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Abstract: With the increasing popularity of semi-structured documents (particularly
in the form ofXML ) for knowledge management, it is important to create tools that use
the additional information contained in the markup. Although research on textualXML
retrieval is still in its early stages, many retrieval approaches and engines exist. The
use of inline markup in these engines so far is very limited. We introduce the concept
of element relationship and describe how it can improve similarity calculation. We
illustrate our ideas with examples based on an existing document collection.

1 Textual XML Retrieval

In traditional Information Retrieval (IR), a user has an information need and wants to
obtain documents fulfilling that need from a document base [BYRN99]. The situation is
essentially the same in retrieval on document-centricXML ; one important difference is that
documents are not assumed to be atomic units, that is, the retrieval engine should return
the most specific fragments satisfying the query.

The traditionalIR techniques can be used for semi-structured data as well, but as they
do not make use of the additional information contained in the markup, they are likely not
to yield the best results possible. Because of this, new,XML -specific query languages and
retrieval engines were developed. Structure-based query languages like XPath and XQuery
assume that the searcher has an intimate knowledge of the documents to be queried, as they
expect him to formulate queries based on the element names and nesting. A draft version
of XQuery Full-Text adds acontains operator that supports comparison using standardIR
techniques; the user still has to specify exact paths, however. Other query languages are
closer to the ones used in traditionalIR [FG01, TW02].

All these approaches use theXML markup to some extent. Markup can be used at
several levels in anXML document schema:Block-level markupcan be used to embed
metadata (like authors’ names) and to represent the structure of the document; examples
include〈body〉 in (X)HTML and〈section〉 in DocBook [WM99]. Inline markupis used
on single words or (short) phrases to convey the meaning or intended representation of the
marked-up contents.



Block-level markup is very important for finding the document fragments to return for
a query, but that is not the topic of our paper. Inline markup can be very useful for indexing
and comparison purposes, because it may hint at the correct way to interpret an element’s
contents; making good use of inline markup is the main focus of this paper.

In Section 2, we will provide example scenarios where existing retrieval approaches
offer no satisfactory solution. In Section 3, we describe our concept of element relation-
ship that addresses these problems, followed by conclusions and a description of further
research options in Section 4.

2 Motivation

In this section, we shall motivate why there is a need to make better use of inline markup
in XML retrieval. We do this by providing several example scenarios that are inadequately
supported by the existing query languages and retrieval engines. The context of all sce-
narios is the collection of Linux Howto documents collected by the Linux Documentation
Project (TDLP)1. The documents are marked up in DocBook [WM99], anXML - (and
SGML-) based markup language for the creation of computer-related texts.

Example 1 Adam does not know the details of DocBook markup, but he can distinguish
various basic types of search terms. When he searches for information about the command
shellbash , he should be able to specify that the wordbash is only relevant if it is used
as a technical term; in particular, it is of no interest if “to bash” occurs in normal text.

Example 2 Betty knows DocBook well, but she is interested in a higher level of abstrac-
tion, because she knows that any of several element types might contain the relevant
text. For example, when she searches for information aboutsave , she is interested in
〈command〉s and〈menuitem〉s (among others), but not on hints about saving paper.

The users in these examples would benefit from a level of detail between simple
keyword-based search and complexXML path queries. Typical query languages do not
support this intermediate level: Either they are purely keyword-based or they require de-
tailed knowledge of the relevant tag names, likeXIRQL [FG01] or XQuery.

Example 3 Charlie has performed a search and found a document fragment that almost,
but not quite, satisfies his information need. He proceeds to search for similar documents.

No majorXML retrieval engine directly supports documents as queries. It is possible
to transform the document to a query, but this will lead to one of two problems:

• The converted query is too specific and matches only the original document (if the
markup is converted to XPath constraints); this can easily happen if the input docu-
ment is short and contains detailed markup.

• The converted query is too general so that the semantic information contained in the
markup is lost.

1http://www.tldp.org

http://www.tldp.org


What is needed for good results in this example is a retrieval engine that supports some
form of fuzzy element matching.

Example 4 Howto author Dorothy wants to mention the shellbash in her text, but she is
not sure whether〈productname〉 or 〈application〉 is the appropriate markup.

Given the wealth of elements provided by DocBook, it is not surprising that the seman-
tics of some elements are very similar, so it is frequently hard to choose. Another problem
lies in the authors’ laziness or less than perfect knowledge of DocBook: An examination of
the Linux Howtos revealed that technically incorrect markup is fairly common. Even the
DocBook reference [WM99] concedes that this problem exists: “Emphasis is often used
wherever its typographic presentation is desired, even when other markup might theoreti-
cally be more appropriate.” Because of this, retrieval engines should support approximate
matching of elements.

Example 5 Eric considers the amount of markup necessary for something as simple as
command-line input to be excessive and omits all but the top-level tags.

This is a real problem at least in the Linux Howtos; the reason for this ‘lazy’ markup
is probably the high number of semantic markup options available to the author that cause
work without much apparent benefit (the rendered presentation might not change anyway).
It is unrealistic to expect the retrieval engine to reconstruct the missing elements, but it
can make sure that equivalent fragments with complete and incomplete markup compare
almost equal.

3 Element Relationship

In order to address the problems mentioned in the previous sections, we introduce the
concept ofelement relationshipwhich allows us to partially substitute elements with other,
similar elements in the retrieval process.

The first two examples from the previous section illustrate that we need a level of
abstraction above that of element names: In both cases, the searchers were willing to
supply detail on the markup structure, but not at that level of detail. It seems reasonable
to form groups of related tags and offer an input field for each of them. The number of
groups should be small, because otherwise it is still too complicated. For DocBook, the
following list might be a reasonable starting point:

• Computer-related text (e. g. user input, program output and listings)

• Emphasized text (e. g. text marked as emphasized, keywords and index terms)

• Metadata (e. g. author and revision information)

• “Normal” text (everything else)

(These categories are not necessarily free of overlaps, but as we shall see later, this
poses no problem and can indeed be used to our advantage.) The result is an interface that
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Figure 1: Gradual generalization when searching specific element types.

is still usable without having to learn a complex query language, but offers more power
than simple keyword-based languages.

If we use an existing document as a query (“more like this”), the query obviously
contains elements instead of categories. Due to the problems with ambiguous or misused
markup, searching for element contentsonly in elements of the same type may lead to
omitting many good matches. On the other hand, simply searching for the contents inall
text, no matter what markup is used, sacrifices precision.

In this case, we want the ability to gradually generalize the element, that is, matches
contained in the same type of element receive the highest score and going up in a hierarchy
of categories reduces the score. Figure 1 illustrates this principle: A search for text marked
up with 〈classname〉 would first search all〈classname〉 elements, then (at reduced score)
all source code(〈symbol〉, 〈structname〉, . . . ), then allcomputer itemsetc.

3.1 Facets of Element Similarity

The question that arises at this point is: What can we base our element grouping on? There
is no single aspect that can be used in isolation to calculate the similarity of two element
types. Instead, there are several, somewhat related options:

Tag names. Ideally, element names should convey their meaning without any further in-
formation;XXL [TW02] makes this assumption and uses a separate ontology to re-
late these names. In our experience, meaningful names (i. e., names that correspond
to unabbreviated words) forXML tags are the exception rather than the rule. Very
often, cryptic abbreviations like〈qandadiv〉 from DocBook or〈br〉 from (X)HTML
are used, and considering that even humans have problems interpreting these names
without further information, it seems unrealistic to expect computers to manage that
task.

Syntactic restrictions. XML schema languages likeDTD, XML Schema or RelaxNG pro-
vide provisions for defining the syntactic structure of the documents in that schema,
in particular the permitted nesting of elements. In DocBook, for example, the ele-
ment〈copyright〉 may only contain the elements〈holder〉 and〈year〉. This informa-
tion is easily parseable, but its use for our purposes is limited: In most cases, either



all inline elements are allowed as sub-elements or none.

Semantics.Considering the previous remarks, it appears to be necessary to use further
information to establish semantic relations between element types, for example,
grouping related element types (see Figure 1). This information is typically available
in the form of documentation aimed at authors of documents, but actually making
use of that information can be very time-consuming.

Contents. If a significant number of documents is available, we can use statistical meth-
ods based on the contents of theXML elements. One simple approach would be
to use statistics of character classes like upper/lower case letters, digits, etc. to dif-
ferentiate the element categories; for example,UNIX paths typically contain a dis-
proportionate number of slashes (“/”). More sophisticated approaches could use the
words both in the element and in its context in order to obtain classifiers.

Visual appearance.Normally, document-centricXML is meant to be rendered for pre-
sentation to the user. The number of semantic inline tags typically exceeds the
number of available formatting options of the output format, so many tags are rep-
resented in the same way. While much of the semantics contained in the markup
is lost, the mapping is not arbitrary: Even though several unrelated tags might be
represented in the same way,relatedtags usually have thesameformatting. In Doc-
Book, for example, the computer-related entities like filenames, computer I/O and
environment variable names are all likely to be rendered in a fixed-width font. The
transformation fromXML to the rendered representation can be specified inXSLT
style sheets.

Each of these aspects can be used as the basis for a similarity measure comparing two
elements. Instead of creating a similarity matrix containing the similarities of all pairs of
elements, we want to have a more compact representation that it is comprehensible to a
human reader. Reconsidering our examples, we can see that some form of categorization
(with overlapping categories) would be most useful. The number of elements in DocBook
(and most otherXML -based languages) is too high for a single level of categories to be
sufficient – we would end up with either too many or with too broad categories.

The solution is to use an almost hierarchical representation, where categories can con-
tain sub-categories (almostbecause of overlaps). This keeps the number of members in
each category low but enables us to take the query categories from higher-level categories.

The element relationship graph(ERG) is a directed, acyclic graph. The nodes are
labeled with either an element name (element nodes) or a category label (category nodes).
Element nodes may have several incoming edges (because categories may overlap). The
category nodes are partitioned intoaspect setscorresponding to the aspects mentioned
above; no two nodes from different aspect sets have a direct connection. In essence, this
means that we have sub-graphs that are disjoint except for the element nodes.

As we hinted at when describing the aspects, the construction of anERGcan only be
automated in some cases. In the case of a graph based on element semantics, there is no
option but to create the graph manually, based on the documentation. Considering that
there are typically hundreds of elements in a given schema – about 300 in DocBook –, this
may seem like a daunting task.
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Figure 2: Calculating similarity in theERG. The names in the gray bar are tags, the labels in the
upper part are (semantic) concepts, the labels in the lower part are presentation styles.

It is rarely necessary to start from scratch, given nothing more than a list of element
names and descriptions: For didactic reasons, tutorials and reference material for a schema
normally describe the elements in related groups. For DocBook, for example, we have a
section about “Logical Divisions: The Categories of Elements in DocBook” in the refer-
ence manual [WM99, Section 2.5], and a quick reference card where the easily parseable
XML source code is available. Thus, while the task is still far from trivial, it turns out to
be manageable, as we shall see in Section 3.3.

3.2 Element Similarity in the Element Relationship Graph

The graph we have described so far provides information about (almost hierarchical) re-
lationships of elements and newly-introduced categories, but it does not quantify element
similarity. A first approach could be to define the distance of two elements – which can
be seen as the inverse of similarity – to be the shortest path between them, ignoring the
direction of the edges. This approach is not entirely satisfactory, however, because not all
possible paths are equal: The information that the elements〈structname〉 and〈classname〉
are both rendered in the same font is not as meaningful as the information that they are
both in the semantic groupsource code(see Figure 2).

Bergmann [Ber98] examined a similar problem in the context of similarity measures
for taxonomies in structural Case-Based Reasoning, which only needs minor modifications
to be used in our context. We start by labeling each inner noden with a numbercn ∈ [0,1]
denoting thecoherenceof the group formed by the direct descendants. Furthermore, the
values must satisfy the following condition: If the inner nodea is an ancestor ofd, ca < cd

must hold. As we shall see presently, this condition ensures that similarity can never
increase if we increase the level of generality.

Given two different nodesn1 andn2, we can then easily calculate their similarity: We
need to find the set of their closest common ancestorsA; the similarity is maxa∈A(ca).



In Figure 2, the nearest set of common ancestors for〈structname〉 and 〈classname〉 is
{source code,fixed width}, and the resulting similarity is max(csource code,cfixed width) =
max(0.7,0.2) = 0.7.

The difference between this approach and an approach based purely on distance is
obvious if we look at〈systemitem〉 and〈classname〉: The closest common ancestor based
on path length isfixed width, but computer itemshas a higher coherence value, so the
resulting similarity is 0.4 instead of 0.2.

3.3 Constructing an Example Element Relationship Graph

To show that it is feasible to construct anERG, we created one for DocBook and the aspects
of visual appearance and contents.

Visual appearance of the output is determined byXSL style sheets, so we took the
official ones2 and wrote a script to derive a graph from them, using the style sheets for
transforming toHTML as a basis. We are concerned about the markup of inline elements,
so we only used the fileinline.xsl to avoid unnecessary clutter of the resulting graph.

The style sheets also contain templates not directly tied toHTML tags for modulariza-
tion. For example, the templateinline.italicmonoseq indicates that the text is both italic
and monospace; having this intermediate node in the graph has the advantage of express-
ing thatboth features are present. If theERG contained two separate links instead, only
one of them would be used for similarity calculation, so some information would be lost.
Of course, there are also links from the correspondingHTML elements to this intermediate
node, so that elements having only one of these are still similar to elements having both.

The effort needed was low: It took one person less than two hours total, and a signifi-
cant fraction of that time was spent removing templates that are not relevant in our context.
Removing these nodes is only necessary for making the graph easier to comprehend; leav-
ing the additional nodes in the graph would not result in worse similarity calculation.

Next, we looked at a possible semantic grouping of the elements based on the quick
reference we mentioned previously3. It contains 46 overlapping groups of elements, but
not all groups are relevant to us because we are only interested in the 32 groups containing
inline elements. The authors categorized the elements with a focus on quick look-up, not
on semantic similarity, so we needed to modify them slightly.

Then we successively merged the low-level categories until we reached the high level
of abstraction mentioned above (computer-related text, emphasized text, metadata, normal
text). DocBook’s main application area is computer texts, so it is not surprising that the
computer itemscategory is the most complex one, with 11 sub-categories in three levels.

The last step is to assign the coherence values. We found it easiest to create an inter-
nally consistent labeling (on a scale from 0 to 1) for the sub-graph of each aspect. When
merging the sub-graphs, we then assigned a weight to each of them denoting the relative
importance. For example, the aspect of semantics is much more important than the aspect
of presentation, so the weights were 1.0 and 0.4. The final coherence value of a category is
then determined by multiplying the preliminary coherence value and the importance of the

2http://docbook.sourceforge.net/projects/xsl/ (version 1.66.1)
3http://www.dpawson.co.uk/docbook/qrefplain.xml

http://docbook.sourceforge.net/projects/xsl/
http://www.dpawson.co.uk/docbook/qrefplain.xml


〈programlisting〉
〈prompt〉# 〈/prompt〉
〈userinput〉〈command〉ln -s〈/command〉 /dev/hdc /dev/dvd〈/userinput〉

〈/programlisting〉

(a) Text with inline markup (from theDVD Playback Howto; slightly reformatted)

Term DocID Count Enclosing markup

ln 1 1 { 〈command〉, 〈programlisting〉,〈userinput〉 }
s 1 1 { 〈command〉, 〈programlisting〉,〈userinput〉 }
dev 1 2 { 〈programlisting〉, 〈userinput〉 }
hdc 1 1 { 〈programlisting〉, 〈userinput〉 }
dvd 1 1 { 〈programlisting〉, 〈userinput〉 }

(b) Corresponding index entries. Note that the two occurrences of〈dev〉 could
only be merged because they have the same enclosing markup.

Figure 3: Storing markup information in the index

corresponding sub-graph. This approach makes it easy to adjust the relative importance
later without needing to revisit all nodes individually.

Overall, the construction of an initial version of theERG took less than one day. Of
course this original version may well need to be refined based on feedback from users in
everyday use.

3.4 Building the Index Structures

Before the document base can be searched, we need to construct an index for better perfor-
mance. We use the vector model (see [BYRN99]) for basic similarity calculation, so we
need aninverted indexmapping each word to the list of documents containing the word.
In addition to that, we need to record what markup enclosed each occurrence of the word.
Figure 3 shows an example of how markup is stored in the index.

There are several important points concerning the index:

• Only inline element names are recorded in the index, as only they are needed for
element relationship considerations. We could also store information about the cor-
responding categories in the index, but that would prevent us from changing theERG
without rebuilding the index, with little benefit.

• Only the presence of a given element name is recorded, that is, we only store a flag
whether a given element name occurred in the enclosing markup; we omit the path.

• The terms in the table can occur multiple times, with different enclosing markup.
For example, if the text in Figure 3(a) included another reference todev , enclosed
only in 〈userinput〉, a new row would be added to the index table.



As mentioned above, we must store the information about the markup in the index, so
its size will increase compared to the basic vector model. The most straightforward way
of storing this information is a bit vector, each bit of which signifies whether the corre-
sponding markup element is among the enclosing elements of the word. These vectors are
extremely sparse: Less than 1 % of the index entries in our example contained any markup
information, none contained more than three different elements.

Another aspect that contributes to an increased index size is that we need to store more
entries, because the same word can occur several times with different enclosing markup.
In the worst case, this could be a factor of 2e wheree is the number of inline markup
elements. Realistically, the overhead is much lower, because most words are not marked
up at all, and the few that are are marked up in few combinations; experiments with the
Linux Howtos indicate that the number of index entries increases by approximately 10 %.

We need another index for theERGthat supports efficiently finding both the parents of
a given node and finding allelementdescendants of a given node. The number of nodes is
considerably lower than the number of documents, so we can afford some redundancy in
exchange for better performance.

3.5 Search Process

One important issue that we have not addressed yet is the actual retrieval process from
query to results. As mentioned in the previous section, we use the vector model for basic
similarity calculation at the category level and use weighted sums to aggregate the category
similarities to a global similarity. In the indexing phase, each document is parsed, and the
occurrence of each word along with its containing element names is recorded. (Recording
the containment information is crucial for calculating the similarity at the category level.)

The query is formulated on the basis of high-level categories, and although the doc-
uments contain detailed markup, we use the element relationship graph for grouping the
element contents into categories at the same level as the query. For each category, we
calculate a similarity as follows: simglobal = ∑simiwi .

The weightswi with ∑wi = 1 represent the relative importance of categoryci . For
example, in our example scenario,computer itemsare very important compared to free
text, as they have stricter, that is, less ambiguous, semantics. The retrieval process (given
a query composed of word sets in the query categories) is as follows:

1. For each category in the query:

(a) Obtain the descendant elements from theERG.
(b) Search the main index for items that are embedded in one of the elements

obtained in the previous step and match the query words for this category.
(c) Calculate the resulting similarities, taking into account the coherence value.

2. Merge the similarity lists.
3. If documents with higher similarities might be found by broadening the categories,

do so and repeat the main step.

The last step in particular warrants some explanation: It would be very time-consuming
to always traverse the whole relationship graph for broadening categories. Fortunately this



is not really necessary, as typical users are only interested in the top few documents, so we
need continue broadening when we can be sure (because of the coherence value) that any
further documents will have a lower similarity than those we already know. This is similar
in spirit to the concept of query relaxation described in [SB00].

4 Conclusions and Future Work

In this paper, we outlined how we can improve textualXML retrieval both as far as the
query interface and as far as the similarity calculation is concerned. We achieve this by in-
troducing element relationship, which can be used to determine how similar two elements
from a given schema are.

We have shown that the construction of theERG for a reasonably well-documented
XML -based language can be accomplished in very short time, and that the increase in
index size is tolerable. One important component that is still missing is an experimental
verification of the retrieval quality of our approach. That retrieval system should be put to
a test in the nextINEX workshop4, but we have to consider that the current test documents
use only visual markup akin toHTML. In this context, we also need to investigate how our
approach can be integrated into existing retrieval engines and approaches.

It is conceivable that we can use the element relation graph for specifying local tokeniz-
ers and similarity measures, but at this point it is unclear whether this can be accomplished
without an unacceptable price in performance.
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