
Examining the Performance of a
Constraint-Based Database Cache

Andreas Bühmann and Joachim Klein

Databases and Information Systems, Department of Computer Science,
University of Kaiserslautern, P. O. Box 3049, 67653 Kaiserslautern, Germany

buehmann@informatik.uni-kl.de, jklein@informatik.uni-kl.de

Abstract. Constraint-based database caching aims at correctly answer-
ing SQL query predicates from a local cache database by exploiting con-
straints that have previously been used in selecting sets of records to be
cached from a remote database.
In this paper, we take our first steps in looking at performance aspects of
our prototype Adaptive Constraint-based Cache (ACCache), which is re-
alized in a middleware manner on top of regular databases. We describe
the measurement framework we have developed for analyzing distributed
systems in general and our extensions for observing the ACCache system.
Within our measurement setup, the initial focus is on two central AC-
Cache functions: query processing and cache loading. To demonstrate
their time behavior and interaction, we have chosen a scenario based
on the TPC-W specification. We conclude with a discussion of our first
measurement results.

1 Motivation

Applications that interact with real-world users typically strive for good (or at
least acceptable) response times. This is a particular challenge if the application
routinely relies on the services of a central backend database (DB) system that
is located far from the application, e. g., in a Web scenario where application
servers have been spread around the world at the “edge” of the Web to reduce
their distance to the users. In this scenario with usually a large number of users,
relieving the backend system of some of its load becomes equally important.

Caching is a means to approach these two aims: By intercepting requests to
a remote system component and constructing responses locally (from earlier re-
sponses), communication costs to and processing costs on the remote component
can be saved. Caching can be performed on various levels within an information-
system infrastructure: For example, generated Web pages (or fragments thereof)
can be cached, persistent objects within an application server, or pages of a
database in a DB buffer.

Database caching is located at the level of logical data structures (such as
tables and records in a relational DB) and higher query languages (such as SQL).
The goal is to have a cache in the path from the application to the backend DB
that is as transparent as possible and that is able to process SQL queries locally

based on locally stored parts of the backend DB. The constraint-based approach
to database caching maintains a selection of cache tables, each containing a
subset of records of the corresponding backend table. Cache constraints restrict
what constitutes a valid state of the cache such that deciding what is in the
cache and which predicates can be answered becomes easy.

The rest of this paper is structured as follows: In Sect. 2, we give an overview
of how constraint-based database caching works and how it is implemented in
our prototype system ACCache. We then turn to measurements in ACCache
and describe our measurement framework and our concrete measurement setup
in Sect. 3. The results of our first measurements are presented in Sect. 4, before
we give an outlook on future extensions in Sect. 5.

2 Constraint-based Database Caching

In the general database-caching scenario, there are a backend (BE) database,
which holds all data, and one or more cache databases, which contain varying
subsets of that data. Ideally, the cache databases would contain data needed
often in the nearer future.

With our model of constraint-based DB caching, cache groups are used to
describe what data is to be kept in the cache and what constraints the cache
contents have to fulfill at any time. These constraints can later be utilized to
reason about whether a query can be (partly) answered from the cache.

For selected backend tables TB, a cache group includes a corresponding cache
table T with the same schema, i. e., for each column TB.c in the backend table
there is a column T.c of same type (incl. unique constraints) in the cache table.
(Foreign key constraints are not copied to the cache.)

2.1 Completeness and Constraints

For DB caching, completeness is a most important concept: Having all the
records that are needed to evaluate a certain predicate in the cache is known
under the term predicate completeness [1]. Completeness of more complex predi-
cates is achieved by starting with completeness of very simple equality predicates
and extending them with the help of cache constraints.

Equality predicates (EPs) of the type T.c = v, where v is a value of column
T.c, are supported by the completeness of v. This value v is complete in a cache
column T.c if all records from TB that have this value in c are in the cache (in T).

A referential cache constraint (RCC) is a value-based relationship between
two columns: a source column S.a and a target column T.b. An RCC S.a→ T.b
guarantees that every value in S.a (in the cache!) is complete in T.b. This allows
an equi-join (EJ) S.a = T.b to be performed in the cache, once it has been verified
that the needed S records (specified by other predicates such as S.b = v) are in
the cache.

Basically, this procedure allows us to deal with predicates of the form EP ∧
EJ 1 ∧ EJ 2 ∧ EJn in the cache, where all of the equi-joins EJ and the equality

predicate EP are connected via some tables. More complex predicates that can be
constructed from this simple type by con-/disjunction and by further restrictions
could also be processed in the cache.

2.2 Probing and Query Execution

When a query reaches the cache, it has to be decided whether the query can
be answered partially in the cache and what part of the query result must be
fetched from the backend. Deciding on the completeness of a (partial) predicate
in the cache is done in two phases:

1. For each equality predicate T.c = v, which compares a column T.c to a
value v, completeness of v is decided by probing the cache.

2. Starting from complete values providing entry points for the query into the
cache, RCCs matching equality predicates of type S.a → T.b in the query
predicate are then used to extend the completeness to the largest predicate
possible.

Probing works by issuing simple existence queries for values in some columns:
You might know from prior analysis that all values in a cache column are com-
plete (column completeness [1]), or you can leverage the RCCs by probing in
their source columns. Either way, the existence of a value implies its complete-
ness in a (possibly different) column.

Once the partial predicate that is complete in the cache has been found, it is
clear that, for the tables referenced in that predicate, their cache counterparts
can be used for executing the query. For the remaining tables, the original table
at the backend must be accessed.

2.3 Loading and Unloading

Records are loaded into the cache whenever there is a hint that they will be
needed in the future. Filling columns are responsible for providing these hints:
As soon as specific value v of a filling column f is referenced in a query, v is
made complete in the cache and subsequently fulfilling RCCs makes sure that a
neighborhood of related records becomes available in the cache, too.

Loading is guided by the graph of RCCs: The sets of records to be inserted
in the cache can be determined by following the RCCs in their natural direc-
tion: Usually, records inserted into the source table of an RCC demand matching
records to be loaded into the target table. The actual insertion of those record
sets into the cache tables may be performed in the reverse order (bottom-up) to
provide more consistent cache states during the loading and thus better concur-
rency with readers [2].

Unloading aims at reversing the process of loading but has to cope with
added difficulties due to records being required by multiple other records via
multiple RCCs.

2.4 Prototype ACCache

Our prototype implementation of the techniques just sketched is called ACCache
(Adaptive Constraint-based Cache) [2]. It employs a middleware strategy to real-
ize the behavior of the database cache on top of two regular databases (backend
and cache) that are accessed via JDBC: Probing, (un)loading, and maintenance
of RCCs is done via (prepared) SQL statements. Query processing leverages the
federated-query functionality of the underlying database management system to
be able to access backend as well as cache tables within a single SQL query that
is a rewrite of the original user query. (To the outside, ACCache implements a
JDBC interface.)

Data to be unloaded from the cache is chosen based on access statistics, but
the unloading itself is not performed yet. At our current stage, we start out with
an empty cache and consider only a number of loading operations and their
influence on query performance.

3 Measurement Setup

For performing measurements in the ACCache system, we use a framework devel-
oped in-house [3]. It supports a developer in setting up and executing measure-
ments for a distributed system. The framework’s components offer a wide range
of functionality for measuring distributed structures. In detail, the framework
supports:

– capturing the structure of the distributed system to represent all information
needed for a measurement run

– a generic way to simulate a client node and its workload
– implementing a specific observer component in a simple way
– designing context objects for tracing the call structure on a component of

the distributed system. For each context object the capturable measurement
values are specified.

– asynchronous transmission of the measurement values transparently to the
developer (implemented with the Java Messaging System)

– writing the measurement values to a database by using a default data writer
– automatic generation of the classes and interfaces needed to capture the

measurement values and the database schema to save these values.

In addition, the framework supports automated execution of configured mea-
surement runs if adequate automation steps have been implemented. The com-
plexity of these automations is not bounded: They range from the automatic
configuration of an application before the measurement starts up to the au-
tomatic installation of database systems or operating systems. To be able to
return to the state prior to the measurement and to allow for an automated run
of multiple measurements in succession, every automation step must be capable
of undoing its configurations (if necessary).

In order to understand how the measurements for the constraint-based data-
base caching were performed, we will first take a look at the course of a general
measurement as dictated by the framework and then concentrate on some of its
concepts in detail.

3.1 Working Nodes

A working node represents an application within the distributed system we want
to measure. For each working node, it has to be defined how the node can be
called or accessed within the distributed system. To reproduce the call structure
of the system, each working node can be connected to suitable other ones.

A special working node in our framework is the simulated client, which can
be used to simulate client operations. For this, it is possible to create a set of
work units, which can be added to a work-unit scheduler, which is then used by
a simulated client to perform the workload. The scheduler uses two parameters,
maxExecutions and overallPercent, to decide which work unit is to be performed
next. The parameter overallPercent describes how often a work unit should run
in comparison with other work units added to the scheduler.

For our first measurement, we have built three working nodes: the Backend-
WorkingNode to represent the backend database system, the ACCacheWork-
ingNode for the ACCache system, and a simulated client called JDBCClient,
which generates the workload during the measurement (see also Fig. 1).

3.2 Capturing Measurement Values

To capture values from an application represented by a working node, an observer
needs to be defined. The observer has to register itself at the application it would
like to observe. Hence, the application has to provide an appropriate observation
interface.

We use execution contexts to determine the values which can be observed
and the structure of dependencies between them. In addition, the interfaces of
the execution contexts can be used to implement an observation interface if the
application does not already have one (this only works if the observed application
is written in Java and can be modified because its source code is available). An
execution context is characterized by the capturable values and the creatable
child execution contexts. For a given execution context, a particular value can
be captured once (e. g., starting time) or multiple times (e. g., resource utilization
over time).

This method of constructing execution contexts allows us to design the order
and structure of events in an application as well as the observable measurement
values. From this design, interfaces and classes can be generated that can be used
by the observer to transmit measurement values to the measurement manager.
The generated classes are also used to write received measurement values to a
database.

For our ACCache measurements, our overall setup including the measured
components (square boxes) as well as the measuring components (curved boxes),

client

observer observer

caching
JDBC

backend
JDBC

delayed

ACCache

measurement
manager

bypass

JMS

contexts

Fig. 1: Measurement setup on four nodes: client, ACCache, backend, and measurement
manager

which are spread over four separate network nodes, is shown in Fig. 1. It also
sketches two of our parameters that will be explained in the following: network
delay and cache bypass.

3.3 Network Emulation

As it is difficult for us to actually maintain and use a backend DB in some remote
part of the world, we employ a network emulator to approximate the character-
istics of the network between backend and cache: NetEm is an enhancement of
the traffic control facilities of the Linux kernel that allows adding delay, packet
loss and other scenarios. [4]

The round-trip delay inherent in our real network between backend and cache
node is about 0.2 ms. During our measurements we raised this round-trip delay
by an amount of µ ± σ according to a normal distribution with a standard
deviation of σ = µ/10 and a correlation ρ = 25%. The mean round-trip delay µ
was chosen from 0, 40, and 100 ms.

3.4 Bypassing Cache Functionality

As a baseline, we performed all measurements a second time with our cache
still in the path from client to backend but with the main caching functionality
turned off (i. e., no query analysis, probing, rewriting, etc., were performed but
every query was immediately executed at the backend). In this case, our cache
acted as a kind of forwarding proxy.

id city zip Address

id total bill_addr_id ship_addr_idOrders

id fname lnameAuthor

id title a_id costItem

o_id i_id qtyidOL

(filling)

(filling)

Fig. 2: A cache group for the TPC-W schema [5] (with five cache tables, two filling
columns O.id and I.id , and five RCCs)

3.5 Backend Schema and Cache Group

The scenario for our measurements is loosely based on the TPC-W benchmark
[5], which models an online store. We use its database schema (with tables for
customers, orders, items, etc.) and data in the backend DB (100000 items).

As a cache group, we use the one given in Fig. 2, which ensures that for
any order loaded into the cache the corresponding order lines, addresses, and
items are loaded, too. Furthermore, every item loaded into the cache will be
accompanied by its author. Orders and items get into the cache only if referenced
specifically by their primary keys (id columns).

3.6 Queries: Order Display

The queries that we pose to the cache are inspired by the web interaction “or-
der display” of TPC-W. First of all, we display the details of a selected order
including the referenced addresses:

select O.id, O.c_id, O.status, O.date, O.total, bill.*, ship.*

from orders O, address bill, address ship

where (O.bill_addr_id = bill.id) and (O.id = 〈order id〉)
and (O.ship_addr_id = ship.id)

We then need a listing of all order lines belonging to that order where we include
some basic information on the ordered items:

select OL.id, OL.qty, OL.discount, OL.comments, I.id, I.title, I.desc

from order_line OL, item I

where (OL.o_id = 〈order id〉) and (OL.i_id = I.id)

Finally, we simulate the user requesting the item details for each displayed order
line in turn with multiple instances of the following statement.

select I.*, A.*

from item I, author A

where (I.id = 〈item id〉) and (I.a_id = A.id)

3.7 Measured Values

We designed two observers (for the client and cache), which transmit measure-
ment values to the manager.

On the client, we have only a single execution context for executing a query.
For each query, we capture three timestamps: before the query processing (create
statement, execute statement, etc.) starts, when the first row of the query result
has been fetched (first-row time), and after fetching and printing all resulting
rows (all-rows time).

For the cache, we built the execution contexts “query”, “analysis”, and
“load”. In the query context, we capture the start and end timestamp of the
query processing and a reference to the client query execution context that
caused the execution on the ACCache system. One of the parts of processing
a query is the analysis phase (probing, query rewriting). Therefore, an analysis
context is created as a child context of the query and the start and the end of
this phase are captured. Furthermore, the analysis phase might decide that tu-
ples should be loaded into the cache: Each loading job created within our system
is mirrored into a load execution context. This execution context captures the
start and end timestamps and, additionally, the pair of column and value that
is the starting point for the loading job.

Timestamps are retrieved using Java’s nanoTime method, which has shown
to have an accuracy of about ±3 µs on our nodes. This means that the error in
calculated durations will be twice that much.

4 Results

In our concrete setup, we executed the work unit “order display” five times
in a row per measurement run without any delays between the queries: After
displaying an order (O) and the retrieval of the corresponding order lines (OL),
all of the related five items (I) were accessed. This work unit was then repeated
for the very same order id.

As described above, we varied the round-trip delay between backend and
cache and enabled or disabled our cache bypass: The six resulting configurations
were repeated three times each, resulting in 18 measurement runs in total.

Figure 3 shows the average times spent on reading and displaying the query
results in all measurement runs. Error bars indicate the spread of measured
values (maximum and minimum).

Figure 4 shows the timing and the duration of client queries and load op-
erations at the cache in a selected measurement run with a round-trip delay of
40 ms where the cache is not bypassed. The crosses mark significant points of
time within the processing of a query, namely start of the query, the first-row

 20

 50

 500

 100

 1000

O OL I O OL I O OL I O

T
im

e
sp

en
t o

n
re

ad
in

g
th

e
co

m
pl

et
e

qu
er

y
re

su
lt

[m
s]

Sequence of query types

100 ms
bypass 100 ms

40 ms
bypass 40 ms

0 ms
bypass 0 ms

Fig. 3: Query execution times as perceived by the client

I

OL

O

load

 0 200 400 600 800 1000 1200 1400 1600

Time [ms]

Fig. 4: Query execution/loading times and sequence of events (round-trip delay 40 ms,
no bypass)

time, and the all-rows time. However, these are only visible separately in the
case of an order-line query (OL). The other queries deliver only one row, which
makes first-row time and all-rows time almost coincide.

As expected, the cache dramatically improves the response time of the queries
if the cache loading for the order under consideration has finished. Interestingly,
the cache can already be used to process the first five item queries when the
loading has not yet finished (compare Figures 3 and 4). This is due to the fact
that, in the current implementation, loading is performed bottom-up (as sketched
in Sect. 2.3). That is, with our cache group, loading starts at the author and
address tables and proceeds to the orders table. Therefore, the items related to
the order requested become available (and usable) in the cache before the order
itself does. As can be seen in Fig. 4, the loading is complete shortly after the
second O query (which corresponds to the second set of peaks in Fig. 3); from
then on, all following queries benefit from the cache contents.

Without delay (i. e., with a non-remote backend database), the cache needs
5 to 10 ms more time to answer a query than in the bypassing scenario. This
is caused by the analysis phase and the probing in particular, which is always
performed if a query could potentially be executed in the cache. When the delay
rises, the costs involved in the probing are more than compensated by the savings
due to the avoidance of remote accesses to the backend.

You might wonder why there are two loading operations in Fig. 4, which
actually refer to the same order. The second loading operation is initiated at
a time (ca. 700 ms) when the first operation has not yet succeeded in loading
the order into the cache. When this first operation finishes at about 900 ms, a
quick check suffices to see that there is not any work left. (Loading operations
are executed strictly sequentially at the moment.)

5 Conclusion

We have subjected our ACCache prototype to a first series of simple measure-
ments to get an indication of its potentials. Our results are encouraging: Already
with small delays to the backend database server, our constraint-based cache is
able to save query processing time, even for queries that are only related to
an initiating query: Expected locality in database accesses can be conveniently
modeled through cache groups, especially with cache constraints like RCCs that
define an environment of related tuples.

We also learned from these measurements that setting up a general, au-
tomated measurement environment for a distributed system is a complex and
time-consuming task. But after all, the possibility of designing well-suited exe-
cution contexts for tracing the work performed on the working nodes and their
dependencies will assist us in setting up future measurement runs more quickly.

5.1 Outlook

There is a lot to be desired and to be done before we will have a full-featured
transparent database cache that could prove its efficiency in measurements. An
important aspect is updates.

At the moment, there is no support for updates in any part of our prototype:
Updates of backend data are not propagated to the cache to update or invalidate
stale cache data (which would have to respect the cache constraints, of course).
Clients of our cache are unable to issue update statements to the database;
it is unclear how these updates should be handled: sent to the backend, then
propagated asynchronously back to the cache (the client might not see its own
updates for a while); or directly applied to the cache and at the same time or
later to the backend.

This brings up synchronization and consistency questions: How is the prob-
lem of accesses to multiple copies of backend data handled? Will there be locks,
optimistic concurrency, or even some kind of context-specific conflict resolution
with merging of changes? What level of transactional guarantees can be pro-
vided? May the client see out-of-date versions of the data? Should the application
have to specify currency and consistency constraints acceptable to it [6]?

References

1. Härder, T., Bühmann, A.: Value complete, column complete, predicate complete
– Magic words driving the design of cache groups. VLDB Journal (2007) Online
First, http://dx.doi.org/10.1007/s00778-006-0035-9.

2. Bühmann, A., Härder, T., Merker, C.: A middleware-based approach to database
caching. In Manolopoulos, Y., Pokorný, J., Sellis, T., eds.: ADBIS 2006. Volume
4152 of LNCS., Thessaloniki (2006) 182–199

3. Klein, J.: Development of an automated measurement environment for the
constraint-based database caching (in German). Master’s thesis, TU Kaiser-
slautern (October 2006) http://wwwdvs.informatik.uni-kl.de/pubs/DAsPAs/Kle06.
DA.html.

4. Hemminger, S.: Network emulation with NetEm. In: Proceedings of linux.conf.au
(LCA), Canberra (2005)

5. TPC: TPC benchmark W (web commerce) specification. http://www.tpc.org/
tpcw/spec/tpcw V1.8.pdf (2002) Version 1.8.

6. Guo, H., Larson, P.Å., Ramakrishnan, R., Goldstein, J.: Relaxed currency and
consistency: How to say “good enough” in SQL. In Weikum, G., König, A.C.,
Deßloch, S., eds.: SIGMOD Conference, ACM (2004) 815–826

