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Abstract: XML is the perfect format for storing (mostly) textual documents in a knowledge management system; its
flexibility enables users to store both highly structured data and free text in the same document. For knowl-
edge management, it is important to be able to search the free-text parts effectively; users need to find the
information that helps them solve their problem without having to wade through much information that is not
relevant for their problem. Content-oriented XML retrieval addresses this challenge: In contrast to traditional
information retrieval, documents are not considered atomic units, that is, elements such as sections or para-
graphs can be returned. One implication of this is that results can overlap (for example a paragraph and the
surrounding section). Although overlapping results are undesirable in the final retrieval result as presented to
the user, they can help to improve the quality of the final result: We take advantage of overlaps by applying
patterns to small subtrees of the retrieval result (result contexts); matching patterns adjust the retrieval status
values of the involved node in order to promote the best results. We demonstrate on the INEX 2005 test
collection that this postprocessing can lead to a significant improvement in retrieval quality.
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1 INTRODUCTION

XML is the perfect format for storing (mostly)
textual documents in a knowledge management sys-
tem; its flexibility enables users to store both highly
structured data (like database records) and free text
in the same document. The data-centric parts can
be searched using query languages like XPath and
XQuery, where exact conditions on the structure can
be imposed. For knowledge management, however, it
is important to be able to search the free-text parts ef-
fectively; users need to find the information that helps
them solve their problem without having to wade
through much information that is not relevant for their
problem.

To this end, content-oriented XML retrieval can
help: In content-oriented XML retrieval, documents
are not considered atomic entities as they are in tra-
ditional text-based information retrieval: A retrieval

result can not only contain complete documents, but
also elements such as chapters or paragraphs. This
is convenient for the user, who does not have to
examine large chunks of irrelevant context informa-
tion to find the possibly small units of information
he seeks, but it gives rise to the new issue of han-
dling overlap (Kazai et al., 2004). XML documents
are hierarchical (like document–chapters–sections–
paragraphs), so one matching result may be embed-
ded in another one. For example, if a section contains
the keywords from the user’s query, the enclosing
chapter and document also contain these keywords,
so they also match the query (possibly to a lower de-
gree).

To provide good results to the searcher, we aim
at making sure that the results are as diverse as rea-
sonably possible. In this paper, we discuss how this
problem can be approached by examining small sub-
trees from the retrieval result for adjusting the scores
to better match the searcher’s intentions. The method
makes no assumptions about the schemas of the doc-
uments, as long as the logical structure of the text cor-
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responds to the tagged structure of the XML files. Be-
cause of this, it should be possible to use it on hetero-
geneous collections of textual documents that fulfill
this basic requirement; we do not expect the method
to be useful for data-centric XML.

In addition to presenting the general framework,
we establish several example patterns and evaluate
their performance on the INEX 2005 data set, show-
ing significant improvements over the baseline.

2 RELATED WORK

Overlapping results are natural in the context of
semi-structured retrieval, so XML retrieval engines
have to deal with this.

On the one hand, overlapping results can be an-
noying for the user, so the retrieval engine should
strive to deliver as little redundant content as pos-
sible; Kazai et al. (2004) discuss the overlap prob-
lem in detail. In practice, however, this was not al-
ways enforced by the evaluation metrics: Kekäläinen
et al. (2005) submitted retrieval runs with varying de-
grees of overlap to the workshop of the Initiative for
the Evaluation of XML Retrieval, INEX 2004, and
found that returning overlapping elements appears to
improve the score.

To address this, INEX 2005 features a new task
that explicitly disallows the submission of overlap-
ping documents, CO.Focused (Malik et al., 2006).
Our paper aims at improving results for this task by
deciding which of parent or children to prefer.

Although it is not desirable to present overlapping
results to the user, they can be used to improve the
quality of the retrieval results. Several researchers
make use of the context of an element in order to im-
prove retrieval quality.

Before the advent of XML, Salton et al. (1993)
use textual context for improving results for passage
retrieval; this includes considering titles and section
headings. Ogilvie and Callan (2005) use the context
of an element by incorporating the parent’s language
model. Arvola et al. (2005) use the context of re-
trieval nodes by incorporating evidence from other
nodes in the same document into the retrieval status
value (RSV) of a node. Their approach differs from
ours in that they use the scores of the enclosing ele-
ments to alter the score of a node; only the score of
these nodes is taken into account, and only the ances-
tors are considered. Ramı́rez et al. (2006) use small
elements with high RSVs to adapt the RSV of the en-
closing element, for example, a match in the section
title will increase the corresponding section’s RSV.
This requires preparation and knowledge of the doc-

uments’ schema, because all these relationships must
be modeled explicitly. The approach we present in the
remainder of this paper is schema-independent.

3 CONTEXT-BASED
SCORE ADJUSTMENT

For our approach, we assume that we get as in-
put the results from a traditional information retrieval
engine, where the textual contents of each XML el-
ement is considered a document. The implication is
that each XML document is represented by a multi-
tude of fragments corresponding to XML elements in
the index.

Like the original document, the retrieval results
are a set of trees, where each tree contains the result
fragments from one XML document. Results from
distinct documents cannot overlap, so we only con-
sider the result tree from a single document in the fol-
lowing discussion. In a real search engine, the result
documents can be processed separately (even concur-
rently), and the elements that form the tree nodes are
later re-arranged in a list and sorted according to the
updated retrieval status values (RSVs).

In order to keep the amount of processing reason-
able, we examine small sub-trees (called result con-
texts) of each document tree and use the data con-
tained therein to adjust the RSVs.

3.1 Result Context

For each non-leaf node, the result context consists of
this node and the children that contain at least one
hit, that is, children with a non-zero RSV. For each
node, we consider the following information for de-
ciding how to change the nodes’ scores: The RSV, the
length, and the position inside the parent node (this is
zero if the parent and the child start with the same to-
ken). Both length and position are measured in tokens
roughly corresponding to words (as determined by au-
tomatic analysis); they do not vary from retrieval run
to retrieval run, so they can be stored in the index.

This information can be visualized in two dimen-
sions, one for the lengths and positions of the text
contents of the elements and the other for the RSV.
Figure 1 shows an example XML fragment and how
it can be visualized. The horizontal position of the
left-hand side of each rectangle denotes the starting
position in the text of the parent element, and its width
corresponds to the length of the text it contains (this
implies that the parent element occupies the width of
the diagram). The parent element (in Figure 1, the



<sec>
Hello, <b>world!</b>
How <i>are</i> you?
</sec>

position
0 1 2 3 4 5

sc
or

e

0

0.2

0.4

0.6

0.8

1

/s
ec

[1
]

//b
[1

]

//i
[1

]

Figure 1: XML text and corresponding context diagram.
The horizontal axis denotes the positions and lengths of the
text fragments, and the vertical axis shows the RSV (in this
case random numbers).

root element /sec[1]) is the reference for the scale of
the horizontal axis.

3.2 Context Patterns

While examining the result contexts of test retrieval
runs, we found several distinctive patterns that war-
rant closer examination.

3.2.1 Title Hits

Longer texts are usually broken into smaller units, for
example, sections, and these units often have a title.
The titles contain a very brief summary of the text
in the section, so a match in a title should promote
the score of the corresponding section. Early web
search engines (for HTML) made use of this by in-
creasing the weighting of the terms occurring in ti-
tle tags; this was later abandoned due to spamming.
Spamming is not an issue for retrieval in digital li-
braries of XML documents—we assume that the doc-
uments come from trusted sources, for example, in-
ternal documents of an organization—, so in this con-
text, making use of titles is still useful.

In order to make use of titles, we first need to rec-
ognize them. One approach would be to use the tag
names (probably similar to title), but this would only
work for a specific schema, and even if we fix the
schema, it may not be totally accurate: For example,
we found that authors occasionally use unstructured
tags for something that would semantically be con-
sidered a title (for example, bold text at the beginning
of a paragraph).

Instead, we propose to identify a title by its con-
text; we assume that a title has the following proper-
ties (see Figure 2a for an illustration):
• Titles are short.

• Titles occur at the start of the parent element.1

1This need not be the case, like in HTML, but in that
case, there is no section element to be returned, anyway.
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(a) Title pattern: The
short peak at the very
left is this subsection’s
title (an st element).
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(b) Inline pattern: The
peaks are italicized
phrases two or three
words long; the whole
paragraph is 129 words
long.

Figure 2: Title and inline pattern examples.

• Titles are followed by long text.

It should be noted that the RSVs of the involved
hits do not play a role, which implies that the degree
to which a node is a title in its enclosing node could
be precomputed. (But this has a negative impact on
the index size and flexibility.)

3.2.2 Inline Children

Although very short elements, that is, elements that
only contain a few words, are not useful retrieval re-
sults (Kamps et al., 2005), they can still provide valu-
able hints about their ancestor elements (although the
short elements themselves are never returned). In
document-centric XML, elements containing only a
few words are likely to represent some form of em-
phasis (like printing a single word in bold or italic
typeface), which in turn implies that the surrounding
element is particularly relevant. Thus, a high-scoring
match in a short child element should increase the par-
ent’s score. Figure 2b shows an example of a situation
where the inline pattern matches. Again we do not
rely on specific pre-defined tag names in order to be
independent of the document’s schema.

3.2.3 Good Neighborhood

If an element is surrounded by lower-scoring elements
that are relevant to the query (their RSV is greater
than zero), this may be an indication that the element
is even more relevant than expected by the search en-
gine (this is similar to the parent contextualization de-
scribed by Arvola et al. (2005)).

4 STRUCTURAL PATTERNS

Now that we have established several structural
patterns that occur frequently in retrieval results, we



need to find a way to express these findings algorith-
mically. In the following sections, we will first dis-
cuss how patterns operating on a single result con-
text can be implemented and then go on to describe
in what way the complete list of preliminary results is
processed.

4.1 Implementing Patterns using
Fuzzy Logic

The pattern descriptions contain vague terms: What
exactly makes an element “short”, when is a score
“significantly higher” than another score? It is obvi-
ous that there can be no clear-cut limits like “elements
containing less than five tokens are short”, instead,
we should have degrees of shortness. This is a per-
fect fit for fuzzy logic, which extends Boolean algebra
to cope with fuzzy sets. In the following sections, we
will briefly describe the basics of fuzzy logic and then
discuss how it can be applied to the problem at hand.
The central notion of fuzzy logic is the fuzzy set: In
traditional set theory, membership is binary (either a
given item is in a set or it is not); with fuzzy sets,
membership is given in degrees. Membership val-
ues of zero and one correspond to the binary notion
of membership, but in addition, any real number be-
tween these extremes can be used, depending on the
degree of membership.

Fuzzy logic also defines equivalents of Boolean
operators like and, or, and not, which enables us to
formulate rules like “if the element is very short and
its score is higher than its parent’s, then lower its
score”. The output of the condition is the degree to
which this rule matches. This value is then used to
determine to what degree the specified action should
be executed (see below for details). For a more in-
depth treatment of fuzzy logic, see Michalewicz and
Fogel (2004).

For element e in the results, we specify the func-
tions len(e), rsv(e), and pos(e) denoting length, RSV,
and position (see Section 3.1).

In our context, the following sets of membership
functions are useful:

• Length of an element in tokens: (very) short,
medium length, (very) long.

• Comparison of a score x in relation to a score y:
(much) greater/less than, equal.

The output of each pattern is a proposed change
for applicable elements’ scores (a factor >= 0) along
with a degree to which the pattern supports this score
change (in the range [0,1]).

We use the following functions to define the mem-
bership functions; l, u, a, b, c, and d denote the

bounds as indicated by the graphs:

upl,u(x) =


0 if x < l

x−l
u−l if l ≤ x≤ u
1 if u < x

downl,u(x) = 1−upl,u(x)

trapc,d
a,b(x) = min{upa,b(x),downc,d(x)}

l u

up

l u

down

a b c d

trap

Using these functions, we can specify support
membership functions operating on the context pa-
rameters. The following functions express properties
of the lengths t of context elements:

tiny(t) = down3,10(t)
short(t) = down10,20(t)
long(t) = up10,50(t)

length10 20

It is also important to be able to compare the RSVs
of to context nodes in order to decide which of two
nodes has a higher score. In order to be independent
of the magnitude of the RSVs, we divide the differ-
ence by the greater value (we assume that the scores
are positive).

d =
s1− s2

max{s1,s2}

equalRSV(s1,s2) =


1 if s1 = s2 = 0
trap0,+0.1

−0.1,0(d)
otherwise

greaterRSV(s1,s2) =

 0 if s1 = s2 = 0
up0,0.1(d)

otherwise

s1−s2
max{s1,s2}

−0.1 0.1

equalRSV
greaterRSV

For some of the patterns, we need to determine
whether a count of n elements is “several” elements:

several(n) = up0,5(n)



In addition to the membership functions, which
are used to specify the membership value F(y) of the
patterns, we need a means of adjusting the score by
setting the output value y. For this purpose, we de-
fine degrade(e) and promote(e) to reduce respectively
increase the score of an element e. These functions
should set y to values different from 1 (“no change”);
we set y = 0 for degrade and y = 2 for promote.

With these functions, we can now define the con-
ditions and actions for each pattern, where the input is
the data we have given (see Section 3.1), and the out-
put are rules to adapt the RSVs of any of the elements
in the current context.

4.1.1 Title Hits

The conditions and actions for the title pattern are
as follows: Let p be the parent, f the first child
(that is, the child with the lowest position), and
isZeroPos(e) = 1 if pos(e) = 0 and 0 otherwise.

if isZeroPos(pos( f ))
∧ short(len( f )) ∧ ¬short(len(p))
∧ greaterRSV(rsv( f ), rsv(p))

⇒ promote(p),degrade( f )

4.1.2 Inline Children

The inline pattern does not use the same degree of
membership for all nodes; instead, it first determines
the degree of “inlineness” for each child separately:

if tiny(len(c))
∧ greaterRSV(rsv(c), rsv(p))

⇒ degrade(c)

These degrees are then aggregated to a count of
high-scoring inline children. This is implemented
in fuzzy logic as the sum of the children’s degrees,
which ensures that many children that more or less
fulfill the requirements can replace a few children that
are 100 % members. This fuzzy count n of inline chil-
dren is then used to determine whether the parent p
should be promoted:

if several(n)

⇒ promote(p)

4.1.3 Good Neighborhood

Given n the count of children in this context, b the
element with the highest score among the children, S
the set of its siblings, and a the average score of all
children, the good neighborhood pattern is defined as
follows:

if several(n)
∧ greaterRSV(a,0.25b)
∧ greaterRSV(b,0.75a)

⇒ promote(b),
degrade(s) ∀s ∈ S

4.2 Processing the Retrieval Results

The overall retrieval process for our method consists
of three basic steps:
1. We perform our searches on an index containing

an entry for each element on the original XML
documents, which is then searched using tradi-
tional information retrieval techniques. Currently,
Apache Lucene is used for this step.

2. We apply the structural patterns and perform the
RSV updates.

3. We remove overlapping results by repeatedly
choosing the result with the highest RSV in a tree
and removing all overlapping nodes.

4. We re-rank the results according to the new RSVs
and return them to the user.
The core part of our retrieval method occurs in

step two. Apart from the result list obtained in step
one, which gives us an RSV for each element, we
also take the static features length and position into
account for each element. Furthermore, we need the
list of structural patterns pi (i≥ 1). The algorithm for
pattern-based score updates goes as follows:

1. (Build a result tree from the input list.)
The XPaths of the results are used to reconstruct
the nesting of the elements.

2. (Process each context with each pattern.)
For each element f that is not a leaf node:

(a) Get the set C of children c from the results.
(b) Apply each pattern to the context ( f ,C). The

output values yi and degrees F(yi) are recorded;
the RSV is not updated yet.

3. (Compute the final RSVs of the results.)
For each element e from the results, set

rsv(e)← rsv(e)∑F(yi)yi

∑F(yi)
.

The separation of the pattern applications and the
actual RSV updates ensures that the order in which
the patterns applied as well as the order in which the
result tree is traversed is irrelevant.

A question that arises at this point is whether only
the scores in the examined context should be adjusted,
or if the adjustments should be propagated. If a para-
graph contains many inline elements with matching



keywords, its score should be increased. But what
about the enclosing elements, like sections or the
whole article? Obviously, these elements also contain
the inlined keywords as descendants, so their scores
should be increased, too, but the pattern only matches
for parent and children.

One solution would be to simply apply patterns
not only to a node and its children, but to include a
node and its descendants on a given level in the re-
sult context. This is, however, not a viable solution:
It increases the number of contexts that need to be
examined, and it also gets harder to understand the
meaning of the patterns. It is more feasible to sim-
ply propagate the RSV changes up from the parents
and down from the children. We currently do not do
this (so the changes are only applied to the nodes in
the context), because it is unclear whether the propa-
gation is sensible for all patterns (the good neighbor-
hood pattern, for example, should be applied to a local
context only) and if so, whether the degree should be
reduced for propagated scores.

Preliminary tests with applying the promote of the
title pattern to all ancestors instead of just the parent
appear to indicate that this does not improve retrieval
quality, but we will need to investigate this more thor-
oughly.

4.3 Example

We will illustrate the application of context patterns
by looking at a concrete example: We’re searching
for “bash profile”, and among the results of the first
pass is the document fragment shown in Figure 3. By
definition, each result context spans two levels in the
document tree, so this fragment contains three con-
texts, one rooted at /article, the second one rooted
at /article/body, and the third one rooted at /arti-
cle/body/p[1].

When we apply the inline pattern to the result
context /article/body/p[1], we get the degree of
membership F(y) = 1 for the children emph3[1],
emph3[2], and collectionlink[1] because all of them
are tiny, and each score is greater than the parent’s
score. This yields a count of inline children n =
3, so the parent’s degree of membership is F(y) =
several(3) = 0.6.

Similarly, if we apply all patterns to all contexts,
we get the result in Table 1.

In order to get the new RSV of each element, we
need to apply center-of-area averaging of the factors
assigned by the different patterns. For the root el-
ement and all leaf elements, we only have one out-
put/degree pair per pattern, the inner nodes may have
two such pairs because they can occur as either the

〈article〉
〈name〉Iodised salt〈/name〉l=2

s=0.79

〈body〉
〈p〉 〈emph3〉Iodised salt〈/emph3〉l=2

s=0.79
(〈emph3〉iodized salt〈/emph3〉l=2

s=0.79 ) is table
〈collectionlink〉salt〈/collectionlink〉l=1

s=1.26 mixed
with a minute amount of
〈collectionlink〉iodine〈/collectionlink〉l=1

s=0 salts to
help reduce the chance of iodine deficiency which
can lead to disease of the
〈collectionlink〉thyroid〈/collectionlink〉l=1

s=0
gland. Only tiny quantities of iodine are required in
the 〈unknownlink〉diet〈/unknownlink〉l=1

s=0 to prevent
this disease, but there are many places around the
world where natural levels of iodine in
〈collectionlink〉soil〈/collectionlink〉l=1

s=0
are low and the iodine is not taken up by vegetables.
〈/p〉l=71

s=0.28

〈p〉Iodised salt is a cheap and effective way of
distributing the necessary iodine.〈/p〉l=13

s=0.32

〈p〉Iodised salt is more common in the United States
than Britain, as Britons generally drink iodised milk,
while Americans do not.〈/p〉l=21

s=0.24

〈/body〉l=105
s=0.29

〈/article〉l=107
s=0.31

Figure 3: Example document fragment from the Wikipedia
page on Iodized salt (adapted from the INEX 2006 docu-
ment collection (Denoyer and Gallinari, 2006)). Appended
to each closing tag is the RSV s and the length in tokens l.
The matching keywords are italicized, and the RSV for an
element is appended to the closing tag in superscript.

parent or the child in a result context. The new RSV
for the /article/body/p[1] element is calculated as
follows:

snew = sold
∑F(yi)yi

∑F(yi)

= sold ·
0 ·0+0 ·0+1 ·2+0.6 ·2

0+0+2+0.6
= sold ·2≈ 0.55

We can see that the RSV of the sect2 element has
increased because of the hits in the title; the inline
pattern did not have much effect because of the low
degree. The net effect, however, is that this element
now has a higher score than the descendant program-
listing element, which is helpful because it contains
more explanatory text.
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text 2
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Figure 4: Result tree processing for the query “salt”.

5 EVALUATION

To determine whether our new method can im-
prove result quality, we participated in the INEX 2005
workshop Dopichaj (2006). The INEX (Initiative for
the Evaluation of XML Retrieval) workshop (Fuhr
et al., 2005) is a yearly event for evaluating the ef-
fectiveness of XML retrieval systems. It is compara-
ble to TREC in traditional information retrieval. The
test collection consists of more than 15 000 articles
from the IEEE Computer Society’s journals and trans-
actions.

5.1 Setup

Every year, the INEX participants submit topics and
assess the pooled retrieval results submitted by all par-
ticipants. In INEX, there are two dimensions to rel-
evance, specificity and exhaustivity. Specificity de-
notes what fraction of a retrieval result is relevant to
the topic at hand (this is done by highlighting the rel-
evant parts), and exhaustivity measures to what de-
gree the information need is fulfilled (on a scale from
0 meaning “not exhaustive” to 2 for “highly exhaus-
tive”).

The evaluation of retrieval quality is performed
using the extended cumulative gain (xCG) metric in-
troduced in INEX 2005 (Kazai et al., 2004; Kazai and
Lalmas, 2005), an extension of the cumulative gain
(CG) metric by Järvelin and Kekäläinen (2002). The
basic idea of CG is to obtain a graded relevance as-
sessment for each retrieval result, and then to deter-
mine the quality of a given ranked list of retrieval re-
sults up to a specific rank by summation of the rele-
vance assessment. For example, if the first three re-
sults had the relevance scores 3, 0, and 1, the CG
values would be 3, 3 + 0 = 3, and 3 + 0 + 1 = 4 for
the first three cut-off points. The normalized version
nCG simply divides the CG values for a given sys-
tem by the values of an ideal run constructed from the

relevance assessments.
The CG metric requires a single relevance value,

so xCG introduces quantization functions for calcu-
lating a combined value from the exhaustivity and the
specificity: A strict version that only accepts the best
results (e = 2, s = 1), and a generalized version that
gives partial credit to less than perfect results by mul-
tiplying e and s.

Our method does not directly support queries with
structural hints, so we only evaluate content-only
(CO) topics whose queries consist of queries and
phrases. We are interested in finding the best results
without overlap, so we only present the outcome for
the CO.Focused sub-task.

As a baseline, we used the Lucene retrieval en-
gine2 in version 1.4.3 with standard stemming and
indexed each element as a separate document Eger
(2005). Lucene performs ranking like method 2 in
Lee et al. (1997), using tf.idf and normalization based
on document length alone. Our index also contains
inline elements only a few words long, which fre-
quently get high RSVs in this baseline implementa-
tion, although they are generally of little interest to
the user (Kamps et al., 2005). Because of this, both
our baseline and our improved runs omit short results
(less than 50 words long) from the results.

For the evaluation, we used the INEX 2005 CO
topics with the corresponding relevance assessments
and the EvalJ evaluation package3.

5.2 Results and Discussion

For the statistical evaluation, we used the mean av-
erage nxCG (MAnxCG) for each topic and run. The
MAnxCG value is calculating by averaging the nxCG
values at all cut-off points from 1 to 1 500. The fol-
lowing runs are included in the evaluation: the base-
line, each pattern applied in isolation, and all patterns

2see http://lucene.apache.org
3see http://evalj.sourceforge.net/

http://lucene.apache.org
http://evalj.sourceforge.net/
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Table 2: MAnxCG values averaged over all topics for the
different runs. A * indicates that the Wilcoxon signed rank
test gave p≤ 0.05 (one-sided).

Compared
Run MAnxCG to baseline

Baseline 0.2100

All patterns 0.2289 +9%
Title and inline 0.2386 +13%*

Title 0.2356 +12%*
Inline 0.2378 +13%*
Neighborhood 0.1948 −7%

applied at the same time.
For significance testing, we determined the nxCG

value for each topic separately and performed statis-
tical tests for correlated values. A Friedman test on
the nxCG values indicated that there may be a signif-
icant difference in at least one pair of runs. We deter-
mined the significance of the baseline versus each of
the other runs. Table 2 shows the nxCG value over all
topics and an indication whether the difference in the
result is statistically significant, applying the paired
Wilcoxon test. Note that although the neighborhood
pattern actually decreases the MAnxCG value, it pro-
vides a gain for low cut-off-points.

Figure 5 shows a plot of the nxCG values at all
cut-off points. We can see that the title and inline pat-
terns yield a significant improvement over the base-
line, both in isolation and combined, whereas the
neighborhood pattern actually decreases result qual-
ity. For early precision, we see that the title pattern
yields the most pronounced improvement compared
to the baseline run, but combining it with the inline
pattern does not lead to improvements. Several other
patterns we tested failed to have a positive impact on
the result quality, so we omitted them from the pre-
vious description. Overall, applying more than one
pattern at the same time does not improve the score
as much as we would have hoped; we will need to
examine the cause for this.

Comparing the results presented here to our INEX
2005 results (Dopichaj, 2006), note that the imple-
mentation used for the runs we submitted to INEX
differs from the version described in this paper: The
scores are not updated independently, so the patterns
applied later receive the scores already updated by
earlier patterns, which may lead to unintended inter-
actions.

Our INEX submissions for both the CO.Thorough
and the CO.Focused sub-tasks outperform the other
organizations’ submissions at high precision (cut-off
10 and 25) with generalized quantization (but the re-
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Figure 5: Evaluation (nxCG), focused, quantization gener-
alized. We use a logarithmic scale for the x axis.

sults are not statistically significant). The relative per-
formance drops dramatically after 50 results, indicat-
ing a problem with recall; as our baseline has the same
problems, we assume that this is not caused by the
patterns.

6 CONCLUSIONS

We have presented a framework that facilitates the
use of overlapping results to our advantage in a post-
processing step that can be applied to (almost) arbi-
trary retrieval results. We do this by way of structural
patterns, a generic means of exploiting simple context
information. We have seen in our evaluation that sev-
eral patterns can lead to significant improvements of
result quality.

We need to analyze further what the reasons are
for the current shortcomings of our approach, in par-
ticular, the lack of improvement when applying sev-
eral patterns simultaneously. We plan to investigate
more patterns, and whether propagating the score
changes further up or down the result tree can lead to
improvements. As far as improvements of the method
are concerned, we plan to incorporate additional in-
formation such as which query terms were matched
by the context nodes.

All the patterns we described in this paper were
created from manual inspection of context graphs, but
of course it would be useful to have tools that analyze
a document collection and some example queries to
find candidate patterns.
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