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Abstract

In order to achieve acceptable performance when executing queries in enhanced database

systems, e.g. for engineering and knowledge-based applications, intra-query as well as inter-

query parallelism are required. Therefore, systems exploiting different kinds of parallelism

need an environment offering suitable implementation capabilities. This paper describes differ-

ent mechanisms for supporting parallel query execution in enhanced database systems. In or-

der to provide efficient intra- as well as inter-query parallelism in our enhanced database man-

agement system, we introduce the basic communication system, called Remote Cooperation

System. Thereafter, we present alternative implementations and finally present an analysis of

their performance behavior.

We implemented two different system architectures which will be compared in more detail. In

order to get a better assessment of theses implementations, we compare our measurements

to those obtained with conventional remote procedure call facilities offered by operating sys-

tems. The results demonstrate that the Remote Cooperation System is a suitable basic com-

munication system in order to efficiently realize parallel query execution, especially in our en-

hanced database system called PRIMA.

1. Introduction

During the last years a substantial amount of research has been conducted on enhanced

DBMS, also called Non-Standard Database Systems (NDBMS). In contrast to conventional

DBMSs, these systems support complex applications, such as design or AI applications. Com-

mon requirements in almost all of these new application areas are the modelling and manage-

ment of complex objects as well as the support of appropriate user interfaces. In order to meet

these requirements a large number of data models and query languages have been developed

[Mi88, PA86, Mi92] and evaluated in prototype systems. Experience in the interactive use of

such systems revealed the utmost importance of responsiveness and performance when exe-

cuting queries. To achieve a system behavior acceptable for the designer, it turned out that all

system components have to be carefully designed and optimized; important results have been

reported, for example on different storage structures [SS89, KD93, Te93], query optimizers

[Sch93] and system architectures [Pa87, HMMS87].
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Most of enhanced applications’ work is done on workstations. The NDBMS only serves as a

powerful data repository which has to execute a moderate number of cpu-intensive requests

on complex structured data consuming a lot of cpu time. On the other hand, the application is

typically driven by interactive dialogues of the user. Hence, we concentrate on response time

as the primary performance measure and not on throughput. Due to the very long execution

paths while constructing complex objects and the inherent parallelism of complex-object pro-

cessing in NDBMSs, satisfactory response times for queries as the primary performance mea-

sure can only be obtained by parallel execution. As opposed to the well-known inter-query par-

allelism which is mandatory to increase throughput in every multi-user database system, intra-

query parallelism becomes interesting for complex-object processing in NDBMS. Opposed to

conventional DBMS data distribution and parallel execution of a single operator on these sep-

arate partitions is not applicable because of the highly meshed and cyclic structures of complex

objects. On the contrary, we need a closely coupled shared everything architecture [HSS89] in

order to support parallelism in complex object assembly [KGM91].

In order to allow for suitable intra-query parallelism as an essential design goal in NDBMSs,

we need an appropriate runtime environment. Therefore, as done in operating systems, the

principals of client/server architectures should be applied to NDBMS development, too. In this

framework, the application is considered a client of the NDBMS server and, in turn, when de-

composed appropriately, the components of the NDMBS-server form client/server relation-

ships. In addition to such a software structure which facilitates concurrent execution of compo-

nents, we have to carefully consider the mapping to hardware resources to take advantage of

the potential parallelism. In our case, there are three different ways in order to allocate these

components to processors:

1. All components are allocated on separate distributed processors (workstations), this is

called distributed allocation . In this case remote communication between different compo-

nents has to be performed via messages and the different components may work in parallel

on their own processors.

2. All components are allocated on a single processor (workstation), this is called local allo-

cation . Here, they can efficiently communicate via shared memory. However, since there is

only a single processor, timesharing is possible, but not genuine parallelism.

3. Finally, all components may be allocated on a complex of processors connected via shared

memory (shared everything multiprocessor machine), this is called shared allocation . Here

again, local communication via shared memory can be applied. In this case, the components

may run in parallel on the available processors.

Obviously, multiple refinements are possible. For example, typically, the DBMS-application

is running on a separate workstation, but, in principle, it is also possible to run the application

on the same processor (complex), where the DBMS is running. Furthermore, as will be dis-

cussed later, a single process representing one or more components on a processor may not
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fully exploit its processing capacity (horse power). Especially in the case of synchronous I/O or

page faults, a process is forced to wait leaving the corresponding processor idle. For these rea-

sons, it may be advantageous to allocate more than one process to a processor, even in a ded-

icated and coordinated situation such as DBMS processing. On the other hand, some compo-

nents are so closely related, i.e. there are frequent calls between them that a process or even

a processor boundary between them may seriously degrade performance. Hence, some kind

of multi-threading of these services in a single process seems to be favorable in such situa-

tions. Here we assume that the overhead for multi-threading is by far less expensive than that

of multiprocessing. Furthermore, this approach allows simple integration of application-specific

scheduling strategies without intervening in operating systems.

The NDBMS PRIMA [HMMS87] developed at the University of Kaiserslautern is incorporating

such a client/server architecture aiming at parallel processing on complex objects. Since this

system is running on a network of workstation as well as on a shared everything multiprocessor

machine providing all the previously introduced allocation schemes for processes to proces-

sors, we need a basic communication system, which transmits requests from a client to a serv-

er as well as the results from the server to the client. Therefore, it has to hide aspects of inter-

operability and heterogeneity in a network of workstations with different hardware running dif-

ferent operating systems. In this paper we focus on RCS’s functionality and efficiency, whereas

the issues of interoperability and heterogeneity are discussed in [GGS93]. Since conventional

remote-procedure-call (rpc) mechanisms offered by operating systems do not support these

aspects we could not use operating system services. For these reasons we designed the so

called Remote Cooperation System (RCS) which provides an efficient and transparent com-

munication mechanism for its application components and allows the invocation of services by

rpcs. In this context, transparency means, the system has to choose the appropriate commu-

nication mechanism at runtime invisible for the application. In contrast to conventional rpc-

mechanisms only supporting synchronous calls we enhanced the rpc-model by asynchronous

calls and transmission of partial results in order to facilitate different kinds of parallelism be-

tween clients and servers as well as within a single server.

In this paper, we will examine different implementation alternatives for RCS in order to find

the best implementation depending on the underlying hardware architecture and the allocation

of components to this hardware. In order to be able to improve the PRIMA system, we first have

to optimize the RCS by identifying and removing bottlenecks and inadequate design decisions.

Furthermore, understanding RCS’s performance characteristics is necessary to understand

performance of its applications. Hence, the focus of this paper is a detailed performance anal-

ysis of RCS which will give some insights used for further performance evaluation of the PRIMA

system.

The next section outlines the requirements RCS has to meet due to the client/server archi-

tecture of the PRIMA system and the most important features of RCS. Section 3 presents two
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different implementation approaches. In Section 4, we describe measurements performed to

evaluate RCS and discuss the results obtained. The paper concludes with a short summary of

the results.

Related Work

In the literature we find a lot of work on standards for client/server communication. However,

most of this work concerns data transfer between client applications and the database server.

Contrarily, we decomposed our DBMS into a client/server architecture which induces much

more communication events often transferring only small amounts of data. In [BR89, MB91]

the authors present the Raid project and investigate its performance characteristics. In order

to avoid additional operating system overhead some design decisions on the system’s archi-

tecture are very similar to our architecture. However, our system is primarily designed for a

closely coupled system in order to exploit parallel query execution for nonstandard applica-

tions. Therefore, we allow concurrent execution of the same server in multiple processes. Fur-

thermore, we not necessarily have to synchronize communication via shared memory by

semaphores but busy-waiting latches are a very attractive alternative not considered in these

papers.

Since this paper is not concerned about distributed cooperative work of autonomous, heter-

ogenous, or interoperable systems, as investigated e.g. in [FHM93, MH92, SW93], we will not

consider them here any more.

Finally, we have to explain, why we have implemented our own system and not chosen a

standard approach (e.g. OSF/DCE, OMG/CORBA). First of all, there are historical reasons.

When starting our project in 1988 existing communication facilities (remote procedure call fa-

cilities) did not support parallelism at all. Moreover, at that time these standards did not exist.

Therefore, we had to implement our own system (i.e. RCS) dedicated to our requirements. Lat-

er on, we did not change to other protocols, because the implementation of our PRIMA system

was done upon RCS and we did not want to reimplement the already existing components. Fur-

thermore, none of these standards offers the required functionality we need in order to enable

parallel query execution as well as to reduce operating system overhead.

2. The Remote Cooperation System - Conceptual View

In this section we present the decomposition of our NDBMS PRIMA into a set of components

each implementing different services. Thereafter, we describe useful types of parallelism in

complex-object processing in order to motivate some extensions of rpc-facilities for RCS which

support these kinds of parallelism. Finally, we discuss some general realization issues for RCS.
4



2.1 PRIMA Architecture and RCS

The PRIMA system is implemented as a DBMS kernel architecture consisting of an applica-

tion-specific layer and an application-independent kernel. The application-specific layer em-

bodies functions needed for a particular application. For all aspects of data management these

functions are, in turn, supported by operations of an application-independent complex-object

interface provided by the DMBS kernel. This kernel system is responsible for all tasks of data

and meta-data management, of mapping these structures to storage, as well as for transac-

tions control. To obtain modularity and data independence, we have designed the kernel archi-

tecture as a hierarchically layered system structure [HMMS87]:

• The data system implements operations on complex objects offered at the interface of the

kernel. It consists of a Compiler to translate, an Optimizer to optimize, and an DML-Execution

to execute application queries on complex objects. These operations are internally trans-

formed to operations on simple objects.

• The access system transforms these operations on simple objects to operations on blocks of

the available storage structures. For this purpose, it refers to the available storage structures

and access path structures.

• The storage system is responsible for the buffer and file management.

• Separate components of the system incorporate transaction and meta-data management

services.

Based on this modularization and on an operation decomposition, we developed a client/

server model that defines the framework for database processing in PRIMA; in principal, a cli-

ent can issue requests for services to be performed by dedicated server processes . In the

following, a set of server processes processing a specific service is called server . Of course,

the service may appear as client to other services. But since every client in the kernel also op-

erates as service, we do not distinguish between service and client as well as between server

and client; therefore, we always call them service and server, respectively. Figure 2.1 shows

Transaction &

Management
Synchronization

Figure 2.1: Architecture of the PRIMA system
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the simplified decomposition of the system consisting of the services mentioned. The arrows

indicate possible client/server-relationships. Apparently, the system is much more complex,

but the view provided here is sufficient to discuss the most important properties of RCS, i.e.

perform communication between clients and servers and administration of occurring tasks.

2.2 Types of Parallelism in PRIMA

In this subsection we shortly outline some types of parallelism in complex-object processing.

As will be shown, we can generalize these mechanisms in our architecture.

Before executing a specific application query on a database, the Compiler and Optimizer

transform it into a query evaluation plan (QEP) which consists of nodes representing elemen-

tary operators each producing a set of complex objects when executed by the DML-Execution

server. In the case of sophisticated queries, such a QEP may become very complex that is, it

consists of a large number of operators. In general there are two very obvious possibilities for

exploiting parallelism while executing such a QEP. First of all, there is the inter-operator paral-

lelism which appears in parallel execution of independent operators and in pipelining between

dependent operators of the QEP. These mechanisms are useful in order to construct multiple

components of a single complex object or to construct multiple complex objects in parallel. Fur-

thermore, we can achieve intra-operator parallelism when invoking multiple tasks for a single

operator of the QEP. In this case, every task produces a subset of the resulting complex ob-

jects. In order to realize these kinds of parallelism, the DML-Execution server internally has to

perform multiple tasks in parallel.

These mechanisms, so far described only for the DML-execution server, are applicable in the

whole system when replacing operators by services in the previous discussion. Then, we gen-

eralize pipelining to client/service parallelism when executing a client-task in the client and its

invoked tasks in servers in parallel. Of course, pipelining is more specific, because it captures

the data produced by the server for a client, whereas client/service parallelism does not include

any dataflow. Inter-operator parallelism corresponds to inter-service parallelism when execut-

ing several tasks in different servers. Finally, parallel execution of several tasks in a single serv-

er, called intra-service parallelism, accords with intra-operator parallelism.

2.3 Conceptual View to RCS

Since rpc-facilities [DYN, SUN] only offer a synchronous interface, they cannot enable the

previously introduced types of parallelism while executing a single query. In order to exploit

parallelism, we need the following two extensions of conventional rpc-facilities.

In principal, to achieve any parallelism we have to separate task invocation and result recep-

tion. The functions Remote_Service_Invocation and Get_Service_Result achieve this separa-

tion. After invoking a task, the actually performed task may continue its execution, for example,

it can create further tasks. It will accept the results asynchronously. On one hand, this exten-
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sion enables inter-service and intra-service parallelism in starting multiple tasks before receiv-

ing their answers. On the other hand, it is a first prerequisite for pipelining, i.e. simultaneously

executing a parent and its child task while the child produces input, to be processed by the par-

ent task.

In order to realize pipelining RCS needs the following second extension to conventional rpc-

facilities. In addition to the function Reply_Task which sends the final result of a child operator

to its parent operator, we need a function Reply_Part_Of_Task which transmits a partial result

which has been produced so far. On the client side, the function Get_Service_Result needs a

flag indicating whether the received result is complete or not.

2.4 Realization Issues

RCS has to deal with different communication mechanisms. Communication between differ-

ent hosts, e.g. between the application program on a workstation and the database system ker-

nel on a multiprocessor machine, has to be done via messages. Of course, this is more expen-

sive than communication via shared memory where sophisticated network protocols, copying

of data, and failure handling can be avoided. RCS is responsible for choosing the appropriate

mechanism transparently for the application program.

So far, services have been treated as abstract concepts. In order to map them to specific pro-

cessing units offered by the operating system (i.e. the processes), there are two possible alter-

natives. First, using a so-called multi-process single-threading approach where every individ-

ual task may be executed in its own server process, dynamically created for this purpose. This

approach introduces two main problems:

• First of all, there are the enormous costs for process administration, for process creation, pro-

cess deletion and context switches. Obviously, there are at least two context switches pro-

duced by a single service invocation. Additional context switches arise if a task has to wait

for events or for further (partial) results of a subtask. Note, we consider complex object pro-

cessing which in turn is very cpu-intensive, we expect a lot of context switches when exploit-

ing parallelism. Therefore, even if single context switches do not effect response times re-

markably, the vast number of context switches leads to worse performance.

• The second problem when using a multi-process approach is that we cannot influence sched-

uling strategies without changing code of the operating system.

Lightweight processes (LWP) implementing sequential parts of a task called threads over-

come the first problem because some implementations can perform context switches and pro-

cess creations almost as fast as procedure calls [ALL89]. However, they are not available on

all commercial (OS) products. For example, the DYNIX operating system on SEQUENT ma-

chines realizes LWPs by normal processes, e.g. creating a process takes about 25 ms. But

even if LWPs were available the second problem still remains. Furthermore, LWPs are usually

used for fine-grained parallelism with little exchange of data. Frequent waits and data exchang-
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es require an efficient handling of events and partial results and it is not clear, how efficiently

LWPs can handle these problems.

Alternatively, a so-called single-process multi-threading implementation, avoids these disad-

vantages. Here, all task executions of a service may be executed within the same server pro-

cess. Whenever a waiting situation occurs, the server has to perform a task switch, i.e. to break

the execution of the actual task and to choose another task for its execution. This approach

avoids unnecessary context switches in the operating system which is considered much more

expensive than our own task switches inside a process. Furthermore, this realization enables

us to easily apply server and possibly application-specific scheduling strategies rather than

leaving scheduling to the operating system.

The architecture described so far has two weak spots which may be resolved as described

below. First, since task invocations between two different services may still cause context

switches if the invoked task has to be executed in another process we can combine multiple

(closely cooperating) services within a single program, e.g. the DML-Execution and the Access

System. Hence, if every process is running on its own processor which is possible due to the

relatively small number of different processes almost no context switches occur on a multipro-

cessor. This is the case because none of the services except the Storage System perform I/O

and therefore they do not voluntarily release the processor. Note, in the further discussion,

servers and server processes may include multiple services.

The second weak spot concerns restricted parallelism. Every service is embodied by a single

server process. This of course does not allow parallelism within a single server. In order to

overcome this problem we allow static replication of server processes (static multiprocessing),

i.e. a specific program may run in multiple processes. Tasks may be executed in any of these

processes and after an interruption caused by a waiting situation, they may be continued in any

available process.

Finally, since we do not have shared memory between hosts [Me92] available and we do not

want to implement sophisticated protocols to exchange state information about servers be-

tween hosts, servers are realized in a set of processes that do not span hosts. In order to en-

able parallel execution inside the server the chosen host might be a multiprocessor. Note, we

intentionally distinguish between processors and hosts which may be single- or multiprocessor

machines.

To sum up, this architecture allows all possible kinds of parallelism (client/server parallelism,

server/server parallelism, pipelining) and it does not limit the available degree of parallelism

which is determined by the number of processors. The allocation of services to server process-

es and the distribution of the servers over the available hosts is predefined, before starting the

system, in a so-called configuration. Moreover, this architecture simplifies load balancing dras-
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tically, because it is reduced to a task scheduling problem in RCS which has to determine the

next task to be executed.

3. The Remote Cooperation System - Implementation View

So far, we have only described the functionality of RCS. In this section, we outline two differ-

ent implementations of RCS used in our system. Starting with an initial implementation called

old RCS (oRCS) experiences showed that the interface of RCS is suitable for realizing the sys-

tem. At that moment having the functionality needed was more important than performance.

However, it turned out that it was very difficult to maintain oRCS. Some faults in the implemen-

tation which did not allow us to run the same service within multiple server processes on a sin-

gle host led to another implementation called new RCS (nRCS). We will discuss different im-

plementation alternatives for nRCS which may yield distinct performance characteristics. The

measurements described in Section 4 are carried out with both systems and with different al-

ternatives.

3.1 Initial Implementation

Since the PRIMA system is developed on a network of SUN workstations and since for rea-

sons of load distribution processes had to run on different machines, we unconditionally need-

ed mechanisms for communication across different sites from the very beginning of the project.

Therefore, datagram sockets are used as basic communication mechanism. Figure 3.1 illus-

trates the implemented architecture for a set of processes running on two hosts.

At the time of its initialization, a client process establishes connections to all its service pro-

cesses. These connections are maintained during the whole lifetime of the system because it

would be too expensive to create new sockets and connections on each task invocation and

result transmission. Parameters to be transferred are copied into a linear bytestream which

then has to be disassembled into packages if the bytestream is too long to be sent at a time

through the stream. Additionally, sophisticated protocols with timeout mechanisms and ac-

knowledge messages have to be used to guarantee correct transmission of data. On the other

Figure 3.1: Architecture of the initial implementation of RCS (oRCS)
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Process 4
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Process 1
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9



side, the receiver has to handle incoming data asynchronously. As a consequence, every re-

ceived package causes an interrupt which will be processed immediately by an interrupt rou-

tine.

Another serious disadvantage of this implementation is that the data structures for task man-

agement are kept in a process’ local storage. Hence, tasks cannot migrate from one process

to another one which unnecessarily restricts the achievable real parallelism.

3.2 Improved Implementation

Our second implementation pays more attention to performance issues. Due to the process-

ing characteristics, outlined in the introduction, nRCS was designed with special emphasis on

shared allocation of NDBMS’s components on a closely coupled multiprocessor system. But of

course, it should run in a distributed network of workstations as well because the application

running on a workstation and the NDBMS server have to communicate across the network. For

these reasons, communication via shared memory should be enabled whereever possible, but

communication across host boundaries should also be supported. Since the initial implemen-

tation has pointed out the functionality of RCS to be satisfactory and since we did not want to

change the code of our system, the interface of RCS remained unchanged. As an important

requirement, RCS should offer all runtime facilities described in Section 2, especially all mech-

anisms to assign services to processes.

3.2.1 Communication Mechanisms

In order to implement adjusted communication mechanisms we examined two different archi-

tectures:

• A first proposal considered a separate handling of local and remote communication in every

process. In this case, local messages have to be exchanged via shared memory whereas re-

mote communication has to be performed by message-based mechanisms to be included in

every server process (c.f. Fig. 3.1). Hence, RCS internally has to distinguish between the two

communication modes, and the code of RCS becomes more sophisticated. Furthermore, the

size and complexity of the processes increases. In order to prevent blocking of the sender,

the external communication again has to be performed asynchronously. Summarizing, this

approach would again lead to some problems already encountered in the oRCS implemen-

tation.

• The second architecture is illustrated in Figure 3.2. As an essential property, it handles the

entire communication across host boundaries by a separate communication process (CP).

W.r.t. internal communication a CP behaves as any other server process. The main task of

a CP is to accept service calls from local clients for remote servers, to send the parameters

to the remote processor, to receive the answer, to accept tasks from and to send answers to

remote clients. Apparently, this approach avoids the disadvantages of the first proposal. First

of all, since CPs do not have to process tasks and since we do not assume them to be a bot-
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tleneck, they can communicate synchronously, because waiting situations do not disturb sys-

tem’s performance behavior. On the other hand, synchronous communication simplifies its

implementation drastically. Furthermore, we have a homogeneous view inside RCS, this

means that communicating with a local or a remote server is the same, nRCS always only

manipulates shared data structures which are then read by CP if necessary. After receiving

a result message, CP puts the result into these data structures. Therefore, process size is

smaller than in the first proposal because processes only have to implement local communi-

cation and they are not concerned with remote communication. Beside avoiding the disad-

vantages, this architecture has the following salient features. Because it does not have to

take care about reliable transmission of the parameters, decomposition of data into small

packages, composition of result messages, i.e. a lot of communication overhead is saved,

the client process can continue its work much earlier. Furthermore, sophisticated protocols

for remote communication do not burden the execution of a local task.

However, this architecture obviously induces a lot of context switches in a network of single

processor machines, i.e. a shared-nothing architecture. Note, in oRCS, a task creation and

result transmission across host boundaries may be executed without any context switch if

both processes, client and server, are active. In our improved architecture, however, we need

at least four (!) context switches (for example: Process1(client) -> CP1, CP2 ->

Process5(server) -> CP2, CP1 -> Process1(client)). All these context switches are unavoid-

able, because on each processor there are always two processes involved in the communi-

cation. Furthermore, we actually have two local task invocations (client -> CP1, CP2 -> serv-

er) and two local result transmissions (server -> CP2, CP1 -> client) in addition to the two

messages across the net, which may deteriorate response times. We will further investigate

this long-winded behavior and measure its influence to the system in Section 4. Neverthe-

less, this observation does not hold on multiprocessor machines where CP can run on an in-

dividual processor which may avoid additional context switches between CP and application

processes. For example, if in our previous example Process1 and CP1 on the client side as

Figure 3.2: Architecture of the improved implementation of RCS (nRCS)

host j

Process 3

Process 4

Process 5

shared memory

host i

Process 1

Process 2

shared memory

Communi-
cation

Process

Communi-
cation

Process

task management
CP1 CP2
11



well as Process5 and CP2 on the server side are running on different processors, a service

request of Process1 to Process5 would be executed without any context switch.

Note, in this context we transmit parameters from a source (client, server) to a destination

(server, client, respectively). These parameters will not be used any more on the source site.

Contrarily, distributed shared memory allows access to the same object by different process-

es on multiple hosts which is not required here. However, since message passing via the

communication process is not visible to the application program and since parameters are

allocated in local shared memory, the advantages [Me92] of easy programming, location in-

dependency, and persistence of parameters after a process termination apply to our imple-

mentation, too.

3.2.2 Task Management

Since we are realizing a single-process multi-threading approach, a server has to cope with

scheduling and management of all tasks requiring a specific service. Therefore, RCS has to

manage all tasks a server has to execute. Efficient management of appropriate data structures

c.f. Figure 3.3) is crucial for the systems performance. Since explanations of observed perfor-

mance characteristics (c.f. Section 4) will sometimes refer to handling of these data structures

we will present them in the following:

• The root of our data structure is a server vector. Since each service in the system is identified

by a unique number, every entry in this vector can address one service.

• A service may be realized by multiple processes which all have the same type, i.e. they cor-

respond to the same program. A process_type_control_block (ptcb) represents this program.

The ptcb contains information about the services, this process type implements. Initially, each

entry of the server vector refers to the ptcb of the communication process. Apparently, ptcbs

represent process types but not the processes themselves. This simplifies task administra-

tion drastically as will be seen later. On the other hand, this means that a service on a local

host cannot be included in more than one process type. Hence, we cannot combine services

{ priority,
state,
*supertask,
*parameters,
*context,
*answers_from_subtasks,
... };

Figure 3.3: Data structures for task management
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arbitrarily to server processes. But this restriction holds only for a single host, on different

hosts we can integrate a service in different process types. Since it does not make sense to

start a server process more than once on the same processor (because this causes unnec-

essary context switches) such a design decision is not a restriction in a distributed system.

• Task_control_blocks (tcb) represent tasks to be executed. They contain information about

the task’s parameters, its state, its supertask, a list of received answers from its subtasks and

a pointer to its context which stores the actual state and local variables of a task after an in-

terruption for its future continuation. tcbs are allocated in lists of the addressed process type.

For each state a task may enter (ready, active, waiting), there is a separate list.

• Answer_control_blocks (acb) contain received answers. For performance reasons, a server

will initially connect them to a list in the ptcb, and while scheduling tasks on the client side

they will be assigned to their corresponding tasks. Obviously, this procedure causes more

overhead on the client side than on the server side which could also reschedule tasks after

connecting an answer to its supertask. But in real applications we expect that task execution

on the server side takes longer than task preparation and answer processing on the client

side. Furthermore, a client task often creates multiple subtasks and in order to get short re-

sponse times we have to increase throughput for the server tasks. Therefore, the server

should be able to process further tasks as soon as possible.

In order to save storage operations, tcbs and acbs are taken from and released to a preallo-

cated pool. The same mechanism is used in some efficient lightweight process implementa-

tions [ALL89]. To be able to install multiple processes offering the same service and to allow

migration of tasks between processes, these data structures have to be kept in shared mem-

ory. Furthermore, to enable shared use at low cost access to them has to be synchronized by

the participating processes. Possible synchronization mechanisms are discussed in the follow-

ing subsection.

3.2.3 Synchronization Mechanisms

The main problem in task management is to synchronize the access of multiple concurrent

processes to shared data structures. A suitable solution should enable as much parallelism as

possible and at the same time should keep synchronization overhead as low as possible. For

these reasons, we implemented nRCS using three different synchronization mechanisms to

evaluate and compare their influences on RCS performance:

• First, we used conventional semaphores offered by almost all operating systems. For the fol-

lowing three reasons, semaphores are only useful in order to lock infrequently accessed

shared data with few access conflicts:

- operating systems usually only allow for a restricted set of semaphores,

- they are very expensive because they always cause operating system kernel calls,

- they always cause context switches when the requested resource is locked.
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Since separate locking of multiple small data units is too expensive, in this case, larger syn-

chronization granules (e.g. a whole task list instead of single tcbs), which lock all data units

at a time, have to be locked with a single semaphore. Otherwise, synchronization overhead

would be too high. On the other hand, large synchronization granules restrict the possible

amount of parallelism between the running processes. In contrast to these characteristics,

the functions of RCS usually only need a short time to manipulate frequently accessed data.

For these reasons, semaphores do not seem to be an appropriate synchronization mecha-

nism on multiprocessor machines.

• In a second approach, we exchanged the semaphore operations by latches. Latches are sim-

ple atomic test-and-set operations to be issued at the application level. If a latch cannot get

the requested resource, it loops in a busy waiting manner until the request is granted. If the

number of processes does not outnumber the available processors, we expect that busy wait-

ing does not waste resources, because no other process could use the processor in the

meantime. Furthermore, the number of latches is not restricted and their execution and cre-

ation is much cheaper than that of semaphores. In our case, bus contention due to latch ope-

rations [An90] is not an as important problem as with fine-grained parallelism where relatively

more work is done in critical regions.

• The third mechanism is a variation of the second one. Since indefinite busy waiting loops of

test-and-set operations on a mono-processor host are senseless, we use latches, but we re-

lease the processor if a request cannot be satisfied immediately. Note, that in nRCS always

at least two processes share the processor of a mono-processor machine (one application

process and the CP).

4. Measurements and Results

So far, we have described the functionality and implementation of RCS. Furthermore, we

have sketched the expected performance characteristics from an abstract point of view for dif-

ferent implementations. This section describes measurements and their results in order to get

a quantitative evaluation. For this purpose, a comparison with rpc-facilities offered by operating

systems allows a better assessment of the system. Before we present the results, we give a

description of the kind of the measurements, the specific environment, the parameter settings,

and the measurement procedure.

4.1 Measurement Basics

There are three main objectives for our measurements. First, we want to get real perfor-

mance data of our system. Second, we want to compare nRCS to oRCS and to rpc-facilities of

the operating systems used; these are the only suitable mechanisms for comparison we have.
14



Finally, the various kinds of measurements enable us to better understand the operation of

nRCS and its performance characteristics.

As already sketched, two different hardware architectures have to be exploited. With the first

architecture we investigate the ‘shared allocation’ case. For this purpose, we use a SEQUENT

Symmetry (S27) [SEQ] which is a closely coupled multiprocessor system offering shared mem-

ory for communication and task management with 8 processors (6MHz Intel 80386) running

DYNIX V3.0.18. Every processor has a cache of 64 kbytes. The processors and the shared

memory are connected by a 64-bit system bus with a channel bandwidth of 80 megabytes per

second. Furthermore, we examine the ‘distributed allocation’ and the ‘local allocation’ case, us-

ing workstations (33 MHz SUN SPARC ELC) with SUN OS 4.1.3, connected via Ethernet.

All measurements described here are executed in a conventional environment, i.e. neither

the hardware environment nor the operating system are modified for our measurements. Of

course, the machines were exclusively used by our measurements. Furthermore, we ensured

that foreign network traffic was negligible by using a bridge physically separating the two par-

ticipating workstations of our project from others.

We measured response times for synthetically generated tasks because this is the key mea-

sure of our application. In order to explain the observed effects, it turned out that further mea-

surements using operating system facilities like time [SUN] or ptime [DYN] had to be accom-

plished to obtain more information about resource utilization. Their results are only described

when necessary. Preceding measurements with gprof [SUN] guaranteed that there are no fatal

errors inside the implementations of RCS.

The effect of parallelism was examined by varying two key parameters, the number of pro-

cesses used and the number of simultaneously invoked tasks within a single process. In every

measurement, repeated up to 10 times to be sure that really no external effects influenced the

results, we executed 10000 tasks. Usually, task parameters and result values are empty, serv-

ers only accept tasks and immediately reply. Note, that even if the result value is empty the

server still replies the task. Figure 4.1 shows simplified server and the client program skeletons.

The illustrated performance figures show average values. In all graphs presented, the y-axis

shows the average response time for a single task in milliseconds, i.e. we measured the times

from the first task invocation until all tasks had been executed and divided this elapsed time by

the number of totally executed tasks.

4.2 Measurement Results

The initial measurements compare all three available communication mechanisms (rpc,

oRCS, nRCS) using the described allocation schemes (distributed, local, shared) for process-

es to processors (Sect. 4.2.1). Since oRCS and nRCS offer some features rpc-facilities do not

have, we subsequently present a more detailed comparison of oRCS and nRCS again using

all allocation schemes (Sect. 4.2.2). Finally, we investigate performance characteristics of
15



nRCS with shared allocation in further detail considering features oRCS and rpc do not offer

(Sect. 4.2.3).

4.2.1 Comparison of rpc, oRCS, and nRCS

The measurements started with a comparison of rpc, oRCS and different implementations of

nRCS using semaphores, busy waiting latches, and latches causing context switches. In the

distributed and in the local case, busy waiting latches have not been used (c.f. Section 3). Due

to the restrictions of rpc-facilities which do not allow concurrent invocation of tasks we are

forced to vary the number of client processes in order to achieve parallelism. Since we use a

very small number of client processes only (1 to 8), overhead due to task administration is not

significant. Of course, this would change with higher degrees of parallelism, automatically lead-

ing to increased response times. In order to compare the measurements, the implementations

using nRCS and oRCS perform synchronous task invocations, too. In the distributed allocation,

only the server process on one side and the client processes on the other side are distributed,

i.e. all client processes are running on a single processor. The results are illustrated in Figure

4.2a for the shared allocation on a multiprocessor system, in Figure 4.2b for the local allocation,

and in Figure 4.2c for the distributed allocation. Note, due to the variation in processor power,

the measured times on the multiprocessor and on the workstations cannot be compared direct-

ly.

The measurements with shared allocation yield several remarkable results. First of all, as al-

ready mentioned, semaphores (Fig. 4.2a, nRCS semaphores) require kernel calls and cause

unnecessary context switches in waiting situations such that this implementation behaves

client_program (no_of_tasks, parallelism)
{
no_of_invoked_tasks = 0;
gettime(starttime);
for(i=1;(i<=parallelism)&&(i<=no_of_tasks); i++){

Remote_Service_Invocation(measure_server,
task_parameters);

no_of_invoked_tasks++;
}
while (no_of_invoked_tasks<no_of_tasks){

Get_Service_Result(&result_parameters);
Remote_Service_Invocation(measure_server,

task_parameters);
no_of_invoked_tasks++;

}
for(i=1;(i<=parallelism); i++){

Get_Service_Result(&result_parameters);
}
gettime(endtime);
avg_task_execution_time=(endtime-starttime)/no_of_tasks;

}

server_program ()
{
Init_Server(measure_server);
while (1) {

Accept_Task(&task_parameters);
Reply(result_parameters);

}
}

Figure 4.1: Structure of Programs implementing Clients and Servers
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worst. Second, as expected, the implementation with busy waiting latches (Fig. 4.2a, nRCS

latches) outperforms all other implementations of nRCS. Finally, response times of nRCS are

better than those of the rpc-facility.

The larger response times in the case of a single client using rpc and oRCS arise from context

switches in the server process after sending the answer because it has to wait for the next task.

With an increasing degree of parallelism the server requests keep the process running which

more and more avoids voluntary context switches. In nRCS, increased response times in the

single-client case are caused by the overhead in the client (c.f. Section 3.2.2); by increasing
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the number of client processes this overhead is distributed over more processes thereby re-

ducing the average response time.

In the local allocation case (Fig. 4.2b), as expected, in the rpc and oRCS implementation re-

sponse times do not decrease with increased client parallelism because the processor is al-

ways running a client or a server process even in the case of a single client process. But the

results for nRCS are surprising, because we did not expect the bad response time observed

for a single client and, furthermore, the drastically improving response times with higher de-

grees of client parallelism. A quick look at our measurement environment does not deliver any

convincing explanation.

Further investigations turned out that the SUN OS-signals for waking up sleeping processes

were responsible for such a bad performance. After receiving a signal processes cannot be ac-

tivated immediately because the SUN OS previously has to reschedule them. With an increas-

ing degree of parallelism, this problem alleviates because in this case the other client process-

es can use the time to the next scheduling. In order to validate these arguments, we executed

the same measurement on the multiprocessor machine, running the DYNIX operating system,

with only a single processor switched on. The results of these measurements, illustrated in Ta-

ble 4.1, confirmed the expected behavior. This means that if task execution times increase due

to real task processing, which is omitted in our measurements response times, they do not en-

large in the nRCS case with few client processes because the processing time then can exploit

the waiting times of the processes. Contrarily, in the rpc and the oRCS case they increase even

in the case of few client processes, too. Therefore, in this case response times of nRCS on one

and rpc and oRCS on the other hand approximate in the same way as observed for multiple

client processes which degrade the disadvantage of nRCS in these situations. As already ob-

served in the local allocation case in the distributed allocation case (Figure 4.2c), the rpc-mech-

anism again outperforms both RCS implementations. In comparison to the local allocation, the

overhead for double task creation and result transmission inside RCS (c.f. Section 3.2.2)

across host boundaries causes about double response times for both nRCS implementations.

Due to the behavior of signals, the vast number of context switches with the communication

manager does not effect the results noticeably.

Finally, in contrast to the shared allocation case, we see that the nRCS implementation with

semaphores behaves better than the implementation with latches which can be explained by

#of clients response time in [ms]

1 14.9
2 15.2
3 16.1
4 16.5
5 18.0

Table 4.1: nRCS, single processor, DYNIX operating system
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the implementations of the latches. Since there is no user call available to release the proces-

sor and we do not want to change the operating system, we cause the process to sleep for at

least one time slice (10 ms on a SUN) which in contrast to semaphores causes longer waiting

times. This effect diminishes if there are multiple processes on the same processor, because

other processes may use the waiting time.

4.2.2 Further comparison of oRCS and nRCS

Since both, oRCS and nRCS, are capable of asynchronous task invocation and of integrating

clients and services into a single process, we evaluated and compared performance charac-

teristics for both implementations using these features. Again, we analyzed all three process

allocation schemes.

Parallelism

Different degrees of parallel task invocations have been investigated with the following mea-

surements consisting of only one client and one server process. In the shared case, nRCS with

latches leads to much better results than oRCS and nRCS with semaphores (c.f. Fig. 4.3a).

Since waiting situations do not occur in this environment, both implementations with latches do

not differ except in the case of sequential execution. Due to task management overhead re-

sponse time increases linearly. It exceeds response time of sequential execution at about 200

in nRCS and at about 100 parallel tasks in oRCS.

Figure 4.3b shows the results on the SUN workstations. First of all, because of less context

switches oRCS behaves better in the case of distributed allocation than in the case of local al-

location. Contrarily, nRCS produces better results in the local case because context switches

can be saved. In nRCS with distributed allocation, an increasing number of parallel task invo-

cations leads to a decreasing number of context switches between the communication pro-

cesses and the client and server process, because multiple tasks or result may be transferred

or processed during a single process activation. Therefore, the number of waiting situations

due to necessary process rescheduling (c.f. 4.2.1) decreases and the difference for the re-

sponse times of the local and the distributed nRCS case increases. Furthermore, nRCS even

outperforms oRCS in both cases with higher degrees of parallel task invocations.

Embedded Task Invocation

In order to evaluate the performance of task invocations inside a single process, a client cre-

ated tasks for a server implemented in the same process. Since there are no context switches

necessary, we used the implementation with latches keeping the process running. The same

environment was used on a SUN workstation and on the SEQUENT machine, hence, the per-

formance behavior is similar in principal (c.f. Fig. 4.4), but since the SUN processor is much

more efficient, it gains shorter response times. Separate measurements compared the situa-
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tion where client and server were allocated to two processes. The corresponding results are

summarized in Figure 4.4. As expected, the implementation with separate processes behaves

better than the one-process implementation on the SEQUENT because the load can be distrib-

uted over two processors. On the other side, it is clear that the one-process implementation
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leads to better results on the SUN workstation because there are no context switches after task

invocations. In Figure 4.4, we skipped the peak value for task execution at very low levels of

parallelism with two processes in the case of local allocation (see for example Fig. 4.2b).

4.2.3 Detailed analysis of nRCS in the case of shared allocation

Since nRCS is the only system providing all required capabilities, and since it turned out to

be the best system in our environment with shared allocation, we investigated the performance

behavior of nRCS for this implementation in further detail.

Number of Processes

Using as few processes as possible keeps the cost for context switching low, whereas a

growing number of processes facilitates load balancing. Therefore, we investigated varying

numbers of client and server processes. For this purpose, we executed the previous measure-

ment with different degrees of parallel tasks on the multiprocessor architecture with one, three,

five, and ten client and server processes, respectively. Measurements with more processes al-

ways produced worse response times as compared to the case of five clients and servers.

Generally, if the number of processes exceeds the number of available processors (in our case

8) context switches between the participating processes lead to worse response times. The im-

portant results are shown in Figure 4.5. First of all, we see that it is not useful to add multiple

server processes to a single client because due to its overhead the client is the bottleneck.

Adding more clients yields better performance for lower levels of parallelism in task creation

because these clients can work in parallel on their own processors. With a higher degree of

parallelism this performance degrades because of the task administration overhead in the

server process. Note, every process produces the indicated number of parallel tasks. In the

nRCS evaluation of Figure 4.5, the best and the worst response times never differ by more than

a factor of about 2.
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Task Execution Times

Finally, a simple measurement investigates the impact of increasing task execution times

which is done by simply enlarging task administration overhead by a rising number of task

switches(c.f. Fig. 4.6). Increasing execution times lower parallelism between client and server

in our measurement because now the client is waiting for results while the server is running.

This means, as intended with our implementation, the administration overhead on the client

side is no longer the bottleneck. Furthermore, these measurements demonstrate the overhead

caused by task administration for increasing degrees of parallelism, where the observed re-

sponse times only depend on this overhead and the execution time of the tasks becomes less

important.

4.2.4 Summary

Summarizing the results of the described measurements, nRCS fulfills the requirements of

our application. Especially in the case of shared allocation on the multiprocessor system, it

achieves better response times than the older implementation and even than the rpc-facility

which is offered by the operating system and which provides a much simpler interface. nRCS

enables us to use all features to utilize parallelism as described in Section 3. Optimal response

times were achieved at a relatively small number of 5 to 10 parallel tasks, but up to about 200

parallel client requests response times are satisfactory, which allows to adequately support the

kind of parallelism exploited in our system (c.f. Section 2). We observed different performance

behavior for various numbers of client and server processes, but because of the simple sce-

nario (except one measurement no real execution time and no waiting situations in the server)

a general statement about performance characteristics in these cases is not possible. This ef-

fect has to be explored in more detail in a more realistic application consisting of multiple levels

of client/server-relationships. Finally, different task execution times occurring in real applica-

tions may lead to more sophisticated results.
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5. Conclusions

In order to optimize mechanisms to support parallel execution of queries on complex objects

in our NDBMS PRIMA we introduced the Remote Cooperation System which provides a client/

server communication mechanism. Compared to conventional remote procedure call facilities

it offers an extended functionality which enables additional kinds of parallelism needed in com-

plex object processing. On the client side, it offers functions to invoke a service asynchronously

and a separate function to receive results. On the server side, results may be transmitted in

multiple parts, which allows pipeline parallelism. RCS supports a multi-threading implementa-

tion of servers where multiple servers may be allocated to one process. Moreover, to enable

parallelism within a particular server, multiple processes may be used to statically replicate

such a server.

Two implementations using different communication mechanisms have been presented. The

initial implementation (oRCS) only uses stream sockets for communication whereas the actual

implementation (nRCS) uses shared memory where possible and a specialized process to

communicate across host boundaries. In order to control access to shared data different syn-

chronization mechanisms have been discussed. nRCS is particularly designed for closely cou-

pled multiprocessor systems which are best suitable for NDBMSs due to the highly meshed

data structures in complex objects. Data partitioning as used in loosely-coupled distributed

DBMS, turned out to be not recommendable.

In order to get an accurate understanding of the performance characteristics of these imple-

mentations, a couple of measurements were carried out on a network of SUN SPARC work-

stations and on a SEQUENT Symmetry S27. oRCS behaves better in the distributed system.

When the parallelism is increased, nRCS’s performance penalty is alleviated to a certain ex-

tent. Contrarily, as intended nRCS leads to better results on the multiprocessor system where

latches not causing any context switches turned out to be the best synchronization mechanism.

In the distributed case latches releasing the processor if required resources are locked lead to

the best results with nRCS.

A comparison with the remote procedure facilities on both systems persuades us that the

nRCS implementation is a suitable basic communication system in order to efficiently realize

our PRIMA system. The optimal degree of parallelism within a server is about 10 simultaneous

tasks, but the measurements showed that only for more than about 200 parallel tasks admin-

istration overhead and synchronization conflicts lead to remarkably increasing response times.

These characteristics correspond with our hypotheses for our PRIMA implementation, where

coarse grained parallelism not producing that many tasks in parallel within a single service

should lead to effective usage of resources and good performance. On the other hand with in-

creasing parallelism most of the time is spent in task administration. Therefore, more adjusted

data structures in this case can yield better response times.
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These results of the described measurements will help to understand the performance char-

acteristics of the PRIMA system which may be obtained by further measurements. In order to

do this task monitoring facilities have been integrated into RCS [Hü92]. These tools allow a de-

tailed analysis of specific algorithms as well as of load distribution in the system. In the future,

the influence of different scheduling strategies has to be explored in more detail. Moreover, we

try to include the communication process into application processes which especially seems to

make sense, if there is only a single application process running on a host. Then, we can save

context switches between the communication process and application processes to improve

the response times with nRCS in the distributed system.
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