation

grantor NCHAR(32) Grantor of privilege

grantee NCHAR(32) Grantee of privilege

type INTEGER Identifier of the user-defined type

auth NCHAR(2) Privileges on the user-defined data type:

n = Under privilege

N = Under privilege with grant option

u = Usage privilege

U = Usage privilege with grant option

IDS
System Catalog 1-83

SYSXTDTYPES
SYSXTDTYPES
The sysxtdtype system catalog table has an entry for each user-defined data
type (opaque and distinct data types) and complex data type (named row
type, unnamed row type, and collection type) that is defined in the database.
Each extended data type has a unique id, called an extended id
(extended_id), a data type identifier (type), and the length and description of
the data type.

The sysxtdtypes system catalog table has the following columns.

Column Name Type Explanation

extended_id SERIAL Unique identifier for extended data types

mode NCHAR(1) Detailed description of the user-defined type.
One of the following values:

B = Base (opaque)
C = Collection type as well as unnamed row
type
D = Distinct
R = Named row type
' ' (blank) = Built-in type

owner NCHAR(32) Owner of the data type

name NVARCHAR(128) Name of the data type

type SMALLINT The identifier of the data type. See the coltype
column values of the syscolumns system
catalog table for a complete list of identifiers
associated with different data types. For distinct
types created from built-in data types, the value
in this column corresponds with the value of
the coltype column (indicating the source type)
in the syscolumns system catalog table. A value
of 40 indicates a distinct data type created from
a variable-length opaque type. A value of 41
indicates a distinct type created from a fixed-
length opaque type.

 (1 of 2)

IDS
1-84 Informix Guide to SQL: Reference

SYSXTDTYPES
The index on the extended_id column allows only unique values. Similarly
the index on columns name and type columns also allows only unique
values. The index on the source and maxlen columns allow duplicate values.

source INTEGER The sysxtdtypes reference for this type, if it is a
distinct type. A value of 0 indicates that the
distinct type was created from a built-in data
type.

maxlen INTEGER The maximum length for variable-length data
types. A value of 0 indicates a fixed-length data
type.

length INTEGER The length in bytes for fixed-length data types.
A value of 0 indicates a variable-length data
type.

byvalue NCHAR(1) If the data type is passed by value

'T' = type is passed by value
'F' = type is not passed by value

cannothash NCHAR(1) Is data type hashable using the default bit-
hashing function?

'T' = type is hashable
'F' = type is not hashable

align SMALLINT Alignment for this data type.
One of the following values: 1, 2, 4, 8.

locator INTEGER Locator (key) for unnamed row types.

Column Name Type Explanation

 (2 of 2)
System Catalog 1-85

Information Schema
Information Schema
The Information Schema consists of read-only views that provide infor-
mation about all the tables, views, and columns on the current database
server to which you have access. In addition, Information Schema views
provide information about SQL dialects (such as Informix, Oracle, or Sybase)
and SQL standards.

This version of the Information Schema views are X/Open CAE standards.
Informix provides them so that applications developed on other database
systems can obtain Informix system catalog information without having to
use the Informix system catalogs directly.

Important: Because the X/Open CAE standards Information Schema views differ
from ANSI-compliant Information Schema views, Informix recommends that you do
not install the X/Open CAE Information Schema views on ANSI-compliant databases.

The following Information Schema views are available:

■ tables

■ columns

■ sql_languages

■ server_info

The following sections contain information about how to generate and access
Information Schema views as well as information about their structure.

Generating the Information Schema Views
The Information Schema views are generated automatically when you, as
DBA, run the following DB-Access command:

dbaccess database-name $INFORMIXDIR/etc/xpg4_is.sql

Data in the Informix system catalog tables populates the views. If tables,
views, or routines exist with any of the same names as the Information
Schema views, you need to either rename the database objects or rename the
views in the script before you can install the views. You can drop the views
with the DROP VIEW statement on each view. To re-create the views, rerun the
script.

IDS
1-86 Informix Guide to SQL: Reference

Accessing the Information Schema Views
Important: In addition to the columns specified for each Information Schema view,
individual vendors might include additional columns or change the order of the
columns. Informix recommends that applications not use the forms SELECT * or
SELECT table-name* to access an Information Schema view.

Accessing the Information Schema Views
All Information Schema views have the Select privilege granted to PUBLIC
WITH GRANT OPTION so that all users can query the views. Because no other
privileges are granted on the Information Schema views, they cannot be
updated.

You can query the Information Schema views as you would query any other
table or view in the database.

Structure of the Information Schema Views
The following views are described in this section:

■ tables

■ columns

■ sql_languages

■ server_info

Most of the columns in the views are defined as VARCHAR data types with
large maximums to accept large names and in anticipation of long identifier
names in future standards.
System Catalog 1-87

Structure of the Information Schema Views
The tables Information Schema View

The tables Information Schema view contains one row for each table to
which you have access. It contains the following columns.

The visible rows in the tables view depend on your privileges. For example,
if you have one or more privileges on a table (such as Insert, Delete, Select,
References, Alter, Index, or Update on one or more columns), or if these privi-
leges are granted to PUBLIC, you see one row that describes that table.

The columns Information Schema View

The columns Information Schema view contains one row for each accessible
column. It contains the following columns.

Column Name Data Type Explanation

table_schema VARCHAR(128) Owner of table

table_name VARCHAR(128) Name of table or view

table_type VARCHAR(128) BASE TABLE for table or VIEW for view

remarks VARCHAR(255) Reserved

Column Name Data Type Explanation

table_schema VARCHAR(128) Owner of table

table_name VARCHAR(128) Name of table or view

column_name VARCHAR(128) Name of the column of the table or view

ordinal_position INTEGER Ordinal position of the column. The
ordinal_position of a column in a table is
a sequential number that starts at 1 for
the first column.This column is an
Informix extension to XPG4.

data_type VARCHAR(254) Data type of the column, such as
CHARACTER or DECIMAL

 (1 of 2)
1-88 Informix Guide to SQL: Reference

Structure of the Information Schema Views
char_max_length INTEGER Maximum length for character data
types; null otherwise

numeric_precision INTEGER Total number of digits allowed for exact
numeric data types (DECIMAL,
INTEGER, MONEY, and SMALLINT), and
the number of digits of mantissa
precision for approximate data types
(FLOAT and SMALLFLOAT), and null for
all other data types. The value is
machine dependent for FLOAT and
SMALLFLOAT.

numeric_prec_radix INTEGER Uses one of the following values:

2 = approximate data types (FLOAT
and SMALLFLOAT)

10 = exact numeric data types
(DECIMAL, INTEGER, MONEY, and
SMALLINT)

Null for all other data types

numeric_scale INTEGER Number of significant digits to the right
of the decimal point for DECIMAL and
MONEY data types:

0 for INTEGER and SMALLINT data
types

Null for all other data types

datetime_precision INTEGER Number of digits in the fractional part of
the seconds for DATE and DATETIME
columns; null otherwise. This column is
an Informix extension to XPG4.

is_nullable VARCHAR(3) Indicates whether a column allows
nulls; either YES or NO

remarks VARCHAR(254) Reserved

Column Name Data Type Explanation

 (2 of 2)
System Catalog 1-89

Structure of the Information Schema Views
The sql_languages Information Schema View

The sql_languages Information Schema view contains a row for each
instance of conformance to standards that the current database server
supports. The sql_languages Information Schema view contains the
following columns.

The sql_languages Information Schema view is completely visible to all
users.

The server_info Information Schema View

The server_info Information Schema view describes the database server to
which the application is currently connected. It contains the following
columns.

Column Name Data Type Explanation

source VARCHAR(254) Organization that defines this SQL
version

source_year VARCHAR(254) Year the source document was approved

conformance VARCHAR(254) Which conformance is supported

integrity VARCHAR(254) Indicates whether this is an integrity
enhancement feature; either YES or NO

implementation VARCHAR(254) Identifies the SQL product of the vendor

binding_style VARCHAR(254) Direct, module, or other bind style

programming_lang VARCHAR(254) Host language for which the binding style
is adopted

Column Name Data Type Explanation

server_attribute VARCHAR(254) An attribute of the database server

attribute_value VARCHAR(254) Value of the server_attribute as it applies to
the current database server
1-90 Informix Guide to SQL: Reference

Structure of the Information Schema Views
Each row in this view provides information about one attribute.
X/Open-compliant databases must provide applications with certain
required information about the database server. The server_info view
includes the following information.

The server_info Information Schema view is completely visible to all users.

server_attribute Description

identifier_length Maximum number of characters for a user-defined name

row_length Maximum length of a row

userid_length Maximum number of characters of a user name
(or “authorization identifier”)

txn_isolation Initial transaction isolation level that the database server
assumes:

Read Committed
Default isolation level for databases created without
logging

Read Uncommitted
Default isolation level for databases created with logging
but not ANSI compliant

Serializable
Default isolation level for ANSI-compliant databases

collation_seq Assumed ordering of the character set for the database
server. The following values are possible:

ISO 8859-1

EBCDIC

The Informix representation shows ISO 8859-1.
System Catalog 1-91

2
Chapter
Data Types
In This Chapter . 2-5

Summary of Data Types 2-5

Description of Data Types 2-9
BLOB . 2-9
BOOLEAN . 2-11
BYTE . 2-12
CHAR(n) . 2-13
CHARACTER(n) 2-14
CHARACTER VARYING(m,r) 2-15
CLOB . 2-15
DATE . 2-16
DATETIME . 2-17
DEC . 2-21
DECIMAL . 2-21
Distinct . 2-23
DOUBLE PRECISION 2-24
FLOAT(n). 2-24
INT . 2-25
INT8 . 2-25
INTEGER . 2-26
INTERVAL . 2-26
LIST(e) . 2-30
LVARCHAR . 2-31
MONEY(p,s) . 2-32
MULTISET(e) 2-33
Named Row . 2-34
NCHAR(n) . 2-34

2-2 Infor
NUMERIC(p,s) 2-34
NVARCHAR(m,r) 2-34
Opaque . 2-35
REAL . 2-35
Row, Named . 2-36
Row, Unnamed 2-37
SERIAL(n) . 2-39
SERIAL8 . 2-40
SET(e) . 2-42
SMALLFLOAT 2-43
SMALLINT . 2-44
TEXT . 2-44
Unnamed Row 2-46
VARCHAR(m,r). 2-46

Built-In Data Types 2-48
Large-Object Data Types 2-49

Simple Large Objects 2-50
Smart Large Objects 2-50

Time Data Types 2-52
Manipulating DATETIME Values 2-53
Manipulating DATETIME with INTERVAL Values 2-54
Manipulating DATE with DATETIME and

INTERVAL Values 2-55
Manipulating INTERVAL Values 2-57
Multiplying or Dividing INTERVAL Values 2-58

Extended Data Types 2-58
Complex Data Types 2-59

Collection Data Types 2-60
Row Data Types 2-61

Distinct Data Types 2-62
Opaque Data Types 2-62

Data Type Casting and Conversion 2-63
Using Built-in Casts 2-64

Converting from Number to Number 2-65
Converting Between Number and CHAR 2-65
Converting Between INTEGER and DATE or DATETIME . . . 2-66
Converting Between DATE and DATETIME 2-66
mix Guide to SQL: Reference

Using User-Defined Casts 2-67
Implicit Casts. 2-67
Explicit Casts 2-68

Determining Which Cast to Apply 2-68
Casts for Distinct Types 2-69
What Extended Data Types Can Be Cast? 2-70

Operator Precedence 2-71
Data Types 2-3

2-4 Infor
mix Guide to SQL: Reference

In This Chapter
Every column in a table in a database is assigned a data type. The data type
precisely defines the kinds of values that you can store in that column.

This chapter covers the following topics:

■ Built-in data types

■ Extended data types ♦
■ Casting or converting between two data types

■ Operator precedence

Summary of Data Types
Figure 2-1 charts the categories of data types that Informix database servers
support.

IDS

Figure 2-1 Overview of Supported Data Types

Data types

Extended data types

(Dynamic Server)

Complex data types User-defined data types

Collection Row Opaque Distinct

Character

Numeric Large-object

Time

Built-in data types
Data Types 2-5

Summary of Data Types
Built-in data types and extended data types share the following character-
istics. You can:

■ use them to create columns of tables.

■ use them as arguments and as return types of functions.

■ use them to create distinct types.

■ cast them to other data types.

■ declare and access them with SPL and ESQL/C.

Specific exceptions are mentioned in the description of each data type. For an
overview, see “Built-In Data Types” on page 2-47 and “Extended Data Types”
on page 2-57.

You assign data types to columns with the CREATE TABLE statement and
change them with the ALTER TABLE statement. When you change an existing
column data type, all data is converted to the new data type, if possible.

For information on the ALTER TABLE and CREATE TABLE statements, SQL
statements that create specific data types and create and drop casts, and other
data type syntax conventions, refer to the Informix Guide to SQL: Syntax.

For information about how to create and use complex data types, see the
Informix Guide to Database Design and Implementation.

For information about how to create user-defined data types, see Extending
Informix Dynamic Server 2000. ♦

All Informix database servers support the data types that Figure 2-2 lists.
This chapter describes each of these data types.

Figure 2-2
Data Types That All Informix Database Servers Support

IDS

Data Type Explanation Page

BYTE Stores any kind of binary data 2-12

CHAR(n) Stores single-byte or multibyte sequences of
characters, including letters, numbers, and symbols;
collation is code-set dependent

2-13

CHARACTER(n) Is a synonym for CHAR 2-14

 (1 of 3)
2-6 Informix Guide to SQL: Reference

Summary of Data Types
CHARACTER
VARYING(m,r)

Stores single-byte and multibyte sequences of
characters, including letters, numbers, and symbols
of varying length (ANSI compliant); collation is code-
set dependent

2-15

DATE Stores calendar date 2-16

DATETIME Stores calendar date combined with time of day 2-17

DEC Is a synonym for DECIMAL 2-21

DECIMAL Stores numbers with definable scale and precision 2-21

DOUBLE PRECISION Behaves the same way as FLOAT 2-24

FLOAT(n) Stores double-precision floating-point numbers
corresponding to the double data type in C

2-24

INT Is a synonym for INTEGER 2-25

INTEGER Stores whole numbers from −2,147,483,647 to
+2,147,483,647

2-25

INTERVAL Stores a span of time 2-26

MONEY(p,s) Stores currency amount 2-30

MULTISET(e) Stores a collection (all elements of same element type,
e) of values; allows duplicate values.

2-32

NCHAR(n) Stores single-byte and multibyte sequences of
characters, including letters, numbers, and symbols;
collation is locale dependent

2-33

NUMERIC(p,s) Is a synonym for DECIMAL 2-33

NVARCHAR(m,r) Stores single-byte and multibyte sequences of
characters, including letters, numbers, and symbols
of varying length; collation is locale dependent

2-33

REAL Is a synonym for SMALLFLOAT 2-34

Row, Named Stores a named row type 2-35

SERIAL Stores sequential integers 2-38

Data Type Explanation Page

 (2 of 3)
Data Types 2-7

Summary of Data Types
Dynamic Server also supports the data types that Figure 2-3 lists. This
chapter describes each of these data types.

Figure 2-3
Additional Data Types that Dynamic Server Supports

SERIAL8 Stores large sequential integers; has same range as
INT8

2-39

SMALLFLOAT Stores single-precision floating-point numbers
corresponding to the float data type in C

2-42

SMALLINT Stores whole numbers from −32,767 to +32,767 2-43

TEXT Stores any kind of text data. 2-43

VARCHAR(m,r) Stores single-byte and multibyte strings of letters,
numbers, and symbols of varying length; collation is
code-set dependent.

2-45

Data Type Explanation Page

 (3 of 3)

IDS

Data Type Explanation Page

BLOB Stores binary data in random-access chunks 2-9

BOOLEAN Stores Boolean values true and false 2-11

CLOB Stores text data in random-access chunks 2-15

Distinct Is a user-defined data type that is stored in the same
way as the source data type on which it is based but
has different casts and functions defined over it than
those on the source type

2-23

INT8 Stores an 8-byte integer value. These whole numbers
can be in the range −(263 −1) to 263 −1.

2-25

LIST(e) Stores a collection of elements of the same element
type, e; elements have an implicit order (first, second,
and so on); allows duplicate values

2-29

LVARCHAR Stores variable-length data that can be larger than 255
bytes

2-30

 (1 of 2)
2-8 Informix Guide to SQL: Reference

Description of Data Types
♦

For information about Informix internal data types that SQL statements
support (IMPEX, IMPEXBIN, and SENDRECV), see Extending Informix Dynamic
Server 2000.

Description of Data Types
This section describes the data types that Informix database servers support.

BLOB
The BLOB data type stores any kind of binary data in random-access chunks,
called sbspaces. Binary data typically consists of saved spreadsheets,
program-load modules, digitized voice patterns, and so on. The database
server performs no interpretation on the contents of a BLOB column. A BLOB
column can be up to 4 terabytes in length.

The term smart large object refers to BLOB and CLOB data types. Use the CLOB
data type (see page 2-15) for random access to text data. For general infor-
mation about BLOB and CLOB data types, see “Smart Large Objects” on
page 2-49.

MULTISET(e) Stores a collection of elements of the same element
type, e; allows duplicate values.

2-32

Opaque Stores a user-defined data type whose internal
structure is inaccessible to the database server

2-33

Row, Named Stores a named row type 2-35

Row, Unnamed Stores an unnamed row type 2-36

SERIAL8 Stores large sequential integers; has same range as
INT8

2-39

SET(e) Stores a collection of elements of the same element
type, e; does not allow duplicate values

2-41

Data Type Explanation Page

 (2 of 2)

IDS
Data Types 2-9

BLOB
You can use the following SQL functions to perform some operations on a
BLOB column:

■ FILETOBLOB copies a file into a BLOB column.

■ LOTOFILE copies a BLOB (or CLOB) value into an operating-system
file.

■ LOCOPY copies an existing smart large object to a new smart large
object.

For more information on these SQL functions, see the Informix Guide to SQL:
Syntax.

No casts exist for BLOB data. Therefore, the database server cannot convert
data of type BLOB to any other data type. Within SQL, you are limited to the
equality (=) comparison operation for BLOB data. To perform additional
operations, you must use one of the application programming interfaces
(APIs) from within your client application.
2-10 Informix Guide to SQL: Reference

BOOLEAN
You can insert data into BLOB columns in the following ways:

■ With the dbload or onload utilities

■ With the LOAD statement (DB-Access)

■ With the FILETOBLOB function

■ From BLOB (ifx_lo_t) host variables (Informix ESQL/C)

If you select a BLOB column using DB-Access, only the phrase SBlob value is
returned; no actual value is displayed.

BOOLEAN
The BOOLEAN data type stores single-byte true/false type data. The
following table gives internal and literal representations of the BOOLEAN
data type.

You can compare two BOOLEAN values to determine whether they are equal
or not equal. You can also compare a BOOLEAN value to the Boolean literals
't' and 'f'. BOOLEAN values are case insensitive; 't' is equivalent to 'T' and 'f'
to 'F'.

You can use a BOOLEAN column to capture the results of an expression. In the
following example, the value of boolean_column is 't' if column1 is less than
column2, 'f' if column1 is greater than or equal to column2, and null if the
value of either column1 or column2 is unknown:

UPDATE my_table SET boolean_column = (column1 < column2)

BOOLEAN Value Internal
Representation

Literal
Representation

TRUE \0 't'

FALSE \1 'f'

NULL Internal Use Only NULL

IDS
Data Types 2-11

BYTE
BYTE
The BYTE data type stores any kind of binary data in an undifferentiated byte
stream. Binary data typically consists of saved spreadsheets, program load
modules, digitized voice patterns, and so on.

The term simple large object is used to refer to BYTE and TEXT data types.

The BYTE data type has no maximum size. A BYTE column has a theoretical
limit of 231 bytes and a practical limit that your disk capacity determines.

You can store, retrieve, update, or delete the contents of a BYTE column.
However, you cannot use BYTE data items in arithmetic or string operations
or assign literals to BYTE items with the SET clause of the UPDATE statement.
You also cannot use BYTE items in any of the following ways:

■ With aggregate functions

■ With the IN clause

■ With the MATCHES or LIKE clauses

■ With the GROUP BY clause

■ With the ORDER BY clause

You can use BYTE objects in a Boolean expression only if you are testing for
null values.

You can insert data into BYTE columns in the following ways:

■ With the dbload or onload utilities

■ With the LOAD statement (DB-Access)

■ From BYTE host variables (Informix ESQL/C)

You cannot use a quoted text string, number, or any other actual value to
insert or update BYTE columns.

When you select a BYTE column, you can choose to receive all or part of it. To
retrieve it all, use the regular syntax for selecting a column. You can also
select any part of a BYTE column by using subscripts, as the following
example shows:

SELECT cat_picture [1,75] FROM catalog WHERE catalog_num = 10001

This statement reads the first 75 bytes of the cat_picture column associated
with the catalog number 10001.
2-12 Informix Guide to SQL: Reference

CHAR(n)
The database server provides a cast to convert BYTE values to BLOB values.
For more information, see the Informix Guide to Database Design and
Implementation.

If you select a BYTE column using the DB-Access Interactive Schema Editor,
only the phrase “BYTE value” is returned; no actual value is displayed.

Important: If you try to return a BYTE column from a subquery, you get an error
message even when the BYTE column is not used in a comparison condition or with
the IN predicate.

CHAR(n)
The CHAR data type stores any sequence of letters, numbers, and symbols. It
can store single-byte and multibyte characters, based on what the chosen
locale supports. For more information on multibyte CHARS, see “Multibyte
Characters with CHAR” on page 2-14.

A character column has a maximum length n bytes, where 1 ≤ n ≤ 32,767. If
you do not specify n, CHAR(1) is assumed. Character columns typically store
names, addresses, phone numbers, and so on.

Because the length of this column is fixed, when a character value is retrieved
or stored, exactly n bytes of data are transferred. If the character string is
shorter than n bytes, the string is extended with spaces to make up the length.
If the string value is longer than n bytes, the string is truncated, without the
database server raising an exception.

Treating CHAR Values as Numeric Values

If you plan to perform calculations on numbers stored in a column, you
should assign a number data type to that column. Although you can store
numbers in CHAR columns, you might not be able to use them in some arith-
metic operations. For example, if you insert the sum of values into a character
column, you might experience overflow problems if the character column is
too small to hold the value. In this case, the insert fails. However, numbers
that have leading zeros (such as some zip codes) have the zeros stripped if
they are stored as number types INTEGER or SMALLINT. Instead, store these
numbers in CHAR columns.
Data Types 2-13

CHARACTER(n)
CHAR values are compared to other CHAR values by taking the shorter value
and padding it on the right with spaces until the values have equal length.
Then the two values are compared for the full length. Comparisons use the
code-set collation order.

Nonprintable Characters with CHAR

A CHAR value can include tabs, spaces, and other nonprintable characters.
However, you must use an application to insert the nonprintable characters
into host variables and to insert the host variables into your database. After
passing nonprintable characters to the database server, you can store or
retrieve the characters. When you select nonprintable characters, fetch them
into host variables and display them with your own display mechanism.

The only nonprintable character that you can enter and display with
DB-Access is a tab. If you try to display other nonprintable characters with
DB-Access, your screen returns inconsistent results.

Collating CHAR Data

The collation order of the CHAR data type depends on the code set. That is,
this data is sorted by the order of characters as they appear in the code set.
For more information, see the Informix Guide to GLS Functionality.

Multibyte Characters with CHAR

The database locale must support the multibyte characters that a database
uses. If you are storing multibyte characters, make sure to calculate the
number of bytes needed. For more information on multibyte characters and
locales, see the Informix Guide to GLS Functionality.

CHARACTER(n)
The CHARACTER data type is a synonym for CHAR.

GLS

GLS
2-14 Informix Guide to SQL: Reference

CHARACTER VARYING(m,r)
CHARACTER VARYING(m,r)
The CHARACTER VARYING data type stores any multibyte string of letters,
numbers, and symbols of varying length, where m is the maximum size of the
column and r is the minimum amount of space reserved for that column.

The CHARACTER VARYING data type complies with ANSI standards; the non-
ANSI Informix VARCHAR data type supports the same functionality. See the
description of the VARCHAR data type on page 2-45.

CLOB
The CLOB data type stores any kind of text data in random-access chunks,
called sbspaces. Text data can include text-formatting information as long as
this information is also textual, such as PostScript, Hypertext Markup
Language (HTML), or Standard Graphic Markup Language (SGML) data.

The term smart large object refers to CLOB and BLOB data types. The CLOB data
type includes special operations for character strings that are inappropriate
for BLOB values. A CLOB column can be up to 4 terabytes in length.

Use the BLOB data type (see page 2-9) for random access to binary data. For
general information about the CLOB and BLOB data types, see “Smart Large
Objects” on page 2-49.

You can use the following SQL functions to perform some operations on a
CLOB column:

■ FILETOCLOB copies a file into a CLOB column.

■ LOTOFILE copies a CLOB (or BLOB) value into an operating-system
file.

■ LOCOPY copies an existing smart large object to a new smart large
object.

For more information on these SQL functions, see the Informix Guide to SQL:
Syntax.

No casts exist for CLOB data. Therefore, the database server cannot convert
data of the CLOB type to any other data type. Within SQL, you are limited to
the equality (=) comparison operation for CLOB data. To perform additional
operations, you must use one of the application programming interfaces
from within your client application.

IDS
Data Types 2-15

DATE
Multibyte Characters with CLOB

You can insert data into CLOB columns in the following ways:

■ With the dbload or onload utilities

■ With the LOAD statement (DB-Access)

■ From CLOB (ifx_lo_t) host variables (Informix ESQL/C)

For more information and examples for using the CLOB data type, see the
Informix Guide to SQL: Tutorial and the Informix Guide to Database Design and
Implementation.

With GLS, the following rules apply:

■ Multibyte CLOB characters must be supported by the database
locale.

■ The CLOB data type is collated in code-set order.

■ For CLOB columns, the database server handles any required code-
set conversions for the data.

For more information on database locales, collation order, and codeset
conversion, see the Informix Guide to GLS Functionality. ♦

DATE
The DATE data type stores the calendar date. DATE data types require 4 bytes.
A calendar date is stored internally as an integer value equal to the number
of days since December 31, 1899.

Because DATE values are stored as integers, you can use them in arithmetic
expressions. For example, you can subtract a DATE value from another DATE
value. The result, a positive or negative INTEGER value, indicates the number
of days that elapsed between the two dates.

The following example shows the default display format of a DATE column:

mm/dd/yyyy

GLS
2-16 Informix Guide to SQL: Reference

DATETIME
In this example, mm is the month (1-12), dd is the day of the month (1-31), and
yyyy is the year (0001-9999). For the month, Informix products accept a
number value 1 or 01 for January, and so on. For the day, Informix products
accept a value 1 or 01 that corresponds to the first day of the month, and so
on.

If you enter only a two-digit value for the year, how Informix products fill in
the century digits depends on how you set the DBCENTURY environment
variable. For example, if you enter the year value as 99, whether that year
value is interpreted as 1999 or 2099 depends on the setting of your
DBCENTURY environment variable. If you do not set the DBCENTURY
environment variable, then your Informix products consider the present
century as the default. For information on how to set the DBCENTURY
environment variable, refer to page 3-33.

If you specify a locale other than the default locale, you can display culture-
specific formats for dates. The locales and the GL_DATE and DBDATE
environment variables affect the display formatting of DATE values. They do
not affect the internal format used in a DATE column of a database. To change
the default DATE format, set the DBDATE or GL_DATE environment variable.
GLS functionality permits the display of international DATE formats. For
more information, see the Informix Guide to GLS Functionality. ♦

DATETIME
The DATETIME data type stores an instant in time expressed as a calendar
date and time of day. You choose how precisely a DATETIME value is stored;
its precision can range from a year to a fraction of a second.

The DATETIME data type is composed of a contiguous sequence of fields that
represents each component of time that you want to record and uses the
following syntax:

DATETIME largest_qualifier TO smallest_qualifier

The largest_qualifier and smallest_qualifier can be any one of the fields that
Figure 2-4 on page 2-18 lists.

GLS
Data Types 2-17

DATETIME
Figure 2-4
DATETIME Field Qualifiers

A DATETIME column does not need to include all fields from YEAR to
FRACTION; it can include a subset of fields or even a single field. For example,
you can enter a value of MONTH TO HOUR in a column that is defined as
YEAR TO MINUTE, as long as each entered value contains information for a
contiguous sequence of fields. You cannot, however, define a column for just
MONTH and HOUR; this entry must also include a value for DAY.

If you use the DB-Access TABLE menu, and you do not specify the DATETIME
qualifiers, the default DATETIME qualifier, YEAR TO YEAR, is assigned.

A valid DATETIME literal must include the DATETIME keyword, the values to
be entered, and the field qualifiers. You must include these qualifiers because,
as noted earlier, the value you enter can contain fewer fields than defined for
that column. Acceptable qualifiers for the first and last fields are identical to
the list of valid DATETIME fields that Figure 2-4 lists.

Write values for the field qualifiers as integers and separate them with
delimiters. Figure 2-5 lists the delimiters that are used with DATETIME values
in the U.S. ASCII English locale.

Qualifier Field Valid Entries

YEAR A year numbered from 1 to 9,999 (A.D.)

MONTH A month numbered from 1 to 12

DAY A day numbered from 1 to 31, as appropriate to the month

HOUR An hour numbered from 0 (midnight) to 23

MINUTE A minute numbered from 0 to 59

SECOND A second numbered from 0 to 59

FRACTION A decimal fraction of a second with up to 5 digits of precision.
The default precision is 3 digits (a thousandth of a second). To
indicate explicitly other precisions, write FRACTION(n), where
n is the desired number of digits from 1 to 5.
2-18 Informix Guide to SQL: Reference

DATETIME
Figure 2-5
Delimiters Used with DATETIME

Figure 2-6 shows a DATETIME YEAR TO FRACTION(3) value with delimiters.

When you enter a value with fewer fields than the defined column, the value
that you enter is expanded automatically to fill all the defined fields. If you
leave out any more significant fields, that is, fields of larger magnitude than
any value that you supply, those fields are filled automatically with the
current date. If you leave out any less-significant fields, those fields are filled
with zeros (or a 1 for MONTH and DAY) in your entry.

You can also enter DATETIME values as character strings. However, the
character string must include information for each field defined in the
DATETIME column. The INSERT statement in the following example shows a
DATETIME value entered as a character string:

INSERT into cust_calls (customer_num, call_dtime, user_id,
call_code, call_descr)

VALUES (101, '1999-01-14 08:45', 'maryj', 'D',
'Order late - placed 6/1/98')

Delimiter Placement in DATETIME Expression

Hyphen Between the YEAR, MONTH, and DAY portions of the value

Space Between the DAY and HOUR portions of the value

Colon Between the HOUR and MINUTE and the MINUTE and SECOND
portions of the value

Decimal point Between the SECOND and FRACTION portions of the value

Figure 2-6
Example DATETIME

Value with
Delimiters

99-01-16 12:42:06.001

Fraction

SecondHour

Minute

Month

DayYear
Data Types 2-19

DATETIME
In this example, the call_dtime column is defined as DATETIME YEAR TO
MINUTE. This character string must include values for the year, month, day,
hour, and minute fields. If the character string does not contain information
for all defined fields (or adds additional fields), the database server returns
an error.

All fields of a DATETIME column are two-digit numbers except for the year
and fraction fields. The year field is stored as four digits. When you enter a
two-digit value in the year field, how the century digits are filled in and inter-
preted depends on the value that you assign to the DBCENTURY
environment variable.

For example, if you enter 99 as the year value, whether the year is interpreted
as 1999 or 2099 depends on the setting of the DBCENTURY environment
variable. If you do not set the DBCENTURY environment variable, then your
Informix products consider the present century to be the default. For infor-
mation on how to set and use the DBCENTURY environment variable, see
page 3-33.

The fraction field requires n digits where 1 ≤ n ≤ 5, rounded up to an even
number. You can use the following formula (rounded up to a whole number
of bytes) to calculate the number of bytes that a DATETIME value requires:

total number of digits for all fields/2 + 1

For example, a YEAR TO DAY qualifier requires a total of eight digits (four
for year, two for month, and two for day). This data value requires 5, or
(8/2) + 1, bytes of storage.

For information on how to use DATETIME data in arithmetic and relational
expressions, see “Manipulating DATE with DATETIME and
INTERVAL Values” on page 2-53. For more information on the DATETIME
data type, see the Informix Guide to SQL: Syntax and the Informix Guide to GLS
Functionality.

If you specify a locale other than U.S. ASCII English, the locale defines the
culture-specific display formats for DATETIME values. To change the default
display format, change the setting of the GL_DATETIME environment
variable.

With an ESQL API, the DBTIME environment variable also affects DATETIME
formatting. Locales and the GL_DATE and DBDATE environment variables
affect the display of datetime data. They do not affect the internal format
used in a DATETIME column.

GLS
2-20 Informix Guide to SQL: Reference

DEC
For information on how the USEOSTIME configuration parameter can affect
the subsecond granularity when the database server obtains the current time
from the operating system for SQL statements, see the Administrator’s
Reference.

For more information on DBTIME, see page 3-54. For more information on
locales and GLS environment variables, see the Informix Guide to GLS
Functionality. ♦

DEC
The DEC data type is a synonym for DECIMAL.

DECIMAL
The DECIMAL data type can take two forms: DECIMAL(p) floating point and
DECIMAL(p,s) fixed point. In an ANSI-compliant database, all DECIMAL
numbers are fixed point.

DECIMAL Floating Point

The DECIMAL data type stores decimal floating-point numbers up to a
maximum of 32 significant digits, where p is the total number of significant
digits (the precision). Specifying precision is optional. If you do not specify the
precision (p), DECIMAL is treated as DECIMAL(16), a floating decimal with a
precision of 16 places. DECIMAL(p) has an absolute exponent range between
10-130 and 10124.

If you use an ANSI-compliant database and specify DECIMAL(p), the value
defaults to DECIMAL(p, 0). For more information about fixed-point decimal
values, see the following discussion.

DECIMAL Fixed Point

In fixed-point numbers, DECIMAL(p,s), the decimal point is fixed at a specific
place, regardless of the value of the number. When you specify a column of
this type, you write its precision (p) as the total number of digits that it can
store, from 1 to 32. You write its scale (s) as the total number of digits that fall
to the right of the decimal point.
Data Types 2-21

DECIMAL
All numbers with an absolute value less than 0.5 ∗ 10-s have the value zero.
The largest absolute value of a variable of this type that you can store without
an error is 10p-s −10-s. A DECIMAL data type column typically stores numbers
with fractional parts that must be stored and displayed exactly (for example,
rates or percentages). In an ANSI-compliant database, all DECIMAL numbers
must be in the range 10-32 to 10+31.

DECIMAL Storage

The database server uses 1 byte of disk storage to store two digits of a decimal
number. The database server uses an additional byte to store the exponent
and sign. The significant digits to the left of the decimal and the significant
digits to the right of the decimal are stored on separate groups of bytes. The
way the database server stores decimal numbers is best illustrated with an
example.

If you specify DECIMAL(6,3), the data type consists of three significant digits
to the left of the decimal and three significant digits to the right of the decimal
(for instance, 123.456). The three digits to the left of the decimal are stored on
2 bytes (where one of the bytes only holds a single digit) and the three digits
to the right of the decimal are stored on another 2 bytes, as Figure 2-7 illus-
trates. (The exponent byte is not shown.) With the additional byte required
for the exponent and sign, this data type requires a total of 5 bytes of storage.

You can use the following formulas (rounded down to a whole number of
bytes) to calculate the byte storage (N) for a decimal data type (N includes the
byte required to store the exponent and sign):

If the scale is odd: N = (precision + 4) / 2
If the scale is even: N = (precision + 3) / 2

For example, the data type DECIMAL(5,3) requires 4 bytes of storage (9/2
rounded down equals 4).

Figure 2-7
Schematic That

Illustrates the
Storage of Digits in

a Decimal Value

- 1 2 3 4 5 6 -

Byte 1 Byte 2 Byte 3 Byte 4

Significant digits to the left of
decimal

Significant digits to the right of
decimal
2-22 Informix Guide to SQL: Reference

Distinct
One caveat to these formulas exists. The maximum number of bytes the
database server uses to store a decimal value is 17. One byte is used to store
the exponent and sign leaving 16 bytes to store up to 32 digits of precision. If
you specify a precision of 32 and an odd scale, however, you lose 1 digit of
precision. Consider, for example, the data type DECIMAL(32,31). This
decimal is defined as 1 digit to the left of the decimal and 31 digits to the right.
The 1 digit to the left of the decimal requires 1 byte of storage. This leaves
only 15 bytes of storage for the digits to the right of the decimal. The 15 bytes
can accommodate only 30 digits, so 1 digit of precision is lost.

Distinct
A distinct type is a data type that is based on one of the following source
types:

■ A built-in type

■ An existing distinct type

■ An existing named row type

■ An existing opaque type

A distinct type inherits the casts and functions of its source types as well as
the length and alignment on the disk. A distinct type thus makes efficient use
of the pre-existing functionality of the database server.

When you create a distinct data type, the database server automatically
creates two explicit casts: one cast from the distinct type to its source type and
one cast from the source type to the distinct type. A distinct type of a built-in
type does not inherit the built-in casts that are provided for the built-in type.
However, a distinct type does inherit any user-defined casts that have been
defined on the source type.

A distinct type and a source type cannot be compared directly. To compare a
distinct type and its source type, you must explicitly cast one type to the
other.

You must define a distinct type in the database. Definitions for distinct types
are stored in the sysxtdtypes system catalog table.

IDS
Data Types 2-23

DOUBLE PRECISION
The following SQL statements maintain the definitions of distinct types in the
database:

■ The CREATE DISTINCT TYPE statement adds a distinct type to the
database.

■ The DROP TYPE statement removes a previously defined distinct
type from the database.

For more information on the SQL statements mentioned above, see the
Informix Guide to SQL: Syntax. For information about casting distinct data
types, see “Casts for Distinct Types” on page 2-68. For examples that show
how to create and register cast functions for a distinct type, see the Informix
Guide to Database Design and Implementation.

DOUBLE PRECISION
Columns defined as DOUBLE PRECISION behave the same as those defined as
FLOAT.

FLOAT(n)
The FLOAT data type stores double-precision floating-point numbers with up
to 16 significant digits. FLOAT corresponds to the double data type in C. The
range of values for the FLOAT data type is the same as the range of values for
the C double data type on your computer.

You can use n to specify the precision of a FLOAT data type, but SQL ignores
the precision. The value n must be a whole number between 1 and 14.

A column with the FLOAT data type typically stores scientific numbers that
can be calculated only approximately. Because floating-point numbers retain
only their most significant digits, the number that you enter in this type of
column and the number the database server displays can differ slightly.
2-24 Informix Guide to SQL: Reference

INT
The difference between the two values depends on how your computer
stores floating-point numbers internally. For example, you might enter a
value of 1.1000001 into a FLOAT field and, after processing the SQL statement,
the database server might display this value as 1.1. This situation occurs
when a value has more digits than the floating-point number can store. In this
case, the value is stored in its approximate form with the least significant
digits treated as zeros.

FLOAT data types usually require 8 bytes per value.

Conversion of a FLOAT value to a DECIMAL value results in 17 digits of
precision.

INT
The INT data type is a synonym for INTEGER.

INT8
The INT8 data type stores whole numbers that range from
-9,223,372,036,854,775,807 to 9,223,372,036,854,775,807 [or −(263-1) to
263-1]. The maximum negative number (-9,223,372,036,854,775,808) is a
reserved value and cannot be used. The INT8 data type is typically used to
store large counts, quantities, and so on.

The way that the database server stores the INT8 data is platform dependent.
On 64-bit platforms, INT8 is stored as a signed binary integer; the data type
requires 8 bytes per value. On 32-bit platforms, the database server uses an
internal format that consists of several integer values; the data type can
require 10 bytes.

Arithmetic operations and sort comparisons are performed more efficiently
on integer data than on float or decimal data. However, INT8 columns can
store only a limited range of values. If the data value exceeds the numeric
range, the database server does not store the value.

IDS
Data Types 2-25

INTEGER
INTEGER
The INTEGER data type stores whole numbers that range from −2,147,483,647
to 2,147,483,647. The maximum negative number, −2,147,483,648, is a
reserved value and cannot be used. The INTEGER data type is stored as a
signed binary integer and is typically used to store counts, quantities, and so
on.

Arithmetic operations and sort comparisons are performed more efficiently
on integer data than on float or decimal data. However, INTEGER columns
can store only a limited range of values. If the data value exceeds the numeric
range, the database server does not store the value.

INTEGER data types require 4 bytes per value.

INTERVAL
The INTERVAL data type stores a value that represents a span of time.
INTERVAL types are divided into two classes: year-month intervals and
day-time intervals. A year-month interval can represent a span of years and
months, and a day-time interval can represent a span of days, hours, minutes,
seconds, and fractions of a second.

An INTERVAL value is always composed of one value, or a contiguous
sequence of values, that represents a component of time. The following
example defines an INTERVAL data type:

INTERVAL largest_qualifier(n) TO smallest_qualifier(n)

In this example, the largest_qualifier and smallest_qualifier fields are taken from
one of the two INTERVAL classes, as Figure 2-8 shows, and n optionally
specifies the precision of the largest field (and smallest field if it is a
FRACTION).
2-26 Informix Guide to SQL: Reference

INTERVAL
Figure 2-8
Interval Classes

As with a DATETIME column, you can define an INTERVAL column to include
a subset of the fields that you need; however, because the INTERVAL data type
represents a span of time that is independent of an actual date, you cannot
combine the two INTERVAL classes. For example, because the number of days
in a month depends on which month it is, a single INTERVAL data value
cannot combine months and days.

A value entered into an INTERVAL column need not include all fields
contained in the column. For example, you can enter a value of HOUR TO
SECOND into a column defined as DAY TO SECOND. However, a value must
always consist of a contiguous sequence of fields. In the previous example,
you cannot enter just HOUR and SECOND values; you must also include
MINUTE values.

A valid INTERVAL literal contains the INTERVAL keyword, the values to be
entered, and the field qualifiers. (See the discussion of the Literal Interval in
the Informix Guide to SQL: Syntax.) When a value contains only one field, the
largest and smallest fields are the same.

Interval Class Qualifier Field Valid Entry

YEAR-MONTH
INTERVAL

YEAR A number of years

MONTH A number of months

DAY-TIME
INTERVAL

DAY A number of days

HOUR A number of hours

MINUTE A number of minutes

SECOND A number of seconds

FRACTION A decimal fraction of a second, with up to
5 digits of precision. The default precision
is 3 digits (thousandth of a second). To
indicate explicitly other precisions, write
FRACTION(n), where n is the desired
number of digits from 1 to 5.
Data Types 2-27

INTERVAL
When you enter a value in an INTERVAL column, you must specify the largest
and smallest fields in the value, just as you do for DATETIME values. In
addition, you can use n optionally to specify the precision of the first field
(and the last field if it is a FRACTION). If the largest and smallest field quali-
fiers are both FRACTIONS, you can specify only the precision in the last field.
Acceptable qualifiers for the largest and smallest fields are identical to the list
of INTERVAL fields that Figure 2-8 displays.

If you use the DB-Access TABLE menu, and you do not specify the INTERVAL
field qualifiers, the default INTERVAL qualifier, YEAR TO YEAR, is assigned.

The largest_qualifier in an INTERVAL value can be up to nine digits (except for
FRACTION, which cannot be more than five digits), but if the value that you
want to enter is greater than the default number of digits allowed for that
field, you must explicitly identify the number of significant digits in the value
that you enter. For example, to define an INTERVAL of DAY TO HOUR that can
store up to 999 days, you could specify it the following way:

INTERVAL DAY(3) TO HOUR

INTERVAL values use the same delimiters as DATETIME values. Figure 2-9
shows the delimiters.
2-28 Informix Guide to SQL: Reference

INTERVAL
Figure 2-9
INTERVAL Delimiters

You can also enter INTERVAL values as character strings. However, the
character string must include information for the identical sequence of fields
defined for that column. The INSERT statement in the following example
shows an INTERVAL value entered as a character string:

INSERT INTO manufact (manu_code, manu_name, lead_time)
VALUES ('BRO', 'Ball-Racquet Originals', '160')

Because the lead_time column is defined as INTERVAL DAY(3) TO DAY, this
INTERVAL value requires only one field, the span of days required for lead
time. If the character string does not contain information for all fields (or
adds additional fields), the database server returns an error. For more infor-
mation on entering INTERVAL values as character strings, see the Informix
Guide to SQL: Syntax.

By default, all fields of an INTERVAL column are two-digit numbers except
for the year and fraction fields. The year field is stored as four digits. The
fraction field requires n digits where 1 ≤ n ≤ 5, rounded up to an even number.
You can use the following formula (rounded up to a whole number of bytes)
to calculate the number of bytes required for an INTERVAL value:

total number of digits for all fields/2 + 1

For example, a YEAR TO MONTH qualifier requires a total of six digits (four
for year and two for month). This data value requires 4, or (6/2) + 1, bytes of
storage.

Delimiter Placement in DATETIME Expression

Hyphen Between the YEAR and MONTH portions of the value

Space Between the DAY and HOUR portions of the value

Colon Between the HOUR and MINUTE and the MINUTE and SECOND
portions of the value

Decimal point Between the SECOND and FRACTION portions of the value
Data Types 2-29

LIST(e)
For information on using INTERVAL data in arithmetic and relational
operations, see “Manipulating DATE with DATETIME and
INTERVAL Values” on page 2-53. For information on using INTERVAL as a
constant expression, see the description of the INTERVAL Field Qualifier in
the Informix Guide to SQL: Syntax.

LIST(e)
The LIST data type is a collection type that stores ordered, nonunique
elements; that is it allows duplicate element values. The elements of a LIST
have ordinal positions; with a first, second, and third element in a LIST. (For
a collection type with no ordinal positions, see the MULTISET data type on
page 2-32 and the SET data type on page 2-41.)

By default, the database server inserts LIST elements at the end of the list. To
support the ordinal position of a LIST, the INSERT statement provides the AT
clause. This clause allows you to specify the position at which you want to
insert a list-element value. For more information, see the INSERT statement in
the Informix Guide to SQL: Syntax.

All elements in a LIST have the same element type. To specify the element
type, use the following syntax:

LIST(element_type NOT NULL)

The element_type of a collection can be any of the following types:

■ A built-in type, except SERIAL, SERIAL8, BYTE, and TEXT

■ A distinct type

■ An unnamed or named row type

■ Another collection type

■ An opaque type

You must specify the NOT NULL constraint for LIST elements. No other
constraints are valid for LIST columns. For more information on the syntax of
the LIST collection type, see the Informix Guide to SQL: Syntax.

IDS
2-30 Informix Guide to SQL: Reference

LVARCHAR
You can use LIST anywhere that you would use any other data type, for
example:

■ After the IN predicate in the WHERE clause of a SELECT statement to
search for matching LIST values

■ As an argument to the SQL CARDINALITY function to determine the
number of elements in a LIST column

You cannot use LIST with an aggregate function such as AVG, MAX, MIN, or
SUM.

Two lists are equal if they have the same elements in the same order. The
following examples are lists but are not equal:

LIST{"blue", "green", "yellow"}
LIST{"yellow", "blue", "green"}

The above statements are not equal because the values are not in the same
order. To be equal, the second statement would have to be:

LIST{"blue", "green", "yellow"}

LVARCHAR
The LVARCHAR data type is an SQL data type that you can use to create a
column of variable-length character data types that are potentially larger
than 255 bytes.

The LVARCHAR data type is also used for input and output casts for opaque
data types. The LVARCHAR data type stores opaque data types in the string
(external) format. Each opaque type has an input support function and cast,
which convert it from LVARCHAR to a form that database servers can manip-
ulate. Each opaque type also has an output support function and cast, which
convert it from its internal representation to LVARCHAR. ♦

Important: When LVARCHAR data is stored in a table column, the value is limited to
2 kilobytes (2Kb). When LVARCHAR is used in I/O operations on an opaque type, it
has the theoretical size limit of 4 gigabytes (4Gb).

The LVARCHAR data type supports only a subset of the string operations that
you can perform on CHAR and VARCHAR data types.

For more information about LVARCHAR, see Extending Informix Dynamic
Server 2000.

IDS
Data Types 2-31

MONEY(p,s)
MONEY(p,s)
The MONEY data type stores currency amounts. As with the DECIMAL data
type, the MONEY data type stores fixed-point numbers up to a maximum of
32 significant digits, where p is the total number of significant digits (the
precision) and s is the number of digits to the right of the decimal point (the
scale).

Unlike the DECIMAL data type, the MONEY data type is always treated as a
fixed-point decimal number. The database server defines the data type
MONEY(p) as DECIMAL(p,2). If the precision and scale are not specified, the
database server defines a MONEY column as DECIMAL(16,2).

You can use the following formula (rounded down to a whole number of
bytes) to calculate the byte storage for a MONEY data type:

If the scale is odd: N = (precision + 4) / 2
If the scale is even: N = (precision + 3) / 2

For example, a MONEY data type with a precision of 16 and a scale of 2
(MONEY(16,2)) requires 10 or (16 + 3)/2, bytes of storage.

Client applications format values in MONEY columns with the following
currency notation:

■ A currency symbol: a dollar sign ($) at the front of the value

■ A thousands separator: a comma (,) that separates every three digits
of the value

■ A decimal point: a period (.)

To change the format for MONEY values, change the DBMONEY environment
variable. For information on how to set the DBMONEY environment variable,
see page 3-45.

The default value that the database server uses for scale is locale-dependent.
The default locale specifies a default scale of two. For nondefault locales, if
the scale is omitted from the declaration, the database server creates MONEY
values with a locale-specific scale.

The currency notation that client applications use is locale-dependent. If you
specify a nondefault locale, the client uses a culture-specific format for
MONEY values.

GLS
2-32 Informix Guide to SQL: Reference

MULTISET(e)
For more information on locale dependency, see the Informix Guide to GLS
Functionality. ♦

MULTISET(e)
The MULTISET data type is a collection type that stores nonunique elements:
it allows duplicate element values. The elements in a MULTISET have no
ordinal position. That is, there is no concept of a first, second, or third element
in a MULTISET. (For a collection type with ordinal positions for elements, see
the LIST data type on page 2-29.)

All elements in a MULTISET have the same element type. To specify the
element type, use the following syntax:

MULTISET(element_type NOT NULL)

The element_type of a collection can be any of the following types:

■ A built-in type, except SERIAL, SERIAL8, BYTE, and TEXT

■ An unnamed or a named row type

■ Another collection type

■ An opaque type

You must specify the NOT NULL constraint for MULTISET elements. No other
constraints are valid for MULTISET columns. For more information on the
syntax of the MULTISET collection type, see the Informix Guide to SQL: Syntax.

You can use MULTISET anywhere that you use any other data type, unless
otherwise indicated. For example:

■ After the IN predicate in the WHERE clause of a SELECT statement to
search for matching MULTISET values

■ As an argument to the SQL CARDINALITY function to determine the
number of elements in a MULTISET column

You cannot use MULTISET with an aggregate function such as AVG, MAX, MIN,
or SUM.

IDS
Data Types 2-33

Named Row
Two multisets are equal if they have the same elements, even if the elements
are in different positions in the set. The following examples are multisets but
are not equal:

MULTISET {"blue", "green", "yellow"}
MULTISET {"blue", "green", "yellow", "blue"}

The following multisets are equal:

MULTISET {"blue", "green", "blue", "yellow"}
MULTISET {"blue", "green", "yellow", "blue"}

Named Row
See “Row, Named” on page 2-35.

NCHAR(n)
The NCHAR data type stores fixed-length character data. This data can be a
sequence of single-byte or multibyte letters, numbers, and symbols. The
main difference between CHAR and NCHAR data types is the collation order.
While the collation order of the CHAR data type is defined by the code-set
order, the collation order of the NCHAR data type depends on the locale-
specific localized order. For more information about the NCHAR data type,
see the Informix Guide to GLS Functionality.

NUMERIC(p,s)
The NUMERIC data type is a synonym for fixed-point DECIMAL.

NVARCHAR(m,r)
The NVARCHAR data type stores character data of varying lengths. This data
can be a sequence of single-byte or multibyte letters, numbers, and symbols.
The main difference between VARCHAR and NVARCHAR data types is the
collation order. While the collation order of the VARCHAR data type is
defined by the code-set order, the collation order of the NVARCHAR data type
depends on the locale-specific localized order. For more information about
the NVARCHAR data type, see the Informix Guide to GLS Functionality.

GLS

GLS
2-34 Informix Guide to SQL: Reference

Opaque
Opaque
An opaque type is a data type for which you provide the following infor-
mation to the database server:

■ A data structure for how the data is stored on disk

■ Support functions to determine how to convert between the disk
format and the user format

■ Secondary access methods that determine how the index on this data
type is built, used, and manipulated

■ User functions that use the data type

■ A row in a system catalog table to register the opaque type in the
database

The internal structure of an opaque type is not visible to the database server.
The internal structure can only be accessed through user-defined routines.
Definitions for opaque types are stored in the sysxtdtypes system catalog
table. The following SQL statements maintain the definitions of opaque types
in the database:

■ The CREATE OPAQUE TYPE statement adds an opaque type to the
database.

■ The DROP TYPE statement removes a previously defined opaque
type from the database.

For more information on the above-mentioned SQL statements, see the
Informix Guide to SQL: Syntax. For information on how to create opaque types
and an example of an opaque type, see Extending Informix Dynamic
Server 2000.

REAL
The REAL data type is a synonym for SMALLFLOAT.

IDS
Data Types 2-35

Row, Named
Row, Named
A named row type is defined by its name. That name must be unique within
the schema. An unnamed row type is a row type that contains fields but has
no user-defined name. Use a named row type if you want to use type inher-
itance. For more information, see “Row Data Types” on page 2-60.

Defining Named Row Types

You must define a named row type in the database. Definitions for named
row types are stored in the sysxtdtypes system catalog table.

The fields of a row type can be any data type. The fields of a row type that are
TEXT or BYTE type can be used in typed tables only. If you want to assign a
row type to a column, then the elements of the row cannot be of TEXT and
BYTE data types.

In general, the data type of the field of a row type can be any of the following
types:

■ A built-in type, except for the restriction against TEXT and BYTE
mentioned above

■ A collection type

■ A distinct type

■ A row type

■ An opaque type

The following SQL statements maintain the definitions of named row types
in the database:

■ The CREATE ROW TYPE statement adds a named row type to the
database.

■ The DROP ROW TYPE statement removes a previously defined
named row type from the database.

For details about the preceding SQL syntax statements, see the Informix Guide
to SQL: Syntax. For examples of how to create and used named row types, see
the Informix Guide to Database Design and Implementation.

IDS
2-36 Informix Guide to SQL: Reference

Row, Unnamed
Equivalence and Named Row Types

No two named row types can be equal, even if they have identical structures,
because they have different names. For example, the following named row
types have the same structure but are not equal:

name_t (lname CHAR(15), initial CHAR(1) fname CHAR(15))
emp_t (lname CHAR(15), initial CHAR(1) fname CHAR(15))

Named Row Types and Inheritance

Named row types can be part of a type-inheritance hierarchy. That is, one
named row type can be the parent (supertype) of another named row type. A
subtype in a hierarchy inherits all the properties of its supertype. Type inher-
itance is discussed in the CREATE ROW TYPE statement in the Informix Guide
to SQL: Syntax and in the Informix Guide to Database Design and Implementation.

Typed Tables

Tables that are part of an inheritance hierarchy must be typed tables. Typed
tables are tables that have been assigned a named row type. For the syntax
you use to create typed tables, see the CREATE TABLE statement in the
Informix Guide to SQL: Syntax. Table inheritance and how it relates to type
inheritance is also discussed in that section. For information about how to
create and use typed tables, see the Informix Guide to Database Design and
Implementation.

Row, Unnamed
An unnamed row type contains fields but has no user-defined name. An
unnamed row type is defined by its structure. Two unnamed row types are
equal if they have the same structure. If two unnamed row types have the
same number of fields, and if the data type of each field in one row type
matches the data type of the corresponding field in the other row type, the
two unnamed row types are equal.

For example, the following unnamed row types are equal:

ROW (lname char(15), initial char(1) fname char(15))
ROW (dept char(15), rating char(1) name char(15))

IDS
Data Types 2-37

Row, Unnamed
The following row types are not equivalent, even though they have the same
number of fields and the same data types, because the fields are not in the
same order:

ROW (x integer, y varchar(20), z real)
ROW (x integer, z real, y varchar(20))

The data type of the field of an unnamed row type can be any of the following
types:

■ A built-in type

■ A collection type

■ A distinct type

■ A row type

■ An opaque type

Unnamed row types cannot be used in type tables or in type inheritance
hierarchies.

For more information on unnamed row types, see the Informix Guide to SQL:
Syntax and the Informix Guide to Database Design and Implementation.

Creating Unnamed Row Types

You can create an unnamed row type in several ways:

■ You can declare an unnamed row type using the ROW keyword. Each
field in a ROW can have a different field type. To specify the field
type, use the following syntax:

ROW(field_name field_type, ...)

The field_name must conform to the rules for SQL identifiers. For
more information, see the Identifier segment in the Informix Guide to
SQL: Syntax.

■ You can generate an unnamed row type using ROW as a constructor
and a series of values. A corresponding unnamed row type is
created, using the default data types of the specified values.

For example, a declaration of the following row value:
ROW(1, 'abc', 5.30)

defines this row type:
ROW (x INTEGER, y VARCHAR, z DECIMAL)
2-38 Informix Guide to SQL: Reference

SERIAL(n)
■ You can create an unnamed row type by an implicit or explicit cast
from a named row type or from another unnamed row type.

■ The rows of any table (except a table defined on a named row type)
are unnamed row types.

Inserting Values into Unnamed Row Type Columns

When you specify field values for an unnamed row type, list the field values
after the constructor and between parentheses. For example, suppose you
have an unnamed row-type column. The following INSERT statement adds
one group of field values to this ROW column:

INSERT INTO table1 VALUES (ROW(4, 'abc'))

You can specify a ROW column in the IN predicate in the WHERE clause of a
SELECT statement to search for matching ROW values. For more information,
see the Condition segment in the Informix Guide to SQL: Syntax.

SERIAL(n)
The SERIAL data type stores a sequential integer assigned automatically by
the database server when a row is inserted. You can define only one SERIAL
column in a table. For information on inserting values in SERIAL columns, see
the Informix Guide to SQL: Syntax.

The SERIAL data type is not automatically a unique column. You must apply
a unique index or primary key constraint to this column to prevent duplicate
serial numbers. If you use the interactive schema editor in DB-Access to
define the table, a unique index is applied automatically to a SERIAL column.

Also, serial numbers might not be contiguous due to such factors as
multiuser systems and rollbacks.

The default serial starting number is 1, but you can assign an initial value, n,
when you create or alter the table. You can assign any number greater than 0
as your starting number. The highest serial number that you can assign is
2,147,483,647. If you assign a number greater than 2,147,483,647, you receive
a syntax error.
Data Types 2-39

SERIAL8
Once a nonzero number is assigned, it cannot be changed. You can, however,
insert a value in a SERIAL column (using the INSERT statement) or reset the
serial value n (using the ALTER TABLE statement), as long as that value does
not duplicate any existing values in the table. When you insert a number in a
SERIAL column or reset the next value of a SERIAL column, your database
server assigns the next number in sequence to the number entered. However,
if you reset the next value of a SERIAL column to a value that is less than the
values already in that column, the next value is computed with the following
formula:

maximum existing value in SERIAL column + 1

For example, if you reset the serial value of the customer_num column in the
customer table to 50 and the highest-assigned customer number is 128, the
next customer number assigned is 129.

A SERIAL data column is commonly used to store unique numeric codes (for
example, order, invoice, or customer numbers). SERIAL data values require
4 bytes of storage.

SERIAL8
The SERIAL8 data type stores a sequential integer assigned automatically by
the database server when a row is inserted. (For more information on how to
insert values into SERIAL8 columns, see the Informix Guide to SQL: Syntax.)

A SERIAL8 data column is commonly used to store large, unique numeric
codes (for example, order, invoice, or customer numbers). SERIAL8 data
values require 8 bytes of storage. The following restrictions apply to SERIAL8
columns:

■ You can define only one SERIAL8 column in a table.

However, a table can have one SERIAL8 and one SERIAL column.

■ The SERIAL8 data type is not automatically a unique column.

You must apply a unique index to this column to prevent duplicate
SERIAL8 numbers.

■ The SERIAL8 data type does not allow a null value.

If you are using the interactive schema editor in DB-Access to define the table,
a unique index is applied automatically to a SERIAL8 column.

IDS
2-40 Informix Guide to SQL: Reference

SERIAL8
Assigning a Starting Value for SERIAL8

The default serial starting number is 1, but you can assign an initial value, n,
when you create or alter the table. To start the values at 1 in a serial column
of a table, give the value 0 for the SERIAL8 column when you insert rows into
that table.The database server will assign the value 1 to the serial column of
the first row of the table. The highest serial number you can assign is 263-1
(9,223,372,036,854,775,807). If you assign a number greater than this value,
you receive a syntax error. When the database server generates a SERIAL8
value of this maximum number, it wraps around and starts generating values
beginning at 1.

Once a nonzero number is assigned, it cannot be changed. You can, however,
insert a value into a SERIAL8 column (using the INSERT statement) or reset the
serial value n (using the ALTER TABLE statement), as long as that value does
not duplicate any existing values in the table.

When you insert a number into a SERIAL8 column or reset the next value of a
SERIAL8 column, your database server assigns the next number in sequence
to the number entered. However, if you reset the next value of a SERIAL8
column to a value that is less than the values already in that column, the next
value is computed using the following formula:

maximum existing value in SERIAL8 column + 1

For example, if you reset the serial value of the customer_num column in the
customer table to 50 and the highest-assigned customer number is 128, the
next customer number assigned is 129.

Using SERIAL8 with INT8

The database server treats the SERIAL8 data type as a special case of the INT8
data type. Therefore, all the arithmetic operators that are legal for INT8 (such
as +, −, *, and /) and all the SQL functions that are legal for INT8 (such as ABS,
MOD, POW, and so on) are also legal for SERIAL8 values. All data conversion
rules that apply to INT8 also apply to SERIAL8.

The value of a SERIAL8 column of a table can be stored in the columns of
another table. However, when the values of the SERIAL8 column are put into
the second table, their values lose the constraints imposed by their original
SERIAL8 column and they are stored as INT8 values.
Data Types 2-41

SET(e)
SET(e)
The SET data type is a collection type that stores unique elements; it does not
allow duplicate element values. (For a collection type that does allow
duplicate values, see the description of MULTISET on page 2-32.)

The elements in a SET have no ordinal position. That is, no concept of a first,
second, or third element in a SET exists. (For a collection type with ordinal
positions for elements, see the LIST data type on page 2-29.)

All elements in a SET have the same element type. To specify the element
type, use the following syntax:

SET(element_type NOT NULL)

The element_type of a collection can be any of the following types:

■ A built-in type, except SERIAL, SERIAL8, BYTE, and TEXT

■ A named or unnamed row type

■ Another collection type

■ An opaque type

You must specify the NOT NULL constraint for SET elements. No other
constraints are valid for SET columns. For more information on the syntax of
the SET collection type, see the Informix Guide to SQL: Syntax.

You can use SET anywhere that you use any other data type, unless otherwise
indicated. For example:

■ After the IN predicate in the WHERE clause of a SELECT statement to
search for matching SET values

■ As an argument to the SQL CARDINALITY function to determine the
number of elements in a SET column

For more information, see the Condition and Expression segments in the
Informix Guide to SQL: Syntax.

You cannot use the SET column with an aggregate function such as AVG, MAX,
MIN, or SUM.

IDS
2-42 Informix Guide to SQL: Reference

SMALLFLOAT
The following examples declare two sets. The first example declares a set of
integers and the second declares a set of character elements.

SET(INTEGER NOT NULL)
SET(CHAR(20) NOT NULL)

The following examples construct the same sets from value lists:

SET{1, 5, 13}
SET{"Oakland", "Menlo Park", "Portland", "Lenexa"}

In the following example, a SET constructor is part of a CREATE TABLE
statement:

CREATE TABLE tab
(

c CHAR(5),
s SET(INTEGER NOT NULL)

);

The following sets are equal:

SET{"blue", "green", "yellow"}
SET{"yellow", "blue", "green"}

SMALLFLOAT
The SMALLFLOAT data type stores single-precision floating-point numbers
with approximately eight significant digits. SMALLFLOAT corresponds to the
float data type in C. The range of values for a SMALLFLOAT data type is the
same as the range of values for the C float data type on your computer.

A SMALLFLOAT data type column typically stores scientific numbers that can
be calculated only approximately. Because floating-point numbers retain
only their most significant digits, the number that you enter in this type of
column and the number the database displays might differ slightly
depending on how your computer stores floating-point numbers internally.

For example, you might enter a value of 1.1000001 in a SMALLFLOAT field
and, after processing the SQL statement, the application development tool
might display this value as 1.1. This difference occurs when a value has more
digits than the floating-point number can store. In this case, the value is
stored in its approximate form with the least significant digits treated as
zeros.
Data Types 2-43

SMALLINT
SMALLFLOAT data types usually require 4 bytes per value.

Conversion of a SMALLFLOAT value to a DECIMAL value results in 9 digits of
precision.

SMALLINT
The SMALLINT data type stores small whole numbers that range from
−32,767 to 32,767. The maximum negative number, −32,768, is a reserved
value and cannot be used. The SMALLINT value is stored as a signed binary
integer.

Integer columns typically store counts, quantities, and so on. Because the
SMALLINT data type takes up only 2 bytes per value, arithmetic operations
are performed efficiently. However, this data type stores a limited range of
values. If the values exceed the range between the minimum and maximum
numbers, the database server does not store the value and provides you with
an error message.

TEXT
The TEXT data type stores any kind of text data. It can contain both single and
multibyte characters.

The TEXT data type has no maximum size. A TEXT column has a theoretical
limit of 231 bytes and a practical limit that your available disk storage
determines.

The term simple large object is used to refer to TEXT and BYTE data types.

TEXT columns typically store memos, manual chapters, business documents,
program source files, and so on. In the default locale U.S. ASCII English, data
object of type TEXT can contain a combination of printable ASCII characters
and the following control characters:

■ Tabs (CTRL-I)

■ New lines (CTRL-J)

■ New pages (CTRL-L)
2-44 Informix Guide to SQL: Reference

TEXT
You can store, retrieve, update, or delete the contents of a TEXT column.
However, you cannot use TEXT data items in arithmetic or string operations
or assign literals to TEXT items with the SET clause of the UPDATE statement.
You also cannot use TEXT items in the following ways:

■ With aggregate functions

■ With the IN clause

■ With the MATCHES or LIKE clauses

■ With the GROUP BY clause

■ With the ORDER BY clause

You can use TEXT objects in Boolean expressions only if you are testing for
null values.

You can insert data in TEXT columns in the following ways:

■ With the dbload or onload utilities

■ With the LOAD statement (DB-Access)

■ From TEXT host variables (Informix ESQL/C)

You cannot use a quoted text string, number, or any other actual value to
insert or update TEXT columns.

When you select a TEXT column, you can choose to receive all or part of it. To
see all of a column, use the regular syntax for selecting a column into a
variable. You can also select any part of a TEXT column with subscripts, as the
following example shows:

SELECT cat_descr [1,75] FROM catalog WHERE catalog_num = 10001

This statement reads the first 75 bytes of the cat_descr column associated
with catalog number 10001.

The database server provides a cast to convert TEXT objects to CLOB objects.
For more information, see the Informix Guide to Database Design and
Implementation.

Important: If you try to return a TEXT column from a subquery, you get an error
message even when the TEXT column is not used in a comparison condition or with
the IN predicate.
Data Types 2-45

Unnamed Row
Nonprintable Characters with TEXT

Both printable and nonprintable characters can be inserted in text columns.
Informix products do not do any checking of the data that is inserted in a
column with the TEXT data type. For detailed information on entering and
displaying nonprintable characters, refer to “Nonprintable Characters with
CHAR” on page 2-14.

Collating TEXT Data

The TEXT data type is collated in code-set order. For more information on
collation orders, see the Informix Guide to GLS Functionality.

Multibyte Characters with TEXT

The database locale must support multibyte TEXT characters. For more infor-
mation, see the Informix Guide to GLS Functionality.

Unnamed Row
See “Row, Unnamed” on page 2-36.

VARCHAR(m,r)
The VARCHAR data type stores character sequences that contain single-byte
and multibyte character sequences of varying length, where m is the
maximum byte size of the column and r is the minimum amount of byte
space reserved for that column.

The VARCHAR data type is the Informix implementation of a character
varying data type. The ANSI standard data type for varying character strings
is CHARACTER VARYING and is described on page 2-15.

You must specify the maximum size (m) of the VARCHAR column. The size of
this parameter can range from 1 to 255 bytes. If you are placing an index on
a VARCHAR column, the maximum size is 254 bytes. You can store shorter,
but not longer, character strings than the value that you specify.

GLS
2-46 Informix Guide to SQL: Reference

VARCHAR(m,r)
Specifying the minimum reserved space (r) parameter is optional. This value
can range from 0 to 255 bytes but must be less than the maximum size (m) of
the VARCHAR column. If you do not specify a minimum space value, it
defaults to 0. You should specify this parameter when you initially intend to
insert rows with short or null data in this column, but later expect the data to
be updated with longer values.

Although the use of VARCHAR economizes on space used in a table, it has no
effect on the size of an index. In an index based on a VARCHAR column, each
index key has length m, the maximum size of the column.

When you store a VARCHAR value in the database, only its defined characters
are stored. The database server does not strip a VARCHAR object of any user-
entered trailing blanks, nor does the database server pad the VARCHAR to the
full length of the column. However, if you specify a minimum reserved space
(r) and some data values are shorter than that amount, some space reserved
for rows goes unused.

VARCHAR values are compared to other VARCHAR values and to character
values in the same way that character values are compared. The shorter value
is padded on the right with spaces until the values have equal lengths; then
they are compared for the full length.

Nonprintable Characters with VARCHAR

Nonprintable VARCHAR characters are entered, displayed, and treated in the
same way as nonprintable CHAR characters are. For detailed information on
entering and displaying nonprintable characters, refer to “Nonprintable
Characters with CHAR” on page 2-14.

Storing Numeric Values in a VARCHAR Column

When you insert a numeric value in a VARCHAR column, the stored value
does not get padded with trailing blanks to the maximum length of the
column. The number of digits in a numeric VARCHAR value is the number of
characters that you need to store that value. For example, given the following
statement, the value that gets stored in table mytab is 1.

create table mytab (col1 varchar(10));
insert into mytab values (1);
Data Types 2-47

Built-In Data Types
Tip: VARCHAR treats C null (binary 0) and string terminators as termination
characters for nonprintable characters.

Multibyte Characters with VARCHAR

The database locale must support multibyte VARCHAR characters. If you
store multibyte characters, make sure to calculate the number of bytes
needed. For more information, see the Informix Guide to GLS Functionality.

Collating VARCHAR

The main difference between the NVARCHAR and the VARCHAR data types
is the difference in collation sequencing. Collation order of NVARCHAR
characters depends on the GLS locale chosen, while collation of VARCHAR
characters depends on the code set. For more information, see the Informix
Guide to GLS Functionality.

Built-In Data Types
Informix database servers support the following built-in data types.

Category Data Types

Character CHAR, CHARACTER VARYING, LVARCHAR,
NCHAR, NVARCHAR, VARCHAR

Numeric DECIMAL, FLOAT, INT8, INTEGER, MONEY,
SERIAL, SERIAL8, SMALLFLOAT, SMALLINT

Large-object Simple-large-object types: BYTE, TEXT

Smart-large-object types: BLOB, CLOB

Time DATE, DATETIME, INTERVAL

Miscellaneous BOOLEAN

GLS
2-48 Informix Guide to SQL: Reference

Large-Object Data Types
For a description of character, numeric, and miscellaneous data types, refer
to the appropriate entry in “Description of Data Types” on page 2-9. Page
references are in the alphabetical list in Figure 2-2 on page 2-6.

The following sections provide additional information on large-object and
time data types.

Large-Object Data Types
A large object is a data object that is logically stored in a table column but
physically stored independently of the column. Large objects are stored
separately from the table because they typically store a large amount of data.
Separation of this data from the table can increase performance.

Figure 2-10 shows the large-object data types.

Only Dynamic Server supports BLOB and CLOB data types. ♦

For the relative advantages and disadvantages of simple and smart large
objects, see the Informix Guide to Database Design and Implementation.

Figure 2-10
Large-Object Data Types

Large objects

Simple large objects

BYTE TEXT BLOB CLOB

Smart large objects

IDS
Data Types 2-49

Large-Object Data Types
Simple Large Objects

Simple large objects are a category of large objects that have a theoretical limit
of 231 bytes and a practical limit that your disk capacity determines. Informix
database servers support the following simple-large-object data types:

Unlike smart large objects, simple large objects do not support random access
to the data. When you transfer a simple large object between a client appli-
cation and the database server, you must transfer the entire BYTE or TEXT
value. If the data does not fit into memory, you must store it in an operating-
system file and then retrieve it from that file.

The database server stores simple large objects in blobspaces. A blobspace is a
logical storage area that contains one or more chunks that only store
BYTE and TEXT data. For information on how to define blobspaces, see
your Administrator’s Guide.

Smart Large Objects

Smart large objects are a category of large objects that support random access
to the data and are generally recoverable. The random access feature allows
you to seek and read through the smart large object as if it were an operating-
system file.

Smart large objects are also useful for opaque data types with large storage
requirements. (See the description of opaque data types on page 2-61.) ♦

Dynamic Server supports the following smart-large-object data types:

BYTE Stores binary data. For more detailed information about this
data type, see the description on page 2-12.

TEXT Stores text data. For more detailed information about this data
type, see the description on page 2-43.

BLOB Stores binary data. For more information about this data type,
see the description on page 2-9.

CLOB Stores text data. For more information about this data type, see
the description on page 2-15.

IDS
2-50 Informix Guide to SQL: Reference

Large-Object Data Types
Dynamic Server stores smart large objects in sbspaces. An sbspace is a logical
storage area that contains one or more chunks that store only BLOB and CLOB
data. For information on how to define sbspaces, see your Performance Guide.

When you define a BLOB or CLOB column, you can determine the following
large-object characteristics:

■ LOG and NOLOG: whether the database server should log the smart
large object in accordance with the current database log mode.

■ KEEP ACCESS TIME and NO KEEP ACCESS TIME: whether the
database server should keep track of the last time the smart large
object was accessed.

■ HIGH INTEG and MODERATE INTEG: whether the database server
should use page headers to detect data corruption.

Use of these characteristics can affect performance. For information, see your
Performance Guide.

When you access a smart-large-object column with an SQL statement, the
database server does not send the actual BLOB or CLOB data. Instead, it estab-
lishes a pointer to the data and returns this pointer. The client application can
then use this pointer to perform the open, read, or write operations on the
smart large object.

To access a BLOB or CLOB column from within a client application, use one of
the following application programming interfaces (APIs):

■ From within an Informix ESQL/C program, use the smart-large-
object API.

For more information, see the Informix ESQL/C Programmer’s Manual.

■ From within a DataBlade module, use the Client and Server API.

For more information, see the DataBlade API Programmer’s Manual.

For information on smart large objects, see the Informix Guide to SQL: Syntax
and Informix Guide to Database Design and Implementation.
Data Types 2-51

Time Data Types
Time Data Types
You can use DATE, DATETIME, and INTERVAL data in a variety of arithmetic
and relational expressions. You can manipulate a DATETIME value with
another DATETIME value, an INTERVAL value, the current time (identified by
the keyword CURRENT), or a specified unit of time (identified by the
keyword UNITS).

In most situations, you can use a DATE value wherever it is appropriate to use
a DATETIME value and vice versa. You also can manipulate an INTERVAL
value with the same choices as a DATETIME value. In addition, you can
multiply or divide an INTERVAL value by a number.

An INTERVAL column can hold a value that represents the difference between
two DATETIME values or the difference between (or sum of) two INTERVAL
values. In either case, the result is a span of time, which is an INTERVAL value.
On the other hand, if you add or subtract an INTERVAL value from a
DATETIME value, another DATETIME value is produced because the result is
a specific time.

Figure 2-11 indicates the range of expressions that you can use with DATE,
DATETIME, and INTERVAL data and the data type that results from each
expression.

Figure 2-11
Range of Expressions for DATE, DATETIME, and INTERVAL

Data Type of Operand 1 Operator Data Type of Operand 2 Result

DATE − DATETIME INTERVAL

DATETIME − DATE INTERVAL

DATE + or − INTERVAL DATETIME

DATETIME − DATETIME INTERVAL

DATETIME + or − INTERVAL DATETIME

INTERVAL + DATETIME DATETIME

INTERVAL + or − INTERVAL INTERVAL

DATETIME − CURRENT INTERVAL

 (1 of 2)
2-52 Informix Guide to SQL: Reference

Time Data Types
No other combinations are allowed. You cannot add two DATETIME values
because this operation does not produce either a specific time or a span of
time. For example, you cannot add December 25 and January 1, but you can
subtract one from the other to find the time span between them.

Manipulating DATETIME Values

You can subtract most DATETIME values from each other. Dates can be in any
order and the result is either a positive or a negative INTERVAL value. The
first DATETIME value determines the field precision of the result.

If the second DATETIME value has fewer fields than the first, the shorter value
is extended automatically to match the longer one. (See the discussion of the
EXTEND function in the Expression segment in the Informix Guide to SQL:
Syntax.)

In the following example, subtracting the DATETIME YEAR TO HOUR value
from the DATETIME YEAR TO MINUTE value results in a positive interval
value of 60 days, 1 hour, and 30 minutes. Because minutes were not included
in the second value, the database server sets the minutes for the result to 0.

DATETIME (1999-9-30 12:30) YEAR TO MINUTE
- DATETIME (1999-8-1 11) YEAR TO HOUR

Result: INTERVAL (60 01:30) DAY TO MINUTE

If the second DATETIME value has more fields than the first (regardless of
whether the precision of the extra fields is larger or smaller than those in the
first value), the additional fields in the second value are ignored in the
calculation.

CURRENT − DATETIME INTERVAL

INTERVAL + CURRENT DATETIME

CURRENT + or − INTERVAL DATETIME

DATETIME + or − UNITS DATETIME

INTERVAL + or − UNITS INTERVAL

INTERVAL ∗ or / NUMBER INTERVAL

Data Type of Operand 1 Operator Data Type of Operand 2 Result

 (2 of 2)
Data Types 2-53

Time Data Types
In the following expression (and result), the year is not included for the
second value. Therefore, the year is set automatically to the current year, in
this case 1999, and the resulting INTERVAL is negative, which indicates that
the second date is later than the first.

DATETIME (1999-9-30) YEAR TO DAY
- DATETIME (10-1) MONTH TO DAY

Result: INTERVAL (1) DAY TO DAY [assuming current year
is 1999]

Manipulating DATETIME with INTERVAL Values

INTERVAL values can be added to or subtracted from DATETIME values. In
either case, the result is a DATETIME value. If you are adding an INTERVAL
value to a DATETIME value, the order of values is unimportant; however, if
you are subtracting, the DATETIME value must come first. Adding or
subtracting an INTERVAL value simply moves the DATETIME value forward
or backward in time. The expression shown in the following example moves
the date ahead three years and five months:

DATETIME (1994-8-1) YEAR TO DAY
+ INTERVAL (3-5) YEAR TO MONTH

Result: DATETIME (1998-01-01) YEAR TO DAY

Important: Evaluate the logic of your addition or subtraction. Remember that
months can be 28, 29, 30, or 31 days and that years can be 365 or 366 days.

In most situations, the database server automatically adjusts the calculation
when the initial values do not have the same precision. However, in certain
situations, you must explicitly adjust the precision of one value to perform
the calculation. If the INTERVAL value you are adding or subtracting has
fields that are not included in the DATETIME value, you must use the EXTEND
function to explicitly extend the field qualifier of the DATETIME value. (For
more information on the EXTEND function, see the Expression segment in the
Informix Guide to SQL: Syntax.)
2-54 Informix Guide to SQL: Reference

Time Data Types
For example, you cannot subtract a minute INTERVAL value from the
DATETIME value in the previous example that has a YEAR TO DAY field
qualifier. You can, however, use the EXTEND function to perform this calcu-
lation, as the following example shows:

EXTEND (DATETIME (1998-8-1) YEAR TO DAY, YEAR TO MINUTE)
- INTERVAL (720) MINUTE(3) TO MINUTE

Result: DATETIME (1998-07-31 12:00) YEAR TO MINUTE

The EXTEND function allows you to explicitly increase the DATETIME
precision from YEAR TO DAY to YEAR TO MINUTE. This allows the database
server to perform the calculation, with the resulting extended precision of
YEAR TO MINUTE.

Manipulating DATE with DATETIME and INTERVAL Values

You can use DATE values in arithmetic expressions with DATETIME or
INTERVAL values by writing expressions that allow the manipulations that
Figure 2-12 shows.

Figure 2-12
Results of Expressions That Manipulate DATE with DATETIME or INTERVAL Values

In the cases that Figure 2-12 shows, DATE values are first converted to their
corresponding DATETIME equivalents, and then the expression is computed
normally.

Expression Result

DATE – DATETIME INTERVAL

DATETIME – DATE INTERVAL

DATE + or − INTERVAL DATETIME
Data Types 2-55

Time Data Types
Although you can interchange DATE and DATETIME values in many
situations, you must indicate whether a value is a DATE or a DATETIME data
type. A DATE value can come from the following sources:

■ A column or program variable of type DATE

■ The TODAY keyword

■ The DATE() function

■ The MDY function

■ A DATE literal

A DATETIME value can come from the following sources:

■ A column or program variable of type DATETIME

■ The CURRENT keyword

■ The EXTEND function

■ A DATETIME literal

The database locale defines the default DATE and DATETIME formats. For the
default locale, U.S. English, these formats are 'mm/dd/yy' for DATE values
and 'yyyy-mm-dd hh:MM:ss' for DATETIME values.

When you represent DATE and DATETIME values as quoted character strings,
the fields in the strings must be in proper order. In other words, when a DATE
value is expected, the string must be in DATE format and when a DATETIME
value is expected, the string must be in DATETIME format. For example, you
can use the string '10/30/1999' as a DATE string but not as a DATETIME
string. Instead, you must use '1999-10-30' or '99-10-30' as the DATETIME
string.

If you use a nondefault locale, the DATE and DATETIME strings must match
the formats that your locale defines. For more information, see the Informix
Guide to GLS Functionality.

You can customize the DATE format that the database server expects with the
DBDATE and GL_DATE environment variables. You can customize the
DATETIME format that the database server expects with the DBTIME and
GL_DATETIME environment variables. For more information, see
“DBDATE” on page 3-37 and “DBTIME” on page 3-54. For more information
on all these environment variables, see the Informix Guide to GLS
Functionality. ♦

GLS
2-56 Informix Guide to SQL: Reference

Time Data Types
You can also subtract one DATE value from another DATE value, but the result
is a positive or negative INTEGER value rather than an INTERVAL value. If an
INTERVAL value is required, you can either convert the INTEGER value into
an INTERVAL value or one of the DATE values into a DATETIME value before
subtracting.

For example, the following expression uses the DATE() function to convert
character string constants to DATE values, calculates their difference, and
then uses the UNITS DAY keywords to convert the INTEGER result into an
INTERVAL value:

(DATE ('5/2/1994') - DATE ('4/6/1955')) UNITS DAY

Result: INTERVAL (12810) DAY(5) TO DAY

If you need YEAR TO MONTH precision, you can use the EXTEND function on
the first DATE operand, as the following example shows:

EXTEND (DATE ('5/2/1994'), YEAR TO MONTH) - DATE ('4/6/1955')

Result: INTERVAL (39-01) YEAR TO MONTH

The resulting INTERVAL precision is YEAR TO MONTH because the DATETIME
value came first. If the DATE value had come first, the resulting INTERVAL
precision would have been DAY(5) TO DAY.

Manipulating INTERVAL Values

You can add or subtract INTERVAL values as long as both values are from the
same class; that is, both are year-month or both are day-time. In the following
example, a SECOND TO FRACTION value is subtracted from a MINUTE TO
FRACTION value:

INTERVAL (100:30.0005) MINUTE(3) TO FRACTION(4)
- INTERVAL (120.01) SECOND(3) TO FRACTION

Result: INTERVAL (98:29.9905) MINUTE TO FRACTION(4)

The use of numeric qualifiers alerts the database server that the MINUTE and
FRACTION in the first value and the SECOND in the second value exceed the
default number of digits.
Data Types 2-57

Extended Data Types
When you add or subtract INTERVAL values, the second value cannot have a
field with greater precision than the first. The second INTERVAL, however,
can have a field of smaller precision than the first. For example, the second
INTERVAL can be HOUR TO SECOND when the first is DAY TO HOUR. The
additional fields (in this case MINUTE and SECOND) in the second INTERVAL
value are ignored in the calculation.

Multiplying or Dividing INTERVAL Values

You can multiply or divide INTERVAL values by a number that can be an
integer or a fraction. However, any remainder from the calculation is ignored
and the result is truncated. The following expression multiplies an INTERVAL
by a fraction:

INTERVAL (15:30.0002) MINUTE TO FRACTION(4) * 2.5

Result: INTERVAL (38:45.0005) MINUTE TO FRACTION(4)

In this example, 15 ∗ 2.5 = 37.5 minutes, 30 ∗ 2.5 = 75 seconds, and
2 ∗ 2.5 = 5 fraction(4). The 0.5 minute is converted into 30 seconds and
60 seconds are converted into 1 minute, which produces the final result of
38 minutes, 45 seconds, and 0.0005 of a second. The results of any calculation
include the same amount of precision as the original INTERVAL value.

Extended Data Types
Dynamic Server lets you create the following kinds of extended data types to
characterize data that cannot be easily represented with the built-in data
types:

■ Complex data types

■ Distinct data types

■ Opaque data types

The following sections provide an overview of each of these data types.

For more information about extended data types, see the Informix Guide to
Database Design and Implementation and Extending Informix Dynamic Server 2000.

IDS
2-58 Informix Guide to SQL: Reference

Complex Data Types
Complex Data Types
A complex data type is a data type that you build from other data types (built-
in and extended). Figure 2-13 shows the complex types that Dynamic Server
supports. The table that follows briefly describes the structure of these data
types.

Complex data types can be nested. For example, you can construct a row type
whose fields include one or more sets, multisets, row types, and/or lists.
Likewise, a collection type can have elements whose data type is a row type
or a collection type.

Figure 2-13
Supported Complex Data Types

Complex data types

Collection data types

LIST SETMULTISET

Row data types

Named row type Unnamed row type

Data Type Description

Collection types Complex data types that are made up of elements, each
of which is the same data type.

LIST A group of ordered elements, each of which need not be
unique.

MULTISET A group of elements, each of which need not be unique.
The order of the elements is ignored.

SET A group of elements, each of which is unique. The order
of the elements is ignored.

Row types Complex data types that are made up of fields.

Named row type Row types that are identified by their name.

Unnamed row type Row types that are identified by their structure.
Data Types 2-59

Complex Data Types
All complex types inherit the following support functions:

The following sections summarize the complex types. For more information
on complex types, see the Informix Guide to Database Design and
Implementation.

Collection Data Types

A collection data type is a complex type that is made up of one or more
elements. Every element in a collection has the same data type. A collection
element can have any data type (including other complex types) except BYTE,
TEXT, SERIAL, or SERIAL8.

Important: An element cannot have a null value. You must specify the not null
constraint for collection elements. No other constraints are valid for collections.

Dynamic Server supports three kinds of collection types: LIST, SET, and
MULTISET. The keywords used to construct these collections are called type
constructors or just constructors. For a description of each of these collection
data types, see its entry in this chapter. For the syntax of collection types, see
the Informix Guide to SQL: Syntax.

Using Complex Data Types in Table Columns

When you specify element values for a collection, list the element values after
the constructor and between curly brackets. For example, suppose you have
a collection column with the following type:

CREATE TABLE table1
(

mset_col MULTISET(INTEGER NOT NULL)
)

input assign
output destroy
send LO handles
recv hash
import lessthan
export equal
import binary lessthan (ROW only)
export binary
2-60 Informix Guide to SQL: Reference

Complex Data Types
The following INSERT statement adds one group of element values to this
MULTISET column. The word MULTISET in the two examples is the MULTISET
constructor.

INSERT INTO table1 VALUES (MULTISET{5, 9, 7, 5})

Leave the brackets empty to indicate an empty set:

INSERT INTO table1 VALUE (MULTISET{})

An empty collection is not equivalent to a null value for the column.

Accessing Collection Data

To access the elements of a collection column, you must fetch the collection
into a collection variable and modify the contents of the collection variable.
Collection variables can be either of the following types:

■ Variables in an SPL routine

For more information, see the Informix Guide to SQL: Tutorial.

■ Host variables in an Informix ESQL/C program

For more information, see the Informix ESQL/C Programmer’s Manual.

You can also use nested dot notation to access collection data. To learn more
about accessing the elements of a collection, see the Informix Guide to SQL:
Tutorial.

Row Data Types

A row type is a sequence of one or more elements called fields. Each field has
a name and a data type. The fields of a row are comparable to the columns of
a table, but with important differences: a field has no default clause, you
cannot define constraints on a field, and you cannot use fields with tables,
only with row types.
Data Types 2-61

Distinct Data Types
Two kinds of row types exist:

■ Named row types are identified by their names.

■ Unnamed row types are identified by their structure.

The structure of an unnamed row type consists of the number and data types
of its fields. For more information about row types, see “Row, Named” on
page 2-35 and “Row, Unnamed” on page 2-36.

You can cast between named and unnamed row types. For information about
casting between row types, see the Informix Guide to Database Design and
Implementation.

Distinct Data Types
A distinct data type has the same internal structure as some other source data
type in the database. The source data type can be either a built-in type or an
extended type. What distinguishes a distinct type from the source type are
the functions defined on this type. For more information, see the description
on page 2-23.

Opaque Data Types
An opaque data type is a user-defined data type that is fully encapsulated,
that is, whose internal structure is unknown to the database server. For more
information, see the description on page 2-33.
2-62 Informix Guide to SQL: Reference

Data Type Casting and Conversion
Data Type Casting and Conversion
Occasionally, the data type that was assigned to a column with the CREATE
TABLE statement is inappropriate. You might want to change the data type of
a column when you need to store larger values than the current data type can
accommodate. The database server allows you to change the data type of the
column or to cast its values to a different data type with either of the
following methods:

■ Use the ALTER TABLE statement to modify the data type of a column.

For example, if you create a SMALLINT column and later find that
you need to store integers larger than 32,767, you must change the
data type of that column to store the larger value. You can use ALTER
TABLE to change the data type to INTEGER. The conversion changes
the data type of all values that currently exist in the column as well
as any new values that might be added.

■ Use the CAST AS keywords or the double colon (::) cast operator to
cast a value to a different data type.

Casting does not permanently alter the data type of a value; it
expresses the value in a more convenient form. Casting user-defined
data types into built-in types allows client programs to manipulate
data types without knowledge of their internal structure.

If you change data types, the new data type must be able to store all the old
values. For example, if you try to convert a column from the INTEGER data
type to the SMALLINT data type and the following values exist in the
INTEGER column, the database server does not change the data type because
SMALLINT columns cannot accommodate numbers greater than 32,768:

100 400 700 50000700

The same situation might occur if you attempt to transfer data from FLOAT or
SMALLFLOAT columns to INTEGER, SMALLINT, or DECIMAL columns.

Both data type conversion and casting depend on casts defined in the
syscasts system catalog table. For information about syscasts, see
“SYSCASTS” on page 1-25.

A cast is either built-in or user-defined. Guidelines exist for casting distinct
and extended data types.
Data Types 2-63

Using Built-in Casts
For more information about casting opaque types, see Extending Informix
Dynamic Server 2000. For information about casting other extended types, see
the Informix Guide to Database Design and Implementation.

Using Built-in Casts
User informix owns built-in casts. They govern conversions from one built-
in data type to another. Built-in casts allow the database server to convert:

■ A character type to any other character type

■ A character type to or from any other built-in type

■ A numeric type to any other numeric type

■ A time data type to or from a datetime type

The database server automatically invokes the appropriate built-in casts
when required. An infinite number of built-in casts might be invoked to
evaluate and compare expressions or to change a column from one built-in
data type to another.

When you convert a column from one built-in data type to another, the
database server applies the appropriate built-in casts to each value already in
the column. If the new data type cannot store any of the resulting values, the
ALTER TABLE statement fails.

For example, if you try to convert a column from the INTEGER data type to
the SMALLINT data type and the following values exist in the INTEGER
column, the database server does not change the data type because
SMALLINT columns cannot accommodate numbers greater than 32,767:

100 400 700 50000700

The same situation might occur if you attempt to transfer data from FLOAT or
SMALLFLOAT columns to INTEGER, SMALLINT, or DECIMAL columns.

The following sections describe database server behavior during certain
types of casts and conversions.
2-64 Informix Guide to SQL: Reference

Using Built-in Casts
Converting from Number to Number

When you convert data from one number data type to another, you
occasionally find rounding errors. Figure 2-14 on page 2-64 indicates which
numeric data type conversions are acceptable and what kinds of errors you
can encounter when you convert between certain numeric data types.

Figure 2-14
Numeric Data Type Conversion Chart

For example, if you convert a FLOAT value to DECIMAL(4,2), your database
server rounds off the floating-point numbers before storing them as decimal
numbers. This conversion can result in an error depending on the precision
assigned to the DECIMAL column.

Converting Between Number and CHAR

You can convert a CHAR (or NCHAR) column to a numeric column. However,
if the CHAR or NCHAR column contains any characters that are not valid in a
number column (for example, the letter l instead of the number 1), your
database server returns an error.

TO

FROM SMALLINT INTEGER INT8 SMALLFLOAT FLOAT DECIMAL

SMALLINT OK OK OK OK OK OK

INTEGER E OK OK E OK P

INT8 E E OK D E P

SMALLFLOAT E E E OK OK P

FLOAT E E E D OK P

DECIMAL E E E D D P

Legend:
OK = No error

P = An error can occur depending on the precision of the decimal
E = An error can occur depending on data
D = No error, but less significant digits might be lost
Data Types 2-65

Using Built-in Casts
You can also convert a numeric column to a character column. However, if
the character column is not large enough to receive the number, the database
server generates an error.

If the database server generates an error, it cannot complete the ALTER TABLE
statement or cast and leaves the column values as characters. You receive an
error message and the statement is rolled back (whether you are in a trans-
action or not).

Converting Between INTEGER and DATE or DATETIME

You can convert an integer column (SMALLINT, INTEGER, or INT8) to a DATE
or DATETIME value. The database server interprets the integer as a value in
the internal format of the DATE or DATETIME column. You can also convert a
DATE or DATETIME column to an integer column. The database server stores
the internal format of the DATE or DATETIME column as an integer.

For a DATE column, the internal format is a Julian date. For a DATETIME
column, the internal format stores the date and time in a condensed integer
format.

Converting Between DATE and DATETIME

You can convert DATE columns to DATETIME columns. However, if the
DATETIME column contains more fields than the DATE column, the database
server either ignores the fields or fills them with zeros. The illustrations in the
following list show how these two data types are converted (assuming that
the default date format is mm/dd/yyyy):

■ If you convert DATE to DATETIME YEAR TO DAY, the database server
converts the existing DATE values to DATETIME values. For example,
the value 08/15/1999 becomes 1999-08-15.

■ If you convert DATETIME YEAR TO DAY to the DATE format, the value
1999-08-15 becomes 08/15/1999.
2-66 Informix Guide to SQL: Reference

Using User-Defined Casts
■ If you convert DATE to DATETIME YEAR TO SECOND, the database
server converts existing DATE values to DATETIME values and fills in
the additional DATETIME fields with zeros. For example, 08/15/1999
becomes 1999-08-15 00:00:00.

■ If you convert DATETIME YEAR TO SECOND to DATE, the database
server converts existing DATETIME to DATE values but drops fields
more precise than DAY. For example, 1999-08-15 12:15:37 becomes
08/15/1999.

Using User-Defined Casts
Implicit and explicit casts are owned by the users who create them. They
govern casts and conversions between user-defined data types and other
data types.

Developers of user-defined data types must create certain implicit and
explicit casts and the functions that are used to implement them. The casts
allow user-defined types to be expressed in a form that clients can
manipulate.

For information on how to create and use implicit and explicit casts, see the
CREATE CAST statement in the Informix Guide to SQL: Syntax and the Informix
Guide to Database Design and Implementation.

Implicit Casts

The database server automatically invokes a single implicit cast when
needed to evaluate and compare expressions or pass arguments. Operations
that require more than one implicit cast fail.

Implicit casts allow you to convert a user-defined data type to a built-in type
or vice versa.

Users can explicitly invoke an implicit cast using the CAST AS keywords or
the double colon (::) cast operator.
Data Types 2-67

Determining Which Cast to Apply
Explicit Casts

Explicit casts, unlike implicit casts or built-in casts, are never invoked
automatically by the database server. Users must invoke them explicitly with
the CAST AS keywords or the double colon (::) cast operator.

Explicit casts do not allow you to convert a user-defined data type to a built-
in data type or vice versa.

Determining Which Cast to Apply
The database server uses the following rules to determine which cast to apply
in a particular situation:

■ To compare two built-in types, the database server automatically
invokes the appropriate built-in casts.

■ The database server applies only one implicit cast per operand. If
two or more casts are needed to convert the operand to the desired
type, the user must explicitly invoke the additional casts.

■ To compare a distinct type to its source type, the user must explicitly
cast one type to the other.

■ To compare a distinct type to a type other than its source, the
database server looks for an implicit cast between the source type
and the desired type

If neither cast is registered, the user must invoke an explicit cast
between the distinct type and the desired type. If this cast is not regis-
tered, the database server automatically invokes a cast from the
source type to the desired type.

If none of these casts is defined, the comparison fails.

■ To compare an opaque type to a built-in type, the user must explicitly
cast the opaque type to a form that the database server understands
(LVARCHAR, SENDRECV, IMPEX, or IMPEXBIN). The database server
then invokes built-in casts to convert the results to the desired built-
in type.

■ To compare two opaque types, the user must explicitly cast one
opaque type to a form that the database server understands
(LVARCHAR, SENDRECV, IMPEX, or IMPEXBIN), then explicitly cast
this type to the second opaque type.
2-68 Informix Guide to SQL: Reference

Casts for Distinct Types
For information about casting and the IMPEX, IMPEXBIN, LVARCHAR, and
SENDRECV data types, see Extending Informix Dynamic Server 2000.

Casts for Distinct Types
You define a distinct type based on a built-in type or an existing opaque type
or row type. Although data of the distinct type has the same length and
alignment and is passed in the same way as data of the source type, the two
cannot be compared directly. To compare a distinct type and its source type,
you must explicitly cast one type to the other.

When you create a new distinct type, the database server automatically
registers two explicit casts:

■ A cast from the distinct type to its source type

■ A cast from the source type to the distinct type

You can create an implicit cast between a distinct type and its source type.
However, to create an implicit cast, you must first drop the default explicit
cast between the distinct type and its source type.

You also can use all casts that have been registered for the source type
without modification on the distinct type. You can also define new casts and
support functions that apply only to the distinct type.

For examples that show how to create a cast function for a distinct type and
register the function as cast, see the Informix Guide to Database Design and
Implementation.
Data Types 2-69

What Extended Data Types Can Be Cast?
What Extended Data Types Can Be Cast?
The following table shows the data type combinations that you can cast. The
table shows only whether or not a cast between a source type and a target
type are possible. In some cases, you must first create a user-defined cast
before you can perform a conversion between two data types. In other cases,
the database server automatically provides a cast that is implicitly invoked
or that you must explicitly invoke.

TargetType
--->

Opaque
Type

Distinct
Type

Named
Row Type

Unnamed
Row Type

Collection
Type

Built-in
Type

Opaque
Type

explicitor
implicit

explicit explicit3 Not
Allowed

Not
Allowed

explicitor
implicit3

Distinct
Type

explicit explicit explicit Not
Allowed

Not
Allowed

explicitor
implicit

Named
Row Type

explicit3 explicit explicit3 explicit1 Not
Allowed

Not
Allowed

Unnamed
Row Type

Not
Allowed

Not
Allowed

explicit1 implicit1 Not
Allowed

Not
Allowed

Collection
Type

Not
Allowed

Not
Allowed

Not
Allowed

Not
Allowed

explicit2 Not
Allowed

Built-in
Type

explicitor
implicit3

explicitor
implicit

Not
Allowed

Not
Allowed

Not
Allowed

system
defined
(implicit)

1 Applies when two row types are structurally equivalent or casts exist to handle
data conversions where corresponding field types are not the same.
2 Applies when a cast exists to convert between the element types of the respective
collection types.
3 Applies when a user-defined cast exists to convert between the two data types.
2-70 Informix Guide to SQL: Reference

Operator Precedence
Operator Precedence
An operator is a symbol or keyword that is used for operations on data types.
Some operators only support built in data types; other operators support
both built-in and extended data types.

The following table shows the precedence of the operators that Informix
database servers support, in descending order of precedence. Operators with
the same precedence are listed in the same row.

Operator Precedence

UNITS

+ (unary) -(unary)

::

* /

+ -

||

ANY ALL SOME

NOT

< <= = > >= != <> IN BETWEEN LIKE MATCHES

AND

OR
Data Types 2-71

3
Chapter
Environment Variables
In This Chapter . 3-5

Types of Environment Variables 3-6

Where to Set Environment Variables in UNIX. 3-7

Where to Set Environment Variables in Windows NT 3-7

Using Environment Variables in UNIX 3-8
Setting Environment Variables in an

Environment-Configuration File 3-8
Setting Environment Variables at Login Time 3-9
Syntax for Setting Environment Variables. 3-10
Unsetting Environment Variables 3-10
Modifying an Environment-Variable Setting 3-11
Viewing Your Environment-Variable Settings 3-12
Checking Environment Variables with the chkenv Utility 3-12
Rules of Precedence 3-13

Using Environment Variables in Windows NT 3-14
Setting Environment Variables for Native

Windows Applications 3-14
Setting Environment Variables for Command-Prompt

Utilities . 3-15
Using the System Applet to Work with

Environment Variables 3-15

3-2 Infor
Using the Command Prompt to Work with
Environment Variables 3-16

Using dbservername.cmd to Initialize a
Command-Prompt Environment 3-18

Rules of Precedence 3-18

List of Environment Variables 3-19

Environment Variables. 3-24
AC_CONFIG. 3-24
ARC_CONFIG 3-25
ARC_DEFAULT 3-25
ARC_KEYPAD 3-26
COCKPITSERVICE 3-27
CPFIRST . 3-28
DBACCNOIGN. 3-29
DBANSIWARN 3-30
DBBLOBBUF. 3-31
DBCENTURY 3-32

Behavior of DBCENTURY with Expressions that
Contain Date Values 3-34

DBDATE . 3-36
Standard Formats for DBDATE 3-36
Behavior of DBDATE with Expressions that

Contain Date Values 3-38
DBDELIMITER 3-39
DBEDIT . 3-40
DBFLTMASK 3-41
DBLANG . 3-42
DBMONEY . 3-44
DBONPLOAD 3-45
DBPATH . 3-46
DBPRINT . 3-48
DBREMOTECMD 3-49
DBSPACETEMP 3-50
DBTEMP . 3-52
DBTIME . 3-53
DBUPSPACE. 3-56
DELIMIDENT 3-57
mix Guide to SQL: Reference

ENVIGNORE . 3-58
FET_BUF_SIZE 3-59
IFMX_SMLTBL_BROADCAST_SIZE 3-60
IFX_DIRECTIVES 3-61
IFX_LONGID . 3-62
IFX_NETBUF_PVTPOOL_SIZE 3-63
IFX_NETBUF_SIZE 3-63
IFX_UPDDESC 3-64
INFORMIXC . 3-64
INFORMIXCONCSMCFG 3-65
INFORMIXCONRETRY 3-66
INFORMIXCONTIME 3-66
INFORMIXCPPMAP 3-68
INFORMIXDIR 3-68
INFORMIXKEYTAB. 3-69
INFORMIXOPCACHE 3-70
INFORMIXSERVER 3-70
INFORMIXSHMBASE 3-72
INFORMIXSQLHOSTS. 3-73
INFORMIXSTACKSIZE 3-74
INFORMIXTERM 3-75
INF_ROLE_SEP 3-76
ISM_COMPRESSION 3-77
ISM_DEBUG_FILE 3-77
ISM_DEBUG_LEVEL 3-78
ISM_ENCRYPTION 3-79
ISM_MAXLOGSIZE. 3-79
ISM_MAXLOGVERS 3-80
LD_LIBRARY_PATH 3-80
LIBPATH . 3-81
NODEFDAC . 3-81
ONCONFIG . 3-82
OPTCOMPIND 3-83
OPTMSG . 3-84
OPTOFC. 3-85
OPT_GOAL . 3-86
Environment Variables 3-3

3-4 Infor
PATH . 3-87
PDQPRIORITY 3-88
PLCONFIG . 3-90
PLOAD_LO_PATH 3-91
PLOAD_SHMBASE 3-91
PSORT_DBTEMP 3-92
PSORT_NPROCS 3-93
SHLIB_PATH 3-94
STMT_CACHE 3-95
TERM . 3-96
TERMCAP . 3-96
TERMINFO . 3-97
THREADLIB . 3-98
XFER_CONFIG 3-98

Index of Environment Variables 3-99
mix Guide to SQL: Reference

In This Chapter
Various environment variables affect the functionality of your Informix
products. You can set environment variables that identify your terminal,
specify the location of your software, and define other parameters.

Some environment variables are required; others are optional. For example,
you must either set or accept the default setting for certain UNIX environment
variables.

This chapter describes how to use the environment variables that apply to
one or more Informix products and shows how to set them. For specific infor-
mation, see the following pages:

■ The environment variables that this chapter discusses are listed
alphabetically beginning on page 3-19.

■ The environment variables are described beginning on page 3-23.

■ A topical index of environment variables is included at the end of
this chapter beginning on page 3-100.
Environment Variables 3-5

Types of Environment Variables
Types of Environment Variables
The following types of environment variables are discussed in this chapter:

■ Informix-specific environment variables

Set Informix environment variables when you want to work with
Informix products. Each Informix product manual specifies the
environment variables that you must set to use that product.

■ Operating-system-specific environment variables

Informix products rely on the correct setting of certain standard
operating-system environment variables. For example, you must
always set the PATH environment variable.

In a UNIX environment, you might also have to set the TERMCAP or
TERMINFO environment variable to use some products effectively.

The GLS environment variables that let you work in a nondefault locale are
described in the Informix Guide to GLS Functionality. These GLS variables are
included in the list of environment variables in Figure 3-1 on page 3-19 and
in the topic index in Figure 3-2 on page 3-100 but are not discussed in this
manual. ♦

Tip: Additional environment variables that are specific to your client application or
SQL API might be discussed in the manual for that product.

GLS
3-6 Informix Guide to SQL: Reference

Where to Set Environment Variables in UNIX
Where to Set Environment Variables in UNIX
You can set environment variables in UNIX in the following places:

■ At the system prompt on the command line

When you set an environment variable at the system prompt, you
must reassign it the next time you log into the system. For more
information, see “Using Environment Variables in UNIX” on
page 3-8.

■ In an environment-configuration file

An environment-configuration file is a common or private file where
you can define all the environment variables that Informix products
use. Use of an environment-configuration file reduces the number of
environment variables that you must set at the command line or in a
shell file.

■ In a login file

When you set an environment variable in your .login, .cshrc, or
.profile file, it is assigned automatically every time you log into the
system.

In Informix ESQL/C, you can set supported environment variables within an
application with the putenv() system call and retrieve values with the
getenv() system call, if your UNIX system supports these functions. For more
information on putenv() and getenv(), see the Informix ESQL/C Programmer’s
Manual and your C documentation. ♦

Where to Set Environment Variables in Windows NT
You might be able to set environment variables in several places in a
Windows environment, depending on which Informix application you use.

For native Windows Informix applications, such as the database server,
environment variables can be set only in the Windows registry. Environment
variables set in the registry cannot be modified elsewhere.

UNIX

E/C

WIN NT
Environment Variables 3-7

Using Environment Variables in UNIX
For utilities that run in a command-prompt session, such as dbaccess,
environment variables can be set in several ways, as described in “Setting
Environment Variables for Command-Prompt Utilities” on page 3-15.

To use client applications such as ESQL/C or the Relational Object Manager
in a Windows environment, use the Setnet32 utility to set environment
variables. For information about the Setnet32 utility, see the Informix Client
Products Installation Guide for your operating system.

In Informix ESQL/C, you can set supported environment variables within an
application with the ifx_putenv() function and retrieve values with the
ifx_getenv() function, if your Windows NT system supports them. For more
information on ifx_putenv() and ifx_getenv(), see the Informix ESQL/C
Programmer’s Manual. ♦

Using Environment Variables in UNIX
The following sections discuss setting, unsetting, modifying, and viewing
environment variables. If you already use an Informix product, some or all of
the appropriate environment variables might be set.

Setting Environment Variables in an Environment-
Configuration File
The common (shared) environment-configuration file that is provided with
Informix products resides in $INFORMIXDIR/etc/informix.rc. The
permission for this shared file must be set to 644.

A user can override the system or shared environment variables by setting
variables in a private environment-configuration file. This file must have the
following characteristics:

■ Stored in the user’s home directory

■ Named .informix

■ Permissions set to readable by the user

E/C

UNIX
3-8 Informix Guide to SQL: Reference

Setting Environment Variables at Login Time
An environment-configuration file can contain comment lines (preceded by
#) and variable lines and their values (separated by blanks and tabs), as the
following example shows:

This is an example of an environment-configuration file
#
DBDATE DMY4-
#
These are ESQL/C environment variable settings
#
INFORMIXC gcc
CPFIRST TRUE

You can use the ENVIGNORE environment variable, described on page 3-59,
to override one or more entries in an environment-configuration file. Use the
Informix chkenv utility, described on page 3-12, to perform a sanity check on
the contents of an environment-configuration file. The chkenv utility returns
an error message if the file contains a bad environment variable or if the file
is too large.

The first time you set an environment variable in a shell file or environment-
configuration file, you must tell the shell process to read your entry before
you work with your Informix product. If you use a C shell, source the file; if
you use a Bourne or Korn shell, use a period (.) to execute the file.

Setting Environment Variables at Login Time
Add the commands that set your environment variables to the following
login file:

For the C shell .login or .cshrc
For the Bourne shell or Korn shell .profile
Environment Variables 3-9

Syntax for Setting Environment Variables
Syntax for Setting Environment Variables
Use standard UNIX commands to set environment variables. The examples in
the following table show how to set the ABCD environment variable to value
for the C shell, Bourne shell, and Korn shell. The Korn shell supports a
shortcut, as the fourth item indicates. The environment variables are case
sensitive.

The following diagram shows how the syntax for setting an environment
variable is represented throughout this chapter. These diagrams indicate the
setting for the C shell; for the Bourne or Korn shells, use the syntax illustrated
in the preceding table.

For more information on how to read syntax diagrams, see “Command-Line
Conventions” in the Introduction.

Unsetting Environment Variables
To unset an environment variable, enter the following command.

Shell Command

C setenv ABCD value

Bourne ABCD=value
export ABCD

Korn ABCD=value
export ABCD

Korn export ABCD=value

ABCD valuesetenv

Shell Command

C unsetenv ABCD

Bourne or Korn unset ABCD
3-10 Informix Guide to SQL: Reference

Modifying an Environment-Variable Setting
Modifying an Environment-Variable Setting
Sometimes you must add information to an environment variable that is
already set. For example, the PATH environment variable is always set in
UNIX environments. When you use an Informix product, you must add to the
PATH the name of the directory where the executable files for the Informix
products are stored.

In the following example, the INFORMIXDIR is /usr/informix. (That is,
during installation, the Informix products were installed in the /usr /informix
directory.) The executable files are in the bin subdirectory, /usr/informix/bin.
To add this directory to the front of the C shell PATH environment variable,
use the following command:

setenv PATH /usr/informix/bin:$PATH

Rather than entering an explicit pathname, you can use the value of the
INFORMIXDIR environment variable (represented as $INFORMIXDIR), as the
following example shows:

setenv INFORMIXDIR /usr/informix
setenv PATH $INFORMIXDIR/bin:$PATH

You might prefer to use this version to ensure that your PATH entry does not
contradict the path that was set in INFORMIXDIR, and so that you do not
have to reset PATH whenever you change INFORMIXDIR.

If you set the PATH environment variable on the C shell command line, you
might need to include curly braces with the existing INFORMIXDIR and
PATH, as the following command shows:

setenv PATH ${INFORMIXDIR}/bin:${PATH}

For more information about setting and modifying environment variables,
refer to the manuals for your operating system.
Environment Variables 3-11

Viewing Your Environment-Variable Settings
Viewing Your Environment-Variable Settings
After you have installed one or more Informix products, enter the following
command at the system prompt to view your current environment settings.

Checking Environment Variables with the chkenv Utility
The chkenv utility checks the validity of shared or private environment-
configuration files. It validates the names of the environment variables in the
file but not their values. Use chkenv to provide debugging information when
you define, in an environment-configuration file, all the environment
variables that your Informix products use.

The shared environment-configuration file is stored in
$INFORMIXDIR/etc/informix.rc. A private environment-configuration file is
stored in the user’s home directory as .informix.

If you do not provide the filename for chkenv, the utility checks both the
shared and private environment configuration files. If you provide a file path,
chkenv checks only that file.

Issue the following command to check the contents of the shared
environment-configuration file:

chkenv informix.rc

UNIX Version Command

BSD UNIX env

UNIX System V printenv

Element Purpose Key Considerations
filename Specifies the name of the

environment-configuration file
that you want to debug.

None

chkenv filename
3-12 Informix Guide to SQL: Reference

Rules of Precedence
The chkenv utility returns an error message if it finds a bad environment-
variable name in the file or if the file is too large. You can modify the file and
rerun the utility to check the modified environment-variable names.

Informix products ignore all lines in the environment-configuration file,
starting at the point of the error, if the chkenv utility returns the following
message:

-33523 filename: Bad environment variable on line number.

If you want the product to ignore specified environment-variables in the file,
you can also set the ENVIGNORE environment variable. For a discussion of
the use and format of environment-configuration files and the ENVIGNORE
environment variable, see page 3-59.

Rules of Precedence
When an Informix product accesses an environment variable, normally the
following rules of precedence apply:

1. The highest precedence goes to the value that is defined in the
environment (shell) by explicitly setting the value at the shell
prompt.

2. The second highest precedence goes to the value that is defined in
the private environment-configuration file in the user’s home
directory (~/.informix).

3. The next highest precedence goes to the value that is defined in the
common environment-configuration file
($INFORMIXDIR/etc/informix.rc).

4. The lowest precedence goes to the default value.

For precedence information about GLS environment variables, see the
Informix Guide to GLS Functionality.

Important: If you set one or more environment variables before you start the database
server, and you do not explicitly set the same environment variables for your client
products, the clients will adopt the original settings.
Environment Variables 3-13

Using Environment Variables in Windows NT
Using Environment Variables in Windows NT
The following sections discuss setting, viewing, unsetting, and modifying
environment variables for native Windows applications and command-line
utilities.

Setting Environment Variables for Native Windows
Applications
Native Windows Informix applications, such as the database server itself,
store their configuration information in the Windows registry. To modify this
information, you must use the Registry Editor, regedt32.exe.

Manipulating environment variables with the Registry Editor

1. Launch the Registry Editor, regedt32.exe, and choose the window
titled HKEY_LOCAL_MACHINE.

2. In the left pane, double-click the SOFTWARE registry key (shown as a
small, yellow file folder icon). The SOFTWARE registry key expands
to show several subkeys, one of which is Informix. Continue down
the tree in the following sequence:

OnLine, dbservername, Environment.

Substitute the name of your database server in place of dbservername.

3. With the Environment registry key selected in the left pane, you
should see a list of environment variables and their defined values in
the right pane (for example,
CLIENT_LOCALE:REG_SZ:EN_US.CP1252).

4. Change existing environment variables if needed.

a. Double-click the environment variable.

b. Type the new value in the String Editor dialog box.

c. Click OK to accept the value.

WIN NT
3-14 Informix Guide to SQL: Reference

Setting Environment Variables for Command-Prompt Utilities
5. Add new environment variables if needed.

a. Choose Edit➞Add Value in the Registry Editor.

b. Enter the name of the environment variable in the Value Name
edit box and choose REG_SZ as the data type.

c. Click OK and type a value for the environment variable in the
String Editor dialog box.

6. Delete an environment variable, if needed.

a. Select the variable name.

b. Choose Edit➞Delete in the Registry Editor.

For more information on using the Registry Editor, see your operating-
system documentation.

Important: In order to use the Registry Editor to change database server environ-
ment variables, you must belong to either the Administrators’ or Informix-Admin
groups. For information on assigning users to groups, see your operating-system
documentation.

Setting Environment Variables for Command-Prompt
Utilities
You can set environment variables for command-prompt utilities in the
following ways:

■ With the System applet in the Control Panel

■ In a command-prompt session

Using the System Applet to Work with Environment Variables

The System applet provides a graphical interface to create, modify, and delete
system-wide and user-specific variables. Environment variables that are set
with the System applet are visible to all command-prompt sessions.
Environment Variables 3-15

Setting Environment Variables for Command-Prompt Utilities
To change environment variables with the System applet in the control panel

1. Double-click the System applet icon from the Control Panel window.

Click the Environment tab near the top of the window. Two list boxes
display System Environment Variables and User Environment
Variables. System Environment Variables apply to an entire system,
and User Environment Variables apply only to the sessions of the
individual user.

2. To change the value of an existing variable, select that variable.

The name of the variable and its current value appear in the boxes at
the bottom of the window.

3. Highlight the existing value and type the new value.

4. To add a new variable, highlight an existing variable and type the
new variable name in the box at the bottom of the window.

5. Next, enter the value for the new variable at the bottom of the
window and click the Set button.

6. To delete a variable, select the variable and click the Delete button.

Important: In order to use the System applet to change System environment vari-
ables, you must belong to the Administrators’ group. For information on assigning
users to groups, see your operating-system documentation.

Using the Command Prompt to Work with Environment Variables

The following diagram shows the syntax for setting an environment variable
at a command prompt in Windows NT.

For more information on how to read syntax diagrams, see “Command-Line
Conventions” in the introduction.

ABCD =set value
3-16 Informix Guide to SQL: Reference

Setting Environment Variables for Command-Prompt Utilities
To view your current settings after one or more Informix products are
installed, enter the following command at a command prompt.

Sometimes you must add information to an environment variable that is
already set. For example, the PATH environment variable is always set in
Windows NT environments. When you use an Informix product, you must
add the name of the directory where the executable files for the Informix
products are stored to the PATH.

In the following example, INFORMIXDIR is d:\informix, (that is, during
installation, Informix products were installed in the d: \informix directory).
The executable files are in the bin subdirectory, d:\informix\bin. To add this
directory at the beginning of the PATH environment-variable value, use the
following command:

set PATH=d:\informix\bin;%PATH%

Rather than entering an explicit pathname, you can use the value of the
INFORMIXDIR environment variable (represented as %INFORMIXDIR%), as
the following example shows:

set INFORMIXDIR=d:\informix
set PATH=%INFORMIXDIR%\bin;%PATH%

You might prefer to use this version to ensure that your PATH entry does not
contradict the path that was set in INFORMIXDIR and to avoid resetting
PATH whenever you change INFORMIXDIR.

For more information about setting and modifying environment variables,
refer to your operating-system manuals.

ABCD =set
Environment Variables 3-17

Rules of Precedence
Using dbservername.cmd to Initialize a Command-Prompt
Environment

Each time that you open a Windows NT command prompt, it acts as an
independent environment. Therefore, environment variables that you set
within it are valid only for that particular command-prompt instance. For
example, if you open one command prompt and set the variable,
INFORMIXDIR, and then open another command prompt and type set to
check your environment, you will find that INFORMIXDIR is not set in the
new command-prompt session.

The database server installation program creates a batch file that you can use
to configure command-prompt utilities, ensuring that your command-
prompt environment is initialized correctly each time that you run a
command-prompt session. The batch file, dbservername.cmd, is located in
%INFORMIXDIR%, and is a plain text file that you can modify with any text
editor. If you have more than one database server installed in
%INFORMIXDIR%, there will be more than one batch file with the .cmd
extension, each bearing the name of the database server with which it is
associated.

To run dbservername.cmd from a command prompt, type dbservername or
configure a command prompt so that it runs dbservername.cmd automati-
cally at start up.

Rules of Precedence
When an Informix product accesses an environment variable, normally the
following rules of precedence apply:

1. The highest precedence goes to the value that is defined in the
environment by explicitly setting the value at the command prompt.

2. The second highest precedence goes to the value that is defined in
the System control panel as a User Environment Variable.

3. The third highest precedence goes to the value that is defined in the
System control panel as a System Environment Variable.

4. The lowest precedence goes to the default value.
3-18 Informix Guide to SQL: Reference

List of Environment Variables
Important: Because Windows NT services access only environment variables that
are set in the registry, the preceding rules of precedence do not apply for Informix
native Windows applications. For native Windows applications, the highest prece-
dence goes to variables that are explicitly defined in the registry, and the lowest
precedence goes to the default value. In addition, if you set one or more environment
variables before you start the database server, and you do not explicitly set the same
environment variables for your client products, the clients will adopt the original
settings.

List of Environment Variables
Figure 3-1 contains an alphabetical list of the environment variables that you
can set for an Informix database server and SQL API products. Most of these
environment variables are described in this chapter on the pages listed in the
last column.

Although the GLS environment variables that let you work in a nondefault
locale are listed in Figure 3-1, they are described in the Informix Guide to GLS
Functionality. ♦

Figure 3-1
Alphabetical List Of Environment Variables

GLS

Environment Variable XPS IDS Restrictions Page

AC_CONFIG ✔ ✔ None 3-24

ARC_CONFIG ✔ UNIX only 3-25

ARC_DEFAULT ✔ UNIX only 3-25

ARC_KEYPAD ✔ UNIX only 3-25

CC8BITLEVEL ESQL/C only GLS
guide

CLIENT_LOCALE ✔ ✔ None GLS
guide

COCKPITSERVICE ✔ ✔ DB/Cockpit
only

3-27

 (1 of 5)
Environment Variables 3-19

List of Environment Variables
CPFIRST ✔ ✔ None 3-28

DBACCNOIGN ✔ ✔ DB-Access
only

3-29

DBANSIWARN ✔ ✔ None 3-31

DBBLOBBUF ✔ ✔ None 3-31

DBCENTURY SQL APIs
only

3-33

DBDATE ✔ ✔ None 3-37; GLS
guide

DBDELIMITER ✔ ✔ None 3-40

DBEDIT ✔ ✔ None 3-41

DBFLTMASK ✔ ✔ DB-Access
only

3-42

DBLANG ✔ ✔ None 3-43; GLS
guide

DBMONEY ✔ ✔ None 3-45; GLS
guide

DBONPLOAD ✔ HPL only 3-46

DBPATH ✔ ✔ None 3-46

DBPRINT ✔ ✔ UNIX only 3-49

DBREMOTECMD ✔ ✔ UNIX only 3-50

DBSPACETEMP ✔ ✔ None 3-51

DBTEMP Gateways
only

3-53

DBTIME SQL APIs
only

3-54; GLS
guide

DBUPSPACE ✔ ✔ None 3-57

Environment Variable XPS IDS Restrictions Page

 (2 of 5)
3-20 Informix Guide to SQL: Reference

List of Environment Variables
DB_LOCALE ✔ ✔ None GLS
guide

DELIMIDENT ✔ ✔ None 3-58

ENVIGNORE ✔ ✔ UNIX only 3-59

ESQLMF ✔ ✔ ESQL/C only GLS
guide

FET_BUF_SIZE ✔ ✔ SQL APIs,
DB-Access
only

3-60

GLS8BITSYS ✔ ✔ None GLS
guide

GL_DATE ✔ ✔ None GLS
guide

GL_DATETIME ✔ ✔ None GLS
guide

IFMX_SMLTBL_BROADCAST_SIZE ✔ None 3-61

IFX_DIRECTIVES ✔ ✔ None 3-62

IFX_LONGID ✔ None 3-63

IFX_NETBUF_PVTPOOL_SIZE ✔ ✔ UNIX only 3-64

IFX_NETBUF_SIZE ✔ ✔ None 3-64

IFX_UPDDESC ✔ None 3-65

INFORMIXC ESQL/C,
UNIX only

3-65

INFORMIXCONCSMCFG ✔ None 3-66

INFORMIXCONRETRY ✔ ✔ None 3-67

INFORMIXCONTIME ✔ ✔ None 3-67

INFORMIXCPPMAP ✔ None 3-69

Environment Variable XPS IDS Restrictions Page

 (3 of 5)
Environment Variables 3-21

List of Environment Variables
INFORMIXDIR ✔ ✔ None 3-69

INFORMIXKEYTAB ✔ ✔ UNIX only 3-70

INFORMIXOPCACHE ✔ Optical Sub-
system only

3-71

INFORMIXSERVER ✔ ✔ None 3-71

INFORMIXSHMBASE ✔ ✔ UNIX only 3-73

INFORMIXSQLHOSTS ✔ ✔ None 3-74

INFORMIXSTACKSIZE ✔ ✔ None 3-75

INFORMIXTERM ✔ ✔ DB-Access,
UNIX only

3-76

INF_ROLE_SEP ✔ None 3-77

ISM_COMPRESSION ✔ ✔ ISM, ON-Bar
only

3-78

ISM_DEBUG_FILE ✔ ✔ ISM only 3-78

ISM_DEBUG_LEVEL ✔ ✔ ISM, ON-Bar
only

3-79

ISM_ENCRYPTION ✔ ✔ ISM, ON-Bar
only

3-80

ISM_MAXLOGSIZE ✔ ✔ ISM only 3-80

ISM_MAXLOGVERS ✔ ✔ ISM only 3-81

LD_LIBRARY_PATH SQL APIs,
UNIX only

3-81

LIBPATH SQL APIs,
UNIX only

3-82

NODEFDAC ✔ ✔ None 3-82

ONCONFIG ✔ ✔ None 3-83

OPTCOMPIND ✔ ✔ None 3-84

Environment Variable XPS IDS Restrictions Page

 (4 of 5)
3-22 Informix Guide to SQL: Reference

List of Environment Variables
Tip: You might encounter references to environment variables that are not listed in
Figure 3-1. Most likely, these environment variables are not supported in
Version 8.3, Version 9.2, or are used to maintain backward compatibility with certain
earlier product versions. For information, refer to an earlier version of your Informix
documentation.

OPTMSG ESQL/C only 3-85

OPTOFC ESQL/C only 3-86

OPT_GOAL ✔ ✔ UNIX only 3-87

PATH ✔ ✔ None 3-88

PDQPRIORITY ✔ ✔ None 3-89

PLCONFIG ✔ HPL only 3-91

PLOAD_LO_PATH ✔ HPL only 3-92

PLOAD_SHMBASE ✔ HPL only 3-92

PSORT_DBTEMP ✔ ✔ None 3-93

PSORT_NPROCS ✔ ✔ None 3-94

SERVER_LOCALE ✔ ✔ None GLS
guide

SHLIB_PATH ✔ ✔ UNIX only 3-95

STMT_CACHE ✔ None 3-96

TERM ✔ ✔ UNIX only 3-97

TERMCAP ✔ ✔ UNIX only 3-97

TERMINFO ✔ ✔ UNIX only 3-98

THREADLIB ESQL/C,
UNIX only

3-99

XFER_CONFIG ✔ None 3-99

Environment Variable XPS IDS Restrictions Page

 (5 of 5)
Environment Variables 3-23

Environment Variables
Environment Variables
The following sections discuss the environment variables that Informix
products use.

Important: The descriptions of the following environment variables include the syn-
tax for setting the environment variable in the UNIX environment. For a general
description of how to set these environment variables in Windows NT environments,
see “Setting Environment Variables for Native Windows Applications” on page 3-14
and “Setting Environment Variables for Command-Prompt Utilities” on page 3-15.

AC_CONFIG
You can set the AC_CONFIG environment variable to specify the path for the
ac_config.std configuration file for the archecker utility. The archecker utility
checks the validity and completeness of an ON-Bar storage-space backup.
The ac_config.std file contains default archecker configuration parameters.

For information on archecker, see your Backup and Restore Guide.

setenv AC_CONFIG pathname

pathname is the location of the ac_config.std configuration file in
$INFORMIXDIR/etc or %INFORMIXDIR%\etc.
3-24 Informix Guide to SQL: Reference

ARC_CONFIG
ARC_CONFIG
If you use the ON-Archive archive and tape-management system for your
database server, you can set the ARC_CONFIG environment variable to
specify the name of a nondefault configuration file.

The default configuration file for ON-Archive is config.arc, located in the
$INFORMIXDIR/etc directory. When you want to create and use a different
configuration file for ON-Archive, set ARC_CONFIG to the name of the file.
Dynamic Server looks for the specified file in the directory
$INFORMIXDIR/etc.

The ARC_CONFIG environment variable lets you change configuration
parameters while preserving the default config.arc file. It lets you create
multiple configuration files and select the one you want.

For more information on archiving, see your Archive and Backup Guide.

ARC_DEFAULT
If you use the ON-Archive archive and tape-management system for your
database server, you can set the ARC_DEFAULT environment variable to
indicate where a personal default qualifier file is located.

IDS

UNIX

setenv ARC_CONFIG filename

filename is the name of the configuration file in
$INFORMIXDIR/etc.

IDS

UNIX

setenv ARC_DEFAULT pathname

pathname is the full pathname of the personal default qualifier file.
Environment Variables 3-25

ARC_KEYPAD
For example, to set the ARC_DEFAULT environment variable to specify the
file /usr/jane/arcdefault.janeroe, enter the following command:

setenv ARC_DEFAULT /usr/jane/arcdefault.janeroe

For more information on archiving, see your Archive and Backup Guide.

ARC_KEYPAD
If you use the ON-Archive archive and tape-management system for your
database server, you can set your ARC_KEYPAD environment variable to
point to a tctermcap file that is different from the default tctermcap file. The
default is the $INFORMIXDIR/etc/tctermcap file, and it contains instructions
on how to modify the tctermcap file.

The tctermcap file serves the following purposes for the ON-Archive menu
interface:

■ It defines the terminal control attributes that allow ON-Archive to
manipulate the screen and cursor.

■ It defines the mappings between commands and key presses.

■ It defines the characters used in drawing menus and borders for an
API.

For example, to set the ARC_KEYPAD environment variable to specify the file
/usr/jane/tctermcap.janeroe, enter the following command:

setenv ARC_KEYPAD /usr/jane/tctermcap.janeroe

For more information on archiving, see your Archive and Backup Guide.

IDS

UNIX

setenv ARC_KEYPAD pathname

pathname is the pathname for a tctermcap file.
3-26 Informix Guide to SQL: Reference

COCKPITSERVICE
COCKPITSERVICE
Set the COCKPITSERVICE environment variable to specify a nondefault TCP
service for DB/Cockpit.

The onprobe server and oncockpit client components of DB/Cockpit
communicate with each other through a TCP service. Before you can launch
DB/Cockpit, onprobe, or oncockpit, you should define the TCP service and
assign it a unique service number. For example:

setenv COCKPITSERVICE cockpit2

If you do not specify the service name either with the -service command-line
option or in the COCKPITSERVICE environment variable, the default is
cockpit.

setenv COCKPITSERVICE servicename

servicename is the name of the TCP service for client/server
communication.
Environment Variables 3-27

CPFIRST
CPFIRST
Set the CPFIRST environment variable to determine the nondefault compi-
lation order for all ESQL/C source files in your programming environment.

When compiling an ESQL/C program, the default order is to run the ESQL/C
preprocessor on the program source file and pass the resulting file to the C
language preprocessor and compiler. However, you can compile an ESQL/C
program source file in the following order:

1. Run the C preprocessor

2. Run the ESQL/C preprocessor

3. Run the C compiler and linker

To determine the nondefault compilation order for a specific program, you
can either give the program source file a .ecp extension, run the -cp option
with the esql command on a program source file with a .ec extension, or set
CPFIRST.

Set the CPFIRST environment variable to TRUE (uppercase only) to run the C
preprocessor on all ESQL/C source files. The C preprocessor will run before
the ESQL/C preprocessor on all ESQL/C source files in your environment,
irrespective of whether the -cp option is passed to the esql command or the
source files have the .ec or the .ecp extension.

setenv CPFIRST TRUE
3-28 Informix Guide to SQL: Reference

DBACCNOIGN
DBACCNOIGN
The DBACCNOIGN environment variable affects the behavior of the
DB-Access utility if an error occurs under one of the following circumstances:

■ You run DB-Access in nonmenu mode.

■ You execute the LOAD command with DB-Access in menu mode. ♦

Set the DBACCNOIGN environment variable to 1 to roll back an incomplete
transaction if an error occurs while you run the DB-Access utility under either
of the preceding conditions.

Nonmenu Mode Example

For example, assume DB-Access runs the following SQL commands:

DATABASE mystore
BEGIN WORK

INSERT INTO receipts VALUES (cust1, 10)
INSERT INTO receipt VALUES (cust1, 20)
INSERT INTO receipts VALUES (cust1, 30)

UPDATE customer
SET balance =

(SELECT (balance-60)
FROM customer WHERE custid = 'cust1')

WHERE custid = 'cust1

COMMIT WORK

In this example, one statement has a misspelled table name. The receipt table
does not exist.

If your environment does not have DBACCNOIGN set, DB-Access inserts two
records into the receipts table and updates the customer table. The decrease
in the customer balance exceeds the sum of the inserted receipts.

If DBACCNOIGN is set to 1, messages display to indicate that DB-Access
rolled back all the INSERT and UPDATE statements. The messages also
identify the cause of the error so that you can resolve the problem.

IDS

setenv DBACCNOIGN 1
Environment Variables 3-29

DBACCNOIGN
Load Statement Example

You can set DBACCNOIGN to protect data integrity during a LOAD
statement, even if DB-Access runs the LOAD statement in menu mode.

Assume you execute the LOAD statement from the DB-Access SQL menu
page. Forty-nine rows of data load correctly, but the fiftieth row contains an
invalid value that causes an error.

If you set DBACCNOIGN to 1, the database server does not insert the forty-
nine previous rows into the database. If DBACCNOIGN is not set, the
database server inserts the first forty-nine rows.

IDS
3-30 Informix Guide to SQL: Reference

DBANSIWARN
DBANSIWARN
Setting the DBANSIWARN environment variable indicates that you want to
check for Informix extensions to ANSI standard syntax. Unlike most
environment variables, you do not need to set DBANSIWARN to a value. You
can set it to any value or to no value.

If you set the DBANSIWARN environment variable for DB-Access, it is
functionally equivalent to including the -ansi flag when you invoke the
utility from the command line. If you set DBANSIWARN before you run
DB-Access, warnings are displayed on the screen within the SQL menu.

Set the DBANSIWARN environment variable before you compile an Informix
ESQL/C program to check for Informix extensions to ANSI standard syntax.
When Informix extensions to ANSI standard syntax are encountered in your
program at compile time, warning messages are written to the screen.

At run time, the DBANSIWARN environment variable causes the sixth
character of the sqlwarn array in the SQL Communication Area (SQLCA) to
be set to W when a statement is executed that includes any Informix extension
to the ANSI standard for SQL syntax. (For more information on SQLCA, see the
Informix ESQL/C Programmer’s Manual.

After you set DBANSIWARN, Informix extension checking is automatic until
you log out or unset DBANSIWARN. To turn off Informix extension checking,
unset the DBANSIWARN environment variable by entering the following
command:

unsetenv DBANSIWARN

setenv DBANSIWARN
Environment Variables 3-31

DBBLOBBUF
DBBLOBBUF
The DBBLOBBUF environment variable controls whether TEXT or BYTE data
is stored temporarily in memory or in a file while being unloaded with the
UNLOAD statement.

If TEXT or BYTE (simple large object) data is smaller than the default of 10
kilobytes or the setting of the DBBLOBBUF environment variable, it is tempo-
rarily stored in memory. If the TEXT or BYTE data is larger than the default or
the setting of the environment variable, it is written to a temporary file. This
environment variable applies to the UNLOAD command only.

For instance, to set a buffer size of 15 kilobytes, set the DBBLOBBUF
environment variable as the following example shows:

setenv DBBLOBBUF 15

In the example, any TEXT or BYTE data that is smaller than 15 kilobytes is
stored temporarily in memory. TEXT or BYTE data larger than 15 kilobytes is
stored temporarily in a file.

setenv DBBLOBBUF n

n represents the maximum size of TEXT or BYTE data in kilobytes.
3-32 Informix Guide to SQL: Reference

DBCENTURY
DBCENTURY
The DBCENTURY environment variable lets you choose the appropriate
expansion for DATE and DATETIME values that have only a one- or two-digit
year, such as 4/15/3 or 04/15/99.

By default, if only the decade is provided for a literal DATE or DATETIME
value in a table column, the current century is used to expand the year. For
example, if today’s date is 09/30/1999, the date 12/31/99 expands to
12/31/1999, and 12/31/00 expands to 12/31/1900. DBCENTURY algorithms
let you determine the century value of a year (the desired expansion of a
two-digit year).

C

R

F

DBCENTURYsetenv P

Algorithm Explanation

P = Past The previous and current centuries are used to expand the
year value. These two dates are compared against the current
date, and the date that is prior to the current date is chosen. If
both dates are prior to the current date, the date that is closest
to the current date is chosen.

F = Future The previous and the next centuries are used to expand the
year value. These two dates are compared against the current
date, and the date that is after the current date is chosen. If
both the expansions are after the current date, the date that is
closest to the current date is chosen.

C = Closest The previous, current, and next centuries are used to expand
the year value, and the date that is closest to the current date
is used.

R = Present The two high-order digits of the current year are used to
expand the year value.
Environment Variables 3-33

DBCENTURY
When the DBCENTURY environment variable is not set or is set to R, the two
high-order digits of the current year in its four-digit form are used to expand
the year value. To override the default, specify all four digits.

Tip: Setting DBCENTURY does not affect Informix products when the locale specifies
a non-Gregorian calendar such as Hebrew or Islamic. A default century is used for
alternate calendar systems when the century is not specified.

Examples of How the DBCENTURY Environment Variable Expands Date
Values

The following examples illustrate how the DBCENTURY environment
variable expands DATE and DATETIME year formats.

Behavior of DBCENTURY = P

Example data type: DATE
Current date: 4/6/1999
User enters: 1/1/1
DBCENTURY = P, Past century algorithm
Previous century expansion : 1/1/1801
Present century expansion: 1/1/1901
Analysis: Both results are prior to the current date, but 1/1/1901 is closer to
the current date. 1/1/1901 is chosen.

Behavior of DBCENTURY = F

Example data type: DATETIME year to month
Current date: 5/7/2005
User enters: 1-1
DBCENTURY = F, Future century algorithm
Present century expansion: 2001-1
Next century expansion: 2101-1
Analysis: Only date 2101-1 is after the current date, so it is chosen as the
expansion of the year value.

Behavior of DBCENTURY = C

Example data type: DATE
Current date: 4/6/1999
User enters: 1/1/1
DBCENTURY = C, Closest century algorithm
Previous century expansion : 1/1/1801
Present century expansion: 1/1/1901
Next century expansion: 1/1/2001
Analysis: Because the next century expansion is the closest to the current date
1/1/2001 is chosen.
3-34 Informix Guide to SQL: Reference

DBCENTURY
Behavior of DBCENTURY = R or DBCENTURY Not Set

Example data type: DATETIME year to month
Current date: 4/6/1999
User enters: 1-1
DBCENTURY = R, Present century algorithm
Present century expansion: 1901-1

Example data type: DATE
Current date: 4/6/2003
User enters: 0/1/1
DBCENTURY = not set
Present century expansion: 2000/1
Analysis: In both examples, the Present algorithm is used.

Important: The interpretation of the variables P, F, and C will always vary with the
current date. In the first example, 1/1/1 will be expanded as 1/1/2001 if the current
date is 4/6/2001 and DBCENTURY = P. In the second example, 1/1 will be expanded
as 2001/1 if the current date is 5/7/1995 and DBCENTURY = F.

Behavior of DBCENTURY with Expressions that Contain Date Values

This section describes how the database server uses the DBCENTURY
environment variable to interpret dates in fragmentation expressions,
triggers, check constraints, and UDRs.

When an expression (check constraint, fragmentation expression, trigger, or
UDR) contains a date value in which the year has 1 or 2 digits, the database
server uses the setting of DBCENTURY at the time the database object (table,
trigger, or UDR) is created. The setting of DBCENTURY at creation time is
used to expand date values during execution of UDRs and triggers and
during evaluation of date values within check constraints and fragment
expressions.

For example, suppose a user creates a table and defines the following check
constraint on a column named birthdate:

birthdate < ’01/25/50’
Environment Variables 3-35

DBCENTURY
The preceding expression is interpreted according to the value of
DBCENTURY when the constraint is defined. If the table that contains the
birthdate column is created on 06/29/98 and DBCENTURY=C, the check
constraint expression is consistently interpreted as
birthdate < ’01/25/1950’ regardless of the value of DBCENTURY when
inserts or updates are performed on the birthdate column. In other words,
even if different values of DBCENTURY are set when users perform inserts or
updates on the birthdate column, the check constraint expression is inter-
preted according to the DBCENTURY setting at the time the check constraint
is defined.

The value of DBCENTURY and the current date are not the only factors that
determine how the database server interprets a date expression. The
DBDATE, DBTIME, GL_DATE, and GL_DATETIME environment variables
also influence how dates are interpreted. For information about GL_DATE
and GL_DATETIME, see the Informix Guide to GLS Functionality.

Important: The behavior of DBCENTURY for Dynamic Server and Extended Paral-
lel Server is not backwards compatible.
3-36 Informix Guide to SQL: Reference

DBDATE
DBDATE
The DBDATE environment variable specifies the end-user formats of DATE
values. End-user formats affect the following situations:

■ When you input DATE values, Informix products use the DBDATE
environment variable to interpret the input.

For example, if you specify a literal DATE value in an INSERT
statement, Informix database servers expect this literal value to be
compatible with the format that DBDATE specifies. Similarly, the
database server interprets the date that you specify as input to the
DATE() function in the format that the DBDATE environment
variable specifies.

■ When you display DATE values, Informix products use the DBDATE
environment variable to format the output.

Standard Formats for DBDATE

This section describes standard DBDATE formats.

For a description of era-based formats, see the Informix Guide to GLS
Functionality. ♦

DBDATE Standard
DBDATE
Formats

Era-Based
DBDATE Formats,
see Guide to GLS

setenv

GLS
Environment Variables 3-37

DBDATE
With standard formats, you can specify the following attributes:

■ The order of the month, day, and year in a date

■ Whether the year should be printed with two digits (Y2) or four
digits (Y4)

■ The separator between the month, day, and year

For the U.S. ASCII English locale, the default setting for DBDATE is MDY4/,
where M represents the month, D represents the day, Y4 represents a four-digit
year, and slash (/) is a separator (for example, 01/08/1999).

Other acceptable characters for the separator are a hyphen (-), a period (.), or
a zero (0). To indicate no separator, use the zero.

The slash (/) appears if you attempt to use a character other than a hyphen,
period, or zero as a separator, or if you do not include a separator character
in the DBDATE definition.

-

.
0

MD /

Y4 M D

Y2

Y2 D M

Standard
DBDATE
Formats

DM Y4

- . / are characters that can be used as separators in a date
format.

0 indicates that no separator is displayed.
D, M are characters that represent the day and the month.
Y2, Y4 are characters that represent the year and the number of

digits in the year.
3-38 Informix Guide to SQL: Reference

DBDATE
The following table shows some variations for setting the DBDATE
environment variable.

The formats Y4MD* (the asterisk is an unacceptable separator) and MDY4 (no
separator is defined) both display the default (slash) as a separator.

Important: If you use the Y2 format, the setting of the DBCENTURY environment
variable affects how the DATE values are expanded.

Also, certain routines that Informix ESQL/C calls can use the DBTIME variable,
rather than DBDATE, to set DATETIME formats to international specifications. For
more information, see the discussion of the DBTIME environment variable on
page 3-54 and the “Informix ESQL/C Programmer’s Manual.”

The setting of the DBDATE variable takes precedence over that of the
GL_DATE environment variable, as well as over the default DATE formats
that CLIENT_LOCALE specifies. For information about the GL_DATE and
CLIENT_LOCALE environment variables, see the Informix Guide to GLS
Functionality. ♦

Behavior of DBDATE with Expressions that Contain Date Values

This section describes how the database server uses the DBDATE
environment variable to interpret date values in UDRs, triggers, fragmen-
tation expressions, and check constraints.

Variation January 8, 1999, appears as:

MDY4/ 01/08/1999

DMY2- 08-01-99

MDY4 01/08/1999

Y2DM. 99.08.01

MDY20 010899

Y4MD* 1999/01/08

GLS
Environment Variables 3-39

DBDELIMITER
When an expression (UDR, trigger, check constraint, or fragmentation
expression) contains a date value, the database server uses the setting of
DBDATE at the time the database object (UDR, trigger, or table) is created. The
value of DBDATE at creation time determines the format for date values
during execution of UDRs and triggers and during evaluation of date values
within check constraints and fragment expressions.

Suppose DBDATE is set to MDY2/ and a user creates a table with the
following check constraint on the column orderdate:

orderdate < ’06/25/98’

The date of the preceding expression is formatted according to the value of
DBDATE when the constraint is defined. The check constraint expression is
interpreted as orderdate < ’06/25/98’ regardless of the value of DBDATE
during inserts or updates on the orderdate column. Suppose DBDATE is set
to DMY2/ when a user inserts the value’30/01/98’ into the orderdate
column. The date value inserted uses the date format DMY2/, whereas the
check constraint expression uses the date format MDY2/.

Important: The behavior of DBDATE for Dynamic Server and Extended Parallel
Server is not backwards compatible.

DBDELIMITER
The DBDELIMITER environment variable specifies the field delimiter used
by the dbexport utility and with the LOAD and UNLOAD statements.

The delimiter can be any single character, except the characters in the
following list:

■ Hexadecimal numbers (0 through 9, a through f, A through F)

■ Newline or CTRL-J

■ The backslash symbol (\)

setenv 'delimiter'DBDELIMITER

delimiter is the field delimiter for unloaded data files.
3-40 Informix Guide to SQL: Reference

DBEDIT
The vertical bar (|=ASCII 124) is the default. To change the field delimiter to
a plus (+), set the DBDELIMITER environment variable, as the following
example shows:

setenv DBDELIMITER '+'

DBEDIT
The DBEDIT environment variable lets you name the text editor that you
want to use to work with SQL statements and command files in DB-Access. If
DBEDIT is set, the specified text editor is called directly. If DBEDIT is not set,
you are prompted to specify a text editor as the default for the rest of the
session.

For most systems, the default text editor is vi. If you use another text editor,
be sure that it creates flat ASCII files. Some word processors in document mode
introduce printer control characters that can interfere with the operation of
your Informix product.

To specify the EMACS text editor, set the DBEDIT environment variable by
entering the following command:

setenv DBEDIT emacs

setenv DBEDIT editor

editor is the name of the text editor you want to use.
Environment Variables 3-41

DBFLTMASK
DBFLTMASK
The DB-Access utility displays the floating-point values of data types FLOAT,
SMALLFLOAT, and DECIMAL within a 14-character buffer. By default,
DB-Access displays as many digits to the right of the decimal point as will fit
into this character buffer. Therefore, the actual number of decimal digits that
DB-Access displays depends on the size of the floating-point value.

To reduce the number of digits that display to the right of the decimal point
for floating-point values, you can set the DBFLTMASK environment variable
to the number of digits desired.

If the floating-point value contains more digits to the right of the decimal
than DBFLTMASK specifies, DB-Access rounds the value to the specified
number of digits. If the floating-point value contains fewer digits to the right
of the decimal, DB-Access pads the value with zeros. However, if you set
DBFLTMASK to a value greater than can fit into the 14-character buffer,
DB-Access rounds the value to the number of digits that can fit.

setenv DBFLTMASK n

n is the number of decimal digits that you want the
Informix client application to display in the floating-point
values. n must be smaller than 16, the default number of
digits displayed.
3-42 Informix Guide to SQL: Reference

DBLANG
DBLANG
The DBLANG environment variable specifies the subdirectory of
$INFORMIXDIR or the full pathname of the directory that contains the
compiled message files that an Informix product uses.

By default, Informix products put compiled messages in a locale-specific
subdirectory of the $INFORMIXDIR/msg directory. These compiled message
files have the suffix .iem. If you want to use a message directory other than
$INFORMIXDIR/msg, where, for example, you can store message files that
you create, perform the following steps:

1. Use the mkdir command to create the appropriate directory for the
message files.

You can make this directory under the directory $INFORMIXDIR or
$INFORMIXDIR/msg, or you can make it under any other directory.

2. Set the owner and group of the new directory to informix and the
access permission for this directory to 755.

3. Set the DBLANG environment variable to the new directory.

If this directory is a subdirectory of $INFORMIXDIR or
$INFORMIXDIR/msg, you need only list the relative path to the new
directory. Otherwise, you must specify the full pathname of the
directory.

4. Copy the .iem files or the message files that you created to the new
message directory that $DBLANG specifies.

All the files in the message directory should have the owner and
group informix and access permission 644.

setenv DBLANG relative_path

full_path

relative_path is the subdirectory of $INFORMIXDIR.
full_path is the full pathname of the directory that contains the

compiled message files.
Environment Variables 3-43

DBLANG
Informix products that use the default U.S. ASCII English search for message
files in the following order:

1. In $DBLANG, if DBLANG is set to a full pathname

2. In $INFORMIXDIR/msg/$DBLANG, if DBLANG is set to a relative
pathname

3. In $INFORMIXDIR/$DBLANG, if DBLANG is set to a relative
pathname

4. In $INFORMIXDIR/msg/en_us/0333

5. In $INFORMIXDIR/msg/en_us.8859-1

6. In $INFORMIXDIR/msg

7. In $INFORMIXDIR/msg/english

For more information on access paths for messages, see the description of
DBLANG in the Informix Guide to GLS Functionality. ♦

GLS
3-44 Informix Guide to SQL: Reference

DBMONEY
DBMONEY
The DBMONEY environment variable specifies the display format of
monetary values with FLOAT, DECIMAL, or MONEY data types.

If you use any character except an alphabetic character for front or back, you
must enclose the character in quotes.

When you display MONEY values, Informix products use the DBMONEY
environment variable to format the output.

Tip: The setting of DBMONEY does not affect the internal format of the MONEY
column in the database.

If you do not set DBMONEY, then MONEY values for the default locale, U.S.
ASCII English, are formatted with a dollar sign ($) that precedes the MONEY
value, a period (.) that separates the integral from the fractional part of the
MONEY value, and no back symbol. For example, 10050 is formatted as
$100.50.

,

.

back

DBMONEYsetenv

'$'

front

$ is the default symbol that precedes the MONEY value.
, is an optional symbol (comma) that separates the integral from the

fractional part of the MONEY value.
. is the default symbol that separates the integral from the fractional

part of the MONEY value.
back is the optional symbol that follows the MONEY value. The back

symbol can be up to seven characters and can contain any character
except an integer, a comma, or a period. If back contains a dollar sign
($), you must enclose the whole string in single quotes (').

front is the optional symbol that precedes the MONEY value. The front
symbol can be up to seven characters and can contain any character
except an integer, a comma, or a period. If front contains a dollar
sign ($), you must enclose the whole string in single quotes (').
Environment Variables 3-45

DBONPLOAD
Suppose you want to represent MONEY values in DM (Deutsche Mark),
which uses the currency symbol DM and a comma. Enter the following
command to set the DBMONEY environment variable:

setenv DBMONEY DM,

Here, DM is the currency symbol that precedes the MONEY value, and a
comma separates the integral from the fractional part of the MONEY value.
As a result, the amount 10050 is displayed as DM100,50.

For more information about how the DBMONEY environment variable
handles MONEY formats for nondefault locales, see the Informix Guide to GLS
Functionality. ♦

DBONPLOAD
The DBONPLOAD environment variable specifies the name of the database
that the onpload utility of the High-Performance Loader (HPL) uses. If the
DBONPLOAD environment variable is set, the specified name is the name of
the database. If the DBONPLOAD environment variable is not set, the default
name of the database is onpload.

For example, to specify the name load_db as the name of the database, enter
the following command:

setenv DBONPLOAD load_db

For more information, see the Guide to the High-Performance Loader.

GLS

IDS

setenv DBONPLOAD dbname

dbname specifies the name of the database that the onpload utility
uses.
3-46 Informix Guide to SQL: Reference

DBPATH
DBPATH
Use DBPATH to identify the database servers that contain databases. The
DBPATH environment variable also specifies a list of directories (in addition
to the current directory) in which DB-Access looks for command scripts (.sql
files).

The CONNECT, DATABASE, START DATABASE, and DROP DATABASE
statements use DBPATH to locate the database under two conditions:

■ If the location of a database is not explicitly stated

■ If the database cannot be located in the default server

The CREATE DATABASE statement does not use DBPATH.

To add a new DBPATH entry to existing entries, see “Modifying an
Environment-Variable Setting” on page 3-11.

DBPATH can contain up to 16 entries. Each entry (full_pathname, servername,
or servername and full_pathname) must be less than 128 characters. In addition,
the maximum length of DBPATH depends on the hardware platform on
which you set DBPATH.

When you access a database with the CONNECT, DATABASE, START
DATABASE, or DROP DATABASE statement, the search for the database is
done first in the directory and/or database server specified in the statement.
If no database server is specified, the default database server as set in the
INFORMIXSERVER environment variable is used.

If the database is not located during the initial search, and if DBPATH is set,
the database servers and/or directories in DBPATH are searched for in the
indicated database. The entries to DBPATH are considered in order.

setenv

:
DBPATH / / servername

servername is the name of an Informix database server on which
databases are stored. You cannot reference database files
with a servername.
Environment Variables 3-47

DBPATH
Using DBPATH with DB-Access

If you use DB-Access and select the Choose option from the SQL menu
without having already selected a database, you see a list of all the .sql files
in the directories listed in your DBPATH. Once you select a database, the
DBPATH is not used to find the .sql files. Only the .sql files in the current
working directory are displayed.

Searching Local Directories

Use a pathname without a database server name to have the database server
search for .sql scripts on your local computer.

In the following example, the DBPATH setting causes DB-Access to search for
the database files in your current directory and then in Joachim’s and Sonja’s
directories on the local computer:

setenv DBPATH /usr/joachim:/usr/sonja

As the previous example shows, if the pathname specifies a directory name
but not a database server name, the directory is sought on the computer that
runs the default database server that the INFORMIXSERVER environment
variable specifies (see page 3-71). For instance, with the previous example, if
INFORMIXSERVER is set to quality, the DBPATH value is interpreted, as the
following example shows, where the double slash precedes the database
server name:

setenv DBPATH //quality/usr/joachim://quality/usr/sonja

Searching Networked Computers for Databases

If you use more than one database server, you can set DBPATH to explicitly
contain the database server and/or directory names that you want to search
for databases. For example, if INFORMIXSERVER is set to quality but you
also want to search the marketing database server for /usr/joachim, set
DBPATH as the following example shows:

setenv DBPATH //marketing/usr/joachim:/usr/sonja
3-48 Informix Guide to SQL: Reference

DBPRINT
Specifying a Servername

You can set DBPATH to contain only database server names. This setting
allows you to locate only databases and not locate command files.

The database administrator must include each database server mentioned by
DBPATH in the $INFORMIXDIR/etc/sqlhosts file. For information on commu-
nication-configuration files and dbservernames, see your Administrator’s
Guide and the Administrator’s Reference.

For example, if INFORMIXSERVER is set to quality, you can search for a
database first on the quality database server and then on the marketing
database server by setting DBPATH as the following example shows:

setenv DBPATH //marketing

If you use DB-Access in this example, the names of all the databases on the
quality and marketing database servers are displayed with the Select option
of the DATABASE menu.

DBPRINT
The DBPRINT environment variable specifies the printing program that you
want to use.

The default program is found in one of two places:

■ For most BSD UNIX systems, the default program is lpr.

■ For UNIX System V, the default program is usually lp.

Enter the following command to set the DBPRINT environment variable to
specify the myprint print program:

setenv DBPRINT myprint

UNIX

setenv programDBPRINT

program names any command, shell script, or UNIX utility that
handles standard ASCII input.
Environment Variables 3-49

DBREMOTECMD
DBREMOTECMD
You can set the DBREMOTECMD environment variable to override the
default remote shell used when you perform remote tape operations with the
database server.

You can set the DBREMOTECMD environment variable with either a simple
command or the full pathname. If you use the full pathname, the database
server searches your PATH for the specified command.

Informix highly recommends the use of the full pathname syntax on the
interactive UNIX platform to avoid problems with similarly named programs
in other directories and possible confusion with the restricted shell
(/usr/bin/rsh).

Enter the following command to set the DBREMOTECMD environment
variable for a simple command name:

setenv DBREMOTECMD rcmd

Enter the following command to set the DBREMOTECMD environment
variable to specify the full pathname:

setenv DBREMOTECMD /usr/bin/remsh

For more information on DBREMOTECMD, see the discussion in your Archive
and Backup Guide about how to use remote tape devices with your database
server for archives, restores, and logical-log backups.

UNIX

setenv

pathname

commandDBREMOTECMD

command is the command to override the default remote shell.
pathname is the pathname to override the default remote shell.
3-50 Informix Guide to SQL: Reference

DBSPACETEMP
DBSPACETEMP
You can set your DBSPACETEMP environment variable to specify the
dbspaces in which temporary tables are to be built. You can specify multiple
dbspaces to spread temporary space across any number of disks.

The DBSPACETEMP environment variable overrides the default dbspaces
that the DBSPACETEMP configuration parameter specifies in the configu-
ration file for your database server.

Important: The dbspaces that you list in DBSPACETEMP must be composed of
chunks that are allocated as raw UNIX devices.

For example, you might set the DBSPACETEMP environment variable with
the following command:

setenv DBSPACETEMP sorttmp1:sorttmp2:sorttmp3

Separate the dbspace entries with either colons or commas. The number of
dbspaces is limited by the maximum size of the environment variable, as
defined by your operating system. Your database server does not create a
dbspace specified by the environment variable if the dbspace does not exist.

The two classes of temporary tables are explicit temporary tables that the
user creates and implicit temporary tables that the database server creates.
Use the DBSPACETEMP environment variable to specify the dbspaces for
both types of temporary tables.

If you create an explicit temporary table with the CREATE TEMP TABLE
statement and do not specify a dbspace for the table either in the IN dbspace
clause or in the FRAGMENT BY clause, the database server uses the settings in
the DBSPACETEMP environment variable to determine where to create the
table.

setenv DBSPACETEMP temp_dbspace

punct

punct can be either colons or commas.
temp_dbspace is a valid existing temporary dbspace.
Environment Variables 3-51

DBSPACETEMP
If you create an explicit temporary table with the SELECT INTO TEMP
statement, the database server uses the settings in the DBSPACETEMP
environment variable to determine where to create the table. If the
DBSPACETEMP environment variable is not set, the database server uses the
ONCONFIG parameter DBSPACETEMP. If this parameter is not set, the
database server creates the explicit temporary table in the same dbspace
where the database resides.

The database server creates implicit temporary tables for its own use while
executing join operations, SELECT statements with the GROUP BY clause,
SELECT statements with the ORDER BY clause, and index builds. When it
creates these implicit temporary tables, the database server uses disk space
for writing the temporary data, in the following order:

1. The operating-system directory or directories that the environment
variable PSORT_DBTEMP specifies, if it is set. ♦

2. The dbspace or dbspaces that the environment variable
DBSPACETEMP specifies, if it is set.

3. The dbspace or dbspaces that the ONCONFIG parameter
DBSPACETEMP specifies.

4. The operating-system file space in /tmp (UNIX) or %temp%
(Windows NT).

If the DBSPACETEMP environment variable is set to a nonexistent dbspace,
the database server defaults to the root dbspace for explicit temporary tables
and to /tmp for implicit temporary tables, not to the DBSPACETEMP configu-
ration parameter.

Important: If the DBSPACETEMP environment variable is set to an invalid value,
the database server might fill /tmp to the limit and eventually bring down the system
or kill the file system.

UNIX
3-52 Informix Guide to SQL: Reference

DBTEMP
DBTEMP
Set the DBTEMP environment variable to specify the full pathname of the
directory into which you want Informix Enterprise Gateway products to
place their temporary files and temporary tables.

Set the DBTEMP environment variable to specify the pathname
usr/magda/mytemp by entering the following command:

setenv DBTEMP usr/magda/mytemp

Important: DBTEMP must not point to an NFS directory.

If you do not set DBTEMP, temporary files are created in /tmp. If DBTEMP is
not set, temporary tables are created in the directory of the database (that is,
the .dbs directory). For more information, see your INFORMIX-Enterprise
Gateway User Manual.

setenv pathnameDBTEMP

pathname is the full pathname of the directory for temporary files
and temporary tables.
Environment Variables 3-53

DBTIME
DBTIME
The DBTIME environment variable specifies the end-user formats of
DATETIME values for a set of SQL API library functions.

You can set the DBTIME environment variable to manipulate DATETIME
formats so that the formats conform more closely to various international or
local TIME conventions. DBTIME takes effect only when you call certain
Informix ESQL/C DATETIME routines; otherwise, use the DBDATE
environment variable. (For details, see the Informix ESQL/C Programmer’s
Manual.)

You can set DBTIME to specify the exact format of an input/output (I/O)
DATETIME string field with the formatting directives described in the
following list. Otherwise, the behavior of the DATETIME formatting routine
is undefined.

DBTIME Standard
DBTIME
Formats

Era-Based
DBTIME Formats,
see the Informix
Guide to GLS

setenv

string the formatting directives that you can use, as the following list
describes:

%b is replaced by the abbreviated month name.

%B is replaced by the full month name.

Standard
DBTIME
Formats

'string'
3-54 Informix Guide to SQL: Reference

DBTIME
For example, consider how to convert a DATETIME YEAR TO SECOND to the
following ASCII string format:

Mar 21, 1999 at 16 h 30 m 28 s

Set DBTIME as the following list shows:

setenv DBTIME '%b %d, %Y at %H h %M m %S s'

The default DBTIME produces the conventional ANSI SQL string format that
the following line shows:

1999-03-21 16:30:28

%d is replaced by the day of the month as a decimal number
[01,31].

%Fn is replaced by the value of the fraction with precision that
the integer n specifies. The default value of n is 2; the range
of n is 0 ≤ n ≤ 5.

%H is replaced by the hour (24-hour clock).

%I is replaced by the hour (12-hour clock).

%M is replaced by the minute as a decimal number [00,59].

%m is replaced by the month as a decimal number [01,12].

%p is replaced by A.M. or P.M. (or the equivalent in the local
standards).

%S is replaced by the second as a decimal number [00,59].

%y is replaced by the year as a four-digit decimal number.
If the user enters a two-digit value, the format of this value
is affected by the setting of the DBCENTURY environment
variable. If DBCENTURY is not set, then the current
century is used for the century digits.

%Y is replaced by the year as a four-digit decimal number.
User must enter a four-digit value.

%% is replaced by % (to allow % in the format string).
Environment Variables 3-55

DBTIME
Set the default DBTIME as the following example shows:

setenv DBTIME '%Y-%m-%d %H:%M:%S'

An optional field width and precision specification can immediately follow
the percent (%) character; it is interpreted as the following list describes:

When you use field width and precision specifications, the following
limitations apply:

■ If a conversion specification supplies fewer digits than a precision
specifies, it is padded with leading zeros.

■ If a conversion specification supplies more characters than a
precision specifies, excess characters are truncated on the right.

■ If no field width or precision is specified for d, H, I, m, M, S, or y
conversions, a default of 0.2 is used. A default of 0.4 is used for Y
conversions.

The F conversion does not follow the field width and precision format
conversions that are described earlier.

For related information, see the discussion of DBDATE on page 3-37.

For more information about how the DBTIME environment variable handles
time formats for nondefault locales, see the Informix Guide to GLS
Functionality. ♦

[-|0]w where w is a decimal digit string specifying the minimum field
width. By default, the value is right justified with spaces on the left.
If - is specified, it is left justified with spaces on the right.
If 0 is specified, it is right justified and padded with zeros on the left.

.p where p is a decimal digit string specifying the number of digits to
appear for d, H, I, m, M, S, y, and Y conversions, and the maximum
number of characters to be used for b and B conversions. A
precision specification is significant only when converting a
DATETIME value to an ASCII string and not vice versa.

GLS
3-56 Informix Guide to SQL: Reference

DBUPSPACE
DBUPSPACE
The DBUPSPACE environment variable lets you specify and constrain the
amount of system disk space that the UPDATE STATISTICS statement can use
when trying to simultaneously construct multiple column distributions.

For example, to set DBUPSPACE to 2,500 kilobytes, enter the following
command:

setenv DBUPSPACE 2500

Once you set this value, the database server can use no more than 2,500
kilobytes of disk space during the execution of an UPDATE STATISTICS
statement. If a table requires 5 megabytes of disk space for sorting, then
UPDATE STATISTICS accomplishes the task in two passes; the distributions for
one half of the columns are constructed with each pass.

If you try to set DBUPSPACE to any value less than 1,024 kilobytes, it is
automatically set to 1,024 kilobytes, but no error message is returned. If this
value is not large enough to allow more than one distribution to be
constructed at a time, at least one distribution is done, even if the amount of
disk space required for the one is greater than specified in DBUPSPACE.

setenv DBUPSPACE value

value represents a disk space amount in kilobytes.
Environment Variables 3-57

DELIMIDENT
DELIMIDENT
The DELIMIDENT environment variable specifies that strings set off by
double quotes are delimited identifiers.

You can use delimited identifiers to specify identifiers that are identical to
reserved keywords, such as TABLE or USAGE. You can also use them to
specify database identifiers that contain nonalpha characters, but you cannot
use them to specify storage identifiers that contain nonalpha characters.
Database identifiers are names for database objects such as tables and
columns, and storage identifiers are names for storage objects such as
dbspaces and partition simple large objects.

Delimited identifiers are case sensitive.

To use delimited identifiers, applications in ESQL/C must set the
DELIMIDENT environment variable at compile time and execute time.

setenv DELIMIDENT value
3-58 Informix Guide to SQL: Reference

ENVIGNORE
ENVIGNORE
Use the ENVIGNORE environment variable to deactivate specified
environment variable entries in the common (shared) and private
environment-configuration files, informix.rc and .informix respectively.

For example, to ignore the DBPATH and DBMONEY entries in the
environment-configuration files, enter the following command:

setenv ENVIGNORE DBPATH:DBMONEY

The common environment-configuration file is stored in
$INFORMIXDIR/etc/informix.rc. The private environment-configuration file
is stored in the user’s home directory as .informix. For information on
creating or modifying an environment-configuration file, see “Setting
Environment Variables in an Environment-Configuration File” on page 3-8.

ENVIGNORE cannot be set in an environment-configuration file.

UNIX

setenv ENVIGNORE variable

:

variable is the list of environment variables that you want to deactivate.
Environment Variables 3-59

FET_BUF_SIZE
FET_BUF_SIZE
The FET_BUF_SIZE environment variable lets you override the default setting
for the size of the fetch buffer for all data except simple large objects. When
set, FET_BUF_SIZE is effective for the entire environment.

When set to a valid value, the environment variable overrides the previously
set value. The default setting for the fetch buffer is dependent on row size.

If the buffer size is set to less than the default size or is out of the range of the
small integer value, no error is raised. The new buffer size is ignored.

For example, to set a buffer size to 5,000 bytes, set the FET_BUF_SIZE
environment variable by entering the following command:

setenv FET_BUF_SIZE 5000

setenv FET_BUF_SIZE n

n represents the size of the buffer in bytes.
3-60 Informix Guide to SQL: Reference

IFMX_SMLTBL_BROADCAST_SIZE
IFMX_SMLTBL_BROADCAST_SIZE
The IFMX_SMLTBL_BROADCAST_SIZE environment variable setting deter-
mines the threshold size of tables that are used in Small Table Broadcast when
the table size exceeds 128 kilobytes. The IFMX_SMLTBL_BROADCAST_SIZE
environment variable is set on the database server.

Important: Query performance can suffer if the IFMX_SMLTBL_BROADCAST
environment variable is set beyond a certain table size. The recommended upper limit
on table size depends on your computer and the configuration of your database server.

For more information about the IFMX_SMLTBL_BROADCAST environment
variable, see your documentation notes or release notes.

XPS

setenv IFMX_SMLTBL_BROADCAST n

n represents the size of the table in kilobytes.
Environment Variables 3-61

IFX_DIRECTIVES
IFX_DIRECTIVES
The IFX_DIRECTIVES environment variable setting determines whether the
optimizer allows query optimization directives from within a query. The
IFX_DIRECTIVES environment variable is set on the client.

You can use either ON and OFF or 1 and 0 to set the environment variable.

The setting of the IFX_DIRECTIVES environment variable overrides the value
of the DIRECTIVES configuration parameter that is set for the database server.
If the IFX_DIRECTIVES environment variable is not set, however, then all
client sessions will inherit the database server configuration for directives
that the ONCONFIG parameter DIRECTIVES determines. The default setting
for the DIRECTIVES parameter is ON.

For more information about the DIRECTIVES parameter, see the Adminis-
trator’s Reference. For more information on the performance impact of
directives, see your Performance Guide.

IDS

setenv IFX_DIRECTIVES

OFF

1

0

ON

ON Optimizer directives accepted
OFF Optimizer directives not accepted
1 Optimizer directives accepted
0 Optimizer directives not accepted
3-62 Informix Guide to SQL: Reference

IFX_LONGID
IFX_LONGID
Use the IFX_LONGID environment variable setting and the version number
of the client application to determine whether a particular client application
is capable of handling long identifiers. Valid IFX_LONGID values are 1 and 0.

If IFX_LONGID is unset or is set to a value other than 1 or 0, the determination
is based on the internal version of the client application. If the version is >=
9.0304, the client is considered new and thus capable of handling long identi-
fiers. Otherwise, the client application is considered incapable.

The IFX_LONGID setting overrides the internal version of the client appli-
cation. If the client cannot handle long identifiers despite a newer version
number, set IFX_LONGID to 0. If the client version can handle long identifiers
despite an older version number, set IFX_LONGID to 1.

If you set the IFX_LONGID environment variable at the client, the setting
affects only that client. If you bring up the database server with IFX_LONGID
set, all client applications will adhere to that setting. If IFX_LONGID is set at
both the client and the database server, the client setting takes precedence.

Important: ESQL executables that have been built with the -static option using the
libos.a library version that does not support long identifiers cannot use the
IFX_LONGID environment variable. You must recompile such applications with the
new libos.a library that includes support for long identifiers. Executables that use
shared libraries (no -static option) can use IFX_LONGID without recompilation
provided that they use the new libifos.so that provides support for long identifiers.
For details, see your ESQL product manual.

IDS

setenv IFX_LONGID

0

1

1 Client can handle long identifiers
0 Client cannot handle long identifiers
Environment Variables 3-63

IFX_NETBUF_PVTPOOL_SIZE
IFX_NETBUF_PVTPOOL_SIZE
The IFX_NETBUF_PVTPOOL_SIZE environment variable specifies the
maximum size of the free (unused) private network buffer pool for each
database server session.

The default size is 1 buffer. If IFX_NETBUF_PVTPOOL_SIZE is set to 0, each
session obtains buffers from the free global network buffer pool. You must
specify the value in decimal form.

IFX_NETBUF_SIZE
The IFX_NETBUF_SIZE environment variable lets you configure the network
buffers to the optimum size. It specifies the size of all network buffers in the
free (unused) global pool and the private network buffer pool for each
database server session.

The default size is 4 kilobytes (4,096 bytes). The maximum size is 64 kilobytes
(65,536 bytes) and the minimum size is 512 bytes. You can specify the value
in hexadecimal or decimal form.

Tip: You cannot set a different size for each session.

UNIX

setenv IFX_NETBUF_PVTPOOL_SIZE n

n represents the number of units (buffers) in the pool.

setenv IFX_NETBUF_SIZE n

n represents the size (in bytes) for one network buffer.
3-64 Informix Guide to SQL: Reference

IFX_UPDDESC
IFX_UPDDESC
The IFX_UPDDESC environment variable controls the use of the describe-for-
updates functionality. You must set IFX_UPDDESC at execution time before
you do a DESCRIBE of an UPDATE statement.

You can set IFX_UPDDESC to any value. A null value (the environment
variable is not set) indicates that the feature is not being used. Any nonnull
value indicates that the feature is enabled.

INFORMIXC
The INFORMIXC environment variable specifies the name or pathname of the
C compiler to be used to compile files that Informix ESQL/C generates.

If INFORMIXC is not set, the default compiler is cc.

Tip: On Windows NT, you pass either -mcc or -bcc options to the esql preprocessor
to use either the Microsoft or Borland C compilers.

For example, to specify the GNU C compiler, enter the following command:
setenv INFORMIXC gcc

The setting is required only during the C compilation stage.

IDS

setenv IFX_UPDDESC value

UNIX

setenv

pathname

INFORMIXC compiler

compiler is the name of the C compiler.
pathname is the full pathname of the C compiler.
Environment Variables 3-65

INFORMIXCONCSMCFG
INFORMIXCONCSMCFG
The INFORMIXCONCSMCFG environment variable specifies the location of
the concsm.cfg file that describes communications support modules.

The following sample command specifies that the concsm.cfg file is in
/usr/myfiles:

setenv INFORMIXCONCSMCFG /usr/myfiles

You can also specify a different name for the file. The following example
specifies a filename of csmconfig:

setenv INFORMIXCONCSMCFG /usr/myfiles/csmconfig

The default location of the concsm.cfg file is in $INFORMIXDIR/etc. For more
information about communications support modules and the contents of the
concsm.cfg file, refer to the Administrator’s Reference.

IDS

setenv INFORMIXCONCSMCFG pathname

pathname specifies the full pathname of the concsm.cfg file.
3-66 Informix Guide to SQL: Reference

INFORMIXCONRETRY
INFORMIXCONRETRY
The INFORMIXCONRETRY environment variable specifies the maximum
number of additional connection attempts that should be made to each server
by the client during the time limit that the INFORMIXCONTIME environment
variable specifies.

For example, enter the following command to set INFORMIXCONRETRY to
three additional connection attempts (after the initial attempt):

setenv INFORMIXCONRETRY 3

The default value for INFORMIXCONRETRY is one retry after the initial
connection attempt. The INFORMIXCONTIME setting, described in the
following section, takes precedence over the INFORMIXCONRETRY setting.

INFORMIXCONTIME
The INFORMIXCONTIME environment variable lets you specify that an SQL
CONNECT statement should keep trying for at least the given number of
seconds before returning an error.

You might encounter connection difficulties related to system or network
load problems. For instance, if the database server is busy establishing new
SQL client threads, some clients might fail because the database server cannot
issue a network function call fast enough. The INFORMIXCONTIME and
INFORMIXCONRETRY environment variables let you configure your client-
side connection capability to retry the connection instead of returning an
error.

setenv INFORMIXCONRETRY value

value represents the number of connection attempts to each server.

setenv INFORMIXCONTIME value

value represents the minimum number of seconds spent in attempts to
establish a connection to a database server.
Environment Variables 3-67

INFORMIXCONTIME
For example, enter the following command to set INFORMIXCONTIME to 60
seconds:

setenv INFORMIXCONTIME 60

If INFORMIXCONTIME is set to 60 and INFORMIXCONRETRY is set to 3,
attempts to connect to the database server (after the initial attempt at 0
seconds) are made at 20, 40, and 60 seconds, if necessary, before aborting.
This 20-second interval is the result of INFORMIXCONTIME divided by
INFORMIXCONRETRY.

If execution of the CONNECT statement involves searching DBPATH, the
following rules apply:

■ All appropriate servers in the DBPATH setting are accessed at least
once, even though the INFORMIXCONTIME value might be
exceeded. Thus, the CONNECT statement might take longer than the
INFORMIXCONTIME time limit to return an error that indicates
connection failure or that the database was not found.

■ The INFORMIXCONRETRY value specifies the number of additional
connections that should be attempted for each server entry in
DBPATH.

■ The INFORMIXCONTIME value is divided among the number of
server entries specified in DBPATH. Thus, if DBPATH contains
numerous servers, you should increase the INFORMIXCONTIME
value accordingly. For example, if DBPATH contains three entries, to
spend at least 30 seconds attempting each connection, set
INFORMIXCONTIME to 90.

The default value for INFORMIXCONTIME is 15 seconds. The setting for
INFORMIXCONTIME takes precedence over the INFORMIXCONRETRY
setting. Retry efforts could end after the INFORMIXCONTIME value is
exceeded but before the INFORMIXCONRETRY value is reached.
3-68 Informix Guide to SQL: Reference

INFORMIXCPPMAP
INFORMIXCPPMAP
Set the INFORMIXCPPMAP environment variable to specify the fully
qualified pathname of the map file for C++ programs. Information in the map
file includes the database server type, the name of the shared library that
supports the database object or value object type, the library entry point for
the object, and the C++ library for which an object was built.

The map file is a text file that can have any file name. The INFORMIXCPPMAP
setting can include several map files separated by colons (:) on UNIX or
semicolons (;) on Windows NT. On UNIX, the default map file is
$INFORMIXDIR/etc/c++map. On Windows NT, the default map file is
%INFORMIXDIR%\etc\c++map.

INFORMIXDIR
The INFORMIXDIR environment variable specifies the directory that
contains the subdirectories in which your product files are installed. You
must always set the INFORMIXDIR environment variable. Verify that the
INFORMIXDIR environment variable is set to the full pathname of the
directory in which you installed your database server. If you have multiple
versions of a database server, set INFORMIXDIR to the appropriate directory
name for the version that you want to access. For information about when to
set the INFORMIXDIR environment variable, see your Installation Guide.

To set the INFORMIXDIR environment variable to the desired installation
directory, enter the following command:

setenv INFORMIXDIR /usr/informix

IDS

setenv INFORMIXCPPMAP pathname

pathname is the directory path where the C++ map file is stored.

setenv INFORMIXDIR pathname

pathname is the directory path where the product files are installed.
Environment Variables 3-69

INFORMIXKEYTAB
INFORMIXKEYTAB
The INFORMIXKEYTAB environment variable specifies the location of the
keytab file. The keytab file contains authentication information that database
servers and clients access at connection time, if they use the DCE-GSS commu-
nications support module (CSM). It contains key tables that store keys, each
of which contains a principal name (database server or user name), type,
version, and value.

The database server uses the keytab file to find the key to register the server
and to acquire a credential for it. A client application uses the key if the user
did not do dce_login with the current operating-system user name (which is
the same as the DCE principle name) or did not explicitly provide a
credential.

For example, the following command specifies that the name and location of
the keytab file is /usr/myfiles/mykeytab:

setenv INFORMIXKEYTAB /usr/myfiles/mykeytab

For more information about the DCE-GSS communications support module,
see the Administrator’s Guide.

UNIX

INFORMIXKEYTAB pathnamesetenv

pathname specifies the full path of the keytab file.
3-70 Informix Guide to SQL: Reference

INFORMIXOPCACHE
INFORMIXOPCACHE
The INFORMIXOPCACHE environment variable lets you specify the size of
the memory cache for the staging-area blobspace of the client application.

Set the INFORMIXOPCACHE environment variable by specifying the size of
the memory cache in kilobytes. The specified size must be equal to or smaller
than the size of the system-wide configuration parameter, OPCACHEMAX.

If you do not set the INFORMIXOPCACHE environment variable, the default
cache size is 128 kilobytes or the size specified in the configuration parameter
OPCACHEMAX. The default for OPCACHEMAX is 128 kilobytes. If you set
INFORMIXOPCACHE to a value of 0, Optical Subsystem does not use the
cache.

INFORMIXSERVER
The INFORMIXSERVER environment variable specifies the default database
server to which an explicit or implicit connection is made by an SQL API client
or the DB-Access utility.

The database server can be either local or remote. You must always set
INFORMIXSERVER before you use an Informix product.

IDS

kilobytessetenv INFORMIXOPCACHE

kilobytes specifies the value you set for the optical memory cache.

setenv INFORMIXSERVER dbservername

dbservername is the name of the default database server.
Environment Variables 3-71

INFORMIXSERVER
The value of INFORMIXSERVER must correspond to a valid dbservername
entry in the $INFORMIXDIR/etc/sqlhosts file on the computer running the
application. The dbservername must be specified using lowercase characters
and cannot exceed 128 characters. For example, to specify the coral database
server as the default for connection, enter the following command:

setenv INFORMIXSERVER coral

INFORMIXSERVER specifies the database server to which an application
connects if the CONNECT DEFAULT statement is executed. It also defines the
database server to which an initial implicit connection is established if the
first statement in an application is not a CONNECT statement.

Important: You must set INFORMIXSERVER even if the application or DB-Access
does not use implicit or explicit default connections.

For Extended Parallel Server, the INFORMIXSERVER environment variable
specifies the name of a dbserver group. To specify a coserver name, use the
following format:

dbservername.coserver_number

In the coserver name, dbservername is the value that you assigned to the
DBSERVERNAME configuration parameter when you prepared the
ONCONFIG configuration file, and coserver_number is the value that you
assigned to the COSERVER configuration parameter for the connection
coserver.

Strictly speaking, INFORMIXSERVER is not required for initialization.
However, if INFORMIXSERVER is not set, Extended Parallel Server does not
build the sysmaster tables. ♦

XPS
3-72 Informix Guide to SQL: Reference

INFORMIXSHMBASE
INFORMIXSHMBASE
The INFORMIXSHMBASE environment variable affects only client
applications connected to Informix databases that use the interprocess
communications (IPC) shared-memory (ipcshm) protocol.

Important: Resetting INFORMIXSHMBASE requires a thorough understanding of
how the application uses memory. Normally you do not reset INFORMIXSHMBASE.

Use INFORMIXSHMBASE to specify where shared-memory communication
segments are attached to the client process so that client applications can
avoid collisions with other memory segments that the application uses. If
you do not set INFORMIXSHMBASE, the memory address of the communi-
cation segments defaults to an implementation-specific value such as
0x800000.

The database server calculates the memory address where segments are
attached by multiplying the value of INFORMIXSHMBASE by 1,024. For
example, to set the memory address to the value 0x800000, set the
INFORMIXSHMBASE environment variable by entering the following
command:

setenv INFORMIXSHMBASE 8192

For more information, see your Administrator’s Guide and the Administrator’s
Reference.

UNIX

setenv INFORMIXSHMBASE value

value is used to calculate the memory address.
Environment Variables 3-73

INFORMIXSQLHOSTS
INFORMIXSQLHOSTS
The INFORMIXSQLHOSTS environment variable specifies the full pathname
to the place where client-database server connectivity information is
stored. On UNIX, by default, this environment variable points to the
$INFORMIXDIR/etc/sqlhosts file. For example, to specify that the client or
database server will look for connectivity information in the mysqlhosts
file in the /work/envt directory, enter the following command:

setenv INFORMIXSQLHOSTS /work/envt/mysqlhosts

When the INFORMIXSQLHOSTS environment variable is set, the client or
database server looks in the specified file for connectivity information.
When the INFORMIXSQLHOSTS environment variable is not set, the client
or database server looks in the $INFORMIXDIR/etc/sqlhosts file.

On Windows NT, by default, this environment variable points to the
computer whose registry contains the SQLHOSTS subkey. To specify that the
client or database server look for connectivity information on a computer
named arizona, enter the following command:

set INFORMIXSQLHOSTS = \\arizona

For a description of the SqlHosts information, see your Administrator’s Guide.

INFORMIXSQLHOSTS pathnamesetenv

pathname specifies the full pathname and filename of the file that
contains connectivity information.
3-74 Informix Guide to SQL: Reference

INFORMIXSTACKSIZE
INFORMIXSTACKSIZE
INFORMIXSTACKSIZE specifies the stack size (in kilobytes) that the database
server uses for a particular client session.

Use INFORMIXSTACKSIZE to override the value of the ONCONFIG
parameter STACKSIZE for a particular application or user.

For example, to decrease the INFORMIXSTACKSIZE to 20 kilobytes, enter the
following command:

setenv INFORMIXSTACKSIZE 20

If INFORMIXSTACKSIZE is not set, the stack size is taken from the database
server configuration parameter STACKSIZE, or it defaults to a platform-
specific value. The default stack size value for the primary thread for an SQL
client is 32 kilobytes for nonrecursive database activity.

Warning: For specific instructions on setting this value, see the “Administrator’s
Reference.” If you incorrectly set the value of INFORMIXSTACKSIZE, it can cause
the database server to fail.

setenv INFORMIXSTACKSIZE value

value is the stack size for SQL client threads in kilobytes.
Environment Variables 3-75

INFORMIXTERM
INFORMIXTERM
The INFORMIXTERM environment variable specifies whether DB-Access
should use the information in the termcap file or the terminfo directory.

The termcap file and terminfo directory determine terminal-dependent
keyboard and screen capabilities, such as the operation of function keys,
color and intensity attributes in screen displays, and the definition of
window borders and graphic characters.

If INFORMIXTERM is not set, the default setting is termcap. When DB-Access
is installed on your system, a termcap file is placed in the etc subdirectory of
$INFORMIXDIR. This file is a superset of an operating-system termcap file.

You can use the termcap file that Informix supplies, the system termcap file,
or a termcap file that you create. You must set the TERMCAP environment
variable if you do not use the default termcap file. For information on setting
the TERMCAP environment variable, see page 3-97.

The terminfo directory contains a file for each terminal name that has been
defined. The terminfo setting for INFORMIXTERM is supported only on
computers that provide full support for the UNIX System V terminfo library.
For details, see the machine notes file for your product.

UNIX

setenv

terminfo

INFORMIXTERM termcap
3-76 Informix Guide to SQL: Reference

INF_ROLE_SEP
INF_ROLE_SEP
The INF_ROLE_SEP environment variable configures the security feature of
role separation when the database server is installed. Role separation
enforces separating administrative tasks that different people who are
involved in running and auditing the database server perform.

Tip: To enable role separation for database servers on Windows NT, choose the role-
separation option during installation.

If INF_ROLE_SEP is set, role separation is implemented and a separate group
is specified to serve each of the following responsibilities: the database
system security officer (DBSSO), the audit analysis officer (AAO), and the
standard user. If INF_ROLE_SEP is not set, user informix (the default) can
perform all administrative tasks.

For more information about the security feature of role separation, see the
Trusted Facility Manual. To learn how to configure role separation when you
install your database server, see your Installation Guide.

IDS

n is any positive integer.

INF_ROLE_SEP nsetenv
Environment Variables 3-77

ISM_COMPRESSION
ISM_COMPRESSION
Set the ISM_COMPRESSION environment variable in the ON-Bar
environment to specify whether the Informix Storage Manager (ISM)
should use data compression.

If ISM_COMPRESSION is set to TRUE in the environment of the ON-Bar
process that makes a request, the ISM server uses a data-compression
algorithm to store or retrieve the data specified in that request.

If ISM_COMPRESSION is set to FALSE or is not set, the ISM server does not
use compression.

ISM_DEBUG_FILE
Set the ISM_DEBUG_FILE environment variable in the Informix Storage
Manager server environment to specify where the XBSA messages should
be written.

If you do not set ISM_DEBUG_FILE, the XBSA message log is located in
$INFORMIXDIR/ism/applogs/xbsa.messages on UNIX or
c:\nsr\applogs\xbsa.messages on Windows NT.

setenv ISM_COMPRESSION

FALSE

TRUE

setenv ISM_DEBUG_FILE pathname

pathname specifies the location of the XBSA message log file.
3-78 Informix Guide to SQL: Reference

ISM_DEBUG_LEVEL
ISM_DEBUG_LEVEL
Set the ISM_DEBUG_LEVEL environment variable in the ON-Bar
environment to control the level of reporting detail recorded in the XBSA
messages log. The XBSA shared library writes to this log.

You can specify a value between 0 and 9. If ISM_DEBUG_LEVEL is not set, has
a null value, or has a value outside this range, the default detail level is 1.

A detail level of 0 suppresses all XBSA debugging records. A detail level of 1
reports only XBSA failures.

setenv ISM_DEBUG_LEVEL value

value specifies the level of reporting detail.
Environment Variables 3-79

ISM_ENCRYPTION
ISM_ENCRYPTION
Set the ISM_ENCRYPTION environment variable in the ON-Bar environment
to specify whether the Informix Storage Manager (ISM) should use data
encryption.

If the ISM_ENCRYPTION environment variable is set to TRUE or XOR in the
environment of the ON-Bar process that makes a request, the ISM server uses
encryption to store or retrieve the data specified in that request.

If ISM_ENCRYPTION is set to NONE or is not set, the ISM server does not use
encryption.

ISM_MAXLOGSIZE
Set the ISM_MAXLOGSIZE environment variable in the Informix Storage
Manager (ISM) server environment to specify the size threshold of the ISM
activity log.

If ISM_MAXLOGSIZE is not set, the default size limit is 1 megabyte. If
ISM_MAXLOGSIZE is set to a null value, the threshold is 0 bytes.

setenv ISM_ENCRYPTION

NONE

TRUE

XOR

XOR uses encryption.
NONE does not use encryption.
TRUE uses encryption.

setenv ISM_MAXLOGSIZE value

value specifies the size threshold of the activity log.
3-80 Informix Guide to SQL: Reference

ISM_MAXLOGVERS
ISM_MAXLOGVERS
Set the ISM_MAXLOGSVERS environment variable in the Informix Storage
Manager (ISM) server environment to specify the maximum number of
activity-log files to be preserved by the ISM server.

If ISM_MAXLOGSVERS is not set, the default number of files to be preserved
is four. If ISM_MAXLOGSVERS is set to a null value, the ISM server preserves
no activity log files.

LD_LIBRARY_PATH
The LD_LIBRARY_PATH environment variable tells the shell on Solaris
systems which directories to search for client or shared Informix general
libraries. You must specify the directory that contains your client libraries
before you can use the product.

The following example sets the LD_LIBRARY_PATH environment variable to
the desired directory:

setenv LD_LIBRARY_PATH
${INFORMIXDIR}/lib:${INFORMIXDIR}/lib/esql:$LD_LIBRARY_PATH

For INTERSOLV DataDirect ODBC Driver on AIX, set LIBPATH. For
INTERSOLV DataDirect ODBC Driver on HP-UX, set SHLIB_PATH.

setenv ISM_MAXLOGVERS value

value specifies the number of files to be preserved.

UNIX

setenv pathname

:

$PATH:LD_LIBRARY_PATH

pathname specifies the search path for the library.
Environment Variables 3-81

LIBPATH
LIBPATH
The LIBPATH environment variable tells the shell on AIX systems which
directories to search for dynamic-link libraries for the INTERSOLV DataDirect
ODBC Driver. You must specify the full pathname for the directory where you
installed the product.

On Solaris, set LD_LIBRARY_PATH. On HP-UX, set SHLIB_PATH.

NODEFDAC
When the NODEFDAC environment variable is set to yes, it prevents default
table privileges (Select, Insert, Update, and Delete) from being granted to
PUBLIC when a new table is created in a database that is not ANSI compliant.
If you do not set the NODEFDAC variable, it is, by default, set to no.

UNIX

setenv pathname

:

LIBPATH

pathname specifies the search path for the libraries.

yes prevents default table privileges from being granted to PUBLIC
on new tables in a database that is not ANSI compliant. This
setting also prevents the Execute privilege for a new
user-defined routine from being granted to PUBLIC when the
routine is created in owner mode.

no allows default table privileges to be granted to PUBLIC. Also
allows the Execute privilege on a new user-defined routine to
be granted to PUBLIC when the user-defined routine is created
in owner mode.

setenv NODEFDAC yes

no
3-82 Informix Guide to SQL: Reference

ONCONFIG
ONCONFIG
The ONCONFIG environment variable specifies the name of the active file
that holds configuration parameters for the database server. This file is read
as input during the initialization procedure. After you prepare the
ONCONFIG configuration file, set the ONCONFIG environment variable to
the name of the file.

If the ONCONFIG environment variable is not set, the database server uses
configuration values from either the $ONCONFIG file or the
$INFORMIXDIR/etc/onconfig file.

To prepare the ONCONFIG file, make a copy of the onconfig.std file and
modify the copy. Informix recommends that you name the ONCONFIG file so
that it can easily be related to a specific database server. If you have multiple
instances of a database server, each instance must have its own uniquely
named ONCONFIG file.

To prepare the ONCONFIG file for Extended Parallel Server, make a copy of
the onconfig.std file if you are using a single coserver configuration or make
a copy of the onconfig.xps file if you are using a multiple coserver configu-
ration. You can use the onconfig.std file for a multiple coserver configuration,
but you would have to add additional keywords and configuration param-
eters such as END, NODE, and COSERVER, which are already provided for
you in the onconfig.xps file. ♦

For more information on configuration parameters and the ONCONFIG file,
see the Administrator’s Reference.

setenv ONCONFIG filename

filename is the name of a file in $INFORMIXDIR/etc that contains
the configuration parameters for your database.

XPS
Environment Variables 3-83

OPTCOMPIND
OPTCOMPIND
You can set the OPTCOMPIND environment variable so that the optimizer
can select the appropriate join method.

When the OPTCOMPIND environment variable is not set, the database server
uses the value specified for the ONCONFIG configuration parameter
OPTCOMPIND. When neither the environment variable nor the configuration
parameter is set, the default value is 2.

For more information on the ONCONFIG configuration parameter
OPTCOMPIND, see the Administrator’s Reference. For more information on the
different join methods for your database server that the optimizer uses, see
your Performance Guide.

setenv OPTCOMPIND 0

1

2

0 A nested-loop join is preferred, where possible, over a sort-merge join
or a hash join.

1 When the transaction isolation mode is not Repeatable Read, the
optimizer behaves as in setting 2; otherwise, the optimizer behaves as
in setting 0.

2 Nested-loop joins are not necessarily preferred. The optimizer bases
its decision purely on costs, regardless of transaction isolation mode.
3-84 Informix Guide to SQL: Reference

OPTMSG
OPTMSG
Set the OPTMSG environment variable at runtime before you start an
Informix ESQL/C application to enable optimized message transfers
(message chaining) for all SQL statements in an application. You also can
disable optimized message transfers for statements that require immediate
replies, for debugging, or to ensure that the database server processes all
messages before the application exits.

The default value is 0 (zero), which explicitly disables message chaining.

When you set OPTMSG within an application, you can activate or deactivate
optimized message transfers for each connection or within each thread. To
enable optimized message transfers, you must set OPTMSG before you
establish a connection.

For more information about setting OPTMSG and defining related global
variables, see the Informix ESQL/C Programmer’s Manual.

setenv OPTMSG 0

1

0 disables optimized message transfers.
1 enables optimized message transfers and implements the feature for

any subsequent connection.
Environment Variables 3-85

OPTOFC
OPTOFC
Set the OPTOFC environment variable to enable optimize-OPEN-FETCH-
CLOSE functionality in an Informix ESQL/C application that uses DECLARE
and OPEN statements to execute a cursor. The OPTOFC environment variable
reduces the number of message requests between the application and the
database server.

The default value is 0 (zero).

If you set OPTOFC from the shell, you must set it before you start the ESQL/C
application.

For more information about enabling OPTOFC and related features, see the
Informix ESQL/C Programmer’s Manual.

setenv OPTOFC 0

1

0 disables OPTOFC for all threads of the application.
1 enables OPTOFC for every cursor in every thread of the application.
3-86 Informix Guide to SQL: Reference

OPT_GOAL
OPT_GOAL
Set the OPT_GOAL environment variable in the user environment, before you
start an application, to specify the query performance goal for the optimizer.

The default behavior is for the optimizer to choose query plans that optimize
the total query time.

You can also specify the optimization goal for individual queries with
optimizer directives or for a session with the SET OPTIMIZATION statement.
Both methods take precedence over the OPT_GOAL environment variable
setting. You can also set the OPT_GOAL configuration parameter for the
Dynamic Server system; this method has the lowest level of precedence.

For more information about optimizing queries for your database server,
see your Performance Guide. For information on the SET OPTIMIZATION
statement, see the Informix Guide to SQL: Syntax.

UNIX

setenv OPT_GOAL 0

-1

0 specifies user-response-time optimization.
-1 specifies total-query-time optimization.
Environment Variables 3-87

PATH
PATH
The PATH environment variable tells the operating system where to search
for executable programs. You must include the directory that contains your
Informix product to your PATH environment variable before you can use the
product. This directory should appear before $INFORMIXDIR/bin, which
you must also include.

The UNIX PATH environment variable tells the shell which directories to
search for executable programs. You must add the directory that contains
your Informix product to your PATH environment variable before you can
use the product.

You can specify the correct search path in various ways. Be sure to include a
colon between the directory names.

For additional information about how to modify your path, see “Modifying
an Environment-Variable Setting” on page 3-11.

setenv PATH pathname

:

$PATH:

pathname specifies the search path for the executables.
3-88 Informix Guide to SQL: Reference

PDQPRIORITY
PDQPRIORITY
The PDQPRIORITY environment variable determines the degree of
parallelism that the database server uses and affects how the database server
allocates resources, including memory, processors, and disk reads.

For Extended Parallel Server, the PDQPRIORITY environment variable deter-
mines only the allocation of memory resources. ♦

XPS

HIGH

LOW

OFF

setenv PDQPRIORITY

 resources

, high_valueXPS

HIGH When the database server allocates resources among all users,
it gives as many resources as possible to the query.

LOW Data is fetched from fragmented tables in parallel.

For supported database servers other than Extended Parallel
Server, when you specify LOW, the database server uses no
forms of parallelism.

For Extended Parallel Server, other parallel operations can
occur when the setting is LOW.
Environment Variables 3-89

PDQPRIORITY
When the PDQPRIORITY environment variable is:

■ not set, the default value is OFF.

■ set to HIGH, the database server determines an appropriate value to
use for PDQPRIORITY based on several criteria. These include the
number of available processors, the fragmentation of tables queried,
the complexity of the query, and so on. ♦

When the PDQPRIORITY environment variable is:

■ not set, the default value is the value of the PDQPRIORITY configu-
ration parameter.

■ set to 0, the database server can execute a query in parallel,
depending on the number of available processors, the fragmentation
of tables queried, the complexity of the query, and so on.
PDQPRIORITY does not affect the degree of parallelism in Extended
Parallel Server. ♦

OFF PDQ processing is turned off (for supported database servers
other than Extended Parallel Server).

resources Integer value in the range 0 to 100.

Value 0 is the same as OFF (for supported database servers
other than Extended Parallel Server only).

Value 1 is the same as LOW.

For supported database servers other than Extended Parallel
Server, the resources value specifies the query priority level
and the amount of resources that the database server uses to
process the query.

For Extended Parallel Server, the resources value establishes
the minimum percentage of memory when you also specify
high_value to request a range of memory allocation.

high_value Optional integer value that requests the maximum percentage
of memory (for Extended Parallel Server only). When you
specify this value after the resources value, you request a
range of memory percentage.

IDS

XPS
3-90 Informix Guide to SQL: Reference

PLCONFIG
Usually, the more resources a database server uses, the better its performance
for a given query. However, if the database server uses too many resources,
contention among the resources can result and take resources away from
other queries, which results in degraded performance. For more information
on performance considerations for PDQPRIORITY, refer to your Performance
Guide.

An application can override the setting of the environment variable when it
issues the SQL statement SET PDQPRIORITY, which the Informix Guide to SQL:
Syntax describes.

PLCONFIG
The PLCONFIG environment variable specifies the name of the configuration
file that the High-Performance Loader (HPL) uses. This configuration file
must reside in the $INFORMIXDIR/etc directory. If the PLCONFIG environ-
ment variable is not set, $INFORMIXDIR/etc/plconfig is the default
configuration file.

For example, to specify the $INFORMIXDIR/etc/custom.cfg file as the config-
uration file for the High-Performance Loader, enter the following command:

setenv PLCONFIG custom.cfg

For more information, see the Guide to the High-Performance Loader.

IDS

setenv PLCONFIG filename

filename specifies the simple filename of the configuration file that
the High-Performance Loader uses.
Environment Variables 3-91

PLOAD_LO_PATH
PLOAD_LO_PATH
The PLOAD_LO_PATH environment variable lets you specify the pathname
for smart-large-object handles (which identify the location of smart large
objects such as BLOB, CLOB, and BOOLEAN data types).

If PLOAD_LO_PATH is not set, the default directory is /tmp.

For more information, see the Guide to the High-Performance Loader.

PLOAD_SHMBASE
The PLOAD_SHMBASE environment variable lets you specify the shared-
memory address at which the High-Performance Loader (HPL) onpload
processes will attach. If PLOAD_SHMBASE is not set, the HPL determines
which shared-memory address to use.

If the onpload utility cannot attach, an error appears and you must specify a
new value.

The onpload utility tries to determine at which address to attach, as follows:

1. Attach at the same address (SHMBASE) as the database server.

2. Attach beyond the database server segments.

3. Attach at the address specified in PLOAD_SHMBASE.

IDS

setenv PLOAD_LO_PATH pathname

pathname specifies the directory for the smart-large-object handles.

IDS

setenv PLOAD_SHMBASE value

value is used to calculate the shared-memory address.
3-92 Informix Guide to SQL: Reference

PSORT_DBTEMP
Tip: Informix recommends that you let the HPL decide where to attach and that you
set PLOAD_SHMBASE only if necessary to avoid shared-memory collisions between
onpload and the database server.

For more information, see the Guide to the High-Performance Loader.

PSORT_DBTEMP
The PSORT_DBTEMP environment variable specifies a directory or
directories where the database server writes the temporary files it uses when
it performs a sort.

The database server uses the directory that PSORT_DBTEMP specifies even if
the environment variable PSORT_NPROCS is not set.

To set the PSORT_DBTEMP environment variable to specify the directory (for
example, /usr/leif/tempsort), enter the following command:

setenv PSORT_DBTEMP /usr/leif/tempsort

For maximum performance, specify directories that reside in file systems on
different disks.

You might also want to consider setting the environment variable
DBSPACETEMP to place temporary files used in sorting in dbspaces rather
than operating-system files. See the discussion of the DBSPACETEMP
environment variable on page 3-51.

For additional information about the PSORT_DBTEMP environment variable,
see your Administrator’s Guide and your Performance Guide.

setenv pathnamePSORT_DBTEMP

;

pathname is the name of the UNIX directory used for intermediate
writes during a sort.
Environment Variables 3-93

PSORT_NPROCS
PSORT_NPROCS
The PSORT_NPROCS environment variable enables the database server to
improve the performance of the parallel-process sorting package by
allocating more threads for sorting.

PSORT_NPROCS does not necessarily improve sorting speed for Extended
Parallel Server because the database server sorts in parallel whether this
environment variable is set or not. ♦

Before the sorting package performs a parallel sort, make sure that the
database server has enough memory for the sort.

The following command sets the PSORT_NPROCS environment variable to 4:

setenv PSORT_NPROCS 4

To disable parallel sorting, enter the following command:

unsetenv PSORT_NPROCS

Informix recommends that you initially set PSORT_NPROCS to 2 when your
computer has multiple CPUs. If subsequent CPU activity is lower than I/O
activity, you can increase the value of PSORT_NPROCS.

Tip: If the PDQPRIORITY environment variable is not set, the database server
allocates the minimum amount of memory to sorting. This minimum memory is
insufficient to start even two sort threads. If you have not set the PDQPRIORITY
environment variable, check the available memory before you perform a large-scale
sort (such as an index build) and make sure that you have enough memory.

XPS

setenv PSORT_NPROCS threads

threads specifies the maximum number of threads to be used to
sort a query. The maximum value of threads is10.
3-94 Informix Guide to SQL: Reference

SHLIB_PATH
Default Values for Ordinary Sorts

If the PSORT_NPROCS environment variable is set, the database server uses
the specified number of sort threads as an upper limit for ordinary sorts. If
PSORT_NPROCS is not set, parallel sorting does not take place. The database
server uses one thread for the sort. If PSORT_NPROCS is set to 0, the database
server uses three threads for the sort.

Default Values for Attached Indexes

The default number of threads is different for attached indexes.

If the PSORT_NPROCS environment variable is set, you get the specified
number of sort threads for each fragment of the index that is being built.

If the PSORT_NPROCS environment variable is not set, or if it is set to 0, you
get two sort threads for each fragment of the index unless you have a single-
CPU virtual processor. If you have a single-CPU virtual processor, you get one
sort thread for each fragment of the index.

For additional information about the PSORT_NPROCS environment variable,
see your Administrator’s Guide and your Performance Guide.

SHLIB_PATH
The SHLIB_PATH environment variable tells the shell on HP-UX systems
which directories to search for dynamic-link libraries for the INTERSOLV
DataDirect ODBC Driver. You must specify the full pathname for the
directory where you installed the product.

On Solaris, set LD_LIBRARY_PATH. On AIX, set LIBPATH.

UNIX

setenv pathname

:

$PATH:SHLIB_PATH

pathname specifies the search path for the libraries.
Environment Variables 3-95

STMT_CACHE
STMT_CACHE
Use the STMT_CACHE environment variable to control the use of the shared-
statement cache on a session. This feature can reduce memory consumption
and speed query processing among different user sessions. Valid
STMT_CACHE values are 1 and 0.

Set the STMT_CACHE environment variable for applications that do not use
the SET STMT_CACHE statement to control the use of the SQL statement cache.

This environment variable has no effect if the SQL statement cache is disabled
through the configuration setting. The SET STMT_CACHE statement in the
application overrides the STMT_CACHE environment variable setting.

IDS

setenv STMT_CACHE

0

1

1 enables the SQL statement cache.
0 disables the SQL statement cache.
3-96 Informix Guide to SQL: Reference

TERM
TERM
The TERM environment variable is used for terminal handling. It lets
DB-Access recognize and communicate with the terminal that you are using.

The terminal type specified in the TERM setting must correspond to an entry
in the termcap file or terminfo directory. Before you can set the TERM
environment variable, you must obtain the code for your terminal from the
database administrator.

For example, to specify the vt100 terminal, set the TERM environment
variable by entering the following command:

setenv TERM vt100

TERMCAP
The TERMCAP environment variable is used for terminal handling. It tells
DB-Access to communicate with the termcap file instead of the terminfo
directory.

The termcap file contains a list of various types of terminals and their
characteristics. For example, to provide DB-Access terminal-handling infor-
mation, which is specified in the /usr/informix/etc/termcap file, enter the
following command:

setenv TERMCAP /usr/informix/etc/termcap

UNIX

setenv TERM type

type specifies the terminal type.

UNIX

setenv TERMCAP pathname

pathname specifies the location of the termcap file.
Environment Variables 3-97

TERMINFO
You can use any of the following settings for TERMCAP. Use them in the
following order:

1. The termcap file that you create

2. The termcap file that Informix supplies (that is,
$INFORMIXDIR/etc/termcap)

3. The operating-system termcap file (that is, /etc/termcap)

If you set the TERMCAP environment variable, be sure that the
INFORMIXTERM environment variable is set to the default, termcap.

If you do not set the TERMCAP environment variable, the system file (that is,
/etc/termcap) is used by default.

TERMINFO
The TERMINFO environment variable is used for terminal handling.

The environment variable is supported only on platforms that provide full
support for the terminfo libraries that System V and Solaris UNIX systems
provide.

TERMINFO tells DB-Access to communicate with the terminfo directory
instead of the termcap file. The terminfo directory has subdirectories that
contain files that pertain to terminals and their characteristics.

To set TERMINFO, enter the following command:

setenv TERMINFO /usr/lib/terminfo

If you set the TERMINFO environment variable, you must also set the
INFORMIXTERM environment variable to terminfo.

UNIX

setenv TERMINFO /usr/lib/terminfo
3-98 Informix Guide to SQL: Reference

THREADLIB
THREADLIB
Use the THREADLIB environment variable to compile multithreaded ESQL/C
applications. A multithreaded ESQL/C application lets you establish as many
connections to one or more databases as there are threads. These connections
can remain active while the application program executes.

The THREADLIB environment variable indicates which thread package to
use when you compile an application. Currently only the Distributed
Computing Environment (DCE) is supported.

The THREADLIB environment variable is checked when the -thread option is
passed to the ESQL/C script when you compile a multithreaded ESQL/C
application. When you use the -thread option while compiling, the ESQL/C
script generates an error if the THREADLIB environment variable is not set or
if the variable is set to an unsupported thread package.

XFER_CONFIG
The XFER_CONFIG environment variable specifies the location of the
xfer_config configuration file.

The xfer_config file works with the onxfer utility to help users migrate from
Version 7.x to Version 8.x. It contains various configuration parameter
settings that users can modify and a list of tables that users can select to be
transferred.

The default xfer_config file is located in the $INFORMIXDIR/etc directory on
UNIX systems or in the %INFORMIXDIR%\etc directory on Windows NT.

UNIX

setenv THREADLIB DCE

XPS

setenv XFER_CONFIG pathname

pathname specifies the location of the xfer_config file.
Environment Variables 3-99

Index of Environment Variables
Index of Environment Variables
Figure 3-2 provides an overview of the uses for the various Informix and
UNIX environment variables that Version 8.3 and Version 9.2 support. It
serves as an index to general topics and lists the related environment
variables and the pages where the environment variables are introduced.

The term GLS guide in the Page column in Figure 3-2 indicates that the GLS
environment variables are described in the Informix Guide to GLS
Functionality. ♦

Figure 3-2
Uses for Environment Variables

GLS

Topic Environment Variable Page

ANSI compliance DBANSIWARN 3-31

archecker utility AC_CONFIG 3-24

Buffer: fetch size FET_BUF_SIZE 3-60

Buffer: network size IFX_NETBUF_SIZE 3-64

Buffer: network pool size IFX_NETBUF_PVTPOOL_SIZE 3-64

BYTE or TEXT data buffer DBBLOBBUF 3-31

C compiler INFORMIXC 3-65

C compiler: processing of multibyte
characters

CC8BITLEVEL GLS guide

C++ INFORMIXCPPMAP 3-69

Cache: enabling STMT_CACHE 3-96

Cache: size for Optical Subsystem INFORMIXOPCACHE 3-71

Client locale CLIENT_LOCALE GLS guide

Client/server INFORMIXSERVER 3-71

INFORMIXSHMBASE 3-73

 (1 of 12)
3-100 Informix Guide to SQL: Reference

Index of Environment Variables
INFORMIXSTACKSIZE 3-75

Client/server: GLS CLIENT_LOCALE GLS guide

DB_LOCALE GLS guide

SERVER_LOCALE GLS guide

Code-set conversion CLIENT_LOCALE GLS guide

DB_LOCALE GLS guide

Communication Support Module:
DCE-GSS

INFORMIXKEYTAB 3-70

Communications Support Module:
location of concsm.cfg file

INFORMIXCONCSMCFG 3-66

Compilation: ESQL/C THREADLIB 3-99

Compiler CC8BITLEVEL GLS guide

INFORMIXC 3-65

Configuration file: database server ONCONFIG 3-83

Configuration file: ignore variables ENVIGNORE 3-59

Configuration file: ON-Archive ARC_CONFIG 3-25

ARC_DEFAULT 3-25

Configuration file: tctermcap ARC_KEYPAD 3-25

Configuration file: xfer_config XFER_CONFIG 3-99

Configuration parameter: COSERVER INFORMIXSERVER 3-71

Configuration parameter:
DBSERVERNAME

INFORMIXSERVER 3-71

Configuration parameter:
DBSPACETEMP

DBSPACETEMP 3-51

Configuration parameter:
DIRECTIVES

IFX_DIRECTIVES 3-62

Topic Environment Variable Page

 (2 of 12)
Environment Variables 3-101

Index of Environment Variables
Configuration parameter:
OPCACHEMAX

INFORMIXOPCACHE 3-71

Configuration parameter:
OPTCOMPIND

OPTCOMPIND 3-84

Configuration parameter: OPT_GOAL OPT_GOAL 3-87

Configuration parameter:
PDQPRIORITY

PDQPRIORITY 3-89

Configuration parameter: STACKSIZE INFORMIXSTACKSIZE 3-75

Connecting INFORMIXCONRETRY 3-67

INFORMIXCONTIME 3-67

INFORMIXSERVER 3-71

INFORMIXSQLHOSTS 3-74

Data distributions DBUPSPACE 3-57

Database locale DB_LOCALE GLS guide

Database server INFORMIXSERVER 3-71

SERVER_LOCALE GLS guide

Database server: archiving ARC_CONFIG 3-25

ARC_DEFAULT 3-25

ARC_KEYPAD 3-26

DBREMOTECMD 3-50

Database server: configuration file ONCONFIG 3-83

Database server: parallel sorting PSORT_DBTEMP 3-93

PSORT_NPROCS 3-94

Database server: parallelism PDQPRIORITY 3-89

Database server: role separation INF_ROLE_SEP 3-77

Topic Environment Variable Page

 (3 of 12)
3-102 Informix Guide to SQL: Reference

Index of Environment Variables
Database server: shared memory INFORMIXSHMBASE 3-73

Database server: stacksize INFORMIXSTACKSIZE 3-75

Database server: tape management ARC_CONFIG 3-25

ARC_DEFAULT 3-25

ARC_KEYPAD 3-26

DBREMOTECMD 3-50

Database server: temporary tables,
sort files

DBSPACETEMP 3-51

Date and time values DBCENTURY 3-33

DBDATE 3-37;
GLS guide

DBTIME 3-54;
GLS guide

GL_DATE GLS guide

GL_DATETIME GLS guide

DB-Access utility DBACCNOIGN 3-29

DBANSIWARN 3-31

DBDELIMITER 3-40

DBEDIT 3-41

DBFLTMASK 3-42

DBPATH 3-46

FET_BUF_SIZE 3-60

INFORMIXSERVER 3-71

INFORMIXTERM 3-76

TERM 3-97

Topic Environment Variable Page

 (4 of 12)
Environment Variables 3-103

Index of Environment Variables
TERMCAP 3-97

TERMINFO 3-98

DB/Cockpit graphic tool COCKPITSERVICE 3-27

dbexport utility DBDELIMITER 3-40

Delimited identifiers DELIMIDENT 3-58

Disk space DBUPSPACE 3-57

Editor DBEDIT 3-41

ESQL/C: ANSI compliance DBANSIWARN 3-31

ESQL/C: C compiler INFORMIXC 3-65

ESQL/C: DATETIME formatting DBTIME 3-54;
GLS guide

ESQL/C: delimited identifiers DELIMIDENT 3-58

ESQL/C: multibyte filter ESQLMF GLS guide

ESQL/C: multibyte identifiers CLIENT_LOCALE GLS guide

ESQL/C: multithreaded applications THREADLIB 3-99

ESQL/C: running C preprocessor
before the ESQL/C preprocessor

CPFIRST 3-28

Executable programs PATH 3-88

Fetch buffer size FET_BUF_SIZE 3-60

Filenames: multibyte GLS8BITSYS GLS guide

Files: field delimiter DBDELIMITER 3-40

Files: installation INFORMIXDIR 3-69

Files: locale CLIENT_LOCALE GLS guide

DB_LOCALE GLS guide

SERVER_LOCALE GLS guide

Topic Environment Variable Page

 (5 of 12)
3-104 Informix Guide to SQL: Reference

Index of Environment Variables
Files: map for C++ INFORMIXCPPMAP 3-69

Files: message DBLANG 3-43

Files: temporary DBSPACETEMP 3-51

Files: temporary, for Gateways DBTEMP 3-53

Files: temporary sorting PSORT_DBTEMP 3-93

Files: termcap, terminfo INFORMIXTERM 3-76

TERM 3-97

TERMCAP 3-97

TERMINFO 3-98

Gateways DBTEMP 3-53

High-Performance Loader DBONPLOAD 3-46

PLCONFIG 3-91

PLOAD_LO_PATH 3-92

PLOAD_SHMBASE 3-92

Identifiers: delimited DELIMIDENT 3-58

Identifiers: long IFX_LONGID 3-63

Identifiers: multibyte characters CLIENT_LOCALE GLS guide

ESQLMF GLS guide

Informix Storage Manager ISM_COMPRESSION 3-78

ISM_DEBUG_FILE 3-78

ISM_DEBUG_LEVEL 3-79

ISM_ENCRYPTION 3-80

ISM_MAXLOGSIZE 3-80

ISM_MAXLOGVERS 3-81

Topic Environment Variable Page

 (6 of 12)
Environment Variables 3-105

Index of Environment Variables
Installation INFORMIXDIR 3-69

PATH 3-88

Language environment DBLANG 3-43;
GLS guide

Libraries LD_LIBRARY_PATH 3-81

LIBPATH 3-82

SHLIB_PATH 3-95

Locale CLIENT_LOCALE GLS guide

DB_LOCALE GLS guide

SERVER_LOCALE GLS guide

Long Identifiers IFX_LONGID 3-63

Map file for C++ INFORMIXCPPMAP 3-69

Message chaining OPTMSG 3-85

Message files DBLANG 3-43;
GLS guide

Money values DBMONEY 3-45;
GLS guide

Multibyte characters CLIENT_LOCALE GLS guide

DB_LOCALE GLS guide

SERVER_LOCALE GLS guide

Multibyte filter ESQLMF GLS guide

Multithreaded applications THREADLIB 3-99

Network DBPATH 3-46

Topic Environment Variable Page

 (7 of 12)
3-106 Informix Guide to SQL: Reference

Index of Environment Variables
Nondefault locale CLIENT_LOCALE GLS guide

DB_LOCALE GLS guide

SERVER_LOCALE GLS guide

ON-Archive utility ARC_DEFAULT 3-25

ARC_KEYPAD 3-26

DBREMOTECMD 3-50

ON-Bar utility ISM_COMPRESSION 3-78

ISM_DEBUG_LEVEL 3-79

ISM_ENCRYPTION 3-80

ONCONFIG parameters See the “Configuration
parameter” entries

onprobe and oncockpit programs COCKPITSERVICE 3-27

Optical Subsystem INFORMIXOPCACHE 3-71

Optimization: directives, setting in
the query

IFX_DIRECTIVES 3-62

Optimization: message transfers OPTMSG 3-85

Optimization: selecting join method OPTCOMPIND 3-84

Optimization: specifying query
performance goal

OPT_GOAL 3-87

OPTOFC feature OPTOFC 3-86

Parameters See the “Configuration
parameter” entries

Pathname: for archecker
configuration file

AC_CONFIG 3-24

Pathname: for C COMPILER INFORMIXC 3-65

Pathname: for database files DBPATH 3-46

Topic Environment Variable Page

 (8 of 12)
Environment Variables 3-107

Index of Environment Variables
Pathname: for executable programs PATH 3-88

Pathname: for HPL smart-large-
object handles

PLOAD_LO_PATH 3-92

Pathname: for installation INFORMIXDIR 3-69

Pathname: for libraries LD_LIBRARY_PATH 3-81

LIBPATH 3-82

SHLIB_PATH 3-95

Pathname: for message files DBLANG 3-43;
GLS guide

Pathname: for parallel sorting PSORT_DBTEMP 3-93

Pathname: for remote shell DBREMOTECMD 3-50

Pathname: for xfer_config file XFER_CONFIG 3-99

Printing DBPRINT 3-49

Privileges NODEFDAC 3-77

Program: printing DBPRINT 3-49

Query: optimization IFX_DIRECTIVES 3-62

OPTCOMPIND 3-84

OPT_GOAL 3-87

Query: prioritization PDQPRIORITY 3-89

Remote shell DBREMOTECMD 3-50

Role separation INF_ROLE_SEP 3-77

Routine: DATETIME formatting DBTIME 3-54;
GLS guide

Server See the “Database server”
entries

Topic Environment Variable Page

 (9 of 12)
3-108 Informix Guide to SQL: Reference

Index of Environment Variables
Server locale SERVER_LOCALE GLS guide

Shared memory INFORMIXSHMBASE 3-73

PLOAD_SHMBASE 3-92

Shell: remote DBREMOTECMD 3-50

Shell: search path PATH 3-88

Sorting PSORT_DBTEMP 3-93

PSORT_NPROCS 3-94

DBSPACETEMP 3-51

SQL statement: caching STMT_CACHE 3-96

SQL statement: CONNECT INFORMIXCONTIME 3-67

INFORMIXSERVER 3-71

SQL statement: CREATE TEMP TABLE DBSPACETEMP 3-51

SQL statement: DESCRIBE FOR
UPDATE

IFX_UPDDESC 3-65

SQL statement: editing DBEDIT 3-41

SQL statement: LOAD, UNLOAD DBDELIMITER 3-40

SQL statement: SELECT INTO TEMP DBSPACETEMP 3-51

SQL statement: SET PDQPRIORITY PDQPRIORITY 3-89

SQL statement: SET STMT_CACHE STMT_CACHE 3-96

SQL statement: UNLOAD DBBLOBBUF 3-31

SQL statement: UPDATE STATISTICS DBUPSPACE 3-57

Stacksize INFORMIXSTACKSIZE 3-75

Tables: temporary DBSPACETEMP 3-51

PSORT_DBTEMP 3-93

Topic Environment Variable Page

 (10 of 12)
Environment Variables 3-109

Index of Environment Variables
Tables: temporary, for Gateways DBTEMP 3-53

Temporary tables DBSPACETEMP 3-51

DBTEMP 3-53

PSORT_DBTEMP 3-93

Terminal handling INFORMIXTERM 3-76

TERM 3-97

TERMCAP 3-97

TERMINFO 3-98

Utilities: archecker AC_CONFIG 3-24

Utilities: DB-Access DBANSIWARN 3-31

DBDELIMITER 3-40

DBEDIT 3-41

DBFLTMASK 3-42

DBPATH 3-46

FET_BUF_SIZE 3-60

INFORMIXSERVER 3-71

INFORMIXTERM 3-76

TERM 3-97

TERMCAP 3-97

TERMINFO 3-98

Utilities: dbexport DBDELIMITER 3-40

Utilities: ON-Archive ARC_DEFAULT 3-25

ARC_KEYPAD 3-26

DBREMOTECMD 3-50

Topic Environment Variable Page

 (11 of 12)
3-110 Informix Guide to SQL: Reference

Index of Environment Variables
Utilities: ON-Bar ISM_COMPRESSION 3-78

ISM_DEBUG_LEVEL 3-79

ISM_ENCRYPTION 3-80

Values: date and time DBDATE 3-37;
GLS guide

DBTIME 3-54;
GLS guide

Values: money DBMONEY 3-45;
GLS guide

Variables: overriding ENVIGNORE 3-59

Year 2000 DBCENTURY 3-33

Topic Environment Variable Page

 (12 of 12)
Environment Variables 3-111

A
Appendix
The stores_demo
Database
The stores_demo database contains a set of tables that describe
an imaginary business. The examples in the Informix Guide to
SQL: Syntax, the Informix Guide to SQL: Tutorial, and other
Informix manuals are based on this demonstration database. The
stores_demo database is not ANSI compliant.

This appendix contains the following sections:

■ The first section describes the structure of the tables in
the stores_demo database. It identifies the primary key
of each table, lists the name and data type of each col-
umn, and indicates whether the column has a default
value or check constraint. Indexes on columns are also
identified and classified as unique or if they allow dupli-
cate values.

■ The second section (page A-10) shows a graphic map of
the tables in the stores_demo database and indicates the
relationships among columns.

■ The third section (page A-12) describes the primary-
foreign key relationships among columns in tables.

■ The final section (page A-19) shows the data contained
in each table of the stores_demo database.

For information on how to create and populate the stores_demo
database, see the DB-Access User’s Manual. For information on
how to design and implement a relational database, see the
Informix Guide to Database Design and Implementation.

Structure of the Tables
Structure of the Tables
The stores_demo database contains information about a fictitious sporting-
goods distributor that services stores in the Western United States. This
database includes the following tables:

■ customer (page A-3)

■ orders (page A-4)

■ items (page A-5)

■ stock (page A-6)

■ catalog (page A-7)

■ cust_calls (page A-8)

■ call_type (page A-9)

■ manufact (page A-9)

■ state (page A-10)

The following sections describe each table. The unique identifier for each
table (primary key) is shaded and indicated by a key symbol.
A-2 Informix Guide to SQL: Reference

The customer Table
The customer Table
The customer table contains information about the retail stores that place
orders from the distributor. Figure A-1 shows the columns of the customer
table.

The zipcode column in Figure A-1 is indexed and allows duplicate values.

Figure A-1
The customer Table

Column Name Data Type Description

customer_num SERIAL(101) system-generated customer number

fname CHAR(15) first name of store representative

lname CHAR(15) last name of store representative

company CHAR(20) name of store

address1 CHAR(20) first line of store address

address2 CHAR(20) second line of store address

city CHAR(15) city

state CHAR(2) state (foreign key to state table)

zipcode CHAR(5) zipcode

phone CHAR(18) telephone number
The stores_demo Database A-3

The orders Table
The orders Table
The orders table contains information about orders placed by the customers
of the distributor. Figure A-2 shows the columns of the orders table.

Figure A-2
The orders Table

Column Name Data Type Description

order_num SERIAL(1001) system-generated order number

order_date DATE date order entered

customer_num INTEGER customer number (foreign key to customer
table)

ship_instruct CHAR(40) special shipping instructions

backlog CHAR(1) indicates order cannot be filled because the item
is backlogged:

■ y = yes

■ n = no

po_num CHAR(10) customer purchase order number

ship_date DATE shipping date

ship_weight DECIMAL(8,2) shipping weight

ship_charge MONEY(6) shipping charge

paid_date DATE date order paid
A-4 Informix Guide to SQL: Reference

The items Table
The items Table
An order can include one or more items. One row exists in the items table for
each item in an order. Figure A-3 shows the columns of the items table.

Figure A-3
The items Table

Column Name Data Type Description

item_num SMALLINT sequentially assigned item number for an order

order_num INTEGER order number (foreign key to orders table)

stock_num SMALLINT stock number for item (foreign key to stock table)

manu_code CHAR(3) manufacturer code for item ordered (foreign key to
manufact table)

quantity SMALLINT quantity ordered (value must be > 1)

total_price MONEY(8) quantity ordered ∗ unit price = total price of item
The stores_demo Database A-5

The stock Table
The stock Table
The distributor carries 41 types of sporting goods from various manufac-
turers. More than one manufacturer can supply an item. For example, the
distributor offers racing goggles from two manufacturers and running shoes
from six manufacturers.

The stock table is a catalog of the items sold by the distributor. Figure A-4
shows the columns of the stock table.

Figure A-4
The stock Table

Column Name Data Type Description

stock_num SMALLINT stock number that identifies type of item

manu_code CHAR(3) manufacturer code (foreign key to manufact table)

description CHAR(15) description of item

unit_price MONEY(6,2) unit price

unit CHAR(4) unit by which item is ordered:

■ each

■ pair

■ case

■ box

unit_descr CHAR(15) description of unit
A-6 Informix Guide to SQL: Reference

The catalog Table
The catalog Table
The catalog table describes each item in stock. Retail stores use this table
when placing orders with the distributor. Figure A-5 shows the columns of
the catalog table.

Figure A-5
The catalog Table

Column Name Data Type Description

catalog_num SERIAL(10001) system-generated catalog number

stock_num SMALLINT distributor stock number (foreign key to stock
table)

manu_code CHAR(3) manufacturer code (foreign key to manufact
table)

cat_descr TEXT description of item

cat_picture BYTE picture of item (binary data)

cat_advert VARCHAR(255, 65) tag line underneath picture
The stores_demo Database A-7

The cust_calls Table
The cust_calls Table
All customer calls for information on orders, shipments, or complaints are
logged. The cust_calls table contains information about these types of
customer calls. Figure A-6 shows the columns of the cust_calls table.

Figure A-6
The cust_calls Table

Column Name Data Type Description

customer_num INTEGER customer number (foreign key
to customer table)

call_dtime DATETIME YEAR TO MINUTE date and time call received

user_id CHAR(18) name of person logging call
(default is user login name)

call_code CHAR(1) type of call (foreign key to
call_type table)

call_descr CHAR(240) description of call

res_dtime DATETIME YEAR TO MINUTE date and time call resolved

res_descr CHAR(240) description of how call was
resolved
A-8 Informix Guide to SQL: Reference

The call_type Table
The call_type Table
The call codes associated with customer calls are stored in the call_type table.
Figure A-7 shows the columns of the call_type table.

Figure A-7
The call_type Table

The manufact Table
Information about the nine manufacturers whose sporting goods are handled
by the distributor is stored in the manufact table. Figure A-8 shows the
columns of the manufact table.

Figure A-8
The manufact Table

Column Name Data Type Description

call_code CHAR(1) call code

code_descr CHAR (30) description of call type

Column Name Data Type Description

manu_code CHAR(3) manufacturer code

manu_name CHAR(15) name of manufacturer

lead_time INTERVAL DAY(3) TO DAY lead time for shipment of orders
The stores_demo Database A-9

The state Table
The state Table
The state table contains the names and postal abbreviations for the 50 states
of the United States. Figure A-9 shows the columns of the state table.

Figure A-9
The state Table

The stores_demo Database Map
Figure A-10 displays the joins in the stores_demo database. The grey shading
that connects a column in one table to the same column in another table
indicates the relationships, or joins, between tables.

Column Name Data Type Description

code CHAR(2) state code

sname CHAR(15) state name
A-10 Informix Guide to SQL: Reference

The stores_dem
o Database M

ap

The stores_dem
o Database

A-11

Figure A-10
es_demo Database

manu_code

manu_name

lead_time

call_code

code_descr

call_type

manufact
Joins in the stor

catalog_num

stock_num

manu_code

cat_descr

cat_picture

cat_advert

stock_num

manu_code

description

unit_price

unit

unit_descr

item_num

order_num

stock_num

manu_code

quantity

total_price

customer_num

order_num

order_date

ship_instruct

backlog

paid_date

po_num

ship_date

ship_weight

ship_charge

lname

customer_num

fname

company

address1

phone

address2

city

state

zipcode

user_id

customer_num

call_dtime

call_code

call_descr

sname

res_dtime

res_descr

code

state

cust_calls customer

orders

items

stock

catalog

Primary-Foreign Key Relationships
Primary-Foreign Key Relationships
The tables of the stores_demo database are linked by the primary-foreign key
relationships that Figure A-10 on page A-11 shows and are identified in this
section. This type of relationship is called a referential constraint because a
foreign key in one table references the primary key in another table.
Figure A-11 through Figure A-18 show the relationships among tables
and how information stored in one table supplements information stored
in others.

The customer and orders Tables
The customer table contains a customer_num column that holds a number
that identifies a customer and columns for the customer name, company,
address, and telephone number. For example, the row with information
about Anthony Higgins contains the number 104 in the customer_num
column. The orders table also contains a customer_num column that stores
the number of the customer who placed a particular order. In the orders table,
the customer_num column is a foreign key that references the
customer_num column in the customer table. Figure A-11 shows this
relationship.

Figure A-11
Tables That the
customer_num

Column Joinscustomer_num

101
102
103
104

fname

Ludwig
Carole
Philip
Anthony

lname

Pauli
Sadler
Currie
Higgins

customer Table (detail)

customer_num

104
101
104
106

order_num

1001
1002
1003
1004

orders Table (detail)

order_date

05/20/1998
05/21/1998
05/22/1998
05/22/1998
A-12 Informix Guide to SQL: Reference

The orders and items Tables
According to Figure A-11, customer 104 (Anthony Higgins) has placed two
orders, as his customer number appears in two rows of the orders table.
Because the customer number is a foreign key in the orders table, you can
retrieve Anthony Higgins’ name, address, and information about his orders
at the same time.

The orders and items Tables
The orders and items tables are linked by an order_num column that
contains an identification number for each order. If an order includes several
items, the same order number appears in several rows of the items table. In
the items table, the order_num column is a foreign key that references the
order_num column in the orders table. Figure A-12 shows this relationship.

Figure A-12
Tables That the

order_num Column
Joins

order_num

1001
1002
1002
1003
1003
1003

stock_num

1
4
3
9
8
5

manu_code

HRO
HSK
HSK
ANZ
ANZ
ANZ

items Table (detail)

customer_num

104
101
104

order_num

1001
1002
1003

orders Table (detail)

order_date

05/20/1998
05/21/1998
05/22/1998

item_num

1
4
3
9
8
5

The stores_demo Database A-13

The items and stock Tables
The items and stock Tables
The items table and the stock table are joined by two columns: the
stock_num column, which stores a stock number for an item, and the
manu_code column, which stores a code that identifies the manufacturer.
You need both the stock number and the manufacturer code to uniquely
identify an item. For example, the item with the stock number 1 and the
manufacturer code HRO is a Hero baseball glove; the item with the stock
number 1 and the manufacturer code HSK is a Husky baseball glove. The
same stock number and manufacturer code can appear in more than one row
of the items table, if the same item belongs to separate orders. In the items
table, the stock_num and manu_code columns are foreign keys that
reference the stock_num and manu_code columns in the stock table.
Figure A-13 shows this relationship.

Figure A-13
Tables That the
stock_num and

manu_code
Columns Join

order_num

1001
1002
1002
1003
1003
1003
1004

stock_num

1
4
3
9
8
5
1

manu_code

HRO
HSK
HSK
ANZ
ANZ
ANZ
HRO

items Table (detail)

description

baseball gloves
baseball gloves
baseball gloves

stock_num

1
1
1

stock Table (detail)

manu_code

HRO
HSK
SMT

item_num

1
1
2
1
2
3
1

A-14 Informix Guide to SQL: Reference

The stock and catalog Tables
The stock and catalog Tables
The stock table and catalog table are joined by two columns: the stock_num
column, which stores a stock number for an item, and the manu_code
column, which stores a code that identifies the manufacturer. You need both
columns to uniquely identify an item. In the catalog table, the stock_num
and manu_code columns are foreign keys that reference the stock_num and
manu_code columns in the stock table. Figure A-14 shows this relationship.

Figure A-14
Tables That the
stock_num and

manu_code
Columns Join

catalog_num

10001
10002
10003
10004

stock_num

1
1
1
2

manu_code

HRO
HSK
SMT
HRO

catalog Table (detail)

description

baseball gloves
baseball gloves
baseball gloves

stock_num

1
1
1

stock Table (detail)

manu_code

HRO
HSK
SMT
The stores_demo Database A-15

The stock and manufact Tables
The stock and manufact Tables
The stock table and the manufact table are joined by the manu_code column.
The same manufacturer code can appear in more than one row of the stock
table if the manufacturer produces more than one piece of equipment. In the
stock table, the manu_code column is a foreign key that references the
manu_code column in the manufact table. Figure A-15 shows this
relationship.

Figure A-15
Tables That the

manu_code Column
Joins

manu_code

NRG
HSK
HRO

manufactTable (detail)

description

baseball gloves
baseball gloves
baseball gloves

stock_num

1
1
1

stock Table (detail)

manu_code

HRO
HSK
SMT

manu_name

Norge
Husky
Hero
A-16 Informix Guide to SQL: Reference

The cust_calls and customer Tables
The cust_calls and customer Tables
The cust_calls table and the customer table are joined by the customer_num
column. The same customer number can appear in more than one row of the
cust_calls table if the customer calls the distributor more than once with a
problem or question. In the cust_calls table, the customer_num column is a
foreign key that references the customer_num column in the customer table.
Figure A-16 shows this relationship.

Figure A-16
Tables That the
customer_num

Column Joinscustomer_num

101
102
103
104
105
106

fname

Ludwig
Carole
Philip
Anthony
Raymond
George

lname

Pauli
Sadler
Currie
Higgins
Vector
Watson

customer Table (detail)

user_id

maryj
maryj
mannyh
mannyh

cust_calls Table (detail)

call_dtime

1998-06-12 08:20
1998-07-31 14:30
1997-11-28 13:34
1997-12-21 11:24

customer_num

106
127
116
116
The stores_demo Database A-17

The call_type and cust_calls Tables
The call_type and cust_calls Tables
The call_type and cust_calls tables are joined by the call_code column. The
same call code can appear in more than one row of the cust_calls table
because many customers can have the same type of problem. In the cust_calls
table, the call_code column is a foreign key that references the call_code
column in the call_type table. Figure A-17 shows this relationship.

Figure A-17
Tables That the

call_code Column
Joinscall_code

B
D
I
L
O

code_descr

billing error
damaged goods
incorrect merchandise sent
late shipment
other

call_type Table (detail)

call_code

D
I
I
I

cust_calls Table (detail)

call_dtime

1998-06-12 08:20
1998-07-31 14:30
1997-11-28 13:34
1997-12-21 11:24

customer_num

106
127
116
116
A-18 Informix Guide to SQL: Reference

The state and customer Tables
The state and customer Tables
The state table and the customer table are joined by a column that contains
the state code. This column is called code in the state table and state in the
customer table. If several customers live in the same state, the same state
code appears in several rows of the table. In the customer table, the state
column is a foreign key that references the code column in the state table.
Figure A-18 shows this relationship.

Data in the stores_demo Database
 The following tables display the data in the stores_demo database.

Figure A-18
Tables That the

state/code Column
Joinscustomer_num

101
102
103

state

CA
CA
CA

customer Table (detail)

code

AK
AL
AR
AZ
CA

state Table (detail)

sname

Alaska
Alabama
Arkansas
Arizona
California

lname

Pauli
Sadler
Currie

fname

Ludwig
Carole
Philip
The stores_demo Database A-19

A-20
Inform

ix Guide to SQL: Reference

Data in the stores_dem
o Database

customer_num fn code phone

101 Lu 4086 408-789-8075

102 C 4117 415-822-1289

103 Ph 4303 650-328-4543

104 A 4026 650-368-1100

105 R 4022 650-776-3249

106 G 4063 650-389-8789

107 C 4304 650-356-9876

108 D 4063 650-544-8729

109 Ja 4086 408-723-8789

110 R 4062 650-743-3611

111 Fr 4085 408-277-7245

 (1 of 3)
customer Table

ame lname company address1 address2 city state zip

dwig Pauli All Sports
Supplies

213 Erstwild Court Sunnyvale CA 9

arole Sadler Sports Spot 785 Geary Street San Francisco CA 9

ilip Currie Phil’s Sports 654 Poplar P. O. Box 3498 Palo Alto CA 9

nthony Higgins Play Ball! East Shopping
Center

422 Bay Road Redwood
City

CA 9

aymond Vector Los Altos
Sports

1899 La Loma
Drive

Los Altos CA 9

eorge Watson Watson & Son 1143 Carver Place Mountain
View

CA 9

harles Ream Athletic
Supplies

41 Jordan Avenue Palo Alto CA 9

onald Quinn Quinn’s Sports 587 Alvarado Redwood
City

CA 9

ne Miller Sport Stuff Mayfair Mart 7345 Ross Blvd. Sunnyvale CA 9

oy Jaeger AA Athletics 520 Topaz Way Redwood
City

CA 9

ances Keyes Sports Center 3199 Sterling
Court

Sunnyvale CA 9

Data in the stores_dem
o Database

The stores_dem
o Database

A-21

112 Ma 22 650-887-7235

113 Lan 25 650-356-9982

114 Fra 62 650-886-6677

115 Alf 25 650-356-1123

116 Jea 40 650-534-8822

117 Arn 63 650-245-4578

118 Dic 09 650-655-0011

119 Bob 02 609-663-6079

120 Fre 16 602-265-8754

121 Jaso 98 302-366-7511

122 Cat 40 609-342-0054

123 Ma 56 904-823-4239

customer_num fna ode phone

 (2 of 3)
rgaret Lawson Runners &
Others

234 Wyandotte
Way

Los Altos CA 940

a Beatty Sportstown 654 Oak Grove Menlo Park CA 940

nk Albertson Sporting Place 947 Waverly Place Redwood
City

CA 940

red Grant Gold Medal
Sports

776 Gary Avenue Menlo Park CA 940

n Parmelee Olympic City 1104 Spinosa Drive Mountain
View

CA 940

old Sipes Kids Korner 850 Lytton Court Redwood
City

CA 940

k Baxter Blue Ribbon
Sports

5427 College Oakland CA 946

Shorter The Triathletes
Club

2405 Kings
Highway

Cherry Hill NJ 080

d Jewell Century Pro
Shop

6627 N. 17th Way Phoenix AZ 850

n Wallack City Sports Lake Biltmore Mall 350 W. 23rd Street Wilmington DE 198

hy O’Brian The Sporting
Life

543 Nassau Street Princeton NJ 085

rvin Hanlon Bay Sports 10100 Bay
Meadows Road

Suite 1020 Jacksonville FL 322

me lname company address1 address2 city state zipc

A-22
Inform

ix Guide to SQL: Reference

Data in the stores_dem
o Database

124 C 4006 918-355-2074

125 Ja 2135 617-232-4159

126 Ei 0219 303-936-7731

127 K 0406 312-944-5691

128 Fr 5008 602-533-1817

customer_num fn code phone

 (3 of 3)
hris Putnum Putnum’s
Putters

4715 S.E. Adams
Blvd

Suite 909C Bartlesville OK 7

mes Henry Total Fitness
Sports

1450
Commonwealth
Avenue

Brighton MA 0

leen Neelie Neelie’s
Discount Sports

2539 South Utica
Street

Denver CO 8

im Satifer Big Blue Bike
Shop

Blue Island Square 12222 Gregory
Street

Blue Island NY 6

ank Lessor Phoenix
University

Athletic
Department

1817 N. Thomas
Road

Phoenix AZ 8

ame lname company address1 address2 city state zip

Data in the stores_demo Database
items Table

item_num order_num stock_num manu_code quantity total_price

1 1001 1 HRO 1 250.00

1 1002 4 HSK 1 960.00

2 1002 3 HSK 1 240.00

1 1003 9 ANZ 1 20.00

2 1003 8 ANZ 1 840.00

3 1003 5 ANZ 5 99.00

1 1004 1 HRO 1 250.00

2 1004 2 HRO 1 126.00

3 1004 3 HSK 1 240.00

4 1004 1 HSK 1 800.00

1 1005 5 NRG 10 280.00

2 1005 5 ANZ 10 198.00

3 1005 6 SMT 1 36.00

4 1005 6 ANZ 1 48.00

1 1006 5 SMT 5 125.00

2 1006 5 NRG 5 140.00

3 1006 5 ANZ 5 99.00

4 1006 6 SMT 1 36.00

5 1006 6 ANZ 1 48.00

1 1007 1 HRO 1 250.00

2 1007 2 HRO 1 126.00

3 1007 3 HSK 1 240.00

4 1007 4 HRO 1 480.00

 (1 of 3)
The stores_demo Database A-23

Data in the stores_demo Database
5 1007 7 HRO 1 600.00

1 1008 8 ANZ 1 840.00

2 1008 9 ANZ 5 100.00

1 1009 1 SMT 1 450.00

1 1010 6 SMT 1 36.00

2 1010 6 ANZ 1 48.00

1 1011 5 ANZ 5 99.00

1 1012 8 ANZ 1 840.00

2 1012 9 ANZ 10 200.00

1 1013 5 ANZ 1 19.80

2 1013 6 SMT 1 36.00

3 1013 6 ANZ 1 48.00

4 1013 9 ANZ 2 40.00

1 1014 4 HSK 1 960.00

2 1014 4 HRO 1 480.00

1 1015 1 SMT 1 450.00

1 1016 101 SHM 2 136.00

2 1016 109 PRC 3 90.00

3 1016 110 HSK 1 308.00

4 1016 114 PRC 1 120.00

1 1017 201 NKL 4 150.00

2 1017 202 KAR 1 230.00

3 1017 301 SHM 2 204.00

1 1018 307 PRC 2 500.00

item_num order_num stock_num manu_code quantity total_price

 (2 of 3)
A-24 Informix Guide to SQL: Reference

Data in the stores_demo Database
2 1018 302 KAR 3 15.00

3 1018 110 PRC 1 236.00

4 1018 5 SMT 4 100.00

5 1018 304 HRO 1 280.00

1 1019 111 SHM 3 1499.97

1 1020 204 KAR 2 90.00

2 1020 301 KAR 4 348.00

1 1021 201 NKL 2 75.00

2 1021 201 ANZ 3 225.00

3 1021 202 KAR 3 690.00

4 1021 205 ANZ 2 624.00

1 1022 309 HRO 1 40.00

2 1022 303 PRC 2 96.00

3 1022 6 ANZ 2 96.00

1 1023 103 PRC 2 40.00

2 1023 104 PRC 2 116.00

3 1023 105 SHM 1 80.00

4 1023 110 SHM 1 228.00

5 1023 304 ANZ 1 170.00

6 1023 306 SHM 1 190.00

item_num order_num stock_num manu_code quantity total_price

 (3 of 3)
The stores_demo Database A-25

Data in the stores_demo Database
call_type Table

call_code code_descr

B billing error

D damaged goods

I incorrect merchandise sent

L late shipment

O other
A-26 Informix Guide to SQL: Reference

Data in the stores_dem
o Database

The stores_dem
o Database

A-27

order_num order_d arge paid_date

1001 05/20/ 0 07/22/1998

1002 05/21/ 0 06/03/1998

1003 05/22/ 0 06/14/1998

1004 05/22/ 0

1005 05/24/ 0 06/21/1998

1006 05/30/ 0

1007 05/31/ 0

1008 06/07/ 0 07/21/1998

1009 06/14/ 0 08/21/1998

1010 06/17/ 0 08/22/1998

1011 06/18/ 08/29/1998

1012 06/18/ 0

1013 06/22/ 0 07/31/1998

1014 06/25/ 0 07/10/1998

 (1 of 2)
orders Table

ate customer_num ship_instruct backlog po_num ship_date ship_weight ship_ch

1998 104 express n B77836 06/01/1998 20.40 10.0

1998 101 PO on box; deliver
back door only

n 9270 05/26/1998 50.60 15.3

1998 104 express n B77890 05/23/1998 35.60 10.8

1998 106 ring bell twice y 8006 05/30/1998 95.80 19.2

1998 116 call before delivery n 2865 06/09/1998 80.80 16.2

1998 112 after 10AM y Q13557 70.80 14.2

1998 117 n 278693 06/05/1998 125.90 25.2

1998 110 closed Monday y LZ230 07/06/1998 45.60 13.8

1998 111 door next to grocery n 4745 06/21/1998 20.40 10.0

1998 115 deliver 776 King St. if
no answer

n 429Q 06/29/1998 40.60 12.3

1998 104 express n B77897 07/03/1998 10.40 5.00

1998 117 n 278701 06/29/1998 70.80 14.2

1998 104 express n B77930 07/10/1998 60.80 12.2

1998 106 ring bell, kick door
loudly

n 8052 07/03/1998 40.60 12.3

A-28
Inform

ix Guide to SQL: Reference

Data in the stores_dem
o Database

1015 06/27 30 08/31/1998

1016 06/29 .80

1017 07/09 .00

1018 07/10 .00 08/06/1998

1019 07/11 .00 08/06/1998

1020 07/11 50 09/20/1998

1021 07/23 .00 08/22/1998

1022 07/24 .00 09/02/1998

1023 07/24 .00 08/22/1998

order_num order_ harge paid_date

 (2 of 2)
/1998 110 closed Mondays n MA003 07/16/1998 20.60 6.

/1998 119 delivery entrance off
Camp St.

n PC6782 07/12/1998 35.00 11

/1998 120 North side of
clubhouse

n DM354331 07/13/1998 60.00 18

/1998 121 SW corner of Biltmore
Mall

n S22942 07/13/1998 70.50 20

/1998 122 closed til noon
Mondays

n Z55709 07/16/1998 90.00 23

/1998 123 express n W2286 07/16/1998 14.00 8.

/1998 124 ask for Elaine n C3288 07/25/1998 40.00 12

/1998 126 express n W9925 07/30/1998 15.00 13

/1998 127 no deliveries after 3
p.m.

n KF2961 07/30/1998 60.00 18

date customer_num ship_instruct backlog po_num ship_date ship_weight ship_c

Data in the stores_demo Database
stock Table

stock_num manu_code description unit_price unit unit_descr

1 HRO baseball gloves 250.00 case 10 gloves/case

1 HSK baseball gloves 800.00 case 10 gloves/case

1 SMT baseball gloves 450.00 case 10 gloves/case

2 HRO baseball 126.00 case 24/case

3 HSK baseball bat 240.00 case 12/case

3 SHM baseball bat 280.00 case 12/case

4 HSK football 960.00 case 24/case

4 HRO football 480.00 case 24/case

5 NRG tennis racquet 28.00 each each

5 SMT tennis racquet 25.00 each each

5 ANZ tennis racquet 19.80 each each

6 SMT tennis ball 36.00 case 24 cans/case

6 ANZ tennis ball 48.00 case 24 cans/case

7 HRO basketball 600.00 case 24/case

8 ANZ volleyball 840.00 case 24/case

9 ANZ volleyball net 20.00 each each

101 PRC bicycle tires 88.00 box 4/box

101 SHM bicycle tires 68.00 box 4/box

102 SHM bicycle brakes 220.00 case 4 sets/case

102 PRC bicycle brakes 480.00 case 4 sets/case

103 PRC front derailleur 20.00 each each

104 PRC rear derailleur 58.00 each each

105 PRC bicycle wheels 53.00 pair pair

 (1 of 4)
The stores_demo Database A-29

Data in the stores_demo Database
105 SHM bicycle wheels 80.00 pair pair

106 PRC bicycle stem 23.00 each each

107 PRC bicycle saddle 70.00 pair pair

108 SHM crankset 45.00 each each

109 PRC pedal binding 30.00 case 6 pairs/case

109 SHM pedal binding 200.00 case 4 pairs/case

110 PRC helmet 236.00 case 4/case

110 ANZ helmet 244.00 case 4/case

110 SHM helmet 228.00 case 4/case

110 HRO helmet 260.00 case 4/case

110 HSK helmet 308.00 case 4/case

111 SHM 10-spd, assmbld 499.99 each each

112 SHM 12-spd, assmbld 549.00 each each

113 SHM 18-spd, assmbld 685.90 each each

114 PRC bicycle gloves 120.00 case 10 pairs/case

201 NKL golf shoes 37.50 each each

201 ANZ golf shoes 75.00 each each

201 KAR golf shoes 90.00 each each

202 NKL metal woods 174.00 case 2 sets/case

202 KAR std woods 230.00 case 2 sets/case

203 NKL irons/wedges 670.00 case 2 sets/case

204 KAR putter 45.00 each each

205 NKL 3 golf balls 312.00 case 24/case

205 ANZ 3 golf balls 312.00 case 24/case

stock_num manu_code description unit_price unit unit_descr

 (2 of 4)
A-30 Informix Guide to SQL: Reference

Data in the stores_demo Database
205 HRO 3 golf balls 312.00 case 24/case

301 NKL running shoes 97.00 each each

301 HRO running shoes 42.50 each each

301 SHM running shoes 102.00 each each

301 PRC running shoes 75.00 each each

301 KAR running shoes 87.00 each each

301 ANZ running shoes 95.00 each each

302 HRO ice pack 4.50 each each

302 KAR ice pack 5.00 each each

303 PRC socks 48.00 box 24 pairs/box

303 KAR socks 36.00 box 24 pair/box

304 ANZ watch 170.00 box 10/box

304 HRO watch 280.00 box 10/box

305 HRO first-aid kit 48.00 case 4/case

306 PRC tandem adapter 160.00 each each

306 SHM tandem adapter 190.00 each each

307 PRC infant jogger 250.00 each each

308 PRC twin jogger 280.00 each each

309 HRO ear drops 40.00 case 20/case

309 SHM ear drops 40.00 case 20/case

310 SHM kick board 80.00 case 10/case

310 ANZ kick board 89.00 case 12/case

311 SHM water gloves 48.00 box 4 pairs/box

312 SHM racer goggles 96.00 box 12/box

stock_num manu_code description unit_price unit unit_descr

 (3 of 4)
The stores_demo Database A-31

Data in the stores_demo Database
312 HRO racer goggles 72.00 box 12/box

313 SHM swim cap 72.00 box 12/box

313 ANZ swim cap 60.00 box 12/box

stock_num manu_code description unit_price unit unit_descr

 (4 of 4)
A-32 Informix Guide to SQL: Reference

Data in the stores_dem
o Database

The stores_dem
o Database

A-33

catalog_num stock

10001 1 Baseball Glove

10002 1 -Stitched, Deep-
ebbing that Won’t

10003 1 s Mitt With the

10004 2 ll Available, from
 to the Robinson

10005 3 esign Expands

10006 3 for High School
letes

10007 4 th Norm Van

10008 4 otball for High
ate Competitions

10009 5 es Your Natural
ing More Power

amic Design

 (1 of 10)
catalog Table

_num manu_code cat_descr cat_picture cat_advert

HRO Brown leather. Specify first baseman’s or
infield/outfield style. Specify right- or
left-handed.

<BYTE value> Your First Season’s

HSK Babe Ruth signature glove. Black leather.
Infield/outfield style. Specify right- or
left-handed.

<BYTE value> All-Leather, Hand
Pockets, Sturdy W
Let Go

SMT Catcher’s mitt. Brown leather. Specify
right- or left-handed.

<BYTE value> A Sturdy Catcher’
Perfect Pocket

HRO Jackie Robinson signature glove. Highest
Professional quality, used by National
League.

<BYTE value> Highest Quality Ba
the Hand-Stitching
Signature

HSK Pro-style wood. Available in sizes: 31, 32, 33,
34, 35.

<BYTE value> High-Technology D
the Sweet Spot

SHM Aluminum. Blue with black tape. 31", 20 oz or
22 oz; 32", 21 oz or 23 oz; 33", 22 oz or 24 oz.

<BYTE value> Durable Aluminum
and Collegiate Ath

HSK Norm Van Brocklin signature style. <BYTE value> Quality Pigskin wi
Brocklin Signature

HRO NFL-Style pigskin. <BYTE value> Highest Quality Fo
School and Collegi

NRG Graphite frame. Synthetic strings. <BYTE value> Wide Body Amplifi
Abilities by Provid
Through Aerodyn

A-34
Inform

ix Guide to SQL: Reference

Data in the stores_dem
o Database

10010 et for the Improving

10011 of Classic Wooden
h Cat-Gut Strings

10012 nnis, Day or Night

10013 ction Coupled with
ors Available

10014 balls for Indoor

10015 eyballs for Indoor

10016 ball Netting for
al and Collegiate

10017 1 ture Protection,
r In-City Riding

10018 1 or Club Rides or

catalog_num stoc

 (2 of 10)
5 SMT Aluminum frame. Synthetic strings. <BYTE value> Mid-Sized Racqu
Player

5 ANZ Wood frame, cat-gut strings. <BYTE value> Antique Replica
Racquet Built wit

6 SMT Soft yellow color for easy visibility in
sunlight or artificial light.

<BYTE value> High-Visibility Te

6 ANZ Pro-core. Available in neon yellow, green,
and pink.

<BYTE value> Durable Constru
the Brightest Col

7 HRO Indoor. Classic NBA style. Brown leather. <BYTE value> Long-Life Basket
Gymnasiums

8 ANZ Indoor. Finest leather. Professional quality. <BYTE value> Professional Voll
Competitions

9 ANZ Steel eyelets. Nylon cording. Double-stitched.
Sanctioned by the National Athletic
Congress.

<BYTE value> Sanctioned Volley
Indoor Profession
Competition

01 PRC Reinforced, hand-finished tubular.
Polyurethane belted. Effective against
punctures. Mixed tread for super wear and
road grip.

<BYTE value> Ultimate in Punc
Tires Designed fo

01 SHM Durable nylon casing with butyl tube for
superior air retention. Center-ribbed tread
with herringbone side. Coated sidewalls
resist abrasion.

<BYTE value> The Perfect Tire f
Training

k_num manu_code cat_descr cat_picture cat_advert

Data in the stores_dem
o Database

The stores_dem
o Database

A-35

10019 10 d Spring-Sleeve
ees Smooth Action

10020 10 Delivers Rigid Yet
kes

10021 10 ain: ProCycle’s
dds Finesse to

10022 10 esign Engineers
 Into ProCycle’s

10023 10 heels That Hold
est Conditions

10024 10 Wheels for
erformance

10025 10 h Pearl Finish

catalog_num stock

 (3 of 10)
2 SHM Thrust bearing and coated pivot washer/
spring sleeve for smooth action. Slotted levers
with soft gum hoods. Two-tone paint
treatment. Set includes calipers, levers, and
cables.

<BYTE value> Thrust-Bearing an
Brake Set Guarant

2 PRC Computer-aided design with low-profile
pads. Cold-forged alloy calipers and beefy
caliper bushing. Aero levers. Set includes
calipers, levers, and cables.

<BYTE value> Computer Design
Vibration-Free Bra

3 PRC Compact leading-action design enhances
shifting. Deep cage for super-small granny
gears. Extra strong construction to resist off-
road abuse.

<BYTE value> Climb Any Mount
Front Derailleur A
Your ATB

4 PRC Floating trapezoid geometry with extra thick
parallelogram arms. 100-tooth capacity.
Optimum alignment with any freewheel.

<BYTE value> Computer-Aided D
100-Tooth Capacity
Rear Derailleur

5 PRC Front wheels laced with 15g spokes in a 3-
cross pattern. Rear wheels laced with 14g
spikes in a 3-cross pattern.

<BYTE value> Durable Training W
True Under Tough

5 SHM Polished alloy. Sealed-bearing, quick-release
hubs. Double-butted. Front wheels are laced
15g/2-cross. Rear wheels are laced 15g/3-
cross.

<BYTE value> Extra Lightweight
Training or High-P
Touring

6 PRC Hard anodized alloy with pearl finish. 6mm
hex bolt hardware. Available in lengths of
90-140mm in 10mm increments.

<BYTE value> ProCycle Stem wit

_num manu_code cat_descr cat_picture cat_advert

A-36
Inform

ix Guide to SQL: Reference

Data in the stores_dem
o Database

10026 1 iding Comfort,
 Anatomical

10027 1 ountain Bike With
ankset

10028 1 proved To Prevent
Buckle

10029 1 Clip Design
m Power And Fast

10030 1 ick-Release,
tion Helmet

10031 1 ontact, Feather-
 Protection Helmet

catalog_num stoc

 (4 of 10)
07 PRC Available in three styles: Men’s racing;
Men’s touring; and Women’s. Anatomical gel
construction with lycra cover. Black or
black/hot pink.

<BYTE value> The Ultimate In R
Lightweight With
Support

08 SHM Double or triple crankset with choice of
chainrings. For double crankset, chainrings
from 38-54 teeth. For triple crankset,
chainrings from 24-48 teeth.

<BYTE value> Customize Your M
Extra-Durable Cr

09 PRC Steel toe clips with nylon strap. Extra wide at
buckle to reduce pressure.

<BYTE value> Classic Toeclip Im
Soreness At Clip

09 SHM Ingenious new design combines button on
sole of shoe with slot on a pedal plate to give
riders new options in riding efficiency.
Choose full or partial locking. Four plates
mean both top and bottom of pedals are
slotted—no fishing around when you want to
engage full power. Fast unlocking ensures
safety when maneuverability is paramount.

<BYTE value> Ingenious Pedal/
Delivers Maximu
Unlocking

10 PRC Super-lightweight. Meets both ANSI and
Snell standards for impact protection. 7.5 oz.
Quick-release shadow buckle.

<BYTE value> Feather-Light, Qu
Maximum Protec

10 ANZ No buckle so no plastic touches your chin.
Meets both ANSI and Snell standards for
impact protection. 7.5 oz. Lycra cover.

<BYTE value> Minimum Chin C
Light, Maximum

k_num manu_code cat_descr cat_picture cat_advert

Data in the stores_dem
o Database

The stores_dem
o Database

A-37

10032 11 lmet: Smooth
he Worry of Brush
 Maximum

10033 11 c with Vents
fort Without
on

10034 11 sed by Yellow
ime the Difference

10035 11 cycle Designed for
uter Who Mixes
sure

10036 11 al Combination of
ment, then

 Package Deal:
 on the Roads,
e Everywhere

10037 11 rious Competitor,
ing Machine

catalog_num stock

 (5 of 10)
0 SHM Dense outer layer combines with softer inner
layer to eliminate the mesh cover, no
snagging on brush. Meets both ANSI and
Snell standards for impact protection. 8.0 oz.

<BYTE value> Mountain Bike He
Cover Eliminates t
Snags But Delivers
Protection

0 HRO Newest ultralight helmet uses plastic shell.
Largest ventilation channels of any helmet on
the market. 8.5 oz.

<BYTE value> Lightweight Plasti
Assures Cool Com
Sacrificing Protecti

0 HSK Aerodynamic (teardrop) helmet covered with
anti-drag fabric. Credited with shaving 2
seconds/mile from winner’s time in Tour de
France time-trial. 7.5 oz.

<BYTE value> Teardrop Design U
Jerseys, You Can T

1 SHM Light-action shifting 10 speed. Designed for
the city commuter with shock-absorbing
front fork and drilled eyelets for carry-all
racks or bicycle trailers. Internal wiring for
generator lights. 33 lbs.

<BYTE value> Fully Equipped Bi
the Serious Comm
Business With Plea

2 SHM Created for the beginner enthusiast. Ideal for
club rides and light touring. Sophisticated
triple-butted frame construction. Precise
index shifting. 28 lbs.

<BYTE value> We Selected the Ide
Touring Bike Equip
Turned It Into This
High-Performance
Maximum Pleasur

3 SHM Ultra-lightweight. Racing frame geometry
built for aerodynamic handlebars. Cantilever
brakes. Index shifting. High-performance
gearing. Quick-release hubs. Disk wheels.
Bladed spokes.

<BYTE value> Designed for the Se
The Complete Rac

_num manu_code cat_descr cat_picture cat_advert

A-38
Inform

ix Guide to SQL: Reference

Data in the stores_dem
o Database

10038 1 r Comfort and

10039 2 ng-Wearing Golf
d Women

10040 2 ction Ensures
rt and Durability In

10041 2 ality Shoe
r and Leather Mesh

10042 2 ds, Ideal for High
giate Classes

10043 2 ods Appropriate for
petitions or Serious

10044 2 ble From Factory at
ngs: Discontinued

10045 2 inning Set of Irons
igh School

catalog_num stoc

 (6 of 10)
14 PRC Padded leather palm and stretch mesh
merged with terry back; Available in tan,
black, and cream. Sizes S, M, L, XL.

<BYTE value> Riding Gloves fo
Protection

01 NKL Designed for comfort and stability. Available
in white & blue or white & brown. Specify
size.

<BYTE value> Full-Comfort, Lo
Shoes for Men an

01 ANZ Guaranteed waterproof. Full leather upper.
Available in white, bone, brown, green, and
blue. Specify size.

<BYTE value> Waterproof Prote
Maximum Comfo
All Climates

01 KAR Leather and leather mesh for maximum
ventilation. Waterproof lining to keep feet
dry. Available in white & gray or white &
ivory. Specify size.

<BYTE value> Karsten’s Top Qu
Combines Leathe

02 NKL Complete starter set utilizes gold shafts.
Balanced for power.

<BYTE value> Starter Set of Woo
School and Colle

02 KAR Full set of woods designed for precision
control and power performance.

<BYTE value> High-Quality Wo
High School Com
Amateurs

03 NKL Set of eight irons includes 3 through 9 irons
and pitching wedge. Originally priced at
$489.00.

<BYTE value> Set of Irons Availa
Tremendous Savi
Line

04 KAR Ideally balanced for optimum control.
Nylon-covered shaft.

<BYTE value> High-Quality Beg
Appropriate for H
Competitions

k_num manu_code cat_descr cat_picture cat_advert

Data in the stores_dem
o Database

The stores_dem
o Database

A-39

10046 20 alls: Fluorescent

10047 20 alls: White

10048 20 Case Includes
 and Standard

10049 30 on For High-

10050 30 inators Take Heart:
Shoe For Runners
 Control

10051 30 Engineered for
ltra-Distance

10052 30 Flat That
refoot Protection

el

catalog_num stock

 (7 of 10)
5 NKL Fluorescent yellow. <BYTE value> Long Drive Golf B
Yellow

5 ANZ White only. <BYTE value> Long Drive Golf B

5 HRO Combination fluorescent yellow and
standard white.

<BYTE value> HiFlier Golf Balls:
Fluorescent Yellow
White

1 NKL Super shock-absorbing gel pads disperse
vertical energy into a horizontal plane for
extraordinary cushioned comfort. Great
motion control. Men’s only. Specify size.

<BYTE value> Maximum Protecti
Mileage Runners

1 HRO Engineered for serious training with
exceptional stability. Fabulous shock
absorption. Great durability. Specify
men’s/women’s, size.

<BYTE value> Pronators and Sup
A Serious Training
Who Need Motion

1 SHM For runners who log heavy miles and need a
durable, supportive, stable platform.
Mesh/synthetic upper gives excellent
moisture dissipation. Stability system uses
rear antipronation platform and forefoot
control plate for extended protection during
high-intensity training. Specify
men’s/women’s size.

<BYTE value> The Training Shoe
Marathoners and U
Runners

1 PRC Supportive, stable racing flat. Plenty of
forefoot cushioning with added motion
control. Women’s only. D widths available.
Specify size.

<BYTE value> A Woman’s Racing
Combines Extra Fo
With a Slender He

_num manu_code cat_descr cat_picture cat_advert

A-40
Inform

ix Guide to SQL: Reference

Data in the stores_dem
o Database

10053 3 Flat That Can Carry
rathon Miles

10054 3 rotection, and
m

10055 3 ck for Achilles
 Splints that You
ffice

10056 3 s Off With YOUR

10057 3 d Socks - No Cotton

10058 3 /4-Lap Memory

10059 3 lete Watch In
ors

catalog_num stoc

 (8 of 10)
01 KAR Anatomical last holds your foot firmly in
place. Feather-weight cushioning delivers
the responsiveness of a racing flat. Specify
men’s/women’s size.

<BYTE value> Durable Training
You Through Ma

01 ANZ Cantilever sole provides shock absorption
and energy rebound. Positive traction shoe
with ample toe box. Ideal for runners who
need a wide shoe. Available in men’s and
women’s. Specify size.

<BYTE value> Motion Control, P
Extra Toebox Roo

02 KAR Reusable ice pack with velcro strap. For
general use. Velcro strap allows easy
application to arms or legs.

<BYTE value> Finally, an Ice Pa
Injuries and Shin
Can Take to the O

03 PRC Neon nylon. Perfect for running or aerobics.
Indicate color: Fluorescent pink, yellow,
green, and orange.

<BYTE value> Knock Their Sock
Socks

03 KAR 100% nylon blend for optimal wicking and
comfort. We’ve taken out the cotton to
eliminate the risk of blisters and reduce the
opportunity for infection. Specify men’s or
women’s.

<BYTE value> 100% Nylon Blen

04 ANZ Provides time, date, dual display of
lap/cumulative splits, 4-lap memory, 10 hr
count-down timer, event timer, alarm, hour
chime, waterproof to 50m, velcro band.

<BYTE value> Athletic Watch w

04 HRO Split timer, waterproof to 50m. Indicate color:
Hot pink, mint green, space black.

<BYTE value> Waterproof Triath
Competition Col

k_num manu_code cat_descr cat_picture cat_advert

Data in the stores_dem
o Database

The stores_dem
o Database

A-41

10060 30 rst-Aid Kit
 Practices, Team

10061 30 th Your Child on a
r Family Outing

10062 30 Vacation for the
ightweight,
r Parent and Child

10063 30 s A Running

10064 30 ows, Infant Jogger

10065 30 vent Ear Infection

10066 30 ops Specially
ildren

10067 31 able, Compact
 Practice

10068 31 board

10069 31 - Webbed Swim
 Strength and

catalog_num stock

 (9 of 10)
5 HRO Contains ace bandage, anti-bacterial cream,
alcohol cleansing pads, adhesive bandages of
assorted sizes, and instant-cold pack.

<BYTE value> Comprehensive Fi
Essential for Team
Traveling

6 PRC Converts a standard tandem bike into an
adult/child bike. User-tested assembly
instructions

<BYTE value> Enjoy Bicycling Wi
Tandem; Make You
Safer

6 SHM Converts a standard tandem bike into an
adult/child bike. Lightweight model.

<BYTE value> Consider a Touring
Entire Family: A L
Touring Tandem fo

7 PRC Allows mom or dad to take the baby out too.
Fits children up to 21 pounds. Navy blue with
black trim.

<BYTE value> Infant Jogger Keep
Family Together

8 PRC Allows mom or dad to take both children!
Rated for children up to 18 pounds.

<BYTE value> As Your Family Gr
Grows With You

9 HRO Prevents swimmer’s ear. <BYTE value> Swimmers Can Pre
All Season Long

9 SHM Extra-gentle formula. Can be used every day
for prevention or treatment of swimmer’s ear.

<BYTE value> Swimmer’s Ear Dr
Formulated for Ch

0 SHM Blue heavy-duty foam board with Shimara or
team logo.

<BYTE value> Exceptionally Dur
Kickboard for Team

0 ANZ White. Standard size. <BYTE value> High-Quality Kick

1 SHM Swim gloves. Webbing between fingers
promotes strengthening of arms. Cannot be
used in competition.

<BYTE value> Hot Training Tool
Gloves Build Arm
Endurance

_num manu_code cat_descr cat_picture cat_advert

A-42
Inform

ix Guide to SQL: Reference

Data in the stores_dem
o Database

10070 3 er’s Goggles:
t

10071 3 raditional Rounded
Comfort

10072 3 ne Swim Cap

10073 3 -off Silicone Swim

10074 3 ent Combines With
timal Orthopedic

catalog_num stoc

 (10 of 10)
12 SHM Hydrodynamic egg-shaped lens. Ground-in
anti-fog elements; Available in blue or smoke.

<BYTE value> Anti-Fog Swimm
Quantity Discoun

12 HRO Durable competition-style goggles. Available
in blue, grey, or white.

<BYTE value> Swim Goggles: T
Lens For Greater

13 SHM Silicone swim cap. One size. Available in
white, silver, or navy. Team Logo Imprinting
Available.

<BYTE value> Team Logo Silico

14 ANZ Silicone swim cap. Squared-off top. One size.
White

<BYTE value> Durable Squared
Cap

15 HRO Re-usable ice pack. Store in the freezer
for instant first-aid. Extra capacity to
accommodate water and ice.

<BYTE value> Water Compartm
Ice to Provide Op
Treatment

k_num manu_code cat_descr cat_picture cat_advert

Data in the stores_dem
o Database

The stores_dem
o Database

A-43

customer_num ca

106 19 dit for two cans to
ed apology. Called
 report the QA

110 19 shipping (Ed
sent yesterday- we
or goods from
e will call with

ary.

119 19 e Akant in
und the error and
 bill to customer.

121 19 arketing group of
nt joggers.

 (1 of 2)
cust_calls Table

ll_dtime user_id call_code call_descr res_dtime res_descr

98-06-12 8:20 maryj D Order was received, but two
of the cans of ANZ tennis
balls within the case were
empty.

1998-06-12 8:25 Authorized cre
customer, issu
ANZ buyer to
problem.

98-07-07 10:24 richc L Order placed one month ago
(6/7) not received.

1998-07-07 10:30 Checked with
Smith). Order
were waiting f
ANZ. Next tim
delay if necess

98-07-01 15:00 richc B Bill does not reflect credit
from previous order.

1998-07-02 8:21 Spoke with Jan
Finance. She fo
is sending new

98-07-10 14:05 maryj O Customer likes our
merchandise. Requests that
we stock more types of infant
joggers. Will call back to place
order.

1998-07-10 14:06 Sent note to m
interest in infa

A-44
Inform

ix Guide to SQL: Reference

Data in the stores_dem
o Database

127 1 o shipping to send
4 to customer and
watches. Should be

ow, 8/1.

116 1 nd correct case in
nd express mailed it

im meet.

116 1 pping (Ava Brown)
of left-handed
up wrong case;
ing requesting 5%
lacate customer due
ense and lateness of
cause of holiday.

customer_num c

 (2 of 2)
998-07-31 14:30 maryj I Received Hero watches (item
304) instead of ANZ
watches.

Sent memo t
ANZ item 30
pickup HRO
done tomorr

997-11-28 13:34 mannyn I Received plain white swim
caps (313 ANZ) instead of
navy with team logo (313
SHM).

1997-11-28 16:47 Shipping fou
warehouse a
in time for sw

997-12-21 11:24 mannyn I Second complaint from this
customer! Received two cases
right-handed outfielder
gloves

(1 HRO) instead of one case
lefties.

1997-12-27 08:19 Memo to shi
to send case
gloves, pick
memo to bill
discount to p
to second off
resolution be

all_dtime user_id call_code call_descr res_dtime res_descr

Data in the stores_demo Database
manufact Table

state Table

manu_code manu_name lead_time

ANZ Anza 5

HSK Husky 5

HRO Hero 4

NRG Norge 7

SMT Smith 3

SHM Shimara 30

KAR Karsten 21

NKL Nikolus 8

PRC ProCycle 9

code sname code sname

AK Alaska MT Montana

AL Alabama NE Nebraska

AR Arkansas NC North Carolina

AZ Arizona ND North Dakota

CA California NH New Hampshire

CT Connecticut NJ New Jersey

CO Colorado NM New Mexico

DC D.C. NV Nevada

DE Delaware NY New York

FL Florida OH Ohio

 (1 of 2)
The stores_demo Database A-45

Data in the stores_demo Database
GA Georgia OK Oklahoma

HI Hawaii OR Oregon

IA Iowa PA Pennsylvania

ID Idaho PR Puerto Rico

IL Illinois RI Rhode Island

IN Indiana SC South Carolina

KY Kentucky TN Tennessee

LA Louisiana TX Texas

MA Massachusetts UT Utah

MD Maryland VA Virginia

ME Maine VT Vermont

MI Michigan WA Washington

MN Minnesota WI Wisconsin

MO Missouri WV West Virginia

MS Mississippi WY Wyoming

code sname code sname

 (2 of 2)
A-46 Informix Guide to SQL: Reference

B
Appendix
The sales_demo and
superstores_demo
Databases

In addition to the stores_demo database that is described in
detail in Appendix A, Informix products include the following
demonstration databases:

■ The sales_demo database illustrates a dimensional
schema for data-warehousing applications. ♦

■ The superstores_demo database illustrates an
object-relational schema. ♦

This appendix discusses the contents of these two demonstration
databases.

For information on how to create and populate the
demonstration databases, including relevant SQL files, see
the DB-Access User’s Manual. For conceptual information about
demonstration databases, see the Informix Guide to Database
Design and Implementation.

XPS

IDS

The sales_demo Database
The sales_demo Database
Your database server product contains SQL scripts for the sales_demo
dimensional database. The sales_demo database provides an example of a
simple data-warehousing environment and works in conjunction with the
stores_demo database. The scripts for the sales_demo database create new
tables and add extra rows to the items and orders tables of stores_demo.

To create the sales_demo database, you must first create the stores_demo
database with the logging option. Once you create the stores_demo database,
you can execute the scripts that create and load the sales_demo database
from DB-Access. The files are named createdw.sql and loaddw.sql.

Dimensional Model of the sales_demo Database
Figure B-1 gives an overview of the tables in the sales_demo database.

XPS

Figure B-1
The sales_demo

Dimensional Data
Model

customer code

product code

product name
vendor
vendor name
product line
product line name

revenue
cost
units sold
net profit

customer code

customer name
company name

time code

order date
month code
month name
quarter code
quarter name
year

district code

district
state
state name
region

product code

time code

district code

Time
Dimension

Product
Dimension

Fact Table: Sales

Customer
Dimension

Geography
Dimension
B-2 Informix Guide to SQL: Reference

Structure of the sales_demo Tables
For information on how to create and populate the sales_demo database, see
the DB-Access User’s Manual. For information on how to design and
implement dimensional databases, see the Informix Guide to Database Design
and Implementation. For information on the stores_demo database, see
Appendix A.

Structure of the sales_demo Tables
The sales_demo database includes the following tables:

■ customer

■ geography

■ product

■ sales

■ time

The tables are listed alphabetically, not in the order in which they are created.
The customer, geography, product, and time tables are the dimensions for the
sales fact table.

The sales_demo database is not ANSI compliant.

The following sections describe the column names, data types, and column
descriptions for each table. A SERIAL field serves as the primary key for the
district_code column of the geography table. However, the primary and
foreign key relationships that exist between the fact (sales) table and its
dimension tables are not defined because data-loading performance
improves dramatically when the database server does not enforce constraint
checking.
The sales_demo and superstores_demo Databases B-3

Structure of the sales_demo Tables
The customer Table

The customer table contains information about sales customers. Figure B-2
shows the columns of the customer table.

Figure B-2
The customer Table

The geography Table

The geography table contains information about the sales district and region.
Figure B-3 shows the columns of the geography table.

Figure B-3
The geography Table

Name Type Description

customer_code INTEGER customer code

customer_name CHAR(31) customer name

company_name CHAR(20) company name

Name Type Description

district_code SERIAL district code

district_name CHAR(15) district name

state_code CHAR(2) state code

state_name CHAR(18) state name

region SMALLINT region name
B-4 Informix Guide to SQL: Reference

Structure of the sales_demo Tables
The product Table

The product table contains information about the products sold through the
data warehouse. Figure B-4 shows the columns of the product table.

Figure B-4
The product Table

Name Type Description

product_code INTEGER product code

product_name CHAR(31) product name

vendor_code CHAR(3) vendor code

vendor_name CHAR(15) vendor name

product_line_code SMALLINT product line code

product_line_name CHAR(15) name of product line
The sales_demo and superstores_demo Databases B-5

Structure of the sales_demo Tables
The sales Table

The sales fact table contains information about product sales and has a
pointer to each dimension table. For example, the customer_code column
references the customer table, the district_code column references the
geography table, and so on. The sales table also contains the measures for the
units sold, revenue, cost, and net profit. Figure B-5 shows the columns of the
sales table.

Figure B-5
The sales Table

Name Type Description

customer_code INTEGER customer code (references customer)

district_code SMALLINT district code (references geography)

time_code INTEGER time code (references time)

product_code INTEGER product code (references product)

units_sold SMALLINT number of units sold

revenue MONEY(8,2) amount of sales revenue

cost MONEY(8,2) cost of sale

net_profit MONEY(8,2) net profit of sale
B-6 Informix Guide to SQL: Reference

Structure of the sales_demo Tables
The time Table

The time table contains time information about the sale. Figure B-6 shows the
columns of the time table.

Figure B-6
The time Table

Name Type Description

time_code INTEGER time code

order_date DATE order date

month_code SMALLINT month code

month_name CHAR(10) name of month

quarter_code SMALLINT quarter code

quarter_name CHAR(10) name of quarter

year INTEGER year
The sales_demo and superstores_demo Databases B-7

The superstores_demo Database
The superstores_demo Database
SQL files and user-defined routines (UDRs) that are provided with DB-Access
let you derive the superstores_demo object-relational database.

The superstores_demo database is not ANSI compliant.

This section provides the following superstores_demo information:

■ The structure of all the tables in the superstores_demo database

■ A list and definition of the extended data types that
superstores_demo uses

■ A map of table hierarchies

■ The primary-foreign key relationships among the columns in the
database tables

For information on how to create and populate the superstores_demo
database, see the DB-Access User’s Manual. For information on how to work
with object-relational databases, see the Informix Guide to Database Design and
Implementation. For information on the stores_demo database on which
superstores_demo is based, see Appendix A.

IDS
B-8 Informix Guide to SQL: Reference

Structure of the superstores_demo Tables
Structure of the superstores_demo Tables
The superstores_demo database includes the following tables. Although
many tables have the same name as stores_demo tables, they are different.
The tables are listed alphabetically, not in the order in which they are created.

■ call_type

■ catalog

■ cust_calls

■ customer

❑ retail_customer (new)

❑ whlsale_customer (new)

■ items

■ location (new)

❑ location_non_us (new)

❑ location_us (new)

■ manufact

■ orders

■ region (new)

■ sales_rep (new)

■ state

■ stock

■ stock_discount (new)

■ units (new)

This section lists the column names, column data types, and column descrip-
tions for each table in the superstores_demo database. The unique identifier
for each table (primary key) is shaded and indicated by a key symbol.
Columns that represent extended data types are discussed in “User-Defined
Routines and Extended Data Types” on page B-24. Primary-foreign key
relationships between the tables are outlined in “Referential Relationships”
on page B-27.
The sales_demo and superstores_demo Databases B-9

Structure of the superstores_demo Tables
The call_type Table

The call codes associated with customer calls are stored in the call_type table.
Figure B-7 shows the columns of the call_type table.

Figure B-7
The call_type Table

The catalog Table

The catalog table describes each item in stock. Retail stores use this table
when placing orders with the distributor. Figure B-8 shows the columns of
the catalog table.

Figure B-8
The catalog Table

Name Type Description

call_code CHAR(1) call code

codel_descr CHAR (30) description of call code

Name Type Description

catalog_num SERIAL(1001) system-generated catalog number

stock_num SMALLINT distributor stock number (foreign key to
stock table)

manu_code CHAR(3) manufacturer code (foreign key to stock
table)

unit CHAR(4) unit by which item is ordered (foreign key
to stock table)

advert ROW (picture BLOB,
caption LVARCHAR)

picture of item and caption

advert_descr CLOB tag line underneath picture
B-10 Informix Guide to SQL: Reference

Structure of the superstores_demo Tables
The cust_calls Table

All customer calls for information on orders, shipments, or complaints are
logged. The cust_calls table contains information about these types of
customer calls. Figure B-9 shows the columns of the cust_calls table.

Figure B-9
The cust_calls Table

Name Type Description

customer_num INTEGER customer number (foreign key to
customer table)

call_dtime DATETIME YEAR
TO MINUTE

date and time call received

user_id CHAR(18) name of person logging call (default is
user login name)

call_code CHAR(1) type of call (foreign key to call_type
table)

call_descr CHAR(240) description of call

res_dtime DATETIME YEAR
TO MINUTE

date and time call resolved

res_descr CHAR(240) description of how call was resolved
The sales_demo and superstores_demo Databases B-11

Structure of the superstores_demo Tables
B-12 Informix Guide to SQL: Reference

The customer, retail_customer, and whlsale_customer Tables

In this hierarchy, retail_customer and whlsale_customer are subtables that
are created under the customer supertable, as Figure B-25 on page B-27
shows.

For information about table hierarchies, see the Informix Guide to Database
Design and Implementation.

The customer Table

The customer table contains information about the retail stores that place
orders from the distributor. Figure B-10 shows the columns of the customer
table.

Figure B-10
The customer Table

Name Type Description

customer_num SERIAL unique customer identifier

customer_type CHAR(1) code to indicate type of customer:

■ R = retail

■ W = wholesale

customer_name name_t name of customer

customer_loc INTEGER location of customer (foreign key to
location table)

contact_dates LIST(DATETIME
YEAR TO DAY
NOT NULL

dates of contact with customer

cust_discount percent customer discount

credit_status CHAR(1) customer credit status:

■ D = deadbeat

■ L = lost

■ N = new

■ P = preferred

■ R = regular

Structure of the superstores_demo Tables
The retail_customer Table

The retail_customer table contains general information about retail
customers. Figure B-11 shows the columns of the retail_customer table.

Figure B-11
The retail_customer Table

Name Type Description

customer_num SERIAL unique customer identifier

customer_type CHAR(1) code to indicate type of customer:

■ R = retail

■ W = wholesale

customer_name name_t name of customer

customer_loc INTEGER location of customer

contact_dates LIST(DATETIME
YEAR TO DAY
NOT NULL

dates of contact with customer

cust_discount percent customer discount

credit_status CHAR(1) customer credit status:

■ D = deadbeat

■ L = lost

■ N = new

■ P = preferred

■ R = regular

credit_num CHAR(19) credit card number

expiration DATE expiration data of credit card
The sales_demo and superstores_demo Databases B-13

Structure of the superstores_demo Tables
The whlsale_customer Table

The whlsale_customer table contains general information about wholesale
customers. Figure B-12 shows the columns of the whlsale_customer table.

Figure B-12
The whlsale_customer Table

Name Type Description

customer_num SERIAL unique customer identifier

customer_type CHAR(1) code to indicate type of customer:

■ R = retail

■ W = wholesale

customer_name name_t name of customer

customer_loc INTEGER location of customer

contact_dates LIST(DATETIME
YEAR TO DAY
NOT NULL)

dates of contact with customer

cust_discount percent customer discount

credit_status CHAR(1) customer credit status:

■ D = deadbeat

■ L = lost

■ N = new

■ P = preferred

■ R = regular

resale_license CHAR(15) resale license number

terms_net SMALLINT net term in days
B-14 Informix Guide to SQL: Reference

Structure of the superstores_demo Tables
The items Table

An order can include one or more items. One row exists in the items table for
each item in an order. Figure B-13 shows the columns of the items table.

Figure B-13
The items Table

Name Type Description

item_num SMALLINT sequentially assigned item number for
an order

order_num INT8 order number (foreign key to orders
table)

stock_num SMALLINT stock number for item (foreign key to
stock table)

manu_code CHAR(3) manufacturer code for item ordered
(foreign key to stock table)

unit CHAR(4) unit by which item is ordered (foreign
key to stock table)

quantity SMALLINT quantity ordered (value must be > 1)

item_subtotal MONEY(8,2) quantity ordered * unit price = total price
of item
The sales_demo and superstores_demo Databases B-15

Structure of the superstores_demo Tables
The location, location_non_us, and location_us Tables

In this hierarchy, location_non_us and location_us are subtables that are
created under the location supertable, as shown in the diagram on page B-27.
For information about table hierarchies, see the Informix Guide to Database
Design and Implementation.

The location Table

The location table contains general information about the locations
(addresses) that the database tracks. Figure B-14 shows the columns of the
location table.

Figure B-14
The location Table

Name Type Description

location_id SERIAL unique identifier for location

loc_type CHAR(2) code to indicate type of location

company VARCHAR(20) name of company

street_addr LIST(VARCHAR(25)
NOT NULL)

street address

city VARCHAR(25) city for address

country VARCHAR(25) country for address
B-16 Informix Guide to SQL: Reference

Structure of the superstores_demo Tables
The location_non_us Table

The location_non_us table contains specific address information for
locations (addresses) that are outside the United States. Figure B-15 shows
the columns of the location_non_us table.

Figure B-15
The location_non_us Table

Name Type Description

location_id SERIAL unique identifier for location

loc_type CHAR(2) code to indicate type of location

company VARCHAR(20) name of company

street_addr LIST(VARCHAR(25)
NOT NULL)

street address

city VARCHAR(25) city for address

country VARCHAR(25) country for address

province_code CHAR(2) province code

zipcode CHAR(9) zip code

phone CHAR(15) phone number
The sales_demo and superstores_demo Databases B-17

Structure of the superstores_demo Tables
The location_us Table

The location_us table contains specific address information for locations
(addresses) that are in the United States. Figure B-16 shows the columns of
the location_us table.

Figure B-16
The location_us Table

Name Type Description

location_id SERIAL unique identifier for location

loc_type CHAR(2) code to indicate type of location

company VARCHAR(20) name of company

street_addr LIST(VARCHAR(25)
NOT NULL)

street address

city VARCHAR(25) city for address

country VARCHAR(25) country for address

state_code CHAR(2) state code (foreign key to state table)

zip CHAR(9) zip code

phone CHAR(15) phone number
B-18 Informix Guide to SQL: Reference

Structure of the superstores_demo Tables
The manufact Table

Information about the manufacturers whose sporting goods are handled by
the distributor is stored in the manufact table. Figure B-17 shows the
columns of the manufact table.

Figure B-17
The manufact Table

Name Type Description

manu_code CHAR(3) manufacturer code

manu_name VARCHAR(15) name of manufacturer

lead_time INTERVAL DAY(3)
TO DAY

lead time for shipment of orders

manu_loc INTEGER manufacturer location (foreign key to
location table)

manu_account CHAR(32) distributer account number with
manufacturer

account_status CHAR(1) status of account with manufacturer

terms_net SMALLINT distributor terms with manufacturer
(in days)

discount percent distributor volume discount with
manufacturer
The sales_demo and superstores_demo Databases B-19

Structure of the superstores_demo Tables
The orders Table

The orders table contains information about orders placed by the customers
of the distributor. Figure B-18 shows the columns of the orders table.

Figure B-18
The orders Table

The region Table

The region table contains information about the sales regions for the
distributor. Figure B-19 shows the columns of the region table.

Figure B-19
The region Table

Name Type Description

order_num SERIAL8(1001) system-generated order number

order_date DATE date order entered

customer_num INTEGER customer number (foreign key to
customer table)

shipping ship_t special shipping instructions

backlog BOOLEAN indicates order cannot be filled because
the item is backlogged

po_num CHAR(10) customer purchase order number

paid_date DATE date order paid

Name Type Description

region_num SERIAL system-generated region number

region_name VARCHAR(20)
UNIQUE

name of sales region

region_loc INTEGER location of region office (foreign key
to location table)
B-20 Informix Guide to SQL: Reference

Structure of the superstores_demo Tables
The sales_rep Table

The sales_rep table contains information about the sales representatives for
the distributor. Figure B-20 shows the columns of the sales_rep table.

Figure B-20
The sales_rep Table

The state Table

The state table contains the names and postal abbreviations for the 50 states
of the United States as well as sales tax information. Figure B-21 shows the
columns of the state table.

Figure B-21
The state Table

Name Type Description

rep_num SERIAL(101) system-generated sales rep number

name name_t name of sales rep

region_num INTEGER region in which sales rep works
(foreign key to the region table)

home_office BOOLEAN home office location of sales rep

sales SET(ROW (month
DATETIME YEAR TO
MONTH, amount
MONEY) NOT NULL)

amount of monthly sales for rep

commission percent commission rate for sales rep

Name Type Description

code CHAR(2) state code

sname CHAR(15) state name

sales_tax percent state sales tax
The sales_demo and superstores_demo Databases B-21

Structure of the superstores_demo Tables
The stock Table

The stock table is a catalog of the items sold by the distributor. Figure B-22
shows the columns of the stock table.

Figure B-22
The stock Table

Name Type Description

stock_num SMALLINT stock number that identifies type of
item

manu_code CHAR(3) manufacturer code (foreign key to
manufact)

unit CHAR(4) unit by which item is ordered

description VARCHAR(15) description of item

unit_price MONEY(6,2) unit price

min_reord_qty SMALLINT minimum reorder quantity

min_inv_qty SMALLINT quantity of stock below which item
should be reordered

manu_item_num CHAR(20) manufacturer item number

unit_cost MONEY(6,2) distributer cost per unit of item from
manufacturer

status CHAR(1) status of item:

■ A = active

■ D = discontinued

■ N = no order

bin_num INTEGER bin number

qty_on_hand SMALLINT quantity in stock

bigger_unit CHAR(4) stock unit for next larger unit (for
same stock_num and manu_code)

per_bigger_unit SMALLINT how many of this unit in bigger_unit
B-22 Informix Guide to SQL: Reference

Structure of the superstores_demo Tables
The stock_discount Table

The stock_discount table contains information about stock discounts. (There
is no primary key). Figure B-23 shows the columns of the stock_discount
table.

Figure B-23
The stock_discount Table

Name Type Description

discount_id SERIAL system-generated discount identifier

stock_num SMALLINT distributor stock number (part of foreign
key to stock table)

manu_code CHAR(3) manufacturer code (part of foreign key to
stock table)

unit CHAR(4) unit by which item is ordered (each, pair,
case, and so on) (foreign key to units table;
part of foreign key to stock table)

unit_discount percent unit discount during sale period

start_date DATE discount start date

end_date DATE discount end date
The sales_demo and superstores_demo Databases B-23

User-Defined Routines and Extended Data Types
The units Table

The units table contains information about the units in which the inventory
items can be ordered. Each item in the stock table is available in one or more
types of container. Figure B-24 shows the columns of the units table.

Figure B-24
The units Table

User-Defined Routines and Extended Data Types
The superstores_demo database uses user-defined routines (UDRs) and
extended data types.

A UDR is a routine that you define that can be invoked within an SQL
statement or another UDR. A UDR can either return values or not.

The data type system of Dynamic Server is an extensible and flexible data
type system that supports the following types of activities:

■ Extension of existing data types by redefining some of the behavior
for the data types that the database server provides.

■ Definition of custom data types by a user.

This section lists the extended data types and UDRs created for the
superstores_demo database. For information about creating and using UDRs
and extended data types, see Extending Informix Dynamic Server 2000.

The superstores_demo database creates the distinct data type, percent, in a
UDR, as follows:

CREATE DISTINCT TYPE percent AS DECIMAL(5,5);
DROP CAST (DECIMAL(5,5) AS percent);
CREATE IMPLICIT CAST (DECIMAL(5,5) AS percent);

Name Type Description

unit_name CHAR(4) units by which an item is ordered (each,
pair, case, box)

unit_descr VARCHAR(15) description of units
B-24 Informix Guide to SQL: Reference

User-Defined Routines and Extended Data Types
The superstores_demo database creates the following named row types:

■ location hierarchy:

❑ location_t

❑ loc_us_t

❑ loc_non_us_t

■ customer hierarchy:

❑ name_t

❑ customer_t

❑ retail_t

❑ whlsale_t

■ orders table

❑ ship_t

location_t definition

location_id SERIAL
loc_type CHAR(2)
company VARCHAR(20)
street_addr LIST(VARCHAR(25) NOT NULL)
city VARCHAR(25)
country VARCHAR(25)

loc_us_t definition

state_code CHAR(2)
zip ROW(code INTEGER, suffix SMALLINT)
phone CHAR(18)

loc_non_us_t definition

province_code CHAR(2)
zipcode CHAR(9)
phone CHAR(15)

name_t definition

first VARCHAR(15)
last VARCHAR(15)
The sales_demo and superstores_demo Databases B-25

User-Defined Routines and Extended Data Types
customer_t definition

customer_num SERIAL
customer_type CHAR(1)
customer_name name_t
customer_loc INTEGER
contact_dates LIST(DATETIME YEAR TO DAY NOT NULL)
cust_discount percent
credit_status CHAR(1)

retail_t definition

credit_num CHAR(19)
expiration DATE

whlsale_t definition

resale_license CHAR(15)
terms_net SMALLINT

ship_t definition

date DATE
weight DECIMAL(8,2)
charge MONEY(6,2)
instruct VARCHAR(40)
B-26 Informix Guide to SQL: Reference

Table Hierarchies
Table Hierarchies
Figure B-25 shows how the hierarchical tables of the superstores_demo
database are related.

Referential Relationships
The tables of the superstores_demo database are linked by the primary-
foreign key relationships that are identified in this section. This type of
relationship is called a referential constraint because a foreign key in one table
references the primary key in another table.

The customer and orders Tables

The customer table contains a customer_num column that holds a number
that identifies a customer. The orders table also contains a customer_num
column that stores the number of the customer who placed a particular order.
In the orders table, the customer_num column is a foreign key that references
the customer_num column in the customer table.

Figure B-25
Hierarchies of

superstores_demo
Tables

customer
customer_num
customer_type
customer_name
customer_loc
contact_dates
cust_discount
credit_status

retail_customer
credit_num
expiration

whlsale_customer
resale_license
terms_net

location
location_id
loc_type
company
street_addr
city
country

location_us
state_code
zip
phone

location_non_us
province_code
zipcode
phone
The sales_demo and superstores_demo Databases B-27

Referential Relationships
The orders and items Tables

The orders and items tables are linked by an order_num column that
contains an identification number for each order. If an order includes several
items, the same order number appears in several rows of the items table. In
the items table, the order_num column is a foreign key that references the
order_num column in the orders table.

The items and stock Tables

The items table and the stock table are joined by three columns: the
stock_num column, which stores a stock number for an item, the manu_code
column, which stores a code that identifies the manufacturer, and the units
column, which identifies the types of unit in which the item can be ordered.
You need the stock number, the manufacturer code, and the units to uniquely
identify an item. The same stock number and manufacturer code can appear
in more than one row of the items table, if the same item belongs to separate
orders. In the items table, the stock_num, manu_code, and unit columns are
foreign keys that reference the stock_num, manu_code, and unit columns in
the stock table.

The stock and catalog Tables

The stock table and catalog table are joined by three columns: the stock_num
column, which stores a stock number for an item, the manu_code column,
which stores a code that identifies the manufacturer, and the unit column,
which identifies the type of units in which the item can be ordered. You need
all three columns to uniquely identify an item. In the catalog table, the
stock_num, manu_code, and unit columns are foreign keys that reference
the stock_num, manu_code, and unit columns in the stock table.

The stock and manufact Tables

The stock table and the manufact table are joined by the manu_code column.
The same manufacturer code can appear in more than one row of the stock
table if the manufacturer produces more than one piece of equipment. In the
stock table, the manu_code column is a foreign key that references the
manu_code column in the manufact table.
B-28 Informix Guide to SQL: Reference

Referential Relationships
The cust_calls and customer Tables

The cust_calls table and the customer table are joined by the customer_num
column. The same customer number can appear in more than one row of the
cust_calls table if the customer calls the distributor more than once with a
problem or question. In the cust_calls table, the customer_num column is a
foreign key that references the customer_num column in the customer table.

The call_type and cust_calls Tables

The call_type and cust_calls tables are joined by the call_code column. The
same call code can appear in more than one row of the cust_calls table
because many customers can have the same type of problem. In the
cust_calls table, the call_code column is a foreign key that references the
call_code column in the call_type table.

The state and customer Tables

The state table and the customer table are joined by a column that contains
the state code. This column is called code in the state table and state in the
customer table. If several customers live in the same state, the same state
code appears in several rows of the table. In the customer table, the state
column is a foreign key that references the code column in the state table.

The customer and location Tables

In the customer table, the customer_loc column is a foreign key that refer-
ences the location_id of the location table. The customer_loc and location_id
columns each uniquely identify the customer location

The manufact and location Tables

The manu_loc column in the manufact table is a foreign key that references
the location_id column, which is the primary key in the location table. Both
manu_loc and location_id uniquely identify the manufacturer location.
The sales_demo and superstores_demo Databases B-29

Referential Relationships
The state and location_us Tables

The state and location_us tables are joined by the column that contains the
state code. The state_code column in the location_us table is a foreign key
that references the code column in the state table.

The sales_rep and region Tables

The region_num column is the primary key in the region table. It is a system-
generated region number. The region_num column in the sales_rep table is
a foreign key that references and joins the region_num column in the region
table.

The region and location Tables

The region_loc column in the region table identifies the regional office
location. It is a foreign key that references the location_id column in the
location table, which is a unique identifier for location.

The stock and stock_discount Tables

The stock table and the stock_discount table are joined by three columns:
stock_num, manu_code, and unit. These columns form the primary key for
the stock table. The stock_discount table has no primary key and references
the stock table.

The stock and units Tables

The unit_name column of the units table is a primary key that identifies the
kinds of units that can be ordered, such as case, pair, box, and so on. The unit
column of the stock table joins the unit_name column of the units table.
B-30 Informix Guide to SQL: Reference

Glossary
Glossary
Tip: Other manuals in the Informix documentation sets, such as
the “Informix Storage Manager Administrator’s Guide,” and the
“Informix SNMP Subagent Guide” include a glossary of specialized
terms. For additional product-specific information, refer to these
glossaries.

8-bit character A single-byte character that consists of eight bits, which means
that the code point is in the range 128 through 255. Examples
from the ISO8859-1 code set include the non-English é, ñ, and ö
characters. They can be interpreted correctly only if the software
that interprets them is 8-bit clean. See also non-ASCII character.

8-bit clean An operating system or database server that can process
character data that contains 8-bit characters. The operating
system or database server reads the eighth bit as part of the code
value. In other words, it does not ignore the eighth bit or make
its own interpretation of the eighth bit.

16-bit code set A code set (such as JIS X0208) in which approximately 65,000
distinct characters can be encoded.

access method A group of routines that access or manipulate a table or an index.
In the output of a SET EXPLAIN statement, access method refers
to the type of table access in a query (for example, SEQUENTIAL
SCAN as opposed to INDEX PATH). See also primary access
method and secondary access method.

access privileges The types of operations that a user has permission to perform in
a specific database, table, table fragment, or column. Informix
maintains its own set of database, table, table fragment,
and column access privileges, which are independent of the
operating-system access privileges.

active set The collection of rows that satisfies a query associated with a cursor.

aggregate
function

An SQL function that returns one value for a group of queried rows; for
example, the total number, sum, average, and maximum or minimum of an
expression in a query or report. See also user-defined aggregate.

aggregate
support function

One of a group of user-defined functions that the database server uses to
calculate a user-defined aggregate.

alias A temporary alternative name for a table in a query; usually used in complex
subqueries and required for self-joins. In a form-specification file or any SQL
query, alias refers to a single-word alternative name used in place of a more
complex table name (for example, t1 as an alias for owner.table_name).

ALS Legacy acronym for the Asian Language Support feature for working with
Asian (multibyte) data. Supplanted by Global Language Support (GLS).

ANSI Acronym for the American National Standards Institute. This group sets
standards in many areas, including the computer industry and standards for
SQL languages.

ANSI compliant A database that conforms to certain ANSI standards. Informix databases can
be created either as ANSI compliant or not ANSI compliant. An ANSI-
compliant database enforces certain ANSI requirements, such as implicit
transactions, required owner naming, and unbuffered logging (unbuffered
logging only when using Dynamic Server), that are not enforced in databases
that are not ANSI compliant.

API See application programming interface (API).

application
development tool

Software, such as INFORMIX-NewEra, that you can use to create and main-
tain a database. The software allows a user to send instructions and data to
and receive information from the database server.

application
process

The process that manages an ESQL or other program at runtime. It executes
the program logic and initiates SQL requests. Memory that is allocated for
program variables, program data, and the fetch buffer is part of this process.
See also database server process.

application-
productivity tools

Tools, such as forms and reports, used to write applications.

application
program

An executable file or logically related set of files.
2 Informix Guide to SQL: Reference

application
programming
interface (API)

A group of related software components, usually provided by a third party
such as Informix, that a developer uses to create applications that communi-
cate with a third-party product. An API can include a library of functions,
header files, graphic user interfaces, and command-line programs. See also SQL
API and DataBlade API.

arbitrary rule A series of expressions that you define for expression-based fragmentation,
using SQL relational and logical operators. Unlike the range rule, the
arbitrary rule allows you to use any relational operator and any logical
operator to define the expressions. Typically includes the use of the OR
logical operator to group data.

archiving Copying all the data and indexes of a database onto a new medium, usually
a tape or a different physical device from the one that stores the database.
Archived material is used for recovering from a failure and is usually
performed by a database administrator. See also backup.

argument A value that is passed to a routine or command. Compare with parameter.

array An ordered set of items of the same type. Individual members of the array are
referred to as elements and usually are distinguished by an integer argument
that gives the position of the element in the array. Informix arrays can have
up to three dimensions.

ASCII Acronym for the American Standards Committee for Information
Interchange. ASCII is a coding scheme that assigns numeric values to letters,
numbers, punctuation marks, and certain other characters. ASCII describes
an ordered set of printable and nonprintable characters used in computers
and telecommunication. It contains 128 characters, each of which can be
represented with 7 bits of information. See also single-byte character.

ASF Acronym for Associated Services Facility. The code in the ASF portion of
Informix products controls the connections between clients and servers. Sys-
tem developers use this term; users of Informix products see this term only
in occasional error messages.

Asian Language
Support (ALS)

A class of products that operate with multibyte code sets. ALS products
support various multibyte code sets whose characters are composed of 8, 16,
24, and 32 bits. ALS servers and tools are available for Version 6.x and earlier
family of products. These products might have been developed with the GLS
Library or other software written specifically to handle Asian language
processing. For more information, see the Informix Migration Guide.
Glossary 3

attached index An index that is created without an explicit fragmentation strategy. You
create an attached index by omitting both the distribution scheme (specified
by the FRAGMENT BY clause) and the storage option (specified by the IN
clause) of the CREATE INDEX or ALTER FRAGMENT ON INDEX statements. An
attached index can be created on a fragmented table.

The location of the index data varies depending on the database server. In
most cases, index pages reside in the same tblspaces as the data pages to
which they refer.

For Dynamic Server, index pages for user indexes reside in separate
tblspaces, but within the same dbspaces, as the data pages to which they
refer. Only the syscatalogs indexes reside in the same tblspace as the
corresponding data pages.

For Extended Parallel Server, both user and system-catalog index pages
reside in separate tblspaces but in the same dbspaces as the corresponding
data pages. See also detached index.

audit event (Not for Extended Parallel Server) Any database server activity or operation
that could potentially access and alter data, which should be recorded and
monitored by the database secure auditing facility. Examples of audit events
include accessing tables, altering indexes, dropping chunks, granting data-
base access, updating the current row, running database utilities, and so
forth. (For a complete list of audit events, see the Trusted Facility Manual.)

audit file (Not for Extended Parallel Server) A file that contains records of audit events
and resides in the specified audit directory. Audit files form an audit trail of
information that can be extracted by the database secure auditing facility for
analysis by the database administrator.

audit mask (Not for Extended Parallel Server) A structure that specifies which events
should be audited by (or excluded from auditing by) the database secure
auditing facility.

auxiliary
statements

The SQL statements that you use to obtain auxiliary information about tables
and databases. These statements include INFO, OUTPUT, WHENEVER, and
GET DIAGNOSTICS.

B+ tree A method of organizing an index into a tree structure for efficient record
retrieval.
4 Informix Guide to SQL: Reference

B-tree index A type of index that uses a balanced tree structure for efficient record
retrieval. A B-tree index is balanced when the leaf nodes are all at the same
level from the root node. B-tree indexes store a list of rowids for any duplicate
key value data in ascending or descending order. See also bitmap index and
R-tree index.

backup A duplicate of a computer file on another device or tape to preserve existing
work, in case of a computer failure or other mishap. A backup refers to dupli-
cating logical-log files while archiving refers to duplicating data.

base table See table.

base type See opaque data type.

before-image The image of a row, page, or other item before any changes are made to it.

big-endian A hardware-determined storage method in which the most-significant byte
of a multibyte number has the lowest address. See also little-endian.

bitmap index A type of index that stores a bitmap for any highly duplicate key value. The
bitmap indicates which rows have the duplicate key value. You create a
bitmap index with the USING BITMAP keywords in the CREATE INDEX
statement. See also B-tree index.

blob A legacy term for binary large object that is now known as and includes TEXT
or BYTE data types. These data objects effectively have no maximum size
(theoretically as large as 231 bytes). See also simple large object.

BLOB Acronym for binary large object. A data type for a smart large object that stores
any type of binary data, including images. It can be stored and retrieved in
pieces and has database properties such as recovery and transaction rollback.
See also CLOB.

blobpage (Not for Extended Parallel Server) The unit of disk allocation within a
blobspace. The database server administrator determines the size of a
blobpage. The size can vary, depending on the size of the TEXT or BYTE data
that the user inserts.

blobspace (Not for Extended Parallel Server) A logical collection of chunks that is used
to store TEXT and BYTE data.

Boolean A variable or an expression that can take on the logical values TRUE (1),
FALSE (0), or UNKNOWN (if null values are involved).
Glossary 5

BOOLEAN A built-in data type that supports single-byte true/false values. TRUE is
represented internally as 0 and externally as t. FALSE is represented
internally as 1 and externally as f. A null value is represented as null.

Boolean function A function that returns a Boolean value (true or false). A Boolean function can
act as a filter.

branch node An index page that contains pointers to leaf nodes and other branch nodes.
The database server creates branch nodes when the root node and subsequent
leaf nodes become full.

buffer A portion of computer memory where a program temporarily stores data.
Data typically is read into or written out from buffers to disk.

buffered disk I/O Disk I/O that the operating system controls instead of an application. With
buffered disk I/O, the operating system stores data in the kernel portion of
memory before periodically writing the data to disk. See also unbuffered disk
I/O and disk I/O.

buffered logging A type of logging that holds transactions in a memory buffer until the buffer
is full, regardless of when the transaction is committed or rolled back.
Informix database servers provide this option to speed up operations by
reducing the number of disk writes.

built-in Provided by the database server, usually in the system catalog; not defined
by the user.

built-in data type A fundamental data type that the database server defines, for example,
INTEGER, CHAR, or SERIAL.

byte The smallest physical computer storage unit. A byte is not necessarily one
character. In multibyte code sets, a character is more than one byte.

BYTE A data type for a simple large object that stores any type of binary data and can
be as large as 231 bytes. See also TEXT.

Cartesian
product

The set that results when you pair each and every member of one set with
each and every member of another set. A Cartesian product results from a
multiple-table query when you do not specify the joining conditions among
tables. See also join.
6 Informix Guide to SQL: Reference

cascading
deletes

A feature that causes deletion of rows from a child table that were associated
by foreign key to a row that is deleted from the parent table. When any rows
are deleted from the primary-key column of a table, cascading deletes, if
enabled, eliminate identical information from any foreign-key column in a
related table.

case-sensitivity The condition of distinguishing between uppercase and lowercase letters.
Be careful running Informix programs because certain commands and their
options are case-sensitive; that is, they react differently to the same letters
presented in uppercase and lowercase characters.

cast A mechanism that converts one data type to another. See also built-in cast,
user-defined cast, explicit cast, and implicit cast.

cast function A user-defined function that implements a cast. The function must be
registered with the CREATE CAST statement before it can be used.

character A logical unit of storage for a code point. A character is equal to one or more
bytes and can be numeric, alphabetic, or a nonprintable character (control
character). See also multibyte character and single-byte character.

character set One or more natural-language alphabets together with additional symbols
for digits, punctuation, and diacritical marks. A natural language is a
language that people use to communicate with each other, such as English,
Chinese, or German. See also code set.

characterspecial
device

See unbuffered disk I/O.

check constraint A condition that must be met before data can be assigned to a table column
during an INSERT or UPDATE statement.

checkpoint A point in time during a database server operation when the pages on disk
are synchronized with the pages in the shared-memory buffer pool. It can be
a full checkpoint or a fuzzy checkpoint.

child table The referencing table in a referential constraint. See also parent table.

chunk (No blobspace chunks for Extended Parallel Server) The largest contiguous
section of disk space available for a database server. A specified set of chunks
defines a dbspace or blobspace. A database server administrator allocates a
chunk to a dbspace or blobspace when that dbspace or blobspace approaches
full capacity. A chunk contains a certain number of pages.
Glossary 7

client
application

A program that requests services from a server program, typically a file
server or a database server. For the GLS feature, the term client application
includes database server utilities.

client computer The computer on which a client application runs.

client locale The locale that a client application uses to perform read and write operations
on the client computer. The CLIENT_LOCALE environment variable can
specify a nondefault locale. See also locale and server locale.

client/server
architecture

A hardware and software design that allows the user interface and database
server to reside on separate nodes or platforms on a single computer or over
a network.

client/server
connection
statements

The SQL statements that you use to make connections with databases. These
statements include CONNECT, DISCONNECT, and SET CONNECTION.

CLOB Acronym for character large object. A data type for a smart large object that
stores large text items, such as PostScript or HTML files. It can be stored
and retrieved in pieces and has database properties such as recovery and
transaction rollback. See also BLOB.

close a cursor To drop the association between a cursor and active set of rows that results
from a query.

close a database To deactivate the connection between a client and a database. Only one
database can be active at a time.

close a file To release the association between a file and a program.

cluster an index To rearrange the physical data of a table according to a specific index.

cluster key The column in a table that logically relates a group of simple large objects or
smart large objects that are stored in an optical cluster.

clustersize The amount of space, specified in kilobytes, that is allocated to an optical
cluster on an optical volume.

code point A bit pattern that represents one character in a code set. For example, in the
ASCII code set, the A character has a code point of 0x00.
8 Informix Guide to SQL: Reference

code set A computer representation of a character set that specifies how to map each
character in a character set to a unique code point. For example, ASCII,
ISO8859-1, Microsoft 1252, and EBCDIC are code sets that can represent the
English language. A locale name specifies a code set. See also code point and
character set.

code-set
conversion

The process of converting character data from one code set (the source code
set) to another (the target code set). Code-set conversion is useful when the
client and server computers use different code sets to represent the same
character data.

code-set order The order of characters within a code set based on their code points. For
example, in the ASCII code set, uppercase characters (A through Z) are
ordered before lowercase characters (a through z). See also collation order and
localized order.

cogroup A named group of coservers. At initialization, the database server creates a
cogroup that is named cogroup_all from all configured coservers.

collating
sequence

The sequence of values that specifies some logical order in which the
character fields in a database are sorted and indexed. A collation sequence
depends on either the order of the code set or the locale. Collating sequence
is also known as collation order.

collation The process of sorting characters based on a collation order.

collation order See collating sequence and code-set order.

collection An instance of a collection data type; a group of elements of the same data type
stored in a SET, MULTISET, or LIST.

collection cursor A database cursor that has an Informix ESQL/C collection variable associated
with it and provides access to the individual elements of a column whose data
type is a collection data type.

collection data
type

A complex data type whose instances are groups of elements of the same data
type, which can be any opaque data type, distinct data type, built-in data type,
collection data type, or row type.

collection-
derived table

A table that Informix ESQL/C or SPL creates for a collection column when it
encounters the TABLE keyword in an INSERT, DELETE, UPDATE, or SELECT
statement. ESQL/C and SPL store this table in a collection variable to access
elements of the collection as rows of the collection-derived table.
Glossary 9

collection
subquery

A query that takes the result of a subquery and turns it into a expression by
using the MULTISET keyword to convert returned values into a MULTISET
collection.

collection
variable

An Informix ESQL/C host variable or SPL variable that holds an entire collection
and provides access, through a collection cursor, to the individual elements of
the collection.

collocated join A join that occurs locally on the coserver where the data resides. The local
coserver sends the data to the other coservers after the join is complete.

column A data element that contains a particular type of information that occurs in
every row of the table. Also known as a field. See also row.

column
expression

An expression that includes a column name and optionally uses column
subscripts to define a column substring.

column subscript A subscript in a column expression. See also subscript.

column substring A substring in a column expression. See also substring.

command file A system file that contains one or more statements or commands, such as SQL
statements.

comment The information in a program file that is not processed by the computer but
documents the program. You use special characters such as a pound sign (#),
curly braces ({ }), slash marks (/) and asterisks (*), or a double dash (--)
to identify comments, depending on the programming environment.

commit work To complete a transaction by accepting all changes to the database since the
beginning of the transaction. See also roll back.

Committed Read An Informix level of isolation in which a user can view only rows that are
currently committed at the moment of the query request; that is, a user
cannot view rows that were changed as a part of a currently uncommitted
transaction. Committed Read is available through a database server and set
with the SET ISOLATION statement. It is the default level of isolation for
databases that are not ANSI compliant. See also isolation and Read
Committed.

compile To translate source code (in a high-level language) into executable code.
Compare with execute and link. See also source file.

compile-time
error

An error that occurs when you compile the program source code. This type of
error indicates syntax errors in the source code. Compare with runtime error.
10 Informix Guide to SQL: Reference

complex data
type

A data type that is built from a combination of other data types using an SQL
type constructor and whose components can be accessed through SQL state-
ments. See also row type and collection data type.

component In the High-Performance Loader (HPL), the information required to load or
unload data is organized in several components. The components are format,
map, filter, query, project, device array, load job, and unload job.

composite data
type

See row type.

composite index An index constructed on two or more columns of a table. The ordering
imposed by the composite index varies least frequently on the first-named
column and most frequently on the last-named column.

composite join A join between two or more tables based on the relationship among two or
more columns in each table. See also join and simple join.

compressed
bitmap

An indexing method that identifies records through a fragment identifier and
a record identifier.

concatenate To append a second string to the end of a first string.

concatenation
operator

A symbolic notation composed of two pipe symbols (||) used in expressions
to indicate the joining of two strings.

concurrency The ability of two or more processes to access the same database
simultaneously.

configuration
management
(CM) coserver

A coserver that Informix designates to run CM software and store CM data.

configuration file A file read during database server disk or shared-memory initialization that
contains the parameters that specify values for configurable behavior. Data-
base server and its archiving tool use configuration files.

connection A logical association between two applications or between an application
and a database environment, created by a CONNECT or DATABASE
statement. Database servers can also have connections to one another. See also
explicit connection, implicit connection, and multiplexed connection.

connection
coserver

The coserver to which a client is directly connected. See also coserver and
participating coserver.
Glossary 11

connection
redirector

An Extended Parallel Server feature that is enabled by an option-field setting
in the sqlhosts file whereby the database server attempts to establish a client
connection with each coserver in a dbserver group until the connection is
successful.

constant Data whose value does not change during the execution of a program or
command. In a program, a constant has a name that can be referenced.
Compare with variable. See also literal.

constraint A restriction on what kinds of data can be inserted or updated in tables. See
also check constraint, primary-key constraint, referential constraint, not-null
constraint, and unique constraint.

constructed data
type

See complex data type.

constructor See type constructor.

control character A character whose occurrence in a particular context initiates, modifies, or
stops a control function (an operation to control a device, for example, in
moving a cursor or in reading data). In a program, you can define actions that
use the CTRL key with another key to execute some programming action (for
example, entering CTRL-W to obtain on-line Help in Informix products). A
control character is sometimes referred to as a control key. Compare with print-
able character.

cooked files See buffered disk I/O.

correlated
subquery

A subquery (or inner SELECT) that depends on a value produced by the outer
SELECT statement that contains it. Also a nested subquery whose WHERE
clause refers to an attribute of a relation that is declared in an outer SELECT.
Correlated subqueries reference one or more columns from one or more
tables of a parent query and need to be evaluated once for each row in the
parent query. See also independent subquery and subquery.

correlation name The prefix that you can use with a column name in a triggered action to refer
to an old (before triggering statement) or a new (after triggering statement)
column value. The associated column name must belong to the triggering
table.

corrupted
database

A database whose tables or indexes contain incomplete or invalid data.

corrupted index An index that does not correspond exactly to its table.
12 Informix Guide to SQL: Reference

coserver The functional equivalent of a database server that operates on a single node.
See also connection coserver and participating coserver.

current row The most recently retrieved row of the active set of a query.

cursor An identifier associated with a group of rows or a collection data type.
Conceptually, the pointer to the current row or collection element. You can
use cursors for SELECT statements or EXECUTE PROCEDURE statements
(associating the cursor with the rows returned by a query) or INSERT
statements (associating the cursor with a buffer to insert multiple rows as a
group). A select cursor is declared for sequential only (regular cursor) or
nonsequential (scroll cursor) retrieval of row information. In addition, you
can declare a select cursor for update (initiating locking control for updated
and deleted rows) or WITH HOLD (completing a transaction does not close
the cursor). In ESQL/C, a cursor can be dynamic, meaning that it can be an
identifier or a character/string variable.

cursor function A user-defined function that returns one or more rows of data and therefore
requires a cursor to execute. An SPL function is a cursor function when its
RETURN statement contains the WITH RESUME keywords. An external
function is a cursor function when it is defined as an iterator function. Compare
with noncursor function.

cursor
manipulation
statements

The SQL statements that control cursors; specifically, the CLOSE, DECLARE,
FETCH, FLUSH, OPEN, and PUT statements.

Cursor Stability An Informix level of isolation available through the SET ISOLATION state-
ment in which the database server must secure a shared lock on a fetched row
before the row can be viewed. The database server retains the lock until it
receives a request to fetch a new row. See also isolation.

data access
statements

The SQL statements that you use to grant and revoke permissions and to lock
tables.

data definition
statements

The SQL statements that you use to create, alter, drop, and rename data
objects, including databases, tables, views, synonyms, triggers, and SPL
routines.

data dictionary The collection of tables that keeps track of the structure of the database. Infor-
mation about the database is maintained in the data dictionary, which is also
referred to as the system catalog. See also system catalog.
Glossary 13

data distribution A mapping of the data in a column into a set of the column values. The
contents of the column are examined and divided into bins, each of which
represents a percentage of the data. The organization of column values into
bins is called the distribution for that column. Use the UPDATE STATISTICS
statement to create data distributions.

data integrity The process of ensuring that data corruption does not occur when multiple
users simultaneously try to alter the same data. Locking and transaction pro-
cessing are used to control data integrity.

data integrity
statements

The SQL statements that you use to control transactions and audits. Data
integrity statements also include statements for repairing and recovering
tables.

data
manipulation
statements

The SQL statements that you use to query tables, insert into tables, delete
from tables, update tables, and load into and unload from tables.

data partitioning See table fragmentation.

data replication The ability to allow database objects to have more than one representation at
more than one distinct site.

data restriction Synonym for constraint.

data type A descriptor assigned to each column in a table or program variable, which
indicates the type of data the column or program variable is intended to hold.
Informix data types are discussed in Chapter 2, “Data Types.” Informix data
types for Global Language Support are discussed in the Informix Guide to GLS
Functionality. See also built-in data type, complex data type, distinct data type,
opaque data type, and user-defined data type.

database A collection of information (contained in tables) that is useful to a particular
organization or used for a specific purpose. See also relational database.

Database
Administrator

See DBA.

database
application

A program that applies database management techniques to implement
specific data manipulation and reporting tasks.

database
environment

Used in the CONNECT statement, either the database server or the database
server and database to which a user connects.
14 Informix Guide to SQL: Reference

database locale The locale that a database server uses to interpret NCHAR and NVARCHAR
data that is in a particular database. The DB_LOCALE environment variable
can specify a nondefault database locale. See also locale.

database
management
system

See DBMS.

database object An SQL entity that is recorded in a system catalog table, such as a table, col-
umn, constraint, cursor, index, prepared statement, synonym, trigger, user-defined
cast, user-defined data type, user-defined routine, or view.

database server A software package that manages access to one or more databases for one or
more client applications. See also relational database server.

database server
process

A virtual processor that functions similarly to a CPU in a computer. See also
application process.

database server
utility

A program that performs a specific task. For example, DB-Access, dbexport,
and onmode are Informix database server utilities.

DataBlade API An application programming interface that Informix provides to allow a C user-
defined routine access to the database server. You can also use the DataBlade
API to create client LIBMI applications (for backward compatibility with
Illustra applications).

DataBlade
module

A group of database objects and supporting code that extends an object-
relational database to manage new kinds of data or add new features. A
DataBlade module can include new data types, routines, casts, aggregates,
access methods, SQL code, client code, and installation programs.

DBA Acronym for Database Administrator. The DBA is responsible for the contents
and use of a database, whereas the database server administrator is respon-
sible for managing one or more database servers.

DBA-privileged A class of SPL routines that only a user with DBA database privileges creates.

DBMS Acronym for database management system. It is all the components necessary
to create and maintain a database, including the application development
tools and the database server.

dbserver group A collection of coservers defined and named by entries in the sqlhosts file.
Dbserver groups make multiple coservers into a single logical entity for
establishing or changing client/server connections.
Glossary 15

dbslice A named set of dbspaces that can span multiple coservers. A dbslice is man-
aged as a single storage object. See also logslice, physslice, and rootslice.

dbspace A logical collection of one or more chunks. Because chunks represent specific
regions of disk space, the creators of databases and tables can control where
their data is physically located by placing databases or tables in specific
dbspaces. A dbspace provides a link between logical (such as tables) and
physical (such as chunks) units of storage. See also root dbspace.

DDL Acronym for data definition language. See also data definition statements.

deadlock A situation in which two or more threads cannot proceed because each is
waiting for data locked by the other (or another) thread. The database server
monitors and prevents potential deadlock situations by sending an error
message to the application whose request for a lock might result in a
deadlock.

debug file A file that receives output used for debugging purposes.

decision-support
application

An application that provides information that is used for strategic planning,
decision-making, and reporting. It typically executes in a batch environment
in a sequential scan fashion and returns a large fraction of the rows scanned.
Decision-support queries typically scan the entire database. See also online
transaction processing application.

decision-support
query

A query that a decision-support application generates. It often requires oper-
ations such as multiple joins, temporary tables, and extensive calculations,
and can benefit significantly from PDQ. See also online transaction processing
queries.

declaration
statement

A programming language statement that describes or defines objects; for
example, defining a program variable. Compare with procedure. See also data
definition statements.

default How a program acts or the values that are assumed if the user does not
explicitly specify an action.

default locale The locale that a product uses unless you specify a different (nondefault)
locale. For Informix products, U.S. English is the default locale. See also locale.

default value A value inserted in a column or variable when an explicit value is not specified.
You can assign default values to columns with the ALTER TABLE and CREATE
TABLE statements and to variables in SPL routines.
16 Informix Guide to SQL: Reference

delete To remove any row or combination of rows with the DELETE statement.

delimited
identifier

An identifier surrounded by double quotes. The purpose of a delimited
identifier is to allow usage of identifiers that are otherwise identical to SQL
reserved keywords or that contain nonalphabetical characters. See also
identifier.

delimiter A boundary on an input field or the terminator for a column or row. Some
files and prepared objects require semicolon (;), comma (,), space, or tab
delimiters between statements.

deluxe mode A method of loading or unloading data that uses regular inserts.

descriptor A quoted string or embedded variable name that identifies an allocated
system-descriptor area or an sqlda structure. It is used for the Informix
SQL APIs. See also identifier.

detached index The type of index you get when the distribution scheme (specified by the
FRAGMENT BY clause) and the storage option (specified by the IN clause) of
the CREATE INDEX or ALTER FRAGMENT ON INDEX statements differ from
the distribution scheme of the underlying table. Index pages reside in sepa-
rate dbspaces from the corresponding data pages. See also attached index.

device array A list of I/O devices. See also component.

diagnostic area A data structure that stores diagnostic information about an executed SQL
statement.

diagnostics table A special table that holds information about the integrity violations caused
by each row in a violations table. You use the START VIOLATIONS TABLE
statement to create violations and diagnostics tables and associate them with
a base table.

Dirty Read An Informix isolation level set with the SET ISOLATION statement that does
not account for locks and allows viewing of any existing rows, even rows that
currently can be altered from inside an uncommitted transaction. Dirty Read
is the lowest level of isolation (no isolation at all), and is thus the most effi-
cient. See also Read Uncommitted.

disabled mode The object mode in which a database object is disabled. When a constraint,
index, or trigger is in the disabled mode, the database server acts as if the
object does not exist and does not take it into consideration during the execu-
tion of data manipulation statements.
Glossary 17

disk
configuration

The organization of data on a disk; also refers to the process of preparing a
disk to store data.

disk I/O The process of transferring data between memory and disk. The I/O refers to
input/output.

display label A temporary name for a column or expression in a query.

distinct data type A data type that you create with the CREATE DISTINCT TYPE statement. A dis-
tinct data type has the same internal storage representation as its source type
(an existing opaque data type, built-in data type, named row type, or distinct data
type) but has a different name. To compare a distinct data type with its source
type requires an explicit cast. A distinct data type inherits all routines that are
defined on its source type.

distribution See data distribution.

distribution
scheme

See table fragmentation.

DLL See dynamic link library (DLL).

DML Acronym for data manipulation language. See also data manipulation
statements.

dominant table See outer join.

DRDA Acronym for Distributed Relational Database Architecture. DRDA is an IBM-
defined set of protocols that software manufacturers can follow to develop
connectivity solutions between heterogeneous relational database
management environments.

DSS Acronym for Decision Support System. See also decision-support application.

duplicate index An index that allows duplicate values in the indexed column.

dynamic link
library (DLL)

A shared-object file on a Windows system. See also shared library.

dynamic
management
statements

The SQL statements that describe, execute, and prepare statements.

dynamic
routine-name
specification

The execution of a user-defined routine whose name is determined at runtime
through an SPL variable in the EXECUTE PROCEDURE or EXECUTE FUNCTION
statement.
18 Informix Guide to SQL: Reference

Dynamic Server
instance

The set of processes, storage spaces, and shared memory that together
comprise a complete database server.

dynamic
SQL

The statements and structures that allow a program to form an SQL statement
during execution, so that portions of the statement can be determined by user
input.

dynamic
statements

The SQL statements that are created at the time the program is executed
rather than when the program is written. You use the PREPARE statement to
create dynamic statements.

EBCDIC Acronym for Extended Binary Coded Decimal Interchange Code. An 8-bit,
256-element character set.

element A member of a collection. An element can be a single value of any built-in data
type, opaque data type, distinct data type, named row type, unnamed row type, or
collection data type.

element type The data type of the elements in a collection.

embedded SQL The SQL statements that are placed within a host language. Informix
supports embedded SQL in C.

enabled mode The default object mode of database objects. When a constraint, index, or trig-
ger is in this mode, the database server recognizes the existence of the object
and takes the object into consideration while executing data manipulation
statements. See also object mode.

end-user format The format in which data appears within a client application when the format
is in literal strings or character variables. End-user formats are useful for data
types that have a database format that is different from the format to which
users are accustomed.

end-user routine A user-defined routine that performs a task within an SQL statement that the
existing built-in routines do not perform. Examples of tasks include encapsu-
lating multiple SQL statements, creating trigger actions, and restricting who
can access database objects.

environment
variable

A variable that the operating system maintains for each user and made avail-
able to all programs that the user runs.

error log A file that receives error information whenever a program runs.
Glossary 19

error message A message that is associated with a (usually negative) designated number.
Informix applications display error messages on the screen or write them to
files.

error trapping See exception handling.

escape
character

A character that indicates that the following character, normally interpreted
by the program, is to be printed as a literal character instead. The escape
character is used with the interpreted character to “escape” or ignore the
interpreted meaning.

escape key The keyboard key, usually marked ESC, that is used to terminate one mode
and start another mode in most UNIX and DOS systems.

ESQL/C Smart
Large-Object API

An API of C routines that an Informix ESQL/C client application can use to
access smart large objects as operating-system files. The ESQL/C Smart Large-
Object API is part of the Informix ESQL/C SQL API. You can also access smart
large objects with a set of functions in the DataBlade API.

exception An error or warning that the database server returns or a state that a SPL
statement initiates.

exception
handling

The code in a program that anticipates and reacts to runtime errors and warn-
ings. Also referred to as error handling or error trapping.

exclusive access Sole access to a database or table by a user. Other users are prevented from
using it.

exclusive lock A lock on an object (row, page, table, or database) that is held by a single
thread that prevents other processes from acquiring a lock of any kind on the
same object.

executable file A file that contains code that can be executed directly. A C-language object
file can be an executable file; it contains the machine-level instructions that
correspond to the C-language source file.

execute To run a statement, program, routine, or a set of instructions. See also
executable file.

explicit cast A user-defined cast that a user explicitly invokes with the CAST AS keyword or
cast operator (::). See also implicit cast.

explicit
connection

A connection made to a database environment that uses the CONNECT
statement. See also implicit connection.
20 Informix Guide to SQL: Reference

explicit select
list

A SELECT statement in which the user explicitly specifies the columns that
the query returns.

explicit
transaction

A transaction that begins with a BEGIN statement and ends with a COMMIT
statement. This type of transaction applies only to non-ANSI databases with
logging. See also implicit ANSI transaction and singleton implicit transaction.

exponent The power to which a value is to be raised.

express mode An Extended Parallel Server method of loading or unloading data that uses
light appends.

expression Anything from a simple numeric or alphabetic constant to a more complex
series of column values, functions, quoted strings, operators, and keywords.
A Boolean expression contains a logical operator (>, <, =, !=, IS NULL, and so
on) and evaluates as TRUE, FALSE, or UNKNOWN. An arithmetic expression
contains the operators (+, −, ×, /, and so on) and evaluates as a number.

expression-
based
fragmentation

A distribution scheme that distributes rows to fragments according to a user-
specified expression that is defined in the WHERE clause of an SQL statement.

extended data
type

A term used to refer to data types that are not built-in; namely complex data
types, opaque data types, and distinct data types.

extent A continuous segment of disk space that a database server allocated to a tbl-
space (a table). The user can specify both the initial extent size for a table and
the size of all subsequent extents that a database server allocates to the table.

external function An external routine that returns a single value.

external
procedure

An external routine that does not return a value.

external routine A user-defined routine that is written in an external language that the database
supports. These external languages include C and Java. The routine names,
parameters, and other information are registered in the system catalog tables
of a database. However, the executable code of an external routine is stored
outside the database. An external routine can be an external function or an
external procedure.
Glossary 21

external space Storage space that a user-defined access method manages rather than the
database server. You can specify the name of an external space instead of the
name of a dbspace in the IN clause of the CREATE TABLE and CREATE INDEX
statements.

external table A database table that is not in the current database. It might or might not be
in a database that the same database server manages.

extspace (Not for Extended Parallel Server) A logical name associated with an arbi-
trary string that signifies the location of external data. Access its contents
with a user-defined access method.

family name A quoted string constant that specifies a family name in the optical family. See
also optical family.

fault tolerance See high availability.

fetch The action of moving a cursor to a new row and retrieving the row values into
memory.

fetch buffer A buffer in the application process that the database server uses to send
fetched row data (except TEXT and BYTE data) to the application. See also
application process.

field A component of a named row type or unnamed row type that contains a name
and a data type and can be accessed in an SQL statement by using dot notation
in the form row type name.field name. See also column.

file A collection of related information stored together on a system, such as the
words in a letter or report, a computer program, or a listing of data.

file server A network node that manages a set of disks and provides storage services to
computers on the network.

filename
extension

The part of a filename following the period. For example, DB-Access appends
the extension .sql to command files.

filter A set of conditions for selecting rows or records. For an SQL statement, the
conditional expression in the WHERE clause is a filter that controls the set of
rows that a query evaluates. This filter is sometimes referred to as a predicate.
The High-Performance Loader (HPL) uses a filter component to screen data
before loading it into a database.
22 Informix Guide to SQL: Reference

filtering mode The object mode of a database object that causes bad rows to be filtered out
to the violations table during data manipulation operations. Only constraints
and unique indexes can be in the filtering mode. When a constraint or unique
index is in this mode, the database server enforces the constraint or the
unique index requirement during INSERT, DELETE, and UPDATE operations
but filters out rows that would violate the constraint or unique index
requirement.

fixchar A character data type, available in ESQL/C programs, in which the character
string is fixed in length, padded with trailing blanks if necessary, and not
null-terminated.

fixed-point
number

A number where the decimal point is fixed at a specific place regardless of the
value of the number.

flag A command-line option, usually indicated by a minus (-) sign in UNIX
systems. For example, in DB-Access the -e flag echoes input to the screen.

flexible
temporary table

An explicit temporary table that Extended Parallel Server automatically frag-
ments using a round-robin distribution scheme.

floating-point
number

A number with fixed precision (total number of digits) and undefined scale
(number of digits to the left of the decimal point). The decimal point floats as
appropriate to represent an assigned value.

foreign key A column or set of columns that references a unique or primary key in a table.
For every entry in a foreign-key column, there must exist a matching entry in
the unique or primary column, if all foreign-key columns contain non-null
values.

format A description of the organization of a data file. See also component.

formatting
character

A percent sign (%) followed by a letter (c, n, o, or r). When used in a com-
mand line, Extended Parallel Server expands the formatting character to des-
ignate multiple coserver numbers (%c), multiple nodes (%n), multiple
ordinal numbers designating dbspaces (%d), or a range of dbspaces (%r).

fragment See index fragment and table fragment.

fragment
elimination

The process of applying a filter predicate to the fragmentation strategy of a
table or index and removing the fragments that do not apply to the operation.
Glossary 23

fragmentation The process of defining groups of rows within a table based on a rule and
then storing these groups, or fragments, in separate dbspaces that you
specify when you create a table or index fragmentation strategy. See also table
fragmentation.

full checkpoint A type of checkpoint where the pages on disk are synchronized with the
pages in the shared-memory buffer pool.

function A routine that returns one or more values. See also user-defined function.

function cursor A cursor that is associated with an EXECUTE FUNCTION statement, which
executes routines that return values. See also cursor function.

function
overloading

See routine overloading.

fuzzy checkpoint A type of checkpoint where only certain pages on disk are synchronized with
the pages in the shared-memory buffer pool, and the logical log is used to
synchronize the rest of the pages during fast recovery.

gateway A data communications device that establishes communications between
networks.

generalized-key
(GK) index

A type of index for static tables with Extended Parallel Server that can speed
certain queries by letting you store the result of an expression as a key in a B-
tree or bitmap index. The three categories of GK index are selective, virtual
column, and join.

gigabyte Gigabyte is a unit of storage. A gigabyte equals 1024 megabytes or 10243

bytes.

Global Language
Support (GLS)

An application environment that lets Informix APIs and database servers
handle different languages, cultural conventions, and code sets. For informa-
tion about the GLS feature, see the Informix Guide to GLS Functionality.

global variable A variable or identifier whose scope of reference is all modules of a program.
Compare with local variable.

globally-
detached index

For Extended Parallel Server, a type of index that has a fragmentation
strategy that is independent of the table fragmentation and where the
database server cannot verify that each index row resides on the same
coserver as the referenced data row. You can use an expression, system-
defined hash, or hybrid distribution scheme to create globally detached
indexes for any table. See also locally-detached index.
24 Informix Guide to SQL: Reference

GLS See Global Language Support (GLS).

GLS API A legacy acronym for Informix GLS. An API of C routines that a C-language
external routine can use to access Informix GLS locales. This API also includes
functions that obtain culture-specific collation order, time and date formats,
numeric formats, and functions that provide a uniform way of accessing
character data, regardless of whether the locale supports single-byte characters
or multibyte characters.

hash
fragmentation

See system-defined hash fragmentation.

hash rule A user-defined algorithm that maps each row in a table to a set of hash values
and that is used to determine the fragment in which a row is stored.

header file A source file that contains declarations for variables, constants, and macros that a
particular group of modules or programs share.

help message On-line text displayed automatically or at the request of the user to assist the
user in interactive programs. Such messages are stored in help files.

heterogeneous
commit

A protocol that governs a group of database servers in which at least one
participant is a gateway participant. It ensures the all-or-nothing basis of
distributed transactions in a heterogeneous environment. See also two-phase
commit.

hierarchy A tree-like data structure in which some groups of data are subordinate to
others such that only one group (called root) exists at the highest level, and
each group except root is related to only one parent group on a higher level.

high availability The ability of a system to resist failure and data loss. High availability
includes features such as fast recovery and mirroring. It is sometimes
referred to as fault tolerance.

High-
Performance
Loader

The High-Performance Loader (HPL) utility is part of Dynamic Server. The
HPL loads and unloads data using parallel access to devices. See also external
table.

highlight A rectangular inverse-video area that marks your place on the screen. A high-
light often indicates the current option on a menu or the current character in
an editing session. If a terminal cannot display highlighting, the current
option often appears in angle brackets, and the current character is
underlined.
Glossary 25

hold cursor A cursor that is created using the WITH HOLD keywords. A hold cursor
remains open past the end of a transaction. It allows uninterrupted access to
a set of rows across multiple transactions.

home page The page that contains the first byte of the data row, specified by the rowid.
Even if a data row outgrows its original storage location, the home page does
not change. The home page contains a forward pointer to the new location of
the data row. See also remainder page.

host variable An SQL API program variable that you use in an embedded statement to
transfer information between the SQL API program and the database.

HPL See High-Performance Loader.

hybrid
fragmentation

A distribution scheme that lets the user specify two fragmentation methods.
Usually one method is used globally and one method is used locally.

identifier A sequence of letters, digits, and underscores (_) that represents the unqual-
ified name of a database or program object.

implicit ANSI
transaction

A transaction that begins implicitly after a COMMIT statement and ends with
the next COMMIT statement. This type of transaction applies only to ANSI
databases. See also explicit transaction and singleton implicit transaction.

implicit cast A built-in or user-defined cast that the database server automatically invokes to
perform the data conversion. See also explicit cast.

implicit
connection

A connection made using a database statement (DATABASE, CREATE
DATABASE, START DATABASE, DROP DATABASE). See also explicit connection.

implicit select
list

A SELECT statement that uses the asterisk (*) symbol so that a query returns
all columns of the table.

incremental
archiving

A system of archiving that allows the option to archive only those parts of the
data that have changed since the last archive was created.

independent
subquery

A subquery that has no relationship to or dependency on any of its parent
queries. It needs to be evaluated only once and the results can be used
thereafter. In independent subqueries, both the parent and subquery are
parallelized. See also correlated subquery and subquery.

index A structure of entries, each of which contains a value or values and a pointer
to the corresponding location in a table or smart large object. An index might
improve the performance of database queries by ordering a table according
to key column values or by providing access to data inside of large objects.
26 Informix Guide to SQL: Reference

index fragment Consists of zero or more index items grouped together, which can be stored
in the same dbspace as the associated table fragment or in a separate dbspace.
An index fragment also might occupy an sbspace or an extspace.

Informix user ID A login user ID (login user name) that must be valid on all computer systems
(operating systems) involved in the client’s database access. Often referred to
as the client’s user ID or user name. The user ID does not need to refer to a
fully functional user account on the computer system; only the user identity
components of the user account information are significant to Informix data-
base servers. Any given user typically has the same Informix user ID on all
networked computer systems involved in the database access.

Informix user
password

A user ID password that must be valid on all computer systems (operating
systems) involved in the client’s database access. When the client specifies an
explicit user ID, most computer systems require the Informix user password
to validate the user ID.

inheritance The process that allows an object to acquire the properties of another object.
Inheritance allows for incremental modification, so that an object can inherit
a general set of properties and add properties that are specific to itself. See also
type inheritance and table inheritance.

initialize To prepare for execution. To initialize a variable, you assign it a starting value.
To initialize the database server, you start its operation.

inmigration The process by which Optical Subsystem migrates TEXT and BYTE data from
the optical storage subsystem into the Dynamic Server environment.

inner join See simple join.

input The information that is received from an external source (for example, from
the keyboard, a file, or another program) and processed by a program.

input parameter A placeholder within a prepared SQL statement that indicates a value is to be
provided at the time the statement is executed.

insert cursor A cursor for insert operations, associated with an INSERT statement. Allows
bulk insert data to be buffered in memory and written to disk.

installation The loading of software from some magnetic medium (tape, cartridge, or
floppy disk) or CD onto a computer and preparing it for use.

interactive Refers to a program that accepts input from the user, processes the input, and
then produces output on the screen, in a file, or on a printer.
Glossary 27

international-
ization (I18n)

The process of making Informix products easily adaptable to any culture and
language. Among other features, internationalized software provides
support for culturally specific sorting and for adaptable date, time, and
money formats. For more information, see the Informix Guide to GLS
Functionality.

interquery
parallelization

The ability to process multiple queries simultaneously to avoid a perfor-
mance delay when multiple independent queries access the same table. See
also intraquery parallelization.

interrupt A signal from a user or another process that can stop the current process
temporarily or permanently. See also signal.

interrupt key A key used to cancel or abort a program or to leave a current menu and return
to the menu one level above. On many systems, the interrupt key is
CONTROL-C; on other systems, the interrupt key is DEL or CONTROL-Break.

intraquery
parallelization

Breaking of a single query into subqueries by a database server using PDQ
and then processing the subqueries in parallel. Parallel processing of this
type has important implications when each subquery retrieves data from a
fragment of a table. Because each partial query operates on a smaller amount
of data, the retrieval time is significantly reduced and performance is
improved. See also interquery parallelization.

IPX/SPX Acronym for Internetwork Packet Exchange/Sequenced Packet Exchange. It
refers to the NetWare network protocol by Novell.

ISAM Acronym for Indexed Sequential Access Method. An indexed sequential
access method allows you to find information in a specific order or to find
specific pieces of information quickly through an index. See also access
method.

ISAM error Operating system or file access error.

ISO Acronym for the International Standards Organization. ISO sets worldwide
standards for the computer industry, including standards for character input
and manipulation, code sets, and SQL syntax.

ISO8859-1 A code set that contains 256 single-byte characters. Characters 0 through 127
are the ASCII characters. Characters 128 through 255 are mostly characters
from European languages, for example, é, ñ and ö.
28 Informix Guide to SQL: Reference

isolation The level of independence when multiple users attempt to access common
data specifically relating to the locking strategy for read-only SQL requests.
The various levels of isolation are distinguished primarily by the length of
time that shared locks are (or can be) acquired and held. Set the isolation level
with the SET ISOLATION or SET TRANSACTION statement.

iterator function A cursor function that is written in an external language such as C or Java.

jagged rows A query result in which rows differ in the number and type of columns they
contain because the query applies to more than one table in a table hierarchy.

join The process of combining information from two or more tables based on
some common domain of information. Rows from one table are paired with
rows from another table when information in the corresponding rows match
on the joining criterion. For example, if a customer_num column exists in the
customer and the orders tables, you can construct a query that pairs each
customer row with all the associated orders rows based on the common
customer_num. See also Cartesian product and outer join.

join index A type of generalized-key index that contains keys that are the result of a query
that joins multiple tables.

jukebox A cabinet that consists of one or more optical-disc drives, slots that store
optical platters when they are not mounted, and a robotic arm that transfers
platters between the slots and the drives. A jukebox is also known as an
autochanger.

kernel The part of the operating system that controls processes and the allocation of
resources.

key The pieces of information that are used to locate a row of data. A key defines
the pieces of information for which you want to search as well as the order in
which you want to process information in a table. For example, you can index
the last_name column in a customer table to find specific customers or to
process the customers in alphabetical or reverse alphabetical order by their
last names (last_name serves as the key).

keyword A word that has meaning to a program. For example, the word SELECT is a
keyword in SQL.

kilobyte A unit of storage that equals 1024 bytes.
Glossary 29

Language
Supplement

An Informix product that provides the locale files and error messages to
support one or more languages. The International Language Supplement
supports several European languages. Informix provides separate Language
Supplements for several Asian languages.

large object A data object that is logically stored in a table column but physically stored
independently of the column, due to its size. Large objects can be simple large
objects (TEXT, BYTE) or smart large objects (BLOB, CLOB).

leaf node An index page that contains index items and horizontal pointers to other leaf
nodes. The database server creates leaf nodes when the root node becomes
full.

level of isolation See isolation.

library A group of precompiled routines designed to perform tasks that are common
to a particular kind of application. An application programming interface can
include a library of routines that you can call from your application program.
See also dynamic link library (DLL), shared library, and shared-object file.

light append An unbuffered, unlogged insert operation.

link To combine separately compiled program modules, usually into an
executable program. Compare with compile and execute.

LIST A collection data type created with the LIST constructor in which elements are
ordered and duplicates are allowed.

literal The representation of a data type value in a format that the database server
accepts in data-entry operations. For example, 234 is a literal integer and
“abcd” is a literal character.

little-endian A hardware-determined storage method in which the least-significant byte of
a multibyte number has the lowest address. See also big-endian.

load job The information required to load data into a relational database using the
HPL. This information includes the format, map, filter, device array, project,
and special options.

local copy For Extended Parallel Server, a replica of a table on a local coserver that is
copied to multiple coservers. This allows faster access to the data for OLTP
transactions connected to those coservers because you do not have to send
the data across the communication links between coservers.
30 Informix Guide to SQL: Reference

local loopback A connection between the client and database server that uses a network
connection even though the client and the database server are on the same
computer.

local variable A variable or identifier whose scope of reference is only within the routine in
which it is defined. Compare with global variable.

locale A set of Informix files that specify the linguistic rules for a country, region,
culture, or language. Informix products provide pre-defined locales that
customers cannot modify. A locale provides the name of the code set that the
application data uses, the collation order to use for character data, and the
end-user format. See also client locale, database locale, default locale, server
locale, and server-processing locale.

localized order The order of characters as specified within a particular locale. Localized
order can also specify a dictionary or phone-book order. For example, in
dictionary order, uppercase characters and lowercase characters are treated
the same; one does not take precedence over the other. See also collation order.

locally-detached
index

For Extended Parallel Server, a type of index that has a fragmentation
strategy that is independent of the table fragmentation but where the
database server recognizes that each index row resides on the same co-server
as the referenced data row. You can use an expression, system-defined hash,
or hybrid distribution scheme to create locally detached indexes for any
table. See also globally-detached index.

lock coupling A method that holds a lock on the child node until a lock is obtained on the
parent node during upward movement when updating an R-tree index. Lock
coupling is used when an R-tree index is updated if the bounding box of a
leaf node has changed. You must propagate the change to the parent node by
moving upwards in the tree until you reach a parent node that does not need
to be changed.

lock mode An option that describes whether a user who requests a lock on an already
locked object is to not wait for the lock and instead receive an error, wait until
the object is released to receive the lock, or wait a certain amount of time
before receiving an error.
Glossary 31

locking The process of temporarily limiting access to an object (database, table, page,
or row) to prevent conflicting interactions among concurrent processes.
Locks can be in either exclusive mode, which restricts read and write access
to only one user or share mode, which allows read-only access to other users.
In addition, update locks exist that begin in share mode but are upgraded to
exclusive mode when a row is changed.

locking
granularity

The size of a locked object. The size can be a database, table, page, or row.

logical log An allocation of disk space that the database server manages that contains
records of all changes that were performed on a database during the period
the log was active. The logical log is used to roll back transactions, recover
from system failures, and restore databases from archives. See also physical
log.

login The process of identifying oneself to a computer.

login password See Informix user password.

login user ID See Informix user ID.

logslice A dbslice whose contents are comprised solely of logical-log files. The
logical-log files in the logslice can be owned by multiple coservers, one log
file per dbspace. See also dbslice, rootslice, and physslice.

LVARCHAR A built-in data type that stores varying-length character data of up to
32 kilobytes.

macro A named set of instructions that the computer substitutes when it encounters
the name in source code.

mantissa The significant digits in a floating-point number.

map A description of the relation between the records of a data file and the
columns of a relational database. See also component.

massively
parallel
processing
system

A system composed of multiple computers that are connected to a single
high-speed communication subsystem. MPP computers can be partitioned
into nodes. Compare with symmetric multiprocessing system.

megabyte A unit of storage that equals 1024 kilobytes or 10242 bytes.
32 Informix Guide to SQL: Reference

Memory Grant
Manager (MGM)

(Not for Extended Parallel Server) A database server component that
coordinates the use of memory and I/O bandwidth for decision-support
queries. MGM uses the DS_MAX_QUERIES, DS_TOTAL_MEMORY,
DS_MAX_SCANS, and PDQPRIORITY configuration parameters to determine
what resources can or cannot be granted to a decision-support query.

menu A screen display that allows you to choose the commands that you want the
computer to perform.

MGM Acronym for Memory Grant Manager.

mirroring Storing the same data on two chunks simultaneously. If one chunk fails, the
data is still usable on the other chunk in the mirrored pair. The database
server administrator handles this data storage option.

MODE ANSI The keywords specified on the CREATE DATABASE statement to make a
database ANSI compliant.

monochrome A term that describes a monitor that can display only one color.

MPP Acronym for massively parallel processing system.

multibyte
character

A character that might require from two to four bytes of storage. If a language
contains more than 256 characters, the code set must contain multibyte char-
acters. Applications that handle data in a multibyte code set cannot assume
that one character requires only one byte of storage. See also single-byte
character.

multiplexed
connection

A single network connection between a database server and a client
application that handled multiple database connections from the client.

MULTISET A collection data type created with the MULTISET constructor in which elements
are not ordered and duplicates are allowed.

multithreading Running of multiple threads that are run within the same process. See thread.

named row type A row type created with the CREATE ROW TYPE statement that has a defined
name and inheritance properties and can be used to construct a typed table. A
named row type is not equivalent to another named row type, even if its field
definitions are the same.

national
character

A character in a native language character set. Also known as native character.

native character See national character.
Glossary 33

Native Language
Support (NLS)

A class of products that operate with single-byte code sets. An NLS product
uses locales and code sets that the operating system supplies. NLS servers
and tools are available for the Version 6.x and later family of products. For
more information, see the Informix Migration Guide.

NLS Legacy acronym for the Native Language Support feature for working with
single-byte, non-English data. Supplanted by Global Language Support (GLS).

node Within the context of an index for a database, a node is an ordered group of
key values having a fixed number of elements. (A key is a value from a data
record.) A B+ tree, for example, is a set of nodes that contain keys and
pointers that are arranged in a hierarchy. See also branch node, leaf node, and
root node.

Within the context of a MPP system, a node is an individual computer. See also
massively parallel processing system.

Within the context of a SMP system, a node can either be the entire SMP
computer or a fully functioning subsystem that uses a portion of the
hardware resources of that SMP system. See also symmetric multiprocessing
system.

For Extended Parallel Server, a node is an individual computer with one or
more CPUs that runs a single instance of an operating system within a
parallel-processing platform. A node can be a uniprocessor, a cluster of
stand-alone computers, an SMP computer, or an independent subsystem
configured within an SMP computer.

non-ASCII
character

A character with a code point greater than 127. Non-ASCII characters include
8-bit characters and multibyte characters.

noncursor
function

A user-defined function that returns a single group of values (one row of data)
and therefore does not require a cursor when it is executed. Compare with
cursor function.

nonvariant
function

A user-defined function that always returns the same value when passed the
same arguments. A nonvariant function must not contain SQL statements.
Compare with variant function.

not-null
constraint

A constraint on a column that specifies the column cannot contain null
values.

null value A value that is unknown or not applicable. (A null is not the same as a value
of zero or blank.)
34 Informix Guide to SQL: Reference

object See database object.

object mode The state of a database object as recorded in the sysobjstate system catalog
table. A constraint or unique index can be in the enabled, disabled, or filter-
ing mode. A trigger or duplicate index can be in the enabled or disabled
mode. You use the SET statement to change the object mode of an object.

object-relational
database

A database that adds object-oriented features to a relational database,
including support for user-defined data types, user-defined routines, user-defined
casts, user-defined access methods, and inheritance.

OLTP Acronym for Online Transaction Processing. See also online transaction
processing application.

online
transaction
processing
application

Characterized by quick, indexed access to a small number of data items. The
applications are typically multiuser, and response times are measured in
fractions of seconds. See also decision-support application.

online
transaction
processing
queries

The transactions that OLTP applications handle are usually simple and pre-
defined. A typical OLTP system is an order-entry system where only a limited
number of rows are accessed by a single transaction many times. See also deci-
sion-support query.

ON-Monitor (Not for Extended Parallel Server) An interface that presents a series of
screens through which a database server administrator can monitor and
modify a database server.

opaque data type A fundamental data type that you define, which contains one or more values
encapsulated with an internal length and input and output functions that
convert text to and from an internal storage format. Opaque types need user-
defined routines and user-defined operators that work on them. Synonym for base
type and user-defined base type.

opaque-type
support function

One of a group of user-defined functions that the database server uses to per-
form operations on opaque data types (such as converting between the internal
and external representations of the type).

open The process of making a resource available, such as preparing a file for access,
activating a cursor, or initiating a window.

operational table A logging permanent table that uses light appends for fast update opera-
tions. Operational tables do not perform record-by-record logging.
Glossary 35

operator In an SQL statement, a symbol (such as =, >, <,+, -, and *) that invokes an
operator function. The operands to the operator are arguments to the operator
function.

operator binding The implicit invocation of an operator function when an operator is used in an
SQL statement.

operator class An association of operator-class functions with a secondary access method. The
database server uses an operator class to optimize queries and build an index
of that secondary access method.

operator-class
function

One of the operator-class support functions or operator-class strategy functions
that constitute an operator class. For user-defined operator classes, the
operator-class functions are user-defined functions.

operator-class
strategy function

An operator-class function that can appear as a filter in a query. The query
optimizer uses the strategy functions to determine if an index of a particular
secondary access method can be used to process the filter. You register operator-
class strategy functions in the STRATEGIES clause of the CREATE OPCLASS
statement.

operator-class
support function

An operator-class function that a secondary access method uses to build or search
an index. You register operator-class support functions in the SUPPORT clause
of the CREATE OPCLASS statement.

operator function A function that processes one or more arguments (its operands) and returns a
value. Many operator functions have corresponding operators, such as plus()
and +. You can overload an operator function so that it handles a user-defined
data type. See also routine overloading.

optical cluster An amount of space, on an optical disc, that is reserved for storing a group of
logically related simple large objects or smart large objects.

optical family A group of optical discs, theoretically unlimited in number.

optical platters The removable optical discs that store data in an optical storage subsystem.

optical
statements

The SQL statements that you use to control optical clustering.

optical volume One side of a removable Write-Once-Read-Many (WORM) optical disc.
36 Informix Guide to SQL: Reference

outer join An asymmetric joining of a dominant (outer) table and a subservient table in
a query where the values for the outer part of the join are preserved even
though no matching rows exist in the subservient table. Any dominant-table
rows that do not have a matching row in the subservient table contain null
values in the columns selected from the subservient table.

outmigration The process by which Optical Subsystem migrates TEXT or BYTE data from
the Dynamic Server environment to an optical storage subsystem.

output The result that the computer produces in response to a query or a request for
a report.

overloading See routine overloading.

owner-privileged A class of SPL routines that any user can create who has Resource database
privileges.

packed decimal A storage format that represents either two decimal digits or a sign and one
decimal digit in each byte.

pad Usually, to fill empty places at the beginning or end of a line, string, or field
with spaces or blanks when the input is shorter than the field.

page The physical unit of disk storage and basic unit of memory storage that the
database server uses to read from and write to Informix databases. Page size
is fixed for a particular operating system and platform. A page is always
entirely contained within a chunk. See also home page and remainder page.

parallel database
query

The execution of SQL queries in parallel rather than sequential order. The
tasks a query requires are distributed across several processors. This type of
distribution enhances database performance.

parallel-
processing
platform

A parallel-processing platform is a set of independent computers that
operate in parallel and communicate over a high-speed network, bus, or
interconnect. See also symmetric multiprocessing system and massively
parallel processing system.

parallelism Ability of an Informix database server to process a task in parallel by break-
ing the task into subtasks and processing the subtasks simultaneously, thus
improving performance.
Glossary 37

parameter A variable that is given a value for a specified application. In the signature of
a user-defined routine, a parameter serves as a placeholder for an argument.
The parameter specifies the data type of the value that the user-defined rou-
tine expects when it receives the associated argument at runtime. See also con-
figuration file, input parameter, and routine signature.

parent-child
relationship

See referential constraint.

parent table The referenced table in a referential constraint. See also child table.

participating
coserver

A coserver that controls one or more fragments of a table that Extended Par-
allel Server accesses. See also coserver and connection coserver.

partition See table fragment.

pattern An identifiable or repeatable series of characters or symbols.

PDQ Acronym for parallel database query.

PDQ priority Determines the amount of resources that a database server allocates to pro-
cess a query in parallel. These resources include memory, threads (such as
scan threads), and sort space. The level of parallelism is established by using
the PDQPRIORITY environment variable or various database server
configuration parameters (including PDQPRIORITY and MAX_PDQPRIORITY)
or dynamically through the SET PDQPRIORITY statement.

permission On some operating systems, the right to access files and directories.

phantom row A row of a table that is initially modified or inserted during a transaction but
is subsequently rolled back. Another user can see a phantom row if the
isolation level is Informix Dirty Read or ANSI Read Uncommitted. No other
isolation level allows the user to see a changed but uncommitted row.

physical log A set of contiguous disk pages in shared memory where the database server
stores an unmodified copy (before-image) of pages before the changed pages
are recorded. The pages in the physical log can be any database server page
except a blobspace blobpage.

physslice A dbslice that contains the physical log. See also dbslice, logslice, and
rootslice.

pointer A value that specifies the address in memory of the data or variable, rather
than the contents of the data or variable.
38 Informix Guide to SQL: Reference

polymorphism See routine overloading and type substitutability.

precision The total number of significant digits in a real number, both to the right and
left of the decimal point. For example, the number 1437.2305 has a precision
of 8. See also scale.

predefined
opaque data type

An opaque data type for which the database server provides the type
definition. See also BLOB, BOOLEAN, CLOB, LVARCHAR and pointer.

predicate See filter.

predicate lock A lock held on index keys that qualifies for a predicate. In a predicate lock,
exclusive predicates consist of a single key value, and shared predicates con-
sist of a query rectangle and a scan operation such as inclusion or overlap.

prepared
statement

An SQL statement that is generated by the PREPARE statement from a
character string or from a variable that contains a character string. This fea-
ture allows you to form your request while the program is executing without
having to modify and recompile the program.

preprocessor A program that takes high-level programs and produces code that a standard
language compiler such as C can compile.

primary access
method

An access method whose routines access a table with such operations as insert-
ing, deleting, updating, and scanning. See also secondary access method.

primary key The information from a column or set of columns that uniquely identifies
each row in a table. The primary key sometimes is called a unique key.

primary-key
constraint

Specifies that each entry in a column or set of columns contains a non-null
unique value.

printable
character

A character that can be displayed on a terminal, screen, or printer. Printable
characters include A-Z, a-z, 0-9, and punctuation marks. Compare with control
character.

privilege The right to use or change the contents of a database, table, table fragment,
or column. See also access privileges.

procedure A routine that does not return values. See also user-defined procedure.

procedure
overloading

See routine overloading.

process A discrete task, generally a program, that the operating system executes.
Glossary 39

project A group of related components that the High-Performance Loader (HPL)
uses. See also component.

projection Taking a subset from the columns of a single table. Projection is implemented
through the select list in the SELECT clause of a SELECT statement and returns
some of the columns and all the rows in a table. See also selection and join.

promotable lock A lock that can be changed from a shared lock to an exclusive lock. See also
update lock.

protocol A set of rules that govern communication among computers. These rules
govern format, timing, sequencing, and error control.

query A request to the database to retrieve data that meets certain criteria, usually
made with the SELECT statement. When used with the High-Performance
Loader (HPL), selects records to unload from a relational database. See also
component.

query
optimization
information
statements

The SQL statements that are used to optimize queries. These statements
include SET EXPLAIN, SET OPTIMIZATION, and UPDATE STATISTICS.

query unnesting An execution strategy for nested SQL subqueries whereby Extended Parallel
Server rewrites such subqueries to use modified joins rather than iteration
mechanisms. The sqexplain.out file reflects the query plan that has been
selected after subquery unnesting has occurred.

R-tree index (Not for Extended Parallel Server) A type of index that uses a tree structure
based on overlapping bounding rectangles to speed access to spatial and
multidimensional data types. See also bitmap index and B-tree index.

range
fragmentation

A distribution scheme that distributes data in table fragments that contain a
specified key range. This method can eliminate scans of table fragments that
do not contain the required rows, making queries faster.

range rule A user-defined algorithm for expression-based fragmentation. It defines the
boundaries of each fragment in a table using SQL relational and logical
operators. Expressions in a range rule can use the following restricted set of
operators: >, <, >=, <=, and the logical operator AND.

raw device See unbuffered disk I/O.

raw disk See unbuffered disk I/O.
40 Informix Guide to SQL: Reference

raw table A nonlogged permanent table that uses light appends.

Read Committed An ANSI level of isolation available through Dynamic Server and set with the
SET TRANSACTION statement in which a user can view only rows that are
currently committed at the moment of the query request. That is, a user
cannot view rows that were changed as a part of a currently uncommitted
transaction. It is the default level of isolation for databases that are not ANSI
compliant. See also isolation and Committed Read.

Read
Uncommitted

An ANSI level of isolation set with the SET TRANSACTION statement that
does not account for locks and allows viewing of any existing rows, even
rows that currently can be altered from inside an uncommitted transaction.
Read Uncommitted is the lowest level of isolation (no isolation at all), and is
thus the most efficient. See also isolation and Dirty Read.

real user ID See Informix user ID.

record See row.

Record-ID A four-byte RSAM entity, also known as RID, that describes the logical
position of the record within a fragment. Not the same as rowid.

recover a
database

To restore a database to a former condition after a system failure or other
destructive event. The recovery restores the database as it existed immedi-
ately before the failure.

referential
constraint

The relationship between columns within a table or between tables; also
known as a parent-child relationship. Referencing columns are also known as
foreign keys.

registering In a database, the process of storing information about a database object in the
system catalog tables of a database. Most SQL data definition statements per-
form some type of registration. For example, the CREATE FUNCTION and
CREATE PROCEDURE statements register a user-defined routine in a database.

relation See table.

relational
database

A database that uses table structures to store data. Data in a relational
database is divided across tables in such a way that additions and modifica-
tions to the data can be made easily without loss of information.

relational
database server

A database server that manages data that is stored in rows and columns.
Glossary 41

remainder page A page that accommodates subsequent bytes of a long data row. If the trailing
portion of a data row is less than a full page, it is stored on a remainder page.
After the database server creates a remainder page for a long row, it can use
the remaining space in the page to store other rows. Each full page that
follows the home page is referred to as a big-remainder page. See also home
page.

remote A connection that requires a network.

Repeatable Read An Informix and ANSI level of isolation available with the Informix SET
ISOLATION statement or the ANSI SET TRANSACTION statement, which
ensures that all data read during a transaction is not modified during the
entire transaction. Transactions under ANSI Repeatable Read are also known
as Serializable. Informix Repeatable Read is the default level of isolation for
ANSI-compliant databases. See also isolation and Serializable.

reserved pages The first 12 pages of the initial chunk of the root dbspace. Each reserved page
stores specific control and tracking information that the database server uses.

reserved word A word in a statement or command that you cannot use in any other context
of the language or program without receiving a warning or error message.

restore a
database

See recover a database.

role A classification or work task, such as payroll, that the DBA assigns.
Assignment of roles makes management of privileges convenient.

role separation (Not for Extended Parallel Server) A database server installation option that
allows different users to perform different administrative tasks.

roll back The process that reverses an action or series of actions on a database. The
database is returned to the condition that existed before the actions were
executed. See also transaction and commit work.

root dbspace The initial dbspace that the database server creates. It contains reserved pages
and internal tables that describe and track all other dbspaces, blobspaces,
sbspaces, tblspaces, chunks, and databases.

root node A single index page that contains node pointers to branch nodes. The database
server allocates the root node when you create an index for an empty table.

root supertype The named row type at the top of a type hierarchy. A root supertype has no
supertype above it.
42 Informix Guide to SQL: Reference

rootslice A dbslice that contains the root dbspaces for all coservers for Extended
Parallel Server. See also dbslice, logslice, and physslice.

round-robin
fragmentation

A distribution scheme in which the database server distributes rows
sequentially and evenly across specified dbspaces.

routine A group of program statements that perform a particular task. A routine can
be a function or a procedure. All routines can accept arguments. See also built-in
and user-defined routine.

routine modifier A keyword in the WITH clause of a CREATE FUNCTION, CREATE PROCE-
DURE, ALTER FUNCTION, ALTER PROCEDURE, or ALTER ROUTINE statement
that specifies a particular attribute or usage of a user-defined routine.

routine
overloading

The ability to assign one name to multiple user-defined routines and specify
parameters of different data types on which each routine can operate. An over-
loaded routine is uniquely defined by its routine signature.

routine
resolution

The process that the database server uses to determine which user-defined
routine to execute based on the routine signature. See also routine overloading.

routine signature The information that the database server uses to uniquely identify a user-
defined routine. The signature includes the type of routine (function or
procedure); the routine name; and the number, order, and data types of the
parameters. See also routine overloading and specific name.

row A group of related items of information about a single entity across all col-
umns in a database table. In a table of customer information, for example, a
row contains information about a single customer. A row is sometimes
referred to as a record or tuple. In an object-relational model, each row of a
table stands for one instance of the subject of the table, which is one particular
example of that entity. In a screen form, a row can refer to a line of the screen.
See also column.

row type A complex data type that contains one or more related data fields, of any data
type, that form a template for a record. The data in a row type can be stored
in a row or column. See also named row type and unnamed row type.

row variable An Informix ESQL/C host variable or SPL variable that holds an entire row type
and provides access to the individual fields of the row.
Glossary 43

rowid In nonfragmented tables, rowid refers to an integer that defines the physical
location of a row. Rowids must be explicitly created to be used in fragmented
tables and they do not define a physical location for a row. Rowids in
fragmented tables are accessed by an index that is created when the rowid is
created; this access method is slow. Informix recommends that users creating
new applications move toward using primary keys as a method of row
identification instead of using rowids.

rule How a database server or a user determines into which fragment rows are
placed. The database server determines the rule for round-robin fragmentation
and system-defined hash fragmentation. The user determines the rule for
expression-based fragmentation and hybrid fragmentation. See also arbitrary rule
and range rule.

runtime
environment

The hardware and operating-system services available at the time a program
runs.

runtime error An error that occurs during program execution. Compare with compile-time
error.

sbspace (Not for Extended Parallel Server) A logical storage area that contains one or
more chunks that store only BLOB and CLOB data.

scale The number of digits to the right of the decimal place in DECIMAL notation.
The number 14.2350 has a scale of 4 (four digits to the right of the decimal
point). See also precision.

scale up The ability to compensate for an increase in query size by adding a corre-
sponding amount of computer resources so that processing time does not
also increase.

scan thread A database server thread that is assigned the task of reading rows from a
table. When a query is executed in parallel, the database server allocates mul-
tiple scan threads to perform the query in parallel.

schema The structure of a database or a table. The schema for a table lists the names
of the columns, their data types, and (where applicable) the lengths,
indexing, and other information about the structure of the table.

scope of
reference

The portion of a routine or application program in which a variable or identifier
can be accessed. Three possible scopes exist: local (applies only in a single
program block), modular (applies throughout a single module), and global
(applies throughout the entire program). See also local variable and global
variable.
44 Informix Guide to SQL: Reference

scratch table A nonlogging temporary table.

scroll cursor A cursor created with the SCROLL keyword that allows you to fetch rows of
the active set in any sequence.

secondary
access method

An access method whose routines access an index with such operations as
inserting, deleting, updating, and scanning. See also operator class and
primary access method.

secure auditing (Not for Extended Parallel Server) A facility of Informix database servers that
lets a database server administrator keep track of unusual or potentially
harmful user activity. Use the onaudit utility to enable auditing of events and
create audit masks, and the onshowaudit utility to extract the audit event
information for analysis.

select See query.

select cursor A cursor that is associated with a SELECT statement, which lets you scan
multiple rows of data, moving data row by row into a set of receiving
variables.

selection Taking a horizontal subset of the rows of a single table that satisfies a
particular condition. Selection is implemented through the WHERE clause of
a SELECT statement and returns some of the rows and all of the columns in a
table. See also projection and join.

selective index A type of generalized-key index that contains keys for only a subset of a table.

selectivity The proportion of rows within the table that a query filter can pass.

self-join A join between a table and itself. A self-join occurs when a table is used two
or more times in a SELECT statement (with different aliases) and joined to
itself.

semaphore An operating-system communication device that signals a process to
awaken.

sequential cursor A cursor that can fetch only the next row in sequence. A sequential cursor can
read through a table only once each time the sequential cursor is opened.

Serializable An ANSI level of isolation set with the SET TRANSACTION statement,
ensuring all data read during a transaction is not modified during the entire
transaction. See also isolation and Repeatable Read.
Glossary 45

server locale The locale that a database server uses when it performs its own read and
write operations. The SERVER_LOCALE environment variable can specify a
nondefault locale. See also client locale and locale.

server name The unique name of a database server, assigned by the database server
administrator, that an application uses to select a database server.

server number A unique number between 0 and 255, inclusive, that a database server
administrator assigns when a database server is initialized.

server-
processing
locale

The locale that a database server determines dynamically for a particular
connection between a client application and a database. See also locale.

session The structure that is created for an application using the database server.

SET A collection data type created with the SET type constructor, in which elements
are not ordered and duplicate values can be inserted.

shared library A shared-object file on a UNIX system. See also dynamic link library (DLL).

shared lock A lock that more than one thread can acquire on the same object. Shared locks
allow for greater concurrency with multiple users; if two users have shared
locks on a row, a third user cannot change the contents of that row until both
users (not just the first) release the lock. Shared-locking strategies are used in
all levels of isolation except Informix Dirty Read and ANSI Read
Uncommitted.

shared memory A portion of main memory that is accessible to multiple processes. Shared
memory allows multiple processes to communicate and access a common
data space in memory. Common data does not have to be reread from disk
for each process, reducing disk I/O and improving performance. Also used
as an Inter-Process Communication (IPC) mechanism to communicate
between two processes running on the same computer.

shared-object
file

A library that is not linked to an application at compile time but instead is
loaded into memory by the operating system as needed. Several applications
can share access to the loaded shared-object file. See also dynamic link library
(DLL) and shared library.

shelf The location of an optical platter that is neither on an optical drive nor in a
jukebox slot.
46 Informix Guide to SQL: Reference

shuffling Shuffling refers to the process that occurs when a database server moves
rows or key values from one fragment to another. Shuffling occurs in a vari-
ety of circumstances including when you attach, detach, or drop a fragment.

signal A means of asynchronous communication between two processes. For
example, signals are sent when a user or a program wants to interrupt or
suspend the execution of a process. See also interrupt.

signature See routine signature.

simple join A join that combines information from two or more tables based on the
relationship between one column in each table. Rows that do not satisfy the
join criteria are discarded from the result. Also known as an inner join. See
also composite join.

simple large
object

A large object that is stored in a blobspace or dbspace is not recoverable and does
not obey transaction isolation modes. Simple large objects include TEXT and
BYTE data types. Extended Parallel Server does not support simple large
objects that are stored in a blobspace.

simple predicate A search condition in the WHERE clause that has one of the following forms:
f(column, constant), f(constant, column), or f(column), where f is a binary
or unary function that returns a Boolean value (TRUE, FALSE, or UNKNOWN).

single-byte
character

A character that uses one byte of storage. Because a single byte can store
values in the range of 0 to 255, it can uniquely identify 256 characters. When
an application handles data in these code sets, it can assume that one char-
acter is always stored in one byte. See also 8-bit character and multibyte
character.

singletonimplicit
transaction

A single-statement transaction that does not require either a BEGIN WORK or
a COMMIT WORK statement. This type of transaction occurs in a non-ANSI
logging database. See also explicit transaction and implicit ANSI transaction.

singleton select A SELECT statement that returns a single row.

smart large
object

A large object that is stored in an sbspace, which has read, write, and seek prop-
erties similar to a UNIX file, is recoverable, obeys transaction isolation modes,
and can be retrieved in segments by an application. Smart large objects
include BLOB and CLOB data types.

SMI Acronym for system-monitoring interface.

SMP See symmetric multiprocessing system.
Glossary 47

source file A text file that contains instructions in a high-level language, such as C. A C
source file is compiled into an executable file called an object file. An SPL source
file is compiled into its own executable format. See also compile.

specific name A name that you can assign to an overloaded user-defined routine to uniquely
identify a particular signature of the user-defined routine. See also routine
overloading and routine signature.

speed up The ability to add computing hardware to achieve correspondingly faster
performance for a DSS query or OLTP operation of a given volume.

SPL See Stored Procedure Language (SPL).

SPL function An SPL routine that returns one or more values.

SPL procedure An SPL routine that does not return a value.

SPL routine A user-defined routine that is written in Stored Procedure Language (SPL). Its
name, parameters, and other information are registered in the system catalog
tables of a database. The database server also stores the executable format in
system catalog tables. An SPL routine can be an SPL procedure or an SPL
function.

SPL variable A variable that is created with the DEFINE statement and used in an SPL
routine.

SQL Acronym for Structured Query Language. SQL is a database query language
that was developed by IBM and standardized by ANSI. Informix relational
database management products are based on an extended implementation of
ANSI-standard SQL.

SQL API An application programming interface that allows you to embed Structured
Query Language (SQL) statements directly in an application. The embedded-
language product Informix ESQL/C is an example of an SQL API. See also host
variable.

SQLCA Acronym for SQL Communications Area. The SQLCA is a data structure that
stores information about the most recently executed SQL statement. The
result code returned by the database server to the SQLCA is used for error
handling by Informix SQL APIs.
48 Informix Guide to SQL: Reference

sqlda Acronym for SQL descriptor area. A dynamic SQL management structure that
can be used with the DESCRIBE statement to store information about database
columns or host variables used in dynamic SQL statements. The structure
contains an sqlvar_struct structure for each column; each sqlvar_struct
structure provides information such as the name, data type, and length of the
column. The sqlda structure is an Informix-specific structure for handling
dynamic columns. It is available only within an Informix ESQL/C program.
See also descriptor and system-descriptor area.

sqlhosts A file that identifies the types of connections the database server supports.

stack operator Operators that allow programs to manipulate values that are on the stack.

staging-area
blobspace

(Not for Extended Parallel Server) The blobspace where a database server
temporarily stores TEXT or BYTE data that is being outmigrated to an optical
storage subsystem.

statement A line or set of lines of program code that describes a single action (for
example, a SELECT statement or an UPDATE statement).

statement block A unit of SPL program code that performs a particular task and is usually
marked by the keywords BEGIN and END. The statement block of an SPL
routine is the smallest scope of reference for program variables.

statement
identifier

An embedded variable name or SQL statement identifier that represents a
data structure defined in a PREPARE statement. It is used for dynamic SQL
statement management by Informix SQL APIs.

static table A nonlogging, read-only permanent table.

status variable A program variable that indicates the status of some aspect of program
execution. Status variables often store error numbers or act as flags to
indicate that an error has occurred.

storage space A dbspace, blobspace, or sbspace that is used to hold data.

stored procedure A legacy term for an SPL routine.

Stored Procedure
Language (SPL)

An Informix extension to SQL that provides flow-control features such as
sequencing, branching, and looping. See also SPL routine.

strategy function See operator-class strategy function.
Glossary 49

string A set of characters (generally alphanumeric) that is manipulated as a single
unit. A string might consist of a word (such as ‘Smith’), a set of digits repre-
senting a number (such as ‘19543’), or any other collection of characters.
Strings generally are surrounded by single quotes. A string is also a character
data type, available in Informix ESQL/C programs, in which the character
string is stripped of trailing blanks and is null-terminated.

subordinate table See outer join.

subquery A query that is embedded as part of another SQL statement. For example, an
INSERT statement can contain a subquery in which a SELECT statement sup-
plies the inserted values in place of a VALUES clause; an UPDATE statement
can contain a subquery in which a SELECT statement supplies the updating
values; or a SELECT statement can contain a subquery in which a second
SELECT statement supplies the qualifying conditions of a WHERE clause for
the first SELECT statement. (Parentheses always delimit a subquery, unless
you are referring to a CREATE VIEW statement or unions.) Subqueries are
always parallelized. See also correlated subquery and independent subquery.

subscript A subscript is an offset into an array. Subscripts can be used to indicate the
start or end position in a CHAR variable.

substring A portion of a character string.

subtable A typed table that inherits properties (column definitions, constraints,
triggers) from a supertable above it in the table hierarchy and can add
additional properties.

subtype A named row type that inherits all representation (data fields) and behavior
(routines) from a supertype above it in the type hierarchy and can add additional
fields and routines. The number of fields in a subtype is always greater than
or equal to the number of fields in its supertype.

supertable A typed table whose properties (constraints, storage options, triggers) are
inherited by a subtable beneath it in the table hierarchy. The scope of a query on
a supertable is the supertable and its subtables.

supertype A named row type whose representation (data fields) and behavior (routines) is
inherited by a subtype below it in the type hierarchy.

support function See aggregate support function, opaque-type support function, and operator-
class support function.

support routine See support function.
50 Informix Guide to SQL: Reference

symmetric
multiprocessing
system

A system composed of multiple computers that are connected to a single
high-speed communication subsystem. An SMP has fewer computers than an
MPP system and cannot be partitioned into nodes. Compare with massively
parallel processing system.

synonym A name that is assigned to a table and used in place of the original name for
that table. A synonym does not replace the original table name; instead, it
acts as an alias for the table.

sysmaster
database

A database on each database server that holds the ON-Archive catalog tables
and system-monitoring interface (SMI) tables that contain information about the
state of the database server. The database server creates the sysmaster data-
base when it initializes disk space.

system call A routine in an operating-system library that programs call to obtain
information from the operating system.

system catalog A group of database tables that contain information about the database itself,
such as the names of tables or columns in the database, the number of rows
in a table, the information about indexes and database privileges, and so on.
See also data dictionary.

system-defined
cast

A cast that is built in to the database server. A built-in cast performs
automatic conversions between different built-in data types.

system-defined
hash
fragmentation

An Extended Parallel Server-defined distribution scheme that maps each row
in a table to a set of integers and uses a system-defined algorithm to
distribute data evenly by hashing a specified key.

system-
descriptor area

A dynamic SQL management structure that is used with the ALLOCATE
DESCRIPTOR, DEALLOCATE DESCRIPTOR, DESCRIBE, GET DESCRIPTOR, and
SET DESCRIPTOR statements to store information about database columns or
host variables used in dynamic SQL statements. The structure contains an
item descriptor for each column; each item descriptor provides information
such as the name, data type, length, scale, and precision of the column. The
system-descriptor area is the X/Open standard for handling dynamic
columns. See also descriptor and sqlda.

system-
monitoring
interface

A collection of tables and pseudo-tables in the sysmaster database that main-
tains dynamically updated information about the operation of the database
server. The tables are constructed in memory but are not recorded on disk.
Users can query the SMI tables with the SQL SELECT statement.
Glossary 51

table A rectangular array of data in which each row describes a single entity and
each column contains the values for each category of description. For exam-
ple, a table can contain the names and addresses of customers. Each row
corresponds to a different customer and the columns correspond to the name
and address items. A table is sometimes referred to as a base table to distin-
guish it from the views, indexes, and other objects defined on the underlying
table or associated with it.

table fragment Zero or more rows that are grouped together and stored in a dbspace that you
specify when you create the fragment. A virtual table fragment might reside
in an sbspace or an extspace.

table
fragmentation

A method of separating a table into potentially balanced fragments to distrib-
ute the workload and optimize the efficiency of the database operations. Also
known as data partitioning. Table-fragmentation methods (also known as
distribution schemes) include expression-based, hybrid, range, round-robin, and
system-defined hash.

table hierarchy A relationship you can define among typed tables in which subtables inherit the
behavior (constraints, triggers, storage options) from supertables. Subtables
can add additional constraint definitions, storage options, and triggers.

table inheritance The property that allows a typed table to inherit the behavior (constraints,
storage options, triggers) from a typed table above it in the table hierarchy.

target table The underlying base table that a violations table and diagnostics table are
associated with. You use the START VIOLATIONS TABLE statement to create
the association between the target table and the violations and diagnostics
tables.

tblspace The logical collection of extents that are assigned to a table. It contains all the
disk space that is allocated to a given table or table fragment and includes
pages allocated to data and to indexes, pages that store TEXT or BYTE data in
the dbspace, and bitmap pages that track page use within the extents.

TCP/IP The specific name of a particular standard transport layer protocol (TCP) and
network layer protocol (IP). A popular network protocol used in DOS, UNIX,
and other environments.

temp table A logging temporary table that support indexes, constraints, and rollback.

temporary An attribute of any file, index, or table that is used only during a single
session. Temporary files or resources are typically removed or freed when
program execution terminates or an on-line session ends.
52 Informix Guide to SQL: Reference

TEXT A data type for a simple large object that stores text and can be as large as 231

bytes. See also BYTE.

thread A piece of work or task for a virtual processor in the same way that a virtual
processor is a task for a CPU. A virtual processor is a task that the operating
system schedules for execution on the CPU; a database server thread is a task
that a virtual processor schedules internally for processing. Threads are
sometimes called lightweight processes because they are like processes but
make fewer demands on the operating system. See also multithreading and
user thread.

TLI Acronym for Transport Layer Interface. It is the interface designed for use by
application programs that are independent of a network protocol.

trace To keep a running list of the values of program variables, arguments,
expressions, and so on, in a program or SPL routine.

transaction A collection of one or more SQL statements that is treated as a single unit of
work. If one statement in a transaction fails, the entire transaction can be
rolled back (canceled). If the transaction is successful, the work is committed
and all changes to the database from the transaction are accepted. See also
explicit transaction, implicit ANSI transaction, and singleton implicit
transaction.

transaction lock A lock on an R-tree index that is obtained at the beginning of a transaction and
held until the end of the transaction.

transaction
logging

The process of keeping records of transactions. See also logical log.

transaction mode The method by which constraints are checked during transactions. You use
the SET statement to specify whether constraints are checked at the end of
each data manipulation statement or after the transaction is committed.

trigger A mechanism that resides in the database. It specifies that when a particular
action (insert, delete, or update) occurs on a particular table, the database
server should automatically perform one or more additional actions.

tuple See row.

two-phase
commit

A protocol that ensures that transactions are uniformly committed or rolled
back across multiple database servers. It governs the order in which commit
transactions are performed and provides a recovery mechanism in case a
transaction does not execute. See also heterogeneous commit.
Glossary 53

type constructor An SQL keyword that indicates to the database server the type of complex
data to create (for example, LIST, MULTISET, ROW, SET).

type hierarchy A relationship that you define among named row types in which subtypes
inherit representation (data fields) and behavior (routines) from supertypes and
can add more fields and routines.

type inheritance The property that allows a named row type or typed table to inherit
representation (data fields, columns) and behavior (routines, operators,
rules) from a named row type above it in the type hierarchy.

type
substitutability

The ability to use an instance of a subtype when an instance of its supertype
is expected.

typed collection
variable

An ESQL/C collection variable or SPL variable that has a defined collection data
type associated with it and can only hold a collection of its defined type. See
also untyped collection variable.

typed table A table that is constructed from a named row type and whose rows contain
instances of that row type. A typed table can be used as part of a table hierarchy.
The columns of a typed table correspond to the fields of the named row type.

UDA See user-defined aggregate.

UDR See user-defined routine.

UDT See user-defined data type.

unbuffered disk
I/O

Disk I/O that is controlled directly by the database server instead of the
operating system. This direct control helps improve performance and
reliability for updates to database data. Unbuffered I/O is supported by
character-special files on UNIX and by both unbuffered files and the raw disk
interface on Windows NT.

Uncommitted
Read

See Read Uncommitted.

uncorrelated
subquery

See independent subquery.

unique constraint Specifies that each entry in a column or set of columns has a unique value.

unique index An index that prevents duplicate values in the indexed column.

unique key See primary key.
54 Informix Guide to SQL: Reference

UNIX real user ID See Informix user ID.

unload job The information required to unload data from a relational database using the
HPL. This information includes format, map, query, device array, project, and
special options.

unlock To free an object (database, table, page, or row) that has been locked. For
example, a locked table prevents others from adding, removing, updating, or
(in the case of an exclusive lock) viewing rows in that table as long as it is
locked. When the user or program unlocks the table, others are permitted
access again.

unnamed row
type

A row type created with the ROW constructor that has no defined name and
no inheritance properties. Two unnamed row types are equivalent if they
have the same number of fields and if corresponding fields have the same data
type, even if the fields have different names.

untyped
collection
variable

A generic ESQL/C collection variable or SPL variable that can hold a collection of
any collection data type and takes on the data type of the last collection
assigned to it. See also typed collection variable.

update The process of changing the contents of one or more columns in one or more
existing rows of a table.

update lock A promotable lock that is acquired during a SELECT...FOR UPDATE. An
update lock behaves like a shared lock until the update actually occurs, and
it then becomes an exclusive lock. It differs from a shared lock in that only
one update lock can be acquired on an object at a time.

user-defined
aggregate

An aggregate function that is not provided by the database server (built in) that
includes extensions to built-in aggregates and newly defined aggregates. The
database server manages all aggregates.

user-defined
base type

See opaque data type.

user-defined cast A cast that a user creates with the CREATE CAST statement. A user-defined
cast typically requires a cast function. A user-defined cast can be an explicit cast
or an implicit cast.

user-defineddata
type

A data type that you define for use in a relational database. You can define
opaque data types and distinct data types.
Glossary 55

user-defined
function

A user-defined routine that returns at least one value. You can write a user-
defined function in SPL (SPL function) or in an external language that the
database server supports (external function).

user-defined
procedure

A user-defined routine that does not return a value. You can write a user-
defined procedure in SPL (SPL procedure) or in an external language that the
database server supports (external procedure).

user-defined
routine

A routine that you write and register in the system catalog tables of a data-
base, and that an SQL statement or another routine can invoke. You can write
a user-defined routine in SPL (SPL routine) or in an external language (external
routine) that the database server supports.

user ID See Informix user ID.

user ID password See Informix user password.

user name See Informix user ID.

user password See Informix user password.

user thread A database server thread that services requests from client applications. User
threads include session threads (called sqlexec threads) that are the primary
threads that the database server runs to service client applications. User
threads also include a thread to service requests from the onmode utility,
threads for recovery, and page-cleaner threads. See thread.

variable The identifier for a location in memory that stores the value of a program
object whose value can change during program execution. Compare with
constant, macro, and pointer.

variant function A user-defined function that might return different values when passed the
same arguments. A variant function can contain SQL statements. Compare
with nonvariant function.

view A dynamically controlled picture of the contents in a database that allows a
programmer to determine what information the user sees and manipulates.
A view represents a virtual table based on a specified SELECT statement.

violations table A special table that holds rows that fail to satisfy constraints and unique
index requirements during data manipulation operations on base tables. You
use the START VIOLATIONS TABLE statement to create a violations table and
associate it with a base table.
56 Informix Guide to SQL: Reference

virtual column A derived column of information, created with an SQL statement, that is not
stored in the database. For example, you can create virtual columns in a
SELECT statement by arithmetically manipulating a single column, such as
multiplying existing values by a constant, or by combining multiple
columns, such as adding the values from two columns.

virtual-column
index

A type of generalized-key index that contains keys that are the result of an
expression.

virtual processor A multithreaded process that makes up the database server and is similar to
the hardware processors in the computer. It can serve multiple clients and,
where necessary, run multiple threads to work in parallel for a single query.

virtual table A table whose data you create to access data in an external file, external
DBMS, or smart large object. The database server does not manage external
data or directly manipulate data within a smart large object. The Virtual-
Table Interface allows users to access the external data in a virtual table using
SQL DML statements and join the external data with Dynamic Server table
data.

VLDB Acronym for very large database(s).

warning A message or other indicator about a condition that software (such as the
database server or compiler) detects. A condition that results in a warning
does not necessarily affect the ability of the code to run. See also compile-time
error and runtime error.

white space A series of one or more space characters. The GLS locale defines the characters
that are considered to be space characters. For example, both the TAB and
blank might be defined as space characters in one locale, but certain
combinations of the CTRL key and another character might be defined as
space characters in a different locale.

wide character A form of a code set that involves normalizing the size of each multibyte
character so that each character is the same size. This size must be equal to or
greater than the largest character that an operating system can support, and
it must match the size of an integer data type that the C compiler can scale.
Some examples of an integer data type that the C compiler can scale are short
integer (short int), integer (int), or long integer (long int).
Glossary 57

wildcard A special symbol that represents any sequence of zero or more characters or
any single character. In SQL, for example, you can use the asterisk (*),
question mark (?), brackets ([]), percent sign (%), and underscore (_) as wild-
card characters. (The asterisk, question mark, and brackets are also wildcards
in UNIX.)

window A rectangular area on the screen in which you can take actions without
leaving the context of the background program.

WORM Acronym for Write-Once-Read-Many optical media. When a bit of data is
written to a WORM platter, a permanent mark is made on the platter.

X/Open An independent consortium that produces and develops specifications and
standards for open-systems products and technology such as dynamic SQL.

X/Open
Portability Guide

A set of specifications that vendors and users can use to build portable
software. Any vendor that carries the XPG brand on any particular software
product is guaranteeing that the software correctly implements the X/Open
Common Applications Environment (CAE) specifications. There are CAE
specifications for SQL, XA, ISAM, RDA, and so on.

zoned decimal A data representation that uses the low-order four bits of each byte to
designate a decimal digit (0 through 9) and the high-order four bits to
designate the sign of the digit.
58 Informix Guide to SQL: Reference

@

Index

O QCA B D E F G H I J K L M N P R S T U V W X Y Z
Index
A
Access method

sysams information about 1-17
sysindices information

about 1-52
sysopclasses information

about 1-56
systabamdata information

about 1-71
AC_CONFIG environment

variable 3-24
ac_config.std file 3-24
ALTER TABLE statement

and SERIAL 2-40
and SERIAL8 2-41
casting effects 2-64
changing data types 2-6
MODIFY NEXT SIZE clause 1-12

ANSI compliance
-ansi flag 3-30
DBANSIWARN environment

variable 3-30
level Intro-15

archecker utility 3-24
Archiving

setting a different tctermcap
file 3-26

setting DBREMOTECMD to
override default remote
shell 3-49

setting personal default qualifier
file 3-25

ARC_CONFIG environment
variable 3-25

ARC_DEFAULT environment
variable 3-25

ARC_KEYPAD environment
variable 3-26

B
BLOB data type

attributes in syscolattribs 1-27
casting not available 2-10
coltype code for 1-32
description of 2-9
inserting data 2-11

Blobspace
defined 2-50
staging, memory cache for 3-70

Boldface type Intro-7
BOOLEAN data type

coltype code for 1-32
description of 2-11

Boolean expression
with BYTE data type 2-12
with TEXT data type 2-45

Bourne shell, .profile file 3-9
Buffer, setting size of fetch

buffer 3-59
Built-in data type

casting, built-in 2-64, 2-70
kinds of 2-48

BYTE data type
casting to BLOB data type 2-13
description of 2-12
increasing buffer size 3-31
inserting data 2-12
length (syscolumns) 1-34

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
location shown in sysblobs
table 1-24

restrictions
in Boolean expression 2-12
with GROUP BY 2-12
with LIKE or MATCHES 2-12
with ORDER BY 2-12

selecting a BYTE column 2-12
setting buffer size 3-31

C
C compiler, setting INFORMIXC

environment variable 3-64
C shell

.cshrc file 3-9

.login file 3-9
call_type table in stores_demo

database, columns in A-9
call_type table in superstores_demo

database, columns in B-10
Cast 2-63 to 2-70

built-in 2-64 to 2-67, 2-68
distinct data type 2-69
explicit 2-68
from BYTE to BLOB data

type 2-13
from TEXT to CLOB data

type 2-45
implicit 2-67, 2-68
precedence of 2-68
syscasts information 1-25

CHAR data type
casts for 2-65
collation 2-14
description of 2-13
multibyte values 2-14
nonprintable characters with 2-14
with numeric values 2-13

Character data types
collength (column length)

information 1-33
list of 2-48

CHARACTER data type. See
CHAR data type.

Character string
as DATETIME values 2-20, 2-56
as INTERVAL values 2-29

CHARACTER VARYING data type
description of 2-15
length 1-33
 See also VARCHAR data type.

Check constraint
described in syschecks table 1-26
described in syscoldepend

table 1-29
Checking contents of environment

configuration file 3-12
chkenv utility

description of 3-12
error message for 3-13

Client/server
INFORMIXSQLHOSTS

environment variable 3-73
shared memory communication

segments 3-72, 3-73
specifying default database 3-70
specifying stacksize for client

session 3-74
CLOB data type

attributes in syscolatribs 1-27
casting not available 2-15
code-set conversion of 2-16
collation 2-16
coltype code for 1-32
description of 2-15
inserting data 2-16
multibyte characters with 2-16

COCKPITSERVICE environment
variable 3-27

Code set, ISO 8859-1 Intro-4
Code, sample, conventions

for Intro-12
Collation

with CHAR data type 2-14
with CLOB data type 2-16
with TEXT data type 2-46
with VARCHAR data type 2-48

Collection data type
casting matrix 2-70
description of 2-60
LIST 2-30
MULTISET 2-33
SET 2-42
sysattrtypes information about

elements 1-23

sysxtddesc contents for 1-82
sysxtdtypes information 1-84

Colon
as delimiter in DATETIME 2-19
as delimiter in INTERVAL 2-29

Color, setting INFORMIXTERM
for 3-75

Column
changing data type 2-63
constraints, listed in

sysconstraints table 1-36
defaults, described in sysdefaults

table 1-37
described in syscolumns

table 1-30
in stores_demo

database A-3 to A-10
inserting data into BLOB 2-11
inserting into BYTE 2-12
inserting values into unnamed

row type 2-39
referential constraints in

sysreferences table 1-66
storing numeric values in

VARCHAR 2-47
value, maximum/minimum 1-35

Column-level privilege, described
in syscolauth table 1-28

Command-line conventions
elements of Intro-10
example diagram Intro-11
how to read Intro-11

Comment icons Intro-8
Compiling

environment variable for C
compiler 3-64

ESQL/C programs, environment
variable to change order
of 3-28

multithreaded ESQL/C
applications 3-98

Complex data type 2-59 to 2-62
collection types 2-60
row types 2-61
sysattrtypes information about

members 1-23
Compliance

with industry standards Intro-15
2 Informix Guide to SQL: Reference

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
Configuration file
for database servers 3-82
for ON-Archive utility 3-25
for ON-Bar utility 3-24
for tctermcap 3-26

config.arc file 3-25
CONNECT statement and

INFORMIXSERVER
environment variable 3-71

Connection
authentication, DCE-GSS CSM

environment variable 3-69
INFORMIXCONRETRY

environment variable 3-66
INFORMIXCONTIME

environment variable 3-66
Constraint

check, described in syscoldepend
table 1-29

column, described in
sysconstraints table 1-36

not null, described in
syscoldepend table 1-29

referential, described in
sysreferences table 1-66

Contact information Intro-16
Conventions,

documentation Intro-6
Converting

data types 2-63
DATE and DATETIME 2-66
INTEGER, DATE, and

DATETIME 2-66
number and char 2-65
number to number 2-65

CPFIRST environment
variable 3-28

CREATE SCHEMA statement,
example 1-7

CREATE TABLE statement
and typed tables 2-37
assigning data types 2-6

CREATE VIEW statement, in
sysviews table 1-10

customer table in sales_demo
database, columns in B-4

customer table in stores_demo
database, columns in A-3

customer table in
superstores_demo database,
columns in B-12, B-13, B-14

cust_calls table in stores_demo
database, columns in A-8

cust_calls table in
superstores_demo database,
columns in B-11

D
Data distributions, specifying disk

space to use 3-56
Data type

approximate 1-89
BLOB 2-9
BOOLEAN 2-11
BYTE 2-12
casting 2-63 to 2-70
categories of 2-5
CHAR 2-13
CHARACTER 2-14
CHARACTER VARYING 2-15
CLOB 2-15
conversion 2-63
DATE 2-16
DATETIME 2-17
DEC 2-21
DECIMAL 2-21
description of 2-9
Distinct 2-23
DOUBLE PRECISION 2-24
exact numeric 1-89
extended 2-58
FLOAT 2-24
floating-point 2-25
for sequential integer 2-40
for unique numeric code 2-40
INT 2-25
INT8 2-25
INTEGER 2-26
internal 2-9
INTERVAL 2-26
LIST 2-30
LVARCHAR 2-31
MONEY 2-32
MULTISET 2-33
Named row 2-36

NCHAR 2-34
NUMERIC 2-34
NVARCHAR 2-34
Opaque 2-35
REAL 2-35
Row, Named 2-36
Row, Unnamed 2-37
SERIAL 2-39
SERIAL8 2-40
SET 2-42
simple large object 2-50
SMALLFLOAT 2-43
SMALLINT 2-44
smart large object 2-50
summary list 2-6
TEXT 2-44
Unnamed row 2-37
VARCHAR 2-46

Database
data types for 2-5
map of stores_demo A-11
objects, state of in sysobjectstate

table 1-55
sales_demo, description of B-2
stores_demo, description of A-1
superstores_demo, description

of B-3, B-8
Database server

attributes in Information Schema
view 1-90

pathname for 3-46
specifying default for

connection 3-70
DataBlade

message information
(syserrors) 1-41

trace classes
(systraceclasses) 1-75

trace messages
(systracemsgs) 1-76

Data-distribution information, in
sysdistrib table 1-39

DATE data type
casting to integer 2-66
converting to DATETIME 2-66
DATETIME, INTERVAL

with 2-52, 2-55
description of 2-16
international date formats 2-17
Index 3

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
source data 2-56
two-digit year values and

DBCENTURY variable 2-17
Date value, setting DBDATE

environment variable 3-36
DATETIME data type

character string values 2-20
converting to DATE 2-66
converting to integer 2-66
DATE INTERVAL

with 2-52 to 2-57
description of 2-17
EXTEND function with 2-54
extending fields in 2-53
field qualifiers 2-18
formats with DBTIME 3-53
international date and time

formats 2-20
length (syscolumns) 1-34
precision and size 2-18
source data 2-56
specifying display format 3-53
two-digit year values and

DBDATE variable 2-20
using the DBTIME environment

variable 3-53
year to fraction example 2-19

DAY keyword
as DATETIME field qualifier 2-18
as INTERVAL field qualifier 2-27

DB-Access utility Intro-5
DBACCNOIGN environment

variable 3-29
DBANSIWARN environment

variable 3-30
DBBLOBBUF environment

variable 3-31
DBCENTURY environment

variable 2-17
description of 3-32
effect on expressions with date

values 3-34
effect on functionality of

DBDATE 3-38
expanding date values,

examples 3-33

DBDATE environment
variable 2-17, 3-36

effect on expressions with date
values 3-38

DBDELIMITER environment
variable 3-39

DBEDIT environment variable 3-40
dbexport utility, specifying field

delimiter with
DBDELIMITER 3-39, 3-57

DBFLTMASK environment
variable 3-41

DBLANG environment
variable 3-42

dbload utility, specifying field
delimiter with
DBDELIMITER 3-40

DBMONEY environment
variable 2-32, 3-44

DBONPLOAD environment
variable 3-45

DBPATH environment
variable 3-46

DBPRINT environment
variable 3-48

DBREMOTECMD environment
variable 3-49

Dbserver group, value in
INFORMIXSERVER 3-71

dbservername.cmd batch file 3-18
DBSPACETEMP environment

variable 3-50
DBTEMP environment

variable 3-52
DBTIME environment

variable 2-20, 3-53
DBUPSPACE environment

variable 3-56
DCE-GSS communications support

module (CSM), environment
variable for 3-69

DEC data type. See DECIMAL data
type.

DECIMAL data type
casts for 2-65
description of 2-21
disk storage 2-22
fixed point 2-21
floating point 2-21
length (syscolumns) 1-33

Decimal digits, display of 3-41
Decimal point

as delimiter in DATETIME 2-19
as delimiter in INTERVAL 2-29

Default
column, in sysdefaults table 1-37
configuration file 3-82

Default locale Intro-4
DELIMIDENT environment

variable 3-57
Delimited identifier, setting

DELIMIDENT environment
variable 3-57

Delimiter
for DATETIME values 2-19
for INTERVAL values 2-29

Demonstration database
map of A-11
structure of tables A-2, B-9
tables in A-3 to A-10

Demonstration databases Intro-5
Dependencies, software Intro-4
Diagnostics, for base tables,

described in sysviolations
table 1-81

Directives for query optimization,
environment variable for 3-61

Disk space
for temporary data 3-51
specifying for data

distributions 3-56
Distinct data type

casts 2-69
description of 2-23
sysxtddesc contents for 1-82
sysxtdtypeauth contents for 1-83
sysxtdtypes contents for 1-84

Documentation notes Intro-14
4 Informix Guide to SQL: Reference

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
Documentation, types of
documentation notes Intro-14
error message files Intro-13
machine notes Intro-14
on-line manuals Intro-13
printed manuals Intro-13
related reading Intro-15
release notes Intro-14

DOUBLE PRECISION data type.
See FLOAT data type.

E
Editor, specifying with

DBEDIT 3-40
ENVIGNORE environment

variable
description 3-9, 3-58
relation to chkenv utility 3-13

Environment configuration file
debugging with chkenv 3-12
setting environment variables in

UNIX 3-7, 3-8
Environment variable

AC_CONFIG 3-24
ARC_CONFIG 3-25
ARC_DEFAULT 3-25
ARC_KEYPAD 3-26
COCKPITSERVICE 3-27
command prompt utilities 3-16
CPFIRST 3-28
DBACCNOIGN 3-29
DBANSIWARN 3-30
DBBLOBBUF 3-31
DBCENTURY 2-17, 3-32
DBDATE 2-17, 3-36
DBDELIMITER 3-39
DBEDIT 3-40
DBFLTMASK 3-41
DBLANG 3-42
DBMONEY 2-32, 3-44
DBONPLOAD 3-45
DBPATH 3-46
DBPRINT 3-48
DBREMOTECMD 3-49
DBSPACETEMP 3-50
DBTEMP 3-52
DBTIME 2-20, 3-53

DBUPSPACE 3-56
definition of 3-5
DELIMIDENT 3-57
ENVIGNORE 3-58
FET_BUF_SIZE 3-59
for command prompt utilities for

Windows
set in autoexec.bat 3-16
set in System applet 3-15
set on command-line 3-16
user environment

variables 3-16
variable scope 3-15

GL_DATE 2-17
GL_DATETIME 2-20
how to set in Bourne shell 3-10
how to set in C shell 3-10
how to set in Korn shell 3-10
IFMX_SMLTBL_BROADCAST_S

IZE 3-60
IFX_DIRECTIVES 3-61
IFX_LONGID 3-62
IFX_NETBUF_PVTPOOL_SIZE 3

-63
IFX_NETBUF_SIZE 3-63
IFX_UPDDESC 3-64
INFORMIXC 3-64
INFORMIXCONCSMCFG 3-65
INFORMIXCONRETRY 3-66
INFORMIXCONTIME 3-66
INFORMIXCPPMAP 3-68
INFORMIXDIR 3-68
INFORMIXKEYTAB 3-69
INFORMIXOPCACHE 3-70
INFORMIXSERVER 3-70
INFORMIXSHMBASE 3-72, 3-73
INFORMIXSQLHOSTS 3-73
INFORMIXSTACKSIZE 3-74
INFORMIXTERM 3-75
INF_ROLE_SEP 3-76
ISM_COMPRESSION 3-77
ISM_DEBUG_FILE 3-77
ISM_DEBUG_LEVEL 3-78
ISM_ENCRYPTION 3-79
ISM_MAXLOGSIZE 3-79
ISM_MAXLOGVERS 3-80
LD_LIBRARY_PATH 3-80
LIBPATH 3-81
listed alphabetically 3-19

listed by topic 3-99
manipulating in Windows

environments 3-14
modifying 3-11
NODEFDAC 3-81
ONCONFIG 3-82
OPTCOMPIND 3-83
OPTMSG 3-84
OPTOFC 3-85
OPT_GOAL 3-86
overriding a setting 3-9, 3-58
PATH 3-87
PDQPRIORITY 3-88
PLCONFIG 3-90
PLOAD_LO_PATH 3-91
PLOAD_SHMBASE 3-91
PSORT_DBTEMP 3-92
PSORT_NPROCS 3-93
rules of precedence in UNIX 3-13
rules of precedence in Windows

NT 3-18
setting

at the command line 3-7
for command prompt

utilities 3-15
for native Windows NT

applications 3-14
in a login file 3-7
in a shell file 3-9
in an environment-

configuration file 3-7
in autoexec.bat 3-16
in Windows environments 3-7
on the command-line 3-16
using the Registry Editor 3-14
using the System applet 3-15

SHLIB_PATH 3-94
STMT_CACHE 3-95
TERM 3-96
TERMCAP 3-96
TERMINFO 3-97
THREADLIB 3-98
types of 3-6
variable scope 3-15
view current setting 3-12
where to set 3-9
XFER_CONFIG 3-98

Environment variables Intro-7
en_us.8859-1 locale Intro-4
Index 5

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
Error message files Intro-13
ESQL/C

compiling multithreaded
applications 3-98

program compilation order 3-28
Executable programs, where to

search 3-87
Explicit cast 2-68
EXTEND function, example 2-54
Extended data types 2-58
Extension checking, specifying with

DBANSIWARN 3-30
Extent, changing size of system

table 1-12

F
Feature icons Intro-8
Features of this product,

new Intro-5
FET_BUF_SIZE environment

variable 3-59
Field delimiter files,

DBDELIMITER 3-39
Field qualifier for DATETIME 2-18
File

shell 3-9
temporary

directory for (DBTEMP) 3-52
temporary, for database

server 3-50
temporary, sorting 3-92
termcap, terminfo 3-75, 3-96, 3-97
with environment configuration

information 3-12
/etc/termcap 3-97

FILETOBLOB function 2-10
FILETOCLOB function 2-15
Find Error utility Intro-13
finderr utility Intro-13
Fixed point decimal 2-21
FLOAT data type

casts for 2-65
description of 2-24

Floating point decimal 2-21

Format
specifying for DATE value with

DBDATE 3-37
specifying for DATETIME value

with DBTIME 3-53
specifying for MONEY value with

DBMONEY 3-44
FRACTION keyword

as DATETIME field qualifier 2-18
as INTERVAL field qualifier 2-27

Fragmentation
information in sysfragauth

table 1-45
information in sysfragments

table 1-46
PDQPRIORITY environment

variable 3-89
setting priority levels for

PDQ 3-88
Function

support for complex types 2-60
used with BLOB columns 2-10
used with CLOB columns 2-15
used with LIST 2-31
used with MULTISET 2-33
used with SET 2-42

G
Generalized-key index

sysnewdepend information 1-54
sysrepository information 1-67

geography table in sales_demo
database, columns in B-4

Global Language Support
(GLS) Intro-4

GL_DATE environment
variable 2-17

GL_DATETIME environment
variable 2-20

H
High-Performance Loader,

environment variable for 3-45,
3-90

HOUR keyword
as DATETIME field qualifier 2-18
as INTERVAL field qualifier 2-27

Hyphen
as delimiter in DATETIME 2-19
as delimiter in INTERVAL 2-29

I
Icons

feature Intro-8
Important Intro-8
platform Intro-8
product Intro-8
Tip Intro-8
Warning Intro-8

IFMX_SMLTBL_BROADCAST_SIZ
E environment variable 3-60

IFX_DIRECTIVES environment
variable 3-61

IFX_LONGID environment
variable 3-62

IFX_NETBUF_PVTPOOL_SIZE
environment variable 3-63

IFX_NETBUF_SIZE environment
variable 3-63

IFX_UPDDESC environment
variable 3-64

Implicit cast 2-67
Important paragraphs, icon

for Intro-8
Index

default values for attached 3-94
generalized-key, in

sysnewdepend 1-54
generalized-key, in

sysrepository 1-67
of environment variables 3-99
sysindexes information 1-49
sysindices information 1-51
sysobjstate information 1-55
threads for 3-94

Indexkey structure, fields in 1-52
6 Informix Guide to SQL: Reference

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
Industry standards, compliance
with Intro-15

Information Schema views
accessing 1-87
columns 1-88
description of 1-86
generating 1-86
server_info 1-90
sql_languages 1-90
tables 1-88

Informix extension checking,
specifying with
DBANSIWARN 3-30

Informix Storage Manager 3-77,
3-79

INFORMIXC environment
variable 3-64

INFORMIXCONCSMCFG
environment variable 3-65

INFORMIXCONRETRY
environment variable 3-66

INFORMIXCONTIME
environment variable 3-66

INFORMIXCPPMAP environment
variable 3-68

INFORMIXDIR environment
variable 3-68

INFORMIXDIR/bin
directory Intro-5

INFORMIXKEYTAB environment
variable 3-69

INFORMIXOPCACHE
environment variable 3-70

INFORMIXSERVER environment
variable 3-70

INFORMIXSHMBASE
environment variable 3-72, 3-73

INFORMIXSTACKSIZE
environment variable 3-74

INFORMIXTERM environment
variable 3-75

INF_ROLE_SEP environment
variable 3-76

Input support function 2-31
Inserting values into SERIAL

columns 2-40
Installation directory, specifying

with INFORMIXDIR 3-68

Installation files, INFORMIXDIR
environment variable 3-68

INT data type. See INTEGER data
type.

INT8 data type
casts for 2-65, 2-66
description of 2-25
using with SERIAL8 2-41

INTEGER data type
casts for 2-65, 2-66
description of 2-26
length (syscolumns) 1-33

Intensity attributes, setting
INFORMIXTERM for 3-75

INTERVAL data type
DATE, DATETIME with 2-52,

2-57 to 2-58
description of 2-26
expressions with 2-52
EXTEND function with 2-54
field delimiters 2-29
length (syscolumns) 1-34

ISM_COMPRESSION environment
variable 3-77

ISM_DEBUG_FILE environment
variable 3-77

ISM_DEBUG_LEVEL environment
variable 3-78

ISM_ENCRYPTION environment
variable 3-79

ISM_MAXLOGSIZE environment
variable 3-79

ISM_MAXLOGVERS environment
variable 3-80

ISO 8859-1 code set Intro-4
items table in stores_demo

database, columns in A-5
items table in superstores_demo

database, columns in B-15

K
keytab file, environment variable to

specify path 3-69
Korn shell, .profile file 3-9

L
Language

environment, setting with
DBLANG 3-42

sql_languages information
schema view 1-90

sysroutinelangs information 1-68
Large-object data type

description of 2-49
list of 2-48

LD_LIBRARY_PATH environment
variable 3-80

LIBPATH environment
variable 3-81

List
of environment variables 3-19
of environment variables, by

topic 3-99
of system catalog tables 1-14

LIST data type, description of 2-30
LOAD statement, specifying field

delimiter with
DBDELIMITER 3-40

Locale Intro-4
default Intro-4
en_us.8859-1 Intro-4

LOCOPY function 2-10, 2-15
Long identifiers

and client version 3-62
and IFX_LONGID environment

variable 3-62
LOTOFILE function 2-10, 2-15
LVARCHAR data type, description

of 2-31

M
Machine notes Intro-14
manufact table in

superstores_demo database,
columns in B-19

Memory cache, for staging
blobspace 3-70

Message file
specifying subdirectory with

DBLANG 3-42
XBSA 3-77
Index 7

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
Message file for error
messages Intro-13

Messages
ANSI warning 3-30
error in syserrors 1-41
optimized transfers 3-84
reducing requests 3-85
warning in syserrors 1-41

MINUTE keyword
as DATETIME field qualifier 2-18
as INTERVAL field qualifier 2-27

MONEY data type
casts for 2-65
description of 2-32
display format specified with

DBMONEY 3-44
international money formats 2-32
length (syscolumns) 1-33

MONTH keyword
as DATETIME field qualifier 2-18
as INTERVAL field qualifier 2-27

Multibyte characters
with CHAR data type 2-14
with CLOB data type 2-16
with TEXT data type 2-46
with VARCHAR data type 2-48

MULTISET data type, description
of 2-33

N
Named row data type

casting permitted 2-70
defining 2-36
description of 2-36
equivalence 2-37
inheritance 2-37
typed tables 2-37
 See also Row type.

NCHAR data type, description
of 2-34

Network environment variable,
DBPATH 3-46

New features of this
product Intro-5

NODEFDAC environment
variable 3-81

Nonprintable characters
with CHAR data type 2-14
with TEXT data type 2-46
with VARCHAR data type 2-47

Not null constraint, described in
syscoldepend table 1-29

Null value
allowed or not allowed 1-31
testing in BYTE expression 2-12
testing with TEXT data type 2-45

Numeric data types
casting between 2-65
casting to characters 2-65
list of 2-48

NUMERIC data type. See
DECIMAL data type.

NVARCHAR data type
description of 2-34
length (syscolumns) 1-33

O
Object mode of database objects,

described in sysobjstate
table 1-55

ONCONFIG environment
variable 3-82

On-line manuals Intro-13
Opaque data type

cast matrix 2-70
description of 2-35
smart large objects with 2-50
storage of 2-31
sysxtddesc contents for 1-82
sysxtdtypeauth contents for 1-83
sysxtdtypes contents for 1-84

Operator class
sysams information 1-18
sysopclasses information 1-56

Operator precedence 2-71
OPTCOMPIND environment

variable 3-83
Optical cluster, described in

sysopclstr table 1-57
OPTMSG environment

variable 3-84
OPTOFC environment

variable 3-85

OPT_GOAL environment
variable 3-86

orders table in superstores_demo
database, columns in B-16, B-17,
B-18, B-20

Output support function 2-31

P
Parallel database query. See PDQ.
Parallel distributed queries, setting

with PDQPRIORITY
environment variable 3-88

Parallel sorting, using
PSORT_NPROCS for 3-92

PATH environment variable 3-87
Pathname

for C compiler 3-64
for database server 3-46
for executable programs 3-87
for installation 3-68
for message files 3-42
for parallel sorting 3-92
for remote shell 3-49
specifying with DBPATH 3-46
specifying with PATH 3-87

PDQ
OPTCOMPIND environment

variable 3-83
PDQPRIORITY environment

variable 3-88
Platform icons Intro-8
PLCONFIG environment

variable 3-90
PLOAD_LO_PATH environment

variable 3-91
PLOAD_SHMBASE environment

variable 3-91
Precedence

operator 2-71
rules for command-line utility

environment variables 3-18
rules for environment variables

for Informix native Windows
applications 3-19

rules for environment variables in
UNIX 3-13
8 Informix Guide to SQL: Reference

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
Prepared statement, version
number in systables 1-75

Printed manuals Intro-13
Printing with DBPRINT 3-48
Privilege

granting or preventing default
table 3-81

on a table fragment, described in
sysfragauth table 1-45

on a table, described in
systabauth 1-72

on database, described in the
sysusers table 1-79

related to routines, described in
sysprocauth table 1-60

usage, sysxtdtypeauth
information 1-83

user, described in sysusers
table 1-79

Product icons Intro-8
product table in sales_demo

database, columns in B-5
Program group

Documentation notes Intro-15
Release notes Intro-15

Protected routines 1-64
PSORT_DBTEMP environment

variable 3-92
PSORT_NPROCS environment

variable 3-93

Q
Qualifier field, for DATETIME 2-18
Query optimization information in

sysprocplan table 1-65
Query optimizer, environment

variable for directives 3-61
Quoted string, for DATE and

DATETIME 2-56

R
REAL data type. See

SMALLFLOAT data type.
regedt32.exe Registry Editor 3-14
region table in superstores_demo

database, columns in B-20

Related reading Intro-15
Release notes Intro-14
Remote shell 3-49
rofferr utility Intro-13
Role

granted to user, described in
sysroleauth table 1-68

separation, environment variable
for 3-76

Routine
characteristics, in sysprocedures

table 1-61
DATETIME formatting 3-53
privileges on 1-59
privileges, described in

sysprocauth table 1-60
protected 1-64
query plan for, in

sysprocplan 1-65
SPL 2-61
user-defined 2-35
user-defined, and syserrors 1-41
user-defined, and

syslangauth 1-53
user-defined, and

sysroutinelangs 1-68
user-defined, and

systraceclasses 1-75
user-defined, and

systracemsgs 1-76
Row type 2-61

casting permitted 2-70
defined 2-61
field information

(sysattrtypes) 1-23
Named, and equivalence 2-37
Named, and inheritance 2-37
Named, defining 2-36
Named, description of 2-36
sysattrtypes information 1-23
sysxtddesc information 1-82
sysxtdtypeauth information 1-83
sysxtdtypes information 1-84
Unnamed, defining 2-38
Unnamed, description of 2-37
Unnamed, inserting values

into 2-39
Runtime program, setting

DBANSIWARN 3-30

S
sales table in sales_demo database,

columns in B-6
sales_demo database

customer table columns B-4
description of B-3
geography table columns B-4
introduced B-1
product table columns B-5
sales table columns B-6
time table columns B-7

sales_rep table in
superstores_demo database,
columns in B-21

Sample-code conventions Intro-12
sbspace, defined 2-51
SECOND keyword

as DATETIME field qualifier 2-18
as INTERVAL field qualifier 2-27

Sequential integers
with SERIAL data type 2-39
with SERIAL8 data type 2-40

SERIAL data type
description of 2-39
inserting values 2-40
length (syscolumns) 1-33
resetting values 2-40

SERIAL8 data type
assigning a starting value to 2-41
description of 2-40
inserting values 2-41
length (syscolumns) 1-33
resetting values 2-41
using with INT8 2-41

SET data type, description of 2-42
Setnet32 utility 3-8
Setting environment variables

in UNIX 3-8
in Windows NT 3-14

Shared memory, setting with
INFORMIXSHMBASE 3-72

Shell
remote 3-49
search path 3-87
setting environment variables in a

file 3-9
specifying with

DBREMOTECMD 3-49
Index 9

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
SHLIB_PATH environment
variable 3-94

Simple large objects
description of 2-50
length (syscolumns) 1-34

Single-precision floating-point
number, storage of 2-24

SMALLFLOAT data type
casts for 2-65
description of 2-43

SMALLINT data type
casts for 2-65, 2-66
description of 2-44
length (syscolumns) 1-33

Smart large objects
attributes in syscolattribs 1-27
description of 2-50

Software dependencies Intro-4
Sorting

DBSPACETEMP environment
variable 3-50

PSORT_DBTEMP environment
variable 3-92

PSORT_NPROCS environment
variable 3-93

threads for 3-93
Space

as delimiter in DATETIME 2-19
as delimiter in INTERVAL 2-29

SQL code Intro-12
SQL Communications Area

(SQLCA), effect of setting
DBANSIWARN 3-30

Stacksize, setting
INFORMIXSTACKSIZE 3-74

state table in stores_demo database,
columns in A-10

state table in superstores_demo
database, columns in B-21

Statement, SQL
ANSI compliance and

DBANSIWARN 3-30
CONNECT and

INFORMIXSERVER 3-71
editing and DBEDIT 3-40, 3-45
LOAD and DBDELIMITER 3-39,

3-57
printing and DBPRINT 3-48

UNLOAD and
DBDELIMITER 3-39, 3-57

UPDATE STATISTICS and
DBUPSPACE 3-56

STMT_CACHE environment
variable 3-95

stock table in stores_demo
database, columns in A-6

stock table in superstores_demo
database, columns in B-22

stock_discount table in
superstores_demo database,
columns in B-23

stores_demo database
call_type table columns A-9
catalog table columns A-7
customer table columns A-3
cust_calls table columns A-8
data values A-19
description of A-1
items table columns A-5
manufact table columns A-9
map of A-11
primary-foreign key

relationships A-12 to A-19
stock table columns A-6
structure of tables A-2

Summary
of environment variables 3-19
of environment variables, by

topic 3-99
of system catalog tables 1-14

superstores_demo database
call_type table columns B-10
catalog table columns B-10
customer table columns B-12,

B-13, B-14
cust_calls table columns B-11
description of B-8
introduced B-1
items table columns B-15
manufact table columns B-19
orders table columns B-16, B-17,

B-18, B-20
primary-foreign key

relationships B-27 to B-30
sales_rep table columns B-21
stock table columns B-22

stock_discount table
columns B-23

structure of tables B-9
Synonym

for each table view, described in
syssynonyms table 1-69

for each table, described in
syssyntable 1-70

sysaggregates system catalog
table 1-16

sysams system catalog table 1-17
sysattrtypes system catalog

table 1-23
sysblobs system catalog table 1-24
syscasts system catalog table

described 1-25
for casting 2-63

syschecks system catalog table 1-26
syscolattribs system catalog

table 1-27
syscolauth system catalog

table 1-28
syscoldepend system catalog

table 1-29
syscolumns system catalog

table 1-30
sysconstraints system catalog

table 1-36
sysdefaults system catalog

table 1-37
sysdepend system catalog

table 1-38
sysdistrib system catalog table 1-39
syserrors system catalog table 1-41
sysextcols system catalog table 1-42
sysextdfiles system catalog

table 1-43
sysexternal system catalog

table 1-44
sysfragauth system catalog

table 1-45
sysfragments system catalog

table 1-46
sysindexes system catalog

table 1-49
sysindices system catalog

table 1-51
sysinherits system catalog

table 1-53
10 Informix Guide to SQL: Reference

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
syslangauth system catalog
table 1-53

syslogmap system catalog
table 1-54

sysmaster database
initialization 3-71
versus system catalog tables 1-6

sysnewdepend system catalog
table 1-54

sysobjstate system catalog
table 1-55

sysopclasses system catalog
table 1-56

sysopclstr system catalog table 1-57
sysprocauth system catalog

table 1-59
sysprocbody system catalog

table 1-60
sysprocedures system catalog

table 1-61
sysprocplan system catalog

table 1-65
sysreferences system catalog

table 1-66
sysrepository system catalog

table 1-67
sysroleauth system catalog

table 1-68
sysroutinelangs system catalog

table 1-68
syssynonyms system catalog

table 1-69
syssyntable system catalog

table 1-70
systabamdata system catalog

table 1-71
systabauth system catalog

table 1-72
systables system catalog table 1-73
System catalog

accessing 1-12
altering contents 1-12
character variable length 1-33
collection data type elements 1-23
complex data type members 1-23
data type privileges 1-83
description of 1-5

example
syscolauth 1-10
syscolumns 1-9
sysindexes 1-11
systabauth 1-10
systables 1-8
sysviews 1-10

how used by database server 1-7
list of tables 1-14
messages 1-41
operator class table

(sysopclasses) 1-56
privilege information for user-

defined data type 1-83
programming languages

supported 1-53, 1-68
smart large object attributes

(syscolattribs) 1-27
sysaggregates 1-16
sysams 1-17
sysattrtypes 1-23
sysblobs 1-24
syscasts 1-25
syschecks 1-26
syscolattribs 1-27
syscolauth 1-28
syscoldepend 1-29
syscolumns 1-30
sysconstraints 1-36
sysdefaults 1-37
sysdepend 1-38
sysdistrib 1-39
syserrors 1-41
sysextcols 1-42
sysextdfiles 1-43
sysexternal 1-44
sysfragauth 1-45
sysfragments 1-46
sysindexes 1-49
sysindices 1-51
sysinherits 1-53
syslangauth 1-53
syslogmap 1-54
sysnewdepend 1-54
sysobjstate 1-55
sysopclasses 1-56
sysopclstr 1-57
sysprocauth 1-59
sysprocbody 1-60

sysprocedures 1-61
sysprocplan 1-65
sysreferences 1-66
sysrepository 1-67
sysroleauth 1-68
sysroutinelangs 1-68
syssynonyms 1-69
syssyntable 1-70
systabamdata 1-71
systabauth 1-72
systables 1-73
systraceclasses 1-75
systracemsgs 1-76
systrigbody 1-77
systriggers 1-78
sysusers 1-79
sysviews 1-80
sysviolations 1-81
sysxtddesc 1-82
sysxtdtypeauth 1-83
sysxtdtypes 1-84
table indexes 1-51
table inheritance 1-53
trace classes 1-75
trace messages 1-76
updating statistics 1-13
updating system catalog

tables 1-13
user-defined casts 1-25
user-defined data type

descriptions 1-82
using 1-6
versus sysmaster database 1-6

System requirements
database Intro-4
software Intro-4

systraceclasses system catalog
table 1-75

systracemsgs system catalog
table 1-76

systrigbody system catalog
table 1-77

systriggers system catalog
table 1-78

sysusers system catalog table 1-79
sysviews system catalog table 1-80
sysviolations systems catalog

table 1-81
Index 11

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
sysxtddesc system catalog
table 1-82

sysxtdtypeauth system catalog
table 1-83

sysxtdtypes system catalog table
described 1-84
for Distinct types 2-23
for named row types 2-36
for opaque types 2-35

T
tabid, description of 1-9
Table

changing the data type of a
column 2-63

dependencies, in sysdepend 1-38
description in systables 1-73
inheritance, sysinherits

information 1-53
separate from large object

storage 2-49
structure in stores_demo

database A-2
structure in superstores_demo

database B-9
synonyms in syssyntable 1-69
system catalog tables 1-16 to 1-84
typed, and named row type 2-37
untyped, and unnamed row 2-39

Table-level privilege, shown in
tabauth table 1-10

Tape management
setting ARC_DEFAULT 3-25
setting ARC_KEYPAD 3-26
setting DBREMOTECMD 3-49

Temporary files
in database server, setting

DBSPACETEMP 3-50
setting PSORT_DBTEMP 3-92

Temporary tables
directory location

(DBTEMP) 3-52
specifying dbspace with

DBSPACETEMP 3-50
TERM environment variable 3-96
TERMCAP environment

variable 3-96

termcap file, and TERMCAP
environment variable 3-91,
3-96, 3-98

Terminal handling
and TERM environment

variable 3-96
and TERMCAP environment

variable 3-96
and TERMINFO environment

variable 3-97
setting INFORMIXTERM 3-75

terminfo directory 3-97
TERMINFO environment

variable 3-97
TEXT data type

casting to CLOB data type 2-45
collation 2-46
description of 2-44
increasing buffer size 3-31
inserting values 2-45
length (syscolumns) 1-34
location shown in sysblobs

table 1-24
nonprintable characters with 2-46
restrictions

with aggregate functions 2-45
with GROUP BY 2-45
with IN clause 2-45
with LIKE or MATCHES 2-45
with ORDER BY 2-45

selecting a column 2-45
setting buffer size 3-31
use in Boolean expression 2-45
with control characters 2-44

Text editor, specifying with
DBEDIT 3-40

THREADLIB environment
variable 3-98

Time data type
length (syscolumns) 1-34
list of 2-48

time table in sales_demo database,
columns in B-7

Time value, setting DBTIME
environment variable 3-53

Tip icons Intro-8

Trigger
information in sysobjstate 1-55
information in systrigbody 1-77
information in systriggers 1-78

U
UDR. See User-defined routine.
Unnamed row data type

 See also Row type.
Unique numeric code

with SERIAL data type 2-40
with SERIAL8 data type 2-40

units table in superstores_demo
database, columns in B-24

UNIX
BSD, default print capability 3-48
environment variables 3-6
PATH environment variable 3-87
specifying directories for

intermediate writes 3-92
System V

default print capability 3-48
terminfo library support 3-75

TERM environment variable 3-96
TERMCAP environment

variable 3-96
TERMINFO environment

variable 3-97
UNIX operating system

default locale for Intro-4
UNLOAD statement, specifying

field delimiter with
DBDELIMITER 3-40

Unnamed row data type
defining 2-38
description of 2-37
inserting values into

columns 2-39
UPDATE STATISTICS statement

and DBUPSPACE environment
variable 3-56

effect on sysdistrib table 1-39
sysindices (index statistics) 1-52
update system catalog 1-13

User privileges, described in
sysusers table 1-79

User-defined casts, using 2-67
12 Informix Guide to SQL: Reference

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
User-defined data type
casting 2-67
casting into built-in type 2-63
kinds of 2-58
opaque 2-62
privileges in sysxtdtypeauth 1-83
sysxtddesc (extended type)

information 1-82
sysxtdtypes information

about 1-84
User-defined name, for unnamed

row 2-37
User-defined routine

casts (syscasts) 1-25
error messages (syserrors) 1-41
for opaque type 2-35
language authorization

(syslangauth) 1-53
Users, types of Intro-3
Utility

archecker 3-24
chkenv 3-12
command-line 3-14
command-prompt 3-15
DB-Access 3-30, 3-41, 3-70
dbexport 3-39
ON-Archive 3-25, 3-26
ON-Bar 3-77, 3-78, 3-79
onpload 3-45
Setnet32 3-8
setting environment variables for

DB-Access 3-8

V
VARCHAR data type

collation 2-48
description of 2-46
length in syscolumns 1-33
multibyte characters with 2-48
nonprintable characters with 2-47
storing numeric values in

column 2-47
See also CHARACTER VARYING

data type.

View
dependencies, in sysdepend

table 1-38
described in sysviews table 1-80
synonyms in syssynonyms

table 1-69
Violations, for base tables,

described in sysviolations
table 1-81

W
Warning icons Intro-8
Warning, creating a new

message 1-41
Windows environments

manipulating environment
variables 3-14

setting environment variables 3-7
Windows NT

default locale for Intro-4

X
XFER_CONFIG environment

variable 3-98
X/Open

and server_info view 1-91
compliant databases 1-91
Information Schema views 1-86

X/Open compliance level Intro-15

Y
YEAR keyword

as DATETIME field qualifier 2-18
as INTERVAL field qualifier 2-27

Year values, two and four
digit 3-32

Symbols
(), space, as delimiter

in DATETIME 2-19
in INTERVAL 2-29

-, hyphen, as delimiter
in DATETIME 2-19
in INTERVAL 2-29

:, colon, as delimiter
in DATETIME 2-19
in INTERVAL 2-29

˙, decimal point, as delimiter
in DATETIME 2-19
in INTERVAL 2-29
Index 13

	Answers OnLine Web Site
	Table of Contents
	Introduction
	About This Manual
	Types of Users
	Software Dependencies
	Assumptions About Your Locale
	Demonstration Databases

	New Features
	New Features in Version 8.3
	New Features in Version 9.2
	Year 2000 Compliance
	Version 9.2 Features from Dynamic Server 7.30

	Documentation Conventions
	Typographical Conventions
	Icon Conventions
	Comment Icons
	Feature, Product, and Platform Icons

	Command-Line Conventions
	How to Read a Command-Line Diagram

	Sample-Code Conventions

	Additional Documentation
	On-Line Manuals
	Printed Manuals
	Error Message Documentation
	Documentation Notes, Release Notes, Machine Notes
	Related Reading

	Compliance with Industry Standards
	Informix Welcomes Your Comments

	System Catalog
	Objects That the System Catalog Tables Track
	Using the System Catalog
	Accessing the System Catalog
	Updating System Catalog Data

	Structure of the System Catalog
	SYSAGGREGATES
	SYSAMS
	SYSATTRTYPES
	SYSBLOBS
	SYSCASTS
	SYSCHECKS
	SYSCOLATTRIBS
	SYSCOLAUTH
	SYSCOLDEPEND
	SYSCOLUMNS
	SYSCONSTRAINTS
	SYSDEFAULTS
	SYSDEPEND
	SYSDISTRIB
	SYSERRORS
	SYSEXTCOLS
	SYSEXTDFILES
	SYSEXTERNAL
	SYSFRAGAUTH
	SYSFRAGMENTS
	SYSINDEXES
	SYSINDICES
	SYSINHERITS
	SYSLANGAUTH
	SYSLOGMAP
	SYSNEWDEPEND
	SYSOBJSTATE
	SYSOPCLASSES
	SYSOPCLSTR
	SYSPROCAUTH
	SYSPROCBODY
	SYSPROCEDURES
	SYSPROCPLAN
	SYSREFERENCES
	SYSREPOSITORY
	SYSROLEAUTH
	SYSROUTINELANGS
	SYSSYN�ONYMS
	SYSSYNT�ABLE
	SYSTABAMDATA
	SYSTABAUTH
	SYSTABLES
	SYSTRACECLASSES
	SYSTRACEMSGS
	SYSTRIGBODY
	SYSTRIGGERS
	SYSUSERS
	SYSVIEWS
	SYSVIOLATIONS
	SYSXTDDESC
	SYSXTDTYPEAUTH
	SYSXTDTYPES

	Information Schema
	Generating the Information Schema Views
	Accessing the Information Schema Views
	Structure of the Information Schema Views
	The tables Information Schema View
	The columns Information Schema View
	The sql_languages Information Schema View
	The server_info Information Schema View

	Data Types
	Summary of Data Types
	Description of Data Types
	BLOB
	BOOLEAN
	BYTE
	CHAR(n�)
	CHARACTER(n)
	CHARACTER VARYING(m,r)
	CLOB
	DATE
	DATETIME
	DEC
	DECIMAL
	Distinct
	DOUBLE PRECISION
	FLOAT(n)
	INT
	INT8
	INTEGER
	INTERVAL
	LIST(e)
	LVARCHAR
	MONEY(p,s)
	MULTISET(e)
	Named Row
	NCHAR(n�)
	NUMERIC(p,s�)
	NVARCHAR(m,r�)
	Opaque
	REAL
	Row, Named
	Row, Unnamed
	SERIAL(n�)
	SERIAL8
	SET(e)
	SMALLFLOAT
	SMALLINT
	TEXT
	Unnamed Row
	VARCHAR(m,r�)

	Built-In Data Types
	Large-Object Data Types
	Simple Large Objects
	Smart Large Objects

	Time Data Types
	Manipulating DATETIME Values
	Manipulating DATETIME with INTERVAL Values
	Manipulating DATE with DATETIME and INTERVAL�Values
	Manipulating INTERVAL Values
	Multiplying or Dividing INTERVAL Values

	Extended Data Types
	Complex Data Types
	Collection Data Types
	Row Data Types

	Distinct Data Types
	Opaque Data Types

	Data Type Casting and Conversion
	Using Built�in Casts
	Converting from Number to Number
	Converting Between Number and CHAR
	Converting Between INTEGER and DATE or DATETIME
	Converting Between DATE and DATETIME

	Using User-Defined Casts
	Implicit Casts
	Explicit Casts

	Determining Which Cast to Apply
	Casts for Distinct Types
	What Extended Data Types Can Be Cast?

	Operator Precedence

	Environment �Variables
	Types of Environment Variables
	Where to Set Environment Variables in UNIX
	Where to Set Environment Variables in Windows NT
	Using Environment Variables in UNIX
	Setting Environment Variables in an Environment- Configuration File
	Setting Environment Variables at Login Time
	Syntax for Setting Environment Variables
	Unsetting Environment Variables
	Modifying an Environment-Variable Setting
	Viewing Your Environment-Variable Settings
	Checking Environment Variables with the chkenv Utility
	Rules of Precedence

	Using Environment Variables in Windows NT
	Setting Environment Variables for Native Windows Applications
	Setting Environment Variables for Command-Prompt Utilities
	Using the System Applet to Work with Environment Variables
	Using the Command Prompt to Work with Environment Variables
	Using dbservername.cmd to Initialize a Command-Prompt Environment

	Rules of Precedence

	List of Environment Variables
	Environment Variables
	AC_CONFIG
	ARC_CONFIG
	ARC_DEFAULT
	ARC_KEYPAD
	COCKPITSERVICE
	CPFIRST
	DBACCNOIGN
	DBANSIWARN
	DBBLOBBUF
	DBCENTURY
	Behavior of DBCENTURY with Expressions that Contain Date Values

	DBDATE
	Standard Formats for DBDATE
	Behavior of DBDATE with Expressions that Contain Date Values

	DBDELIMITER
	DBEDIT
	DBFLTMASK
	DBLANG
	DBMONEY
	DBONPLOAD
	DBPATH
	DBPRINT
	DBREMOTECMD
	DBSPACETEMP
	DBTEMP
	DBTIME
	DBUPSPACE
	DELIMIDENT
	ENVIGNORE
	FET_BUF_SIZE
	IFMX_SMLTBL_BROADCAST_SIZE
	IFX_DIRECTIVES
	IFX_LONGID
	IFX_NETBUF_PVTPOOL_SIZE
	IFX_NETBUF_SIZE
	IFX_UPDDESC
	INFORMIXC
	INFORMIXCONCSMCFG
	INFORMIXCONRETRY
	INFORMIXCONTIME
	INFORMIXCPPMAP
	INFORMIXDIR
	INFORMIXKEYTAB
	INFORMIXOPCACHE
	INFORMIXSERVER
	INFORMIXSHMBASE
	INFORMIXSQLHOSTS
	INFORMIXSTACKSIZE
	INFORMIXTERM
	INF_ROLE_SEP
	ISM_COMPRESSION
	ISM_DEBUG_FILE
	ISM_DEBUG_LEVEL
	ISM_ENCRYPTION
	ISM_MAXLOGSIZE
	ISM_MAXLOGVERS
	LD_LIBRARY_PATH
	LIBPATH
	NODEFDAC
	ONCONFIG
	OPTCOMPIND
	OPTMSG
	OPTOFC
	OPT_GOAL
	PATH
	PDQPRIORITY
	PLCONFIG
	PLOAD_LO_PATH
	PLOAD_SHMBASE
	PSORT_DBTEMP
	PSORT_NPROCS
	SHLIB_PATH
	STMT_CACHE
	TERM
	TERMCAP
	TERMINFO
	THREADLIB
	XFER_CONFIG

	Index of Environment Variables

	The stores_demo Database
	The sales_demo and superstores_demo Databases
	Glossary
	Index

