
1

Methods for the Development of Adaptive and
Dependable Information Systems

Diana Carolina Gomez Hernandez

gomez@rhrk.uni-kl.de

Abstract. This paper presents methods that are suitable for the development
and selection of information systems (IS) that comply with the exigencies and
complexity of enterprise business processes. The challenge now, is to reduce
costs by using methods that allow the adaptivity and dependability of an IS in a
changing environment. The methods presented here are the Model Driven Ar-
chitecture (MDA), developed by the OMG group, and the Enterprise knowledge
Development Change Management Method (EDK-CMM). Both methods are
used in important industry sectors, and they obey to their exigencies of having a
structure in which an architectural separation of concerns in necessary. To ac-
complish this, they separate the logic of business from the information system
specifications, by using modeling as an approach to support the development
process.

1 Introduction

During the last years several methods for software development have been proposed,
but many of them lack in some important aspects that an information system needs,
such as maintenance, integrity, and low cost of development [16]. The use of an effec-
tive approach that complies with these requirements and the complexity of informa-
tion systems nowadays became an undeniably necessity. The methods explained in
this document show possible ways to fulfill these demands, as well as new require-
ments like dependability and adaptivity.

The main objective of a dependable information system is to satisfy user require-
ments, and deliver the specified application services during its operation time in a
changing system context and environment [2]. An adaptive information system must
be able to accommodate a diverse set of users [22], and changing business rules
within an enterprise [17]. The Model Driven Architecture (MDA) enables the devel-
opment of dependable and adaptive systems. The promise of MDA is to create appli-
cation code from models, ensuring that the requirements specified during the first
phases of the software development process are met by the final product. Hence, the
errors produced when manually creating code from models are removed and conse-
quently the final system fulfills a great part of the requirements. By using models with
the definition of layers within a system, MDA guarantees that changes in the system

2

specification adapt quickly in the development process [1]. The Enterprise Knowledge
Development Change Management Method (EKD-CMM) satisfies dependability and
adaptivity in its process. It implements business processing reengineering, in which
business models can adapt to the changing situations and decisions in an enterprise.
Since the main goal of the EKD-CMM is to specify the requirements of an enterprise
information system by using modeling, it provides integrity during its complete proc-
ess [17], [21].

In this document we will present in detail both methods, by explaining their potential
in the development process.

2 History of Modeling

Formerly, applications were developed by directly using machine code or assembler
language in which the programmer had to use very complex instructions to create
application functionality. A huge step forward was the introduction of the first pro-
gramming language FORTRAN. With FORTRAN, programmers had the opportunity
not only to write applications in a friendly way, but also to use a compiler to generate
machine code [1]. Thereafter, the door for other high-level programming languages
like C was opened. Although, with the use of these programming languages the prob-
lem of having a compiler to produce machine code was solved, a more structured way
to developing code was still needed. Hence, programming languages with object-
oriented structure like Java or C++ came up, allowing the programmer to easier struc-
ture the application into concepts or functionalities.

With the broad use of programming languages, the idea of modeling emerged allow-
ing the software developers to observe a system application from a higher level of
abstraction. With modeling, the developer first specifies the requirements of an appli-
cation then structures and analyzes the logic of it and finally creates implementation
code. Modeling has evolved because of two factors: the complexity and wide range of
concerns that involve today’s software systems, and to achieve higher levels of ab-
straction to allow humans to understand and develop these systems [6].

Modeling techniques are evolving according to changing business requirements [6],
[17]. Nowadays, companies are improving their way for developing information sys-
tems in order to cope with maintenance, integrity and scalability of solutions. Model-
ing helps in different ways to accomplish this. Since information systems are an inte-
gral part of a business processes in an enterprise [17], they need to be developed in a
structured way in which the technology used for implementation is completely sepa-
rated from the specification of the logic of the business. With modeling it is possible
to describe the interaction among different entities in an enterprise, for example, oper-
ating systems, business processes, actors and flow of information without considering
implementation aspects. Additionally, one of the challenges ahead for an enterprise is
to offer products and services that are suitable for the final client. In order to fulfill

3

this, modeling provides the possibility to validate software requirements according to
the client demands.

Modeling also has evolved according to the need of software developers to have cer-
tain level of abstraction, in which the main characteristics of a certain problem are
easy to identify and understand [6]. By only using the initial techniques of software
development (assembler, high level languages, OO languages), it was difficult to
identify the requirements and behavior of a system, and developers focused too much
on the details of one specific implementation technology. Modeling languages like
UML were created and have gained wide acceptance among software developers.
Despite the use of UML is a powerful approach to design systems, a problem still
remains: the result of modeling stays only in a document or may be in the developer’s
head (the translation from models to code still has to be done manually) [6]. Hence,
the more the code evolves, the bigger will be the gap among the design and the im-
plementation. Therefore, the challenge ahead for modeling techniques is to find ways
to keep a direct connection between the code and the models. This is where methods
like the Model Driven Architecture come in.

3 MDA Model Driven Architecture

The Model Driven Architecture (MDA) is a method used for developing software that
separates the business logic from the platform in which the system is developed,
maintaining the integrity of the system application during the entire software life cy-
cle. MDA promotes the use of models in software development, by following the
methodology of the Model Driven Development (MDD), in which the modeling of
software is the base for the generation of system applications [4]. The OMG group
defines MDA as an approach to using models in software development in order to
integrate “what you have built” with “what you are building” with “what you are
going to build” [1]. Hence, MDA guarantees that the models created in the software
development cycle are used during each of the four phases of the development proc-
ess: Analysis, Design, Implementation and Testing, by organizing them into an archi-
tectural framework of different levels and transformations [6].

3.1 MDA Objectives

The main objective of MDA is to separate the description and specifications of an
information system from the platform in which that system is finally implemented. To
achieve this, MDA separates the code layer from the modeling layer.

4

Transformation
1st Level

UML model for System

Requirements and Behavior

Intermediate UML model

According to a specific

platform

Implementation Code

Generated from the

Platform Specific Model

Transformation
2nd Level

M
od

el
in

g
La

ye
r

C
od

e
La

ye
r

Transformation
1st Level

UML model for System

Requirements and Behavior

Intermediate UML model

According to a specific

platform

Implementation Code

Generated from the

Platform Specific Model

Transformation
2nd Level

M
od

el
in

g
La

ye
r

C
od

e
La

ye
r

Fig. 1. Separation among MDA different layers

Figure 1 shows two types of transformations within two different levels [10]. In the
first level a UML model for system requirements and behavior is transformed into a
specific UML profile model, suitable for a specific platform. Although this model is
specific for a platform it still belongs to the modeling layer. In the second level, the
platform specific model is transformed into implementation code, making the connec-
tion between the modeling layer and the code layer. With this MDA is not only com-
pliant to the requirements of the information systems nowadays [6], but also to the
promise of having one day implementation code completely derived from models.

Another important objective of MDA is to provide a standardized way to develop and
deploy applications. It offers tools and procedures implemented using known stan-
dards as XML and CORBA. Thereby, MDA improves the reusability, interoperability
and maintenance of software applications [1].

3.2 MDA Models

For MDA, Models are the main instrument in the development process. They are not
only used for documenting the process or guiding the implementation, but also to ob-
tain programming code used for the implementation of a system. The OMG group
defines five types of models used in the MDA:

5

Computation Independent Model (CIM)

The Computation Independent Model describes the requirements of the system includ-
ing the environment in which it will be used. The CIM represents what the system is
expected to do and is useful not only as an aid to understand a problem, but also as a
source of a shared vocabulary to use in other models [1]. The CIM does not consider
the internal structure or processing of a system [7], but it serves as an interface be-
tween the domain experts and the system architectures designers. An example of CIM
is the UML use cases descriptions, in which the user’s system requirements are ex-
plained.

Platform Independent Model (PIM)

A model can be platform independent regarding the two different layers in the MDA
architecture. In the modeling layer, the Platform Independent Model specifies the
structure and behavior of a system independently of the platform in which it will be
implemented [1]. Additionally, the PIM is useful when validating the correctness of a
system [3]. At this layer, the PIM is represented by several UML diagrams such as use
case diagram, class diagram, sequence diagram, and collaboration diagram. In the
code layer, a PIM specifies the implementation code model, independent of the CPU
in which it will be running.

Platform Model (PM)

The Platform Model describes a platform by defining its services and technical con-
cepts, and specifies the use of a platform by a system application [1]. The concepts
described by a Platform Model are necessary when transforming a PIM into a PSM.

Platform Specific Model (PSM)

The Platform Specific Model is the result of a PIM transformation. It refines the PIM
by using the specifications given by the PM, so to say the details of how a system uses
a specific kind of platform [1]. Hence, a PSM can be defined as a PIM that includes
all the details of a specific platform [6].

3.3 MDA Modeling Standards

There are several languages and standards that MDA uses to specify the models and
transformations among them. The OMG group defines the following standards, to use
with the MDA Procedures: The Unified Modeling Language (UML), the Meta-Object
Facility (MOF), XML Meta Data Interchange (XMI) and the Common Warehouse
Meta-Model (CWM). To better understand the standards, it is important to first intro-
duce the concept of “Metamodel”.

6

Metamodel

In order to provide a standard to specify the models that are used during the MDA
development process, it is necessary to use Metamodels. A metamodel defines the
rules and patterns needed to construct another model [8]. To better understand the
concept of metamodel lets consider the UML Metamodel hierarchy in Figure 2.

MOF
Meta-Metamodel

Book

M3

UML
Metamodel

M2

UML
Model

M1

M0

Account User

Instance of Instance of Instance of

Instance of

Instance of

Universal Modeling
Language in which
Modeling systems are
Specified.

Model of a particular
Modeling system:
UML Class
Metamodel.

UML Class Model for
a particular application

specified by the UML
Class Metamodel.

Object instance
of a UML Class Model .
Population of a
particular application. .

MOF
Meta-Metamodel

Book

M3

UML
Metamodel

M2

UML
Model

M1

M0

Account User

Instance of Instance of Instance of

Instance of

Instance of

Universal Modeling
Language in which
Modeling systems are
Specified.

Model of a particular
Modeling system:
UML Class
Metamodel.

UML Class Model for
a particular application

specified by the UML
Class Metamodel.

Object instance
of a UML Class Model .
Population of a
particular application. .

Fig. 2. Specification of the UML metamodel hierarchy

In Figure 2, we can distinguish 4 levels: M3, M2, M1, and M0. In the level M3 the
metamodel language MOF is specified, as a base for creating UML metamodels. In
the level M2 the definitions of an UML metamodel for a specific modeling system1
are specified. At this level the UML concepts can be defined, such as class, associa-
tion, and property. In the level M1 UML models specific for certain applications are
specified by using the UML metamodel. At this level an UML class model contains
the specification for classes such as Book, Account and User. In the level M0 the ob-
jects or instances of the classes defined by the UML class model are encountered [19].

Unified Modeling Language (UML)

Unified Modeling Language (UML) is a modeling standard proposed by the OMG
group, and it is defined as “a specification defining a graphical language for visualiz-
ing, specifying, constructing, and documenting the artifacts of distributed object sys-
tems” [9]. UML is used in the MDA transformation process for many specifications

1 Modeling System refers to a particular kind of modeling environment offered by UML, such

as class diagram, sequence diagram, or activity diagram.

7

that will be defined in the level of models: Platform Specific Models (PSM) and Plat-
form Independent Models (PIM) [8]. At the level of platform independent models,
UML is used to specify the behavior of a system without including specific details of
a platform. At the level of platform specific models an UML profile would be used.
The UML profile allows including in the model the particular semantics of a specific
platform by using stereotypes and tagged values, some of the UML extensions. [3],
[13].

Meta Object Facility (MOF)

The Meta Object Facility (MOF) is defined by the OMG Group as “an extensible
model driven integration framework for defining, manipulating and integrating meta-
data and data in a platform independent manner” [9]. By looking at this definition,
we can infer that MOF is an extensible model integration framework, because it inte-
grates every step of the software development process by standardizing the transfor-
mations from PIMs to PSMs [10]. MOF is used for defining, and manipulating meta-
data2 and data in a platform independent manner. It is the language used to specify
metamodels [5], [6], [19]. By expressing its models in MOF-based format, MDA al-
lows [10]:
− Interoperability among applications: Models can be imported and exported from

one application to another.
− Reusability of models defined during the process: The models are managed and

stored in a repository together with relevant information used during the devel-
opment process.

− Portability applied to models: Models can be translated into different formats, for
example XML, to be transported across the network.

− Integrity during the development process: Models can be transformed and then
used to produce application code.

XML Metadata Interchange (XMI)

XML Metadata Interchange is a framework defined by the OMG group with the pur-
pose of “defining, interchanging, manipulating and integrating XML data and ob-
jects” [9]. XMI uses XML standards (XML Document, DTD and Schema) to inte-
grate information among repositories of models, applications, data warehouses, and
tools. It defines the format to interchange information between MOF format models
and UML models, and also to mapping models from MOF to XML [8].

2 Metadata is a term for data that describes certain kind of information. In modeling metadata

specifies the rules to construct a metamodel [5].

8

Common Warehouse Meta-model (CWM)

The Common Warehouse Metamodel (CWM) is the OMG Group metadata standard
that allows the interchange of warehouse metadata3 [5], [9]. While metadata is used to
maintain and manage the data warehouse, each part of the warehouse system such as
warehouse tool, warehouse platform, and warehouse metadata repository, uses differ-
ent metadata representation [5]. The CWM helps to integrate these different represen-
tations of metadata. It is based on the three standards explained above: UML, MOF
and XMI. UML is used to design and obtain a graphical representation of metamodels
and models, MOF is used to define metamodels using CORBA architecture, and XMI
is the standard used to interchange information among warehouse metadata [5].

3.4 MDA Platforms

A platform can be defined as a framework4 that provides certain functionality to sup-
port the development of software applications [1]. MDA defines two types of plat-
forms: Vendor Specific Platform and Technology Specific Platform.

Vendor Specific Platform

In a vendor specific platform software applications are developed and launched within
a set of rules and specifications particular for this platform. Examples of vendor spe-
cific platforms are IBM’s Websphere for Java 2 Enterprise Edition (J2EE), or Micro-
soft’s .NET. These platforms provide a specific functionality, but the system require-
ments and usage specifications differ from one to the other [1], [4].

Technology Specific Platform

A technology specific platform defines the methods and languages for implementing
software, but the final implementation needs a vendor specific implementation for this
technology. Examples of a technology specific platform are the standard CORBA, and
Java 2 Enterprise Edition (J2EE) [1], [4].

3.5 MDA Transformation

A transformation in MDA is the process of converting a model into another model of
the same system and it is applied to models within different layers. These layers are
defined for the MDA specifications as the MDA Viewpoints. A viewpoint is defined

3 Metadata in data warehouse can be classified into two different types: source metadata (re-

pository specifications, source schemas) and data staging metadata (data transmission, trans-
mission times and transmission results) [20].

4 Framework is defined as an adaptable and expandable system of collaborating software units
that provide an available functionality for a general set of tasks.

9

for the MDA guide as “a technique of abstraction that uses a selected set of architec-
tural concepts and structured rules to focus on particular issues on a system” [1]. To
better understand the concept of viewpoints, it is worth to make a comparison be-
tween the different viewpoints and the different phases of the software life cycle. Fig-
ure 3 shows how each viewpoint corresponds to a different phase of the software de-
velopment:

The environment and
requirements of a

system

Program Code
based on the specification

of a system, and a
particular platform

The operation of a system
without specifying details

of any platform

Analysis

Design

Implementation

Computation
Independent
Viewpoint

PHASES OF THE
SOFTWARE DEVELOPMENT

Platform
Independent
Viewpoint

Platform
Specific
Viewpoint

MDA VIEWPOINTS

L1

L2

L3

Specifies

Defines

Provides

Focuses on

Focuses on

Focuses on

Model from
CIVP

2. Transformed
into

1. Transformed
into

Model from
PSVP

Model from
PIVP

The environment and
requirements of a

system

Program Code
based on the specification

of a system, and a
particular platform

The operation of a system
without specifying details

of any platform

Analysis

Design

Implementation

Computation
Independent
Viewpoint

PHASES OF THE
SOFTWARE DEVELOPMENT

Platform
Independent
Viewpoint

Platform
Specific
Viewpoint

MDA VIEWPOINTS

L1

L2

L3

Specifies

Defines

Provides

Focuses on

Focuses on

Focuses on

Model from
CIVP

2. Transformed
into

1. Transformed
into

Model from
PSVP

Model from
PIVP

Fig. 3. Comparison between MDA Viewpoints and Software Development Phases

Thereby, models are transformed from one viewpoint to another, from a higher level
of abstraction to a more specific level of abstraction [6], [13]. Based on these defini-
tions it can be inferred that transformation is the process in which models evolve from
one viewpoint to another. In Figure 4 the model in the higher level of abstraction is
distinguished as a PIM and the model result in the lower level of abstraction could be
a PIM or a PSM.

10

COMPUTATION
INDEPENDENT

VIEWPOINT

PLATFORM
INDEPENDENT

VIEWPOINT

UML Use Cases

C# Implementation

Assembler Language

Domain
Independent
Model Logic

Domain
Specific Model
Logic

Domain
Independent
Platform

Domain
Specific
Platform

Domain
Independent
CPU

Domain
Specific
CPU

PSMPIM

UML Class Diagram

PLATFORM
SPECIFIC

VIEWPOINT

C
O

D
E

LA
YE

R
M

O
D

EL
IN

G
 L

A
YE

R

COMPUTATION
INDEPENDENT

VIEWPOINT

PLATFORM
INDEPENDENT

VIEWPOINT

UML Use Cases

C# Implementation

Assembler Language

Domain
Independent
Model Logic

Domain
Specific Model
Logic

Domain
Independent
Platform

Domain
Specific
Platform

Domain
Independent
CPU

Domain
Specific
CPU

PSMPIM

UML Class Diagram

PLATFORM
SPECIFIC

VIEWPOINT

C
O

D
E

LA
YE

R
M

O
D

EL
IN

G
 L

A
YE

R

Fig. 4. Transformation among three Viewpoints.

Figure 4 shows how the models can be PIM or PSM according to different domains5.
In the application logic domain, the UML class diagram is a PSM for the application
logic domain, but a PIM regarding the code implementation domain. Through trans-
formation, this model becomes a PSM in the code implementation domain, and a PIM
regarding the CPU domain. When applying the final transformation (compilation),
this model becomes a PSM for the CPU domain.

3.5.1 MDA Transformation Mappings

The transformation process from one model to another is guided by mappings [1]. A
mapping gives rules and specifications to transform one model into another of a spe-
cific platform. The most common approach to map models is the Model Type Map-
ping. In this approach a PIM model is defined by using a certain language and then
transformed into a PSM defined by a platform specific model language [1], [3].

5 A domain summarizes concepts from a certain subject matter [16].

11

Book
ISBN
Name
Author

XMLDoc

<Book>
<ISBN>
<Name>
<Author>

</Book>

XMLSchema

CORBA Component
Model

Database

1

2 3

4

(XMI)

(JMI)
(C# DDL)

T-Book
<<Column>>ISBN::int
<<Column>>Name::VARCHAR(20)
<<Column>>Author::VARCHAR(20)

JAVA,C#

Class Book {
public int ISBN;
public string Author;
public string Name;
}

<?xml version="1.0"?>
<Schema xmlns="schemas-microsoft-
com:xml-data">
<ElementType name="book">

<element type="ISBN" />
<element type="author" />
<element type="name" />

</ElementType>
</Schema>

UML/IDL

Class Book {
attribute int ISBN;
attribute string Author;
attribute string Name;
}

(SQL DDL)

Book
ISBN
Name
Author

XMLDoc

<Book>
<ISBN>
<Name>
<Author>

</Book>

XMLSchema

CORBA Component
Model

Database

1

2 3

4

(XMI)

(JMI)
(C# DDL)

T-Book
<<Column>>ISBN::int
<<Column>>Name::VARCHAR(20)
<<Column>>Author::VARCHAR(20)

JAVA,C#

Class Book {
public int ISBN;
public string Author;
public string Name;
}

<?xml version="1.0"?>
<Schema xmlns="schemas-microsoft-
com:xml-data">
<ElementType name="book">

<element type="ISBN" />
<element type="author" />
<element type="name" />

</ElementType>
</Schema>

UML/IDL

Class Book {
attribute int ISBN;
attribute string Author;
attribute string Name;
}

(SQL DDL)

Fig. 5. Example of a PIM UML Model transformed into different PSM Models

Figure 5 illustrates four different kinds of mappings [6], [13]:

1. UML to XML
2. UML to Java
3. UML to CORBA Component Model CCM (Uses IDL Language).
4. UML to SQL Data Definition Language (SQL-DDL)

In each mapping a set of rules, algorithms and templates are defined by using descrip-
tions of the language in which the final PSM must be implemented.

Another mapping approach is the Model Instance Mapping in which some elements of
the PIM are identified to be transformed by choosing a specific platform. This ap-
proach uses Marks in a model, to indicate how PIM elements should be transformed
into PSM elements [1]. A mark is useful for a transformation tool or performer to
identify additional information that is needed to guide the transformation [13]. For
example when there are a number of possible mappings for a model element, marks
can specify which one of these mappings should be used. One example of a PIM
marked is shown in Figure 6 [15]:

12

Book

ISBN

Name

Author

ModifyName ()

GetAuthor()

+ MARKS

Book

<<UniqueId>> ISBN

Name

Author

ModifyName ()

GetAuthor()

<<Class>>Book

ISBN

Name

Author

ModifyName ()

GetAuthor()

+ MARKS

Book

<<UniqueId>> ISBN

Name

Author

ModifyName ()

GetAuthor()

<<Class>>

Fig. 6. Example of marks using a UML Book class

3.5.2 Outputs of a Transformation

The transformation process not only has a platform specific model as a result but also
a Record of Transformation. A record of transformation stores, the specific parts of
the mapping that were used to transform the elements, and the correspondence be-
tween the elements among the PIM and the PSM [1].

3.5.3 Examples of a PIM to PSM transformation

Using a UML Profile and Marks [1], [3], [15]

By using a UML profile with the marking technique, it is necessary to apply the fol-
lowing steps:

1. A PIM is defined
2. A Platform is chosen
3. The PIM is marked according to the specifications of the platform
4. Mappings are specified according to the platform. (A platform should offer

specifications for making a mapping).
5. The transformation is performed: The marked PIM is mapped into a PSM

according to the mappings.

In Figure 7 is shown an example of this case of transformation:

13

PIM

PIM with Marks

PSM

Marks

Mapping

Are applied to

Based on
Marks

Transforms to

Book

ISBN

Name

Author

UML Model

<<Class>>

<<UniqueId>>

Book

<<UniqueId>> ISBN

Name

Author

<<Class>> UML Profile

public Class Book {
protected int ISBN;
public String Name;
public String Author;
}

Mapping Rules

JMI

Java Class

PIM

PIM with Marks

PSM

Marks

Mapping

Are applied to

Based on
Marks

Transforms to

Book

ISBN

Name

Author

Book

ISBN

Name

Author

UML Model

<<Class>>

<<UniqueId>>

Book

<<UniqueId>> ISBN

Name

Author

<<Class>>
Book

<<UniqueId>> ISBN

Name

Author

<<Class>> UML Profile

public Class Book {
protected int ISBN;
public String Name;
public String Author;
}

public Class Book {
protected int ISBN;
public String Name;
public String Author;
}

Mapping Rules

JMI

Java Class

Fig. 7. Transformation from Book UML Class to Java Class using Marks

Meta-model Transformation [1]

The Meta-model transformation approach bases its methodology on the following
steps:

1. A PIM is defined by using the concepts and the model elements defined by
the chosen Platform Independent Meta-model.

2. A Platform is chosen, and the rules of the transformation are specified using
a Platform Specific Meta-model.

3. A Mapping is defined according to the PIM Meta-model and PSM Meta-
model

4. The transformation is performed: The PIM is mapped into a PSM using the
mapping defined.

In figure 8 is illustrated an example of the steps explained above:

14

PIM

PSM

PIM

Meta-model

PSM

Meta-model

Defined
using

Defined from

Takes
Specifications

Takes
Specifications

MOF

Meta-model

Book

ISBN

Name

Author

XMI META-
MODEL

Mapping Rules

JMI
Mapping

XMI META-
MODEL:
Transformation
Rules

public Class Book {
protected int ISBN;
public String Name;
public String Author;
}

PIM

PSM

PIM

Meta-model

PSM

Meta-model

Defined
using

Defined from

Takes
Specifications

Takes
Specifications

MOF

Meta-model

Book

ISBN

Name

Author

Book

ISBN

Name

Author

XMI META-
MODEL

Mapping Rules

JMI
Mapping

XMI META-
MODEL:
Transformation
Rules

public Class Book {
protected int ISBN;
public String Name;
public String Author;
}

Fig. 8. Transformation from Book UML Class to Java Class using Meta-Model Trans-
formation

4 A specific application of MDA: MDA in the avionics Industry
[16]

We now discuss the use of MDA in the context of dependable and adaptive informa-
tion systems by exploring an example of MDA in the avionics industry. This section
will discuss: (i) the functionality blocks of the military aircraft industry, (ii) as well as
their approach of using MDA including a short evaluation of how MDA improves
quality in an environment that requires of dependable and adaptive systems.

Functionality Blocks of the aircraft industry

The military aircraft industry uses a MDA compliant environment in order to improve
their existing method of software development, which was based on the “Waterfall
method”. This method follows the traditional steps of the software development:
Analysis, design, code and testing. Since the military aircraft industry system has sev-
eral blocks of functionality, MDA is a suitable method to integrate all these blocks in
a standardized way. By using MDA, all system specifications are abstracted and then
translated into several execution platforms. In order to do this, the notion of layers

15

defined in MDA is used to specify their different blocks of functionality as is shown
in Figure 9.

AIRCRAFT PLATFORM INDEPENDENCE

EXECUTION PLATFORM
INDEPENDENCE

Software Architecture
Domain

TARGET EXECUTION ENVIRONMENT

TARGET HARDWARE

H
ardw

are Interface
D

om
ain

Pi
lo

t I
nt

er
fa

ce
D

om
ai

n

Communications
Domain

Platform Independent Layer

Platform Specific Layer

AIRCRAFT PLATFORM INDEPENDENCE

EXECUTION PLATFORM
INDEPENDENCE

Software Architecture
Domain

TARGET EXECUTION ENVIRONMENT

TARGET HARDWARE

H
ardw

are Interface
D

om
ain

Pi
lo

t I
nt

er
fa

ce
D

om
ai

n

Communications
Domain

AIRCRAFT PLATFORM INDEPENDENCE

EXECUTION PLATFORM
INDEPENDENCE

Software Architecture
Domain

TARGET EXECUTION ENVIRONMENT

TARGET HARDWARE

H
ardw

are Interface
D

om
ain

Pi
lo

t I
nt

er
fa

ce
D

om
ai

n

Communications
Domain

Platform Independent Layer

Platform Specific Layer

Fig. 9. Layers in the Avionics System

Figure 9 shows how the military aircraft system is structured. The platform independ-
ent layer is divided into two sub layers. One is specific for the aircraft system and the
other is specific for the software architecture. In the aircraft specific layer are defined
the hardware interface domain (which defines the applications of sensors and weap-
ons), the pilot interface domain (the artifacts interface for communicating with the
pilot), and the communications domain (the protocols for the aircraft’s communica-
tion equipment). In the software architecture layer the mapping rules for transforma-
tion from PIMs to PSIs6 (Platform Specific Implementations) are defined. The plat-
form specific layers are the target execution environment layer and the target hard-
ware layer. In the former operating systems, programming languages and processors
are defined, and in the later the target hardware in which the system runs is defined.

In order to manage the creation and transformation of models, the aircraft system uses
two different tools: the intelligent UML (iUML) tool and the Configurable Code Gen-
erator (iCCg) tool. The iUML tool is used to build models that are expressed in execu-
table UML format (xUML). Hence, the tool allows the software developer not only to
create models, but also to validate them (the xUML format can be transformed into
executable code that is processed by a simulator to test a model). The iCCg tool is
used to transform a model expressed in xUML format to implementation code. In or-
der to do this, the iCCg tool needs mapping rules definitions.

6 The concept of Platform Specific Implementation (PSI) is equivalent to that of Platform Spe-

cific Model (PSM) of the MDA.

16

The MDA Approach

The general process that the aircraft industry follows by using the methodology de-
fined by MDA is exposed in Figure 10:

Specify Domains
By using

System Use Cases

Build Platform
Independent Models

Class diagram, state charts
Action Models

Validate PIMs
By executing and simulating

System Use Cases

Specify Mapping Rules
from PIMs to PSMs

Generate System
Generate code for the

Target system

Specify Domains
By using

System Use Cases

Build Platform
Independent Models

Class diagram, state charts
Action Models

Validate PIMs
By executing and simulating

System Use Cases

Specify Mapping Rules
from PIMs to PSMs

Generate System
Generate code for the

Target system

Fig. 10. MDA approach used in the aircraft system

Figure 10 describes the steps performed for model transformation. First, system use
cases and domain use cases are defined to specify the behavior of the system. Second
PIMs such as state charts, class diagram, and action models, are created to represent
functionalities in each domain. In parallel, mapping rules for the transformation are
specified. Third, PIMs are validated and tested by using the iUML tool. Fourth and
finally, PSIs are generated by applying the mappings to the PIMs using the iCCg tool.
In order to give an example of this process, a specific function of the military aircraft
system is analyzed in detail: Transform a set of applications7 into a set of processing
modules.

7 An application component in the avionics industry is defined as a set of processes that belong

to certain domain and are active in an aircraft mission. Examples of processes are: take off,
reconnaissance and attack. [16]

17

Application 1 Application n

Application 2

Operating System

Module Support Layer

PIM
Application

Blue Print tool:
Store information

of the OS

PSI
Processing Module

iCCg tool:
Code Generator

iUML tool:
Model Tester

In
de

pe
nd

en
t

E
xe

cu
tio

n
La

ye
r

S
pe

ci
fic

E

xe
cu

tio
n

La
ye

r

iUML tool:
Model Builder

A PIM is built

The specific platform
provides mapping rules to
the transformation tool

PIM
Application

A PIM is validated by
using the Model
Simulator

Processing Module 1 Processing Module 2

Processing Module n

Tags PIM
Application

A PIM is tagged

Application 1 Application n

Application 2

Operating System

Module Support Layer

PIM
Application

Blue Print tool:
Store information

of the OS

PSI
Processing Module

iCCg tool:
Code Generator

iUML tool:
Model Tester

In
de

pe
nd

en
t

E
xe

cu
tio

n
La

ye
r

S
pe

ci
fic

E

xe
cu

tio
n

La
ye

r

iUML tool:
Model Builder

A PIM is built

The specific platform
provides mapping rules to
the transformation tool

PIM
Application

A PIM is validated by
using the Model
Simulator

Processing Module 1 Processing Module 2

Processing Module n

Tags PIM
Application

A PIM is tagged

Fig. 11. Example of a transformation in the aircraft system

Figure 11 shows the process in which an application is transformed into a processing
module. This is achieved by using the following strategy:
1 Represent the application component as a PIM by using the iUML tool.
2 The PIM is tagged to specify how the application is to be organized into model-

ing processes. (Here is used the marking technique from MDA).
3 The mapping rules are defined by using a runtime blueprint framework (which

provides information of the OS) and incorporated in the iCCg tool.
4 The PSI model is generated by the iCCg tool to run in a specific platform.

MDA and quality

In their approach of using MDA, the military aircraft industry implements dependabil-
ity in two ways: (i) by verifying the models in different domains and mapping rules
used to transform these models, (ii) by performing an automated transformation proc-
ess.

The models defined in the different platform independent domains and the mapping
rules are validated against a number of use cases to show that the system requirements
are fulfilled. Since both models and mappings are defined in xUML, it is possible to

18

perform a simulation test by using the iUML tool, in which models can show in ad-
vance the expected behavior of the system without considering the target specific plat-
form (they are launched in an UML executable environment).

To achieve high quality systems, the military aircraft industry complies with different
industry standards such as Generic Aircraft-Store Interface Framework (GASIF) de-
fined by the SAE AIR 55328. With the use of an automated transformation, the devel-
opers do not need to be aware of these technical specifications. To accomplish this,
rules and specifications of the industry standards are included in the code generator
tool, reducing the risk to introduce errors and inconsistencies when performing a
transformation.

Since realiability and dependability are important attributes of the militrary aircraft
systems, MDA methodology including the iUML and iCCg tools provides verification
and validation within the development of the aircraft system applications.

5 The EKD-CMM Method

The Enterprise Knowledge Development Change Management Method (EKD-CMM)
is a method used to choose the appropriate information system structure for an enter-
prise organization [17], [21]. In this method three different layers are distinguished,
which are shown in figure 12:

BUSINESS OBJECTIVES

BUSINESS PROCESSES

INFORMATION SYSTEMS

Goals

Actors Roles Processes

Systems

BUSINESS OBJECTIVES

BUSINESS PROCESSES

INFORMATION SYSTEMS

Goals

Actors Roles Processes

Systems

Fig. 12. Layers in the EKD method

Each of the three layers shown in figure 12 owns a set of models defined for a specific
purpose. For example, the layer business objectives must contain a set of models that

8 For more information please visit http:// www.sae.org

19

describe the goals of the enterprise (Enterprise Goal Model); while the business proc-
esses layer must contain a set of models that describe the processes in an enterprise,
including actors and roles in each process (Enterprise Business Model) [21]. The in-
formation system layer contains the result of applying this method: The Enterprise
System Model (ESM). The ESM contains the list of requirements of a suitable infor-
mation system for an enterprise. In other words, it describes how to support business
processes at operational levels [17]. In order to achieve this, this method defines sev-
eral approaches by using a road map9.

Fig. 13. Road Map defined by the EKD-CMM

Figure 13 shows how three ways in which the modeling process can be done in the
EDK-CMM. The first one (a) Forward Engineering, describes an approach that goes
from the layer of business objectives to business process and finally to the information
system layer. The second one (b) Reverse Engineering, describes an approach in
which the process model is described according to the requirements of an information
system. The third one (c) Business Process Reengineering or Improvement goes from
the business process layer to the business objectives layer in order to change specifi-
cations defined in one of both layers [17], [21].

In order to obtain the ESM it is required to start from a business process model.
Therefore it is necessary to first follow the approach a), in which a business process
model is specified from details given by the business objectives model. After having a
business process model, Business Object Models (BOMs) must be defined. The BOM
is the connection among the information system layer and the Business Process Layer.
The BOM contains definitions of the information requirements only. To refine the

9 A road map in the EDK-CMM context is an approach to describe different possibilities by

going from a starting point to an ending point.

20

BOM with information of a specific information system, Business Process Rules
(BPR) are defined at the information system layer. BPRs define the rules and opera-
tions that must be applied to a BOM in order to fulfill the information system re-
quirements. The BOM after applying BPRs is called Technical Business Object
Model (TBOM), which is the central model in the information system layer [17]. To
create and define these models, EDK-CMM uses the ABC flow charter as a modeling
tool. Since this tool does not support integration among models, an integrated com-
puter tool suitable for enterprise modeling is currently being developed. Hence, the
transformation process between BOMs and TBOMs is performed manually by now.

5.1 EKD-CMM compared to MDA

While EKD-CMM and MDA have different goals, they agree in the following as-
pects:
1. Both methods use the methodology of the model driven development (MDD), in

which models are the base of the software development.
2. Both methods use transformations in order to obtain the model that is suitable for

a specific platform or information system: In MDA a PIM is transformed into a
PSM, and in EDK-CMM a BOM is refined to a TBOM , by using rules given by
a specific platform, or information system.

3. Both methods involve and define the concept of layers as a base of their structure,
but the context in which this concept is defined differs from one to the other.

4. Both methods promote the evolution of models as a promise to maintain the in-
tegrity in a system development environment.

Although MDA and EDK-CMM work in a similar way, they have different focuses.
MDA is a method to develop software and EKD-CMM is a method that helps in
choosing an information system suitable for an enterprise. In MDA, when applying
transformations in models the final product is the implementation code or executable
code (expressed by a platform specific model) that runs in a specific platform. In
EKD-CMM the final product is an enterprise system model that considers the re-
quirements of an information system but not its implementation.

6 Conclusions

The methods explained in this paper accomplish the demand of dependability and
adaptivity of information systems, because they promote:

− Separation of Architectural Concerns: Since MDA and EDK-CMM use layers to

define architecture of different levels, they separate the logic of business from the
platform specification or implementation. To fulfill this, MDA defines three
viewpoints. The computation independent viewpoint and the platform independ-
ent viewpoint contain models that specify the behavior and functionality of the
system. On the other hand, the platform specific viewpoint contains models that

21

specify the functionality of a system for a specific software or hardware platform.
In EDK–CMM three different layers are defined with the purpose of separating
the business objectives and the business processes from the information systems.

− Integrity: The MDA and the EDK-CMM use transformations among models to
unify the logic of business and the platform specification. That means, that the
specifications of the behavior of a system defined in models or business processes
are kept when they apply to a specific platform or information system.

− Validation: Both methods support the quality of their final products (PSM and
ESM), by validating them against the requirements of the enterprise or the final
user defined by models from the first layers of the development process.

− Maintenance: MDA and EDK-CMM support the quick adaptation to changes in
the logic of business or the system behavior. Changes are implemented in the
models that belong to the platform independent layers, reducing the costs to
maintain an application.

− Modeling Standards: Modeling standards in MDA not only allow interoperability
among models, but also in a future the possibility for models to adjust themselves
dynamically according to changes of the system requirements. For example,
when a new model is inserted into a model repository the other system compo-
nents will adapt themselves to changes produced by that model being reflected di-
rectly in the system application [23].

− Modeling domains: By offering the possibility to create modeling domains, MDA
and EDK-CMM are able to enable adaptive systems. With separating a system in
different model domains, both methods allow to combine information from dif-
ferent domains in order to make a system self-sufficient .As an example of that
we can consider the system hippie [22]. The system hippie is an adaptive system
that is used to model user’s preferences in a physical space i.e. a museum exposi-
tion. The preferences of the user are modeled according to different modeling
domains, such as user’s knowledge, interests, and movements. The user knowl-
edge model helps to reduce redundancies of information that already has been
shown to a user, the interest model learns information of the user’s interests by
using the key words of each section visited, and the movement model stores the
track in which the user moves in the space. With all of this combined informa-
tion, it is possible for the system to adapt the user’s preferences according to a
specific section in a specific area of interest.

Although the advantages of using MDA and EDK-CMM are numerous, the existing
gap between the logic of business and the information system is still a challenge
ahead for those who promote the implementation of these methods.

References

1. Miller Joaquin, Mukerji Jisnhu.: MDA Guide Version 1.0.1. OMG Group (2003).
2. Peleska Jan.: Formal Methods And Development Of Dependable Systems. Technical

Report 9601. UniForM Workbench, University of Bremen (1996)
3. Architecture Board MDA Drafting Team.: Model Driven Architecture A Technical Per-

spective. OMG Group (2001) 2001-02-04

22

4. Muñoz Javier, Pelechano Vicente.:MDA a Debate. Universidad Politécnica de Valencia
(2004)

5. Chang Daniel T, Iyengar Sridhar.: Common Warehouse Meta-model Specification. OMG
Group (2001)

6. Brown Alan.: An Introduction to Model Driven Architecture:Part I: MDA and today’s
systems. IBM,(2004) http://www-128.ibm.com/developerworks/rational/library/3100.html

7. Cernosek Gary.: Next-Generation Model-Driven development. IBM Software Group
(2004)
http://www-128.ibm.com/developerworks/rational/library/feb05/cernosek/index.html

8. OMG Group Web Page.: MDA Specifications. OMG Group (2005)
http://www.omg.org/mda/specs.htm

9. OMG Group Web Page.: Catalog of OMG Modeling and Metadata Specifications. OMG
Group (2005) http://www.omg.org/technology/documents/modeling_spec_catalog.htm

10. OMG MOF Web Page.: OMG’s Meta Object Facility. OMG Group, 2005.
http://www.omg.org/mof/

11. SUN Microsystems Web page.: Java 2 Platform Enterprise Edition.
http://java.sun.com/j2ee/index.jsp

12. Microsoft Corporation Web Page.: Microsoft.NET.
http://www.microsoft.com/net/default.mspx

13. Brown Alan, Conallen Jim.: An Introduction to Model Driven Architecture:Part II: Les-
sons from the design and use of an MDA toolkit. IBM (2005)
http://www-128.ibm.com/developerworks/rational/library/apr05/brown/index.html

14 Amor Mercedes, Fuentes Lidia, Valecillo Antonio.: Bridging the Gap between Agent-
Oriented Design and Implementation Using MDA. Agent Oriented Software Engineering
Proceedings 04-1 (AOSE 04-1). Springer Berlin 2004

15 Cepa Vasian, Mezini Mira.: Language Support for Model-Driven Software Development.
Journal Science of Computer Programming (Elsevier). University of Darmstadt (2004).

16. Raistrick Chris, Bloomfield Tony.: Model Driven Architecture: An industry perspective.
Architecting Dependable Systems II. LNCS 3069. Springer-Verlag Berlin Heidelberg
(2004).

17. Barrios Judith, Nurcan Semil.: Model Driven Architectures for enterprise Information
Systems. LNCS 3084. Springer-Verlag Berlin Heidelberg 2004

18. Metamodel Web Page . http://www.metamodel.com/
19. Colomb Robert, Chang Daniel, Boger Marko, Hart Lewis, Kendall Elisa.: Ontology Defi-

nition Metamodel. DSTC, Gentleware, IBM, Sandpiper Software (2004).
20. Kimball Ralph.: Meta Meta Data Data: Making a List of Data about Metadata and Explor-

ing Information Cataloging Tools. DBMS (1998)
http://www.dbmsmag.com/9803d05.html

21. EKD foundations web page
http://crinfo.univ-paris1.fr/EKD-CMMRoadMap/foundationsEKD.html

22. Specht Marcus, Oppermann Reinhard.: Using modeling and adaptivity in nomadic infor-
mation systems. Proceedings of the 7.GI-Workshop : “Adaptivität und Benutzermodel-
lierung in Interaktiven Softwaresysteme.” (1999).

23. Poole John D.: Model Driven Architecture: Vision, Standards and Emerging Technolo-
gies. Workshop on Metamodeling and Adaptive Object Models. ECOOP (2001)

