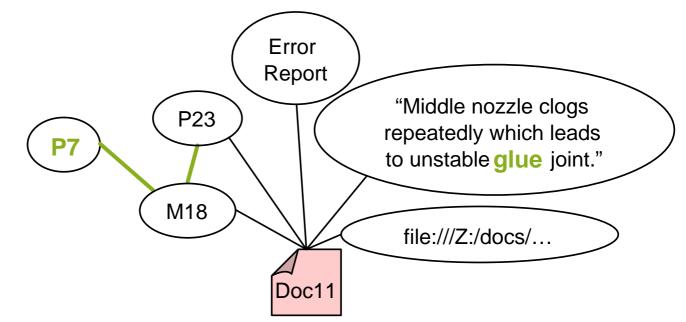


Intranet Search


Exploiting Databases for Document Retrieval

Christoph Mangold Universität Stuttgart

The Big Picture: Assume....

... there is a glueing problem with product P7

- Has this happened before?
- Is there any document about the problem?
- Search for: **P7** glue

→ Aim: Rank Doc11 as highly relevant

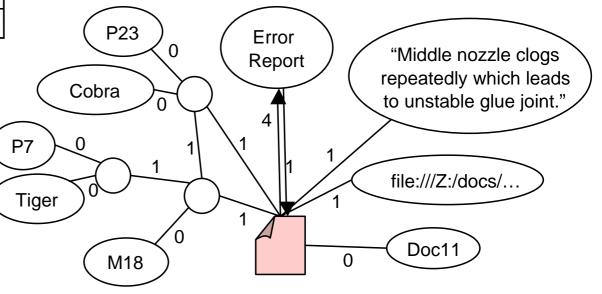
Overview

- The ContextGraph (1)
- Ranking (4)
- Computing the context (1)
- Implementation & Performance (2)
- Related Work (3)
- Future Work & Summary (2)

ContextGraph & Semantic Distance

ErrorReport

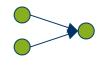
DocID	URL	Abstract	ProductID (FK)	MachineID (FK)	
Doc11	file://	Middle noz	P23	M18	

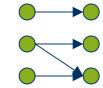

Product

Machine

ProductID	Name	 MachinelD	Location	Туре	
P7	Tiger	M18			
P23	Cobra				

Production


ProductID (FK)	MachineID (FK)		
P7	M18		
P23	M18		



Ranking

Idea: Transfer well-proven ranking measures to the context-based scenario

- "What's Related": Exploit the web structure
- Query independent: Google's PageRank / ObjectRank
- Query specific: Vector space model & tf.idf

coming up next ...

Ranking: Vector Space Model & tf.idf

- Documents and queries are vectors in a |7|-dimensional vector-space where *T* is the set of all terms.
 - Similar vectors denote similar documents/queries

 Term
 d_1 d_2 d_3 q

 clog
 0.3 0.3 0 0 0

 glue
 0.6 0 0 0 0.5

 ...
 0.2 0.1 0.1 0.2

Vector entries are calculated by means of tf•idf

- tf (term frequency):
 How often does the term appear in the document/query
- idf (inverse document frequency):
 How rare is the term in the document collection

Ranking: tf -> ctf

Consider the text only

tf: How often does the term appear in a document? **Consider context and semantic distances**

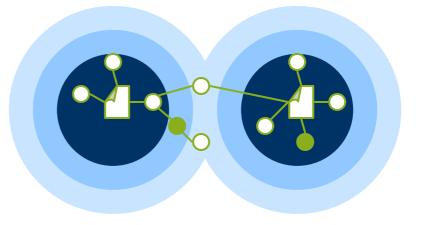
ctf: How often does the term appear in the context of a document?

$$tf(t,d) = \frac{freq(t,d)}{\max_{\ell \in d} (freq(\ell,d))} \quad ctf(t,d) = \frac{\sum_{k=1}^{|H^{\ell}|} sim(d,h_{k}^{t})}{\max_{\ell \in Context(d)} \sum_{k=1}^{|H^{\ell}|} sim(d,h_{k}^{\ell})}$$
There is a glueing problem on M18 ...
When the glue gets ...
....

Ranking: idf -> icf

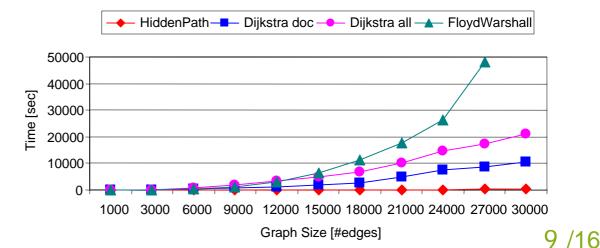
Consider the text only

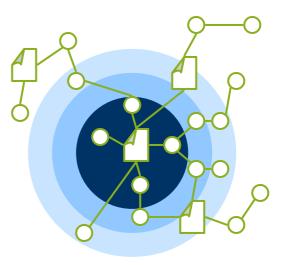
Consider context and semantic distances

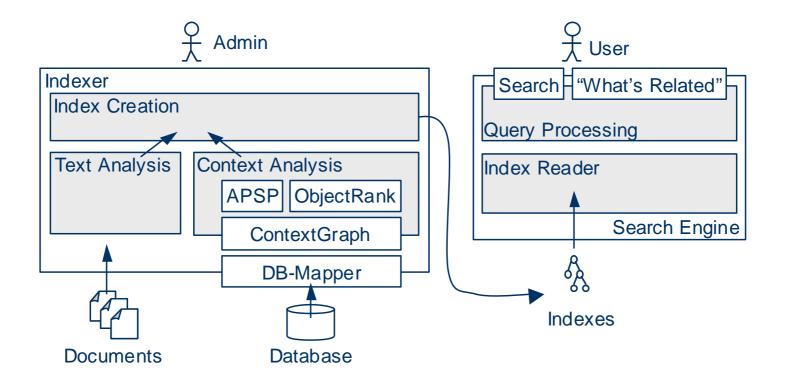

idf: How rare is the term in the document collection?

 $\operatorname{idf}(t) = \frac{1}{|\{\delta \in D \mid t \in \delta\}|}$

icf: How rare is the term in the contexts of all documents?

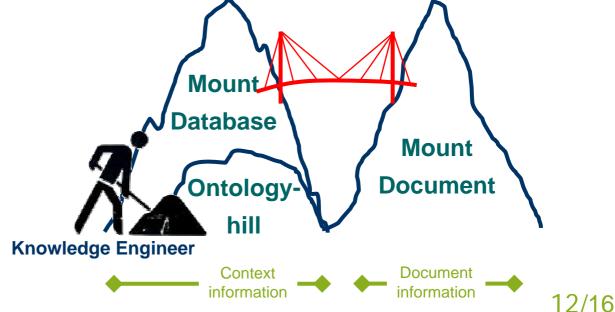

$$\operatorname{icf}(d,t) = \frac{1}{|\{\delta \in D \mid \exists n \in V_t : \operatorname{sim}(\delta,n) \ge \operatorname{sim}(d,n)\}}$$


Term $d_1 \ d_2 \ d_3$ clog $\begin{bmatrix} 2 \\ 1 \\ 0 \\ 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \xrightarrow{idf(clog) = 1/4} idf(glue) = 1/1$... idf(glue) = 1/1nozzle $\begin{bmatrix} 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \xrightarrow{idf(nozzle) = 1/5} idf(nozzle) = 1/5$


Computing the Context

- All Pairs Shortest Path (APSP)
- Optimizations:
 - Neighborhood only
 - Documents only
- Implementation
 - FloydWarshall
 - Neighborhood Dijkstra
 - Document Neighborhood Dijkstra
 - Neighborhood HiddenPath [Karger '93]

Implementation: Architecture & Technologies


- Java
- Lucene (Apache's search engine)
- D2RQ (DB-ontology mapping tool, FU Berlin)
- Jena (hp's semantic web framework)
- OWL / RDF (W3C's ontology description language)

Performance: Query Time

Related Work: Semantic Search

- Surveyed 21 approaches
- Semantic Web
- Contextual knowledge is modeled in (handcrafted) ontologies
- User interaction
- Different ontology structures require / enable a large variety of search engines

Related Work: Keyword Search in Databases

• [Goldman, VLDB'98] Lorel DB

- FIND ... NEAR
- Shortest Path

• [Bhalotia, ICDE'02] BANKS

- Relational DB as a graph
- Search for subgraphs
- [S. Agrawal, ICDE'02] DBXplorer, [Hristidis, VLDB'02, VLDB'03] DISCOVER

- Join tables to retrieve tuples that contain all search terms

Related Work: Combining Structured & Unstructured Data

Using SQL queries

- [Dessloch, VLDB'97]
- [Goldman, SIGMOD'00] WSQ
 - Unstructered data as virtual tables
 - Computes e.g. number of appearances of search terms

Using OLAP techniques

- [Cody, IBM Sys. Journal 41(4), 2002] BIKM
 - Information Extraction
 - Data Warehouse

Future Work

- Assess semantic correctness
- Integration of ontologies / semantic search
- External memory shortest path algorithm

Summary

- Exploit DB-Information to support Document Retrieval
- ContextGraph
- Semantic-distance based ranking à la tf.idf
- Architecture incorporates text- and context-search
- Performance evaluations promise little overheads only
- Related work: Semantic Search & DB Keyword Search