
The VLDB Journal manuscript No.
(will be inserted by the editor)

Theo Härder · Andreas Bühmann

Value Complete, Column Complete, Predicate Complete
Magic Words Driving the Design of Cache Groups

the date of receipt and acceptance should be inserted later

Abstract Caching is a proven remedy to enhance scalabil-
ity and availability of software systems as well as to reduce
latency of user requests. In contrast to Web caching where
single Web objects are accessed and kept ready somewhere
in caches in the user-to-server path, database caching uses
full-fledged database management systems as caches, close
to application servers at the edge of the Web, to adaptively
maintain sets of records from a remote database and to eval-
uate queries on them.

We analyze a new class of approaches to database cach-
ing where the extensions of query predicates that are to be
evaluated are constructed by constraints in the cache. Start-
ing from the key concept of value completeness, we explore
the application of cache constraints and their implications on
query evaluation correctness and on controllable cache load-
ing called cache safeness. Furthermore, we identify simple
rules for the design of cache groups and their optimization
before discussing the use of single cache groups and cache
group federations. Finally, we argue that predicate complete-
ness can be used to develop new variants of constraint-based
database caching.

Keywords database caching · query processing · cache
constraints · predicate completeness

1 Motivation

Transactional Web applications (TWAs) in a variety of do-
mains, often called “e*-applications”, grow dramatically in
number and complexity. At the same time, each individual
Web-based application must cope with increasing demands
regarding data volumes and workloads to be processed. In
general, caching is a proven concept in such situations to
improve response time and scalability of the applications as
well as to minimize communication delays in wide-area net-
works. For these reasons, a broad spectrum of techniques has

Theo Härder · Andreas Bühmann
University of Kaiserslautern, P. O. Box 3049, 67653 Kaiserslautern,
Germany
E-mail: {haerder, buehmann}@informatik.uni-kl.de

DB
Cache

DB
server

app.
server

Web
server(s)

customers
where region = ‘west’

customers
where region = ‘east’

Web clients application
logic

frontend
DB servers

backend
DB server

DB
Cache

app.
serverhttp

SQLhttp
SQL

Web
server(s)

Fig. 1 Database caching for Web applications

emerged in recent years to keep static Web objects (HTML
pages, XML fragments, images, etc.) in caches in the user-
to-server path (client-side proxies, forward and reverse prox-
ies, content-delivery nodes).

As more and more dynamic content must be generated
and as frequently updated information must be processed by
the TWAs, this Web caching [19] should be complemented
by techniques that are aware of the consistency and com-
pleteness requirements of cached data (whose source is dy-
namically changed in backend databases) and that, at the
same time, adapt to changing workloads. Attempts to reach
these objectives are called database caching, for which a
number of different solutions have been proposed in recent
years [2; 3; 6]. Currently all leading database vendors are
developing prototype systems or are just extending their cur-
rent products in a suitable way [2; 5; 11; 15; 20].1

What is the technical challenge of all these approaches?
When responses to user requests are assembled from static
and dynamic contents somewhere in a Web cache, the dy-
namic portion is generated by a remote application server,
which, in turn, asks the backend database (DB) server for
up-to-date information, thereby causing substantial latency.

1 “The three most important parts of any Internet application are
caching, caching, and, of course, caching . . . ”—Larry Ellison, Oracle
Chairman & CEO

2 Theo Härder, Andreas Bühmann

An obvious reaction to this performance problem is to
migrate the application servers to data centers closer to the
users in order to provide “nearby” services. As Fig. 1 illus-
trates, server-selection algorithms enable Web clients to de-
termine one of the replicated servers close to them, which
minimizes the response time of the Web service. This opti-
mization is amplified if the invoked application servers can
provide the expected data—frequently influenced by geo-
graphical contexts.

However, the displacement of application servers to the
edge of the Web alone is not sufficient; in contrast, it would
dramatically degrade the efficiency of DB support because
of the frequent round-trips to the then remote backend DB
server. As a consequence, prevalently used data should be
kept close to the application servers in database caches (also
called frontend DB servers). A flexible solution should not
only support DB caching at mid-tier nodes of enterprise in-
frastructures [5; 20] but also at edge servers of content de-
livery networks [1] and at remote data centers.

The rest of the paper is organized as follows: In Sect. 2
we start with desired properties of DB caches and a sketch
of the design space. Section 3 presents the idea of constraint-
based DB caching and introduces parameterized cache con-
straints to specify cache groups. In Sect. 4, we discuss safe-
ness conditions for cache groups, which prevent excessive
loading operations in the cache. Using the results derived so
far, we can subsequently give a set of rules for cache group
design and optimization. Section 6 illustrates practical ex-
amples for cache groups, before we take a look at the sit-
uation where several distinct cache groups overlap in some
tables thereby forming a cache group federation. Section 7
describes the related work on cache groups and outlines the
novel aspects of this paper. Finally in Sect. 8, we summarize
our results and give further conclusions for new classes of
constraint-based DB caching.

2 Database caching

2.1 Requirements

The ultimate goal of DB caching is to process frequently re-
quested DB operations close to the application. Therefore,
the complexity of these operations and, in turn, of the under-
lying data model essentially determines the required mech-
anisms. The use of SQL implies a particular challenge be-
cause of its declarative and set-oriented nature: For the DB
cache to be useful, the cache manager (a system component)
must guarantee that queries can be processed there; that is,
the sets of records (of various types) satisfying the corre-
sponding predicates must be completely in the cache.

Using a full-fledged DB server as cache manager offers
great advantages. A substantial portion of the query pro-
cessing logic (parsing, optimization, and execution) must be
made available anyway. By providing the full functionality,
one can exploit additional DB objects such as triggers, con-
straints, stored procedures, or access paths in the cache: This

simulates DB semantics locally and enhances application
performance due to increased locality. Furthermore, transac-
tional updates seem to be conceivable in the cache someday
and, as a consequence, continued service for TWAs when
backend DBs become unavailable.

A federated query facility as offered in [12; 14] allows
cooperative predicate evaluation by multiple DB servers. For
cache use, this property is very important, because the local
evaluation of some (partial) predicate can be complemented
by the work of the backend DB server on other (partial) pred-
icates whose extensions are not in the cache. In the follow-
ing we use the term predicate to refer only to the portions of
predicates that are to be evaluated in the cache.

Another important property of practical solutions is full
cache transparency for applications; that is, we do not toler-
ate modifications of the application programming interface.
This application transparency, which also is a prime aspect
to distinguish caching from replication, is a key requirement
of DB caching. At run time it gives the cache manager the
choice to process a query locally or to send it to the back-
end DB, to comply with strict consistency requirements, for
instance.

Cache transparency typically requires that each DB ob-
ject is represented only once in a cache and that it exhibits
the same properties (name, type, etc.) as in the backend.
Note, a cache usually contains only subsets of records per-
taining to a small fraction of backend tables. Its primary task
is to support query processing for TWAs, whose queries typ-
ically contain up to three or four joins [2]. Often the number
of cache tables, which feature a high degree of reference lo-
cality, is only in the order of ten or less, even if the backend
DB consists of hundreds of tables.

2.2 Design space

The conceptually most simple approach—namely, full-table
caching, which replicates entire contents of selected backend
tables—attracted various DB cache products [18]. It seems
infeasible, however, for large tables even under moderate up-
date dynamics, because replication and maintenance costs
may outweigh the potential savings on query processing.

Traditional approaches to caching at a finer granularity
are settled at the object level and, hence, only support access
to objects by identifiers. When receiving a declarative query,
the cache generally has no means to decide whether a com-
plete answer can be provided without querying the backend
DB. Semantic descriptions of the cached data, however, en-
able the cache manager to determine the completeness of
query results.

So far, most approaches to DB caching were primar-
ily based on the use of single tables, sometimes called se-
mantic caching [8; 13], or on materialized views and their
variants [3; 6; 9; 15; 16]. A materialized view consists of
a single table whose contents are the query result V of the
view-defining query QV (with predicate PV) and whose col-
umns correspond to the set OV = {O1, . . . ,On} of QV ’s out-
put attributes. Materialized views can be loaded into the DB

Value Complete, Column Complete, Predicate Complete 3

cache in advance or can be made available on demand, for
example, once a given query has been processed the nth time
(n≥ 1). In this way, one can achieve some kind of built-in lo-
cality and adaptivity (together with a replacement scheme).

When materialized views Vi are used for DB caching,
they represent results of queries QVi executed in the backend
DB and are typically cached as separate tables in the fron-
tend DB. In general, query processing for an actual query QA
is limited to such a single cache table. The result of QA is
contained in Vi, if PA is logically implied by PVi (subsump-
tion) and if OA is contained in OVi (i. e., the output of the
new query is restricted to the attributes of a query result that
is used). Only in special cases a union V1 ∪V2 ∪ ·· · ∪Vn of
cached query results can be exploited.

The term active caching is used in [17] and indicates
there that the proxy (cache) is actively functioning in a lim-
ited query processing role. The proxy stores the results of
queries (views) and uses them to answer subsequent queries.
Although user queries submitted via forms and containing
joins may be handled by the proxy, this does not mean that it
executes joins. Rather it treats all queries from a given form
as selection queries on a single table view (with a keyword
predicate).2

DBProxy [3] has proposed some optimizations: In or-
der to reduce the number of cache tables, it tries to store
query results Vi with strongly overlapping output attributes
or schemas in common tables. Storing a superset of the at-
tributes OVi in the cache may, on the one hand, enhance cach-
ing benefits of Vi, but, on the other hand, it may increase stor-
age and maintenance costs. As a consequence, some flexibil-
ity is gained for single-table queries and some special multi-
table queries. However, these provisions do not enable gen-
eral multi-table queries.

The expressiveness of more powerful caching techniques
is not confined to deriving query results (similar to project-
select (PS) queries) from single cache tables via subsump-
tion. Instead, project-select-join (PSJ) queries across multi-
ple cache tables are desirable [2; 20]. For this purpose, an
appropriate specification mechanism is needed to achieve
predicate completeness in the cache for the indented class of
queries. Loading directions for the cache take care that pred-
icate completeness is dynamically guaranteed for queries an-
ticipated frequently in the future to ensure for locality of ref-
erence in the cache. Because cache filling is selective and
dynamic, an efficient probing mechanism is needed to de-
termine whether the predicate extension is in the cache for
a specific predicate to be evaluated. We proceed along these
lines and propose a method based on parameterized cache
constraints which can be dynamically adjusted to varying
workload characteristics. Such steps are urgently required to

2 A number of rules listed in [17] describes how to answer more
restrictive eligible queries from less restrictive ones by selection or in-
tersection.

comply with challenging demands like self-administration
and adaptivity.3

3 Constraint-based database caching

Constraint-based database caching promises a new quality
for the placement of data close to their application. The key
idea is to accomplish for some given types of query predi-
cates P the predicate completeness in the cache such that all
queries matching P can be evaluated correctly.

A cache contains a collection of cache tables, which rep-
resent backend tables and which can either be isolated or
related to each other in some way. All records (of various
types) in the backend DB that are needed to evaluate predi-
cate P are called the predicate extension of P. Because predi-
cates form an intrinsic part of a data model, the various kinds
of predicate extensions depend on the data model; that is,
they always support only specific operations of a data model
under consideration. Cache constraints enable cache load-
ing in a constructive way and guarantee the presence of their
respective predicate extensions in the cache.

This technique does not rely on static predicates: Pa-
rameterized constraints make the specification adaptive; it
is completed when specific values instantiate the parame-
ters: An “instantiated constraint” then corresponds to a pred-
icate and, once the constraint is satisfied (i. e., all related rec-
ords have been loaded), it delivers correct answers to eligi-
ble queries. Note, the set of all present predicate extensions
flexibly allows combined evaluation of their predicates in
the cache (e. g., P1∪P2∪·· ·∪Pn or P1∩P2∩·· ·∩Pn or sub-
sets/combinations thereof).

Given suitable cache constraints, there are no or only
simple difficulties in deciding whether certain predicates can
be evaluated. At run time, only a simple existence query is
required to determine whether suitable predicate extensions
are available. Furthermore, because all columns of the corre-
sponding backend tables are kept, all project operations pos-
sible in the backend DB can also be performed in the cache.
Other operations like selection and join depend on specific
cache constraints.

The primary task of this constraint-based caching ap-
proach is to support local processing of queries that typically
contain simple projection and selection operations as well as
equi-joins (PSJ). Since full DB functionality is available, the
results of these queries can further be evaluated by aggrega-
tion functions such as sum or refined by selection predicates
such as like or is null, as well as by processing options like
distinct, order by, group by or having (restricted to predi-
cates evaluable on the predicate extension).

3 Minimum interaction by the database administrator (DBA) is de-
sirable when a large number of caches exists. For example, Akamai’s
network has nearly 15,000 edge caching servers [1].

4 Theo Härder, Andreas Bühmann

3.1 Completeness

If we want to evaluate a given predicate in the cache, we
must keep a collection of records in the cache tables such
that the completeness condition for the predicate is satisfied.

Definition 1 (Predicate completeness) A collection of ta-
bles is said to be predicate complete with respect to a predi-
cate Q if it contains all records from the backend DB needed
to evaluate Q, that is, its predicate extension.

In our present model, we deal with whole records only
and do not consider restrictions to certain sets of columns—
however, the model could be easily extended, as DBProxy
[3] does, for instance. Note that a predicate extension in the
sense used here consists of all records from the backend ta-
bles needed to reconstruct the query result. For an aggregate
query, the predicate extension would not be the aggregate (as
the query result) but all records that are to be aggregated.

3.1.1 Equality predicates

Let us begin with single cache tables. For simplicity, let the
names of tables and columns be the same in the cache and
in the backend DB: Considering a cache table S, we denote
by SB its corresponding backend table, by S.c a column c
of S.

For simple equality predicates like S.c = v, the complete-
ness condition takes the shape of value completeness.

Definition 2 (Value completeness) A value v is said to be
value complete (or complete for short) in a column S.c if and
only if all records of σc=v SB are in S.4

If we know that a value v is value complete in a col-
umn S.c, we can correctly evaluate S.c = v, because all rec-
ords from table SB that carry this value are in the cache. But
how do we know that v is value complete? We are going to
answer this question in Sect. 3.2; let us assume for the mo-
ment that we are somehow able to identify complete values
in the cache.

3.1.2 Range predicates

To answer range queries on a single column, we need a more
general type of completeness condition that assures us that
all values of a specified interval are value complete. Natu-
rally, we restrict our considerations to domains with ordered
values (e. g., integer or string). Closed intervals [l,u] on such
a domain are characterized by two parameters l and u (−∞≤
l ≤ u ≤ +∞), as are half-open intervals (l,u] and [l,u) or
open intervals (l,u).

Definition 3 (Interval completeness) An interval r is said
to be interval complete (or complete for short) in a cache col-
umn S.c if and only if all records of σc∈r SB are in S (making
all individual values of r value complete in S.c).

4 As SQL’s null indicates the absence of a value, we do not regard
null in itself as a value in this paper.

In a query, a range predicate can take various forms using
the relationships Θ ∈ {<,≤,=,≥,>, 6=}. An actual range
predicate rA can easily be mapped to an interval (or two in
case of 6=), for example, x > l to (l,+∞). Hence, for simplic-
ity, we identify a range predicate r with its corresponding
interval.

3.1.3 Equi-join predicates

How do we obtain the predicate extensions of PSJ queries?
The key idea is to use referential cache constraints (RCCs)
to specify all records needed to satisfy specific equi-join
predicates. An RCC is defined between two cache columns,
which need not belong to separate tables.

Definition 4 (Referential cache constraint, RCC) A refer-
ential cache constraint S.a→ T.b from a source column S.a
to a target column T.b is satisfied if and only if all values v
in S.a are value complete in T.b.

Our definition of RCCs is equivalent to the one given by
Altinel et al [2], which can be easily verified by replacing
the use of value completeness with its definition.

An RCC S.a→ T.b ensures that, whenever we find a rec-
ord s in cache table S, all join partners of s with respect to
S.a = T.b are in T , too. Note, the RCC alone does not allow
us to correctly perform this join in the cache: Many records
of SB that have join partners in TB may be missing from S.
But using an equality predicate with a complete value in col-
umn S.c as an anchor, we can restrict this join to pairs of
records that are present in the cache: The RCC S.a→ T.b
expands the predicate extension of S.c = x to the predicate
extension of S.c = x∧ S.a = T.b. In this way, a complete
value can serve as an entry point for a query into the cache;
it allows us to start reasoning about predicates evaluable in
the cache: Once the cache has been entered in this sense,
reachable RCCs show us where joins can correctly be per-
formed.

Of course, the application of RCCs can be chained: A
second RCC T.d →U.e could expand the predicate exten-
sion of S.c = x ∧ S.a = T.b to the predicate extension of
S.c = x∧S.a = T.b∧T.d = U.e.

A column can be non-unique (NU) or can be declared
unique (U) via the SQL constraint unique in the backend DB
schema (or via primary key, which is basically the same be-
cause we do not care about null “values” anyway). Depend-
ing on the types of source and target columns, we classify
RCCs as 1 : n, n : 1, and n : m and denote them as follows:

– U→ NU (or U→ U): member constraint (MC)
– NU→ U: owner constraint (OC)
– NU→ NU: cross constraint (XC).

Note, using RCCs we implicitly introduce a value-based
table model intended to support queries. Despite similarities
to the relational model, MCs and OCs are not identical to the
PK/FK (primary key / foreign key) relationships contained in
the backend schema. A PK/FK relationship can be processed

Value Complete, Column Complete, Predicate Complete 5

L
g
U

C
a k
U NU

O
b
U

c d
NU NU

NU
h

Fig. 2 Cache table collection COL

symmetrically, whereas our RCCs can be used for join pro-
cessing only in the specified direction. There are other im-
portant differences: XCs have no counterparts in the backend
DB, and a column may be the source of n and the target of m
RCCs. In contrast, a column in the role of a primary key may
be the starting point of k, but in the role of a foreign key the
ending point of only one (meaningful) PK/FK relationship.

Because a very high fraction (probably more than 99 %)
of all SQL join queries refer exclusively to PK/FK relation-
ships (they represent real-world relationships explicitly cap-
tured by the DB design), we expect almost all RCCs spec-
ified between cache tables to be of type MC or OC. As a
corollary, XCs and multiple RCCs ending on a specific NU
column seem to be very infrequent.

Example 1 Assume cache tables C, O, and L connected by
RCCs C.a→ O.c and O.b→ L.h, where C.a, O.b, and L.g
are U columns and C.k, O.c, O.d, and L.h are NU columns,
as illustrated in Fig. 2. In a common real-world situation, C,
O, and L could correspond to backend DB tables Customer,
Order, and OrderLine. Hence, both RCCs would typically
characterize PK/FK relationships that are to be used for join
processing in the cache.

The specification of additional RCCs O.b→C.k or even
O.c→ L.h and the inverse L.h→ O.c is conceivable (given
join-compatible domains); but such RCCs have no counter-
parts in the backend-DB schema: When using them for a join
of O and C or a cross join of O and L, the user is completely
responsible for assigning a meaning to these joins.

3.2 Probing for entry points

RCCs allow us to draw conclusions about predicate exten-
sions that are in the cache, but only if we can rely on some
value (or an interval of values) being complete and serving
as an entry point. Considering some column S.c, how do we
know that a value v is value complete there? Obviously, our
goal ought to be to provide simple and efficient means for
deciding about the completeness of values in the cache.

Of course, each cache-resident value of a U column is
value complete by definition. Hence, here we need to care
about NU columns only.

A straightforward way to gain control over complete val-
ues is to choose a set FS.c of values out of S.c’s domain and

to enforce completeness of these values whenever they ap-
pear in the cache (in S.c). In this case, all that is needed to
decide whether v is complete in S.c is to check if v exists
in S.c (given that v is in FS.c in the first place). This pro-
cess of using a simple (existence) query on the cache to de-
cide about completeness is called probing; the query used is
called probe query accordingly.

In the simplest form of this idea, the entire domain of S.c
is used as FS.c. This approach has been used by Altinel et al
[2] as a part of their cache keys5 and presumably lead to
the notion of domain completeness of a column. The choice
of this denotation is rather unfortunate because it wrongly
suggests that all values of a column S.c’s domain (i. e., all
values permitted to be in S.c) are value complete. Instead,
you always have to think of the set FS.c of values that are
forcibly complete whenever they they appear in the cache.
Therefore we prefer the term column completeness.

Definition 5 (Column completeness) A cache column S.c
is said to be column complete (or complete for short) if and
only if all values v in S.c are value complete.

Given a complete column S.c, if a probe query confirms
that value v is present in S.c (a single record suffices), we can
be sure that v is value complete and thus evaluate S.c = v in
the cache. Unique columns of a cache table are complete
per se. In contrast, the completeness of non-unique columns
must be enforced specially, as indicated above.

The declaration and enforcement of complete columns
raises problems regarding the overall loading behavior of the
cache because many sets of records are forced into the cache
for the sake of easiest probing. (We will show some of these
problems in Sect. 4.) Furthermore, low-selectivity columns
or single values in columns with skewed value distributions
may cause cache filling actions involving huge sets of rec-
ords never used later.

Therefore, our first refinement was to enforce complete-
ness only upon a subset of the domain (e. g., to exclude val-
ues with low selectivity); however, this approach brings with
it basically the same problems as enforced column com-
pleteness, albeit to a lesser extent.

We propose a new probing approach [7], which does not
require new constraints and thus does not load extra records
into the cache. Furthermore, it allows more flexible use of
the cache contents than probing in complete columns alone.

The fundamental insight is that RCCs already provide
guarantees about complete values in the cache: The source
column of an RCC (or more precisely, the values therein)
controls which values are complete in its target column. This
insight is reflected in our reformulation of the RCC defini-
tion (Def. 4) and justifies a special name for source columns
in this controlling role.

Definition 6 (Control column) We say that S.a is a control
column of T.b if there is an RCC S.a→ T.b.

5 The other part is that cache keys fulfill the function of filling col-
umns (see Sect. 3.3.1).

6 Theo Härder, Andreas Bühmann

In general, any given column T.b can have an arbitrary
number of control columns (including zero). Whenever a
column S.c we would like to use as an entry point for a pred-
icate S.c = v has at least one control column, we have the
option of probing in the control columns of S.c. If we find
the value v in one of these columns, we know that it is value
complete in S.c and that we can correctly evaluate the pred-
icate in the cache. This makes the cache usable in a more
flexible way than has been possible before.

Example 2 Returning to Fig. 2, we find that columns C.a,
O.b, and L.g are complete (because they are U columns). If
probing verifies the existence of single values for C.a = 1,
O.b = α , or L.g = z, respectively, we can evaluate, in ad-
dition to the predicate type COL is designed for, the three
predicates

C.a = 1∧C.a = O.c∧O.b = L.h ,

O.b = α ∧O.b = L.h , and
L.g = z .

Since O.c has C.a as a control column, we can furthermore
evaluate the predicate

O.c = 3∧O.b = L.h

if we probe successfully for the value C.a = 3.

3.2.1 Negative caching

Using control columns for probing has another benefit be-
sides allowing the more flexible choice of entry points in the
cache: It enables negative caching, that is the representation
of knowledge in the cache that something does not exist,
cannot or does not give an answer [4; 7].

Example 3 Imagine that in our COL example (Fig. 2) we
have a customer C.a = 1 that has not placed any orders yet
(i. e., there are no records in OB where OB.c = 1). We will
learn in Sect. 3.2.3 that O.c is a complete column and can
thus be used as an entry point for a predicate

P′ = (O.c = 1∧O.b = L.h) ,

but only if probing verifies the existence of value 1 in O.c:
So in this case the predicate would have to be evaluated at
the backend.

However, if we probe in the control column C.a of col-
umn O.c instead, we find value 1 in the cache; we then know
that it must be complete in O.c; and we can finally evalu-
ate the predicate P′ in the cache, which yields an empty but
correct result. Hence, the cache contains the knowledge that
there are not any order records for this customer in the back-
end.

3.2.2 Probing strategies

When looking for an entry point for a predicate S.c = v, we
have two kinds of probing operations at our disposal:

– If S.c is column complete, we can probe directly in S.c.
– If S.c has at least one incoming RCC, we can probe in a

control column of S.c.

We may choose between these two, based on the prob-
ing costs (e. g., is there an index on the probed column?). We
may even apply a number of successive probing operations
for a single entry point, thus forming probing strategies. In
this case the order of the probing operations and their prob-
abilities of success determine the average costs of the whole
probing strategy.

If column S.c is not (always) complete, the best we can
do is this:

1. Probe in each control column of S.c in turn. If v is found,
success (S.c is an entry point).

2. Failure (S.c cannot be used as entry point).

This strategy has the drawback that we might have to check
a lot of control columns to find the right one (which con-
tains v). But in the likely case of only one control column, a
single probing operation suffices.

Complete columns can still be useful as an optimization:
If column S.c is always complete, we can use a more so-
phisticated probing strategy that in many cases stops after
the first probing operation, even if there are multiple control
columns:

1. Probe in S.c. If v is found, success.
2. If negative caching is impossible6 or not cared about,

failure.
3. Probe in each control column of S.c in turn. If v is found,

success (negative caching).
4. Failure.

Of course, we can skip probing in the complete column
entirely and go directly to the control columns (i. e., fall back
to the first probing strategy) if this promises to be cheaper in
the average case (e. g., if there is only one control column
and it has an index).

3.2.3 Complete columns

As we have just seen, cache-supported query evaluation be-
comes more flexible if we can correctly decide which cache
columns are (always) complete and thus have more entry
points and probing strategies to choose from.

Example 4 Let us refer again to COL. Because C.a→ O.c
is the only RCC that induces loading of records in O, we
know that only value-complete values enter the column O.c

6 If referential integrity constraints valid in the backend DB are
known by the cache manager, it can immediately exclude negative
caching in some cases (e. g., when an owner constraint in the cache
corresponds to a foreign key constraint in the backend DB).

Value Complete, Column Complete, Predicate Complete 7

P
e

UC
a k

U NU

O
b
U

c d
NU NU

NU
f

U

kc
U

ac

Fig. 3 Cache table collection COP: Artificial control columns
ac and kc of filling columns a and k

and, hence, that all values in O.c are value-complete. So we
know that O.c is complete (also called induced complete).

Note, additional RCCs ending in O.c would not abolish
the completeness of O.c, though any additional RCC end-
ing in a different column would: Assume an additional RCC
ending in O.b induces a new value v, which implies the in-
sertion of σb=v OB into O—just a single record o. Now a new
value w of O.c may appear (so far not present), but all other
records of σc=w OB fail to do so.

As this example shows us, a cache table loaded by RCCs
on more than one column cannot have an induced complete
column. Therefore, induced completeness is context depen-
dent: It may vanish when, for example, new RCCs are added
to the cache configuration. But in the absence of other influ-
ences (e. g., by future cache constraints or cache keys) we
can make the following observation:

Observation 1 A cache column S.c is complete if it is the
only column of S that is loaded via one or more RCCs.

There are two types of columns whose completeness is
not context dependent: We have already encountered U col-
umns as the simplest case. In addition, columns S.c with a
self -referencing cache constraint (self-RCC) S.c→ S.c are
always complete, which is easily deducible from the defini-
tion of RCCs (Def. 4).

3.3 Loading predicate extensions

To be able to evaluate a predicate Q in the cache, the cache
manager must guarantee predicate completeness for Q by
loading all required records into the cache tables.

Example 5 Let us take a look at COP (Customer, Order,
Product) in Fig. 3, which is a variant of our COL example
and includes an owner constraint (OC) O.d→ P.e.

Assume the predicate of a PSJ query to be evaluated on
COP is

Q1 = (C.k = x∧C.a = O.c∧O.d = P.e) .

An example of Q1’s predicate extension is sketched in Fig. 4,
where records are represented by dots and value-based rela-
tionships by lines. To establish value completeness for the

C.k x xx
1 2 3C.a

O.c 1 1 32 3 3

P.e y z

O.d - - y y y z

Fig. 4 Construction of a predicate extension for COP

value x of column C.k, the cache manager loads all records
of σk=x CB in a first step. For each of these records loaded,
the RCC C.a→ O.c must be fulfilled (PK/FK relationships,
solid lines); that is, all values of source column C.a (1,2,3
in the example) must be made value complete in the target
column O.c. Finally, for all values present in O.d (y, z), the
RCC O.d → P.e makes their counterparts complete in P.e
(FK/PK relationships, dashed lines).

Following the RCCs, the cache manager can construct
predicate extensions using only simple loading steps based
on equality of values. Accordingly, it can correctly evaluate
the corresponding queries locally.

Obviously, there must be some way to tell the cache
manager which predicate extensions to load. In essence, this
means placing single values into specific cache columns,
from where the cache manager will fill the cache, guided
by the cache constraints.

3.3.1 Candidate values in filling columns

Besides RCCs, a second type of cache constraint is needed
in order to establish a parameterized loading mechanism:
Attached to selected filling columns7 are sets of candidate
values, which alone initiate the loading of predicate exten-
sions when they are referenced by user queries.

Definition 7 (Candidate value) A candidate value v for a
filling column S. f belongs to the domain of SB. f . Whenever
the predicate S. f = v is referenced by a query, v is made
value complete in S. f .

The set of all candidate values of a filling column S. f is
denoted by CS. f . Whenever a candidate value v in CS. f oc-
curs in an equality predicate of a query (S. f = v), the cache
manager probes the respective cache table as usual to see
whether this value is present: A successful probe query (the
value is found) implies that the predicate extension for the
given equality query is in the cache and that this query can
be evaluated locally. Otherwise, the query is sent to the back-
end for further processing.

How do records get into a cache table? As a consequence
of a cache miss attributed to the candidate value v, the cache
manager satisfies the value completeness for v by fetching

7 For the course of this document, we assume single filling columns.
A multi-column mechanism different from multiple single columns is
conceivable; in this case, values would be composed of the simple val-
ues belonging to the participating columns.

8 Theo Härder, Andreas Bühmann

all required records from the backend and loading them into
the respective cache table. Hence, the cache is ready to an-
swer the corresponding equality query locally from then on.

Apparently, a reference to a candidate value v serves as
a kind of indicator that, in the immediate future, locality of
reference is expected on the predicate extension determined
by v. Candidate values therefore carry information about the
future workload and sensitively influence caching perfor-
mance. Hence, candidate values must be selected carefully.
In an advanced scheme, the cache manager itself takes care
that only those values with high re-reference probability be-
come and stay candidate values. By monitoring the query
load, the cache manager can dynamically optimize this set
of values that trigger the loading of predicate extensions into
the cache. In a straightforward case, the database administra-
tor (DBA) specifies this set of candidate values.

A set CS. f of candidate values can be specified as an ex-
haustive set (the domain itself), an enumeration, a range, or
as other predicates; candidate values can be expressed posi-
tively (recommendations) or negatively (stop-words).

3.3.2 Control columns revisited

Let us repeat: The subset of candidate values of a filling col-
umn S. f that actually are in the cache controls which values
are complete in S. f . Does that not sound familiar?

It is beneficial to introduce an artificial control column fc
for each filling column f : This allows uniform treatment of
all cache columns with regard to probing and filling.

This artificial control column is a U column of a separate,
anonymous table with an RCC fc→ f pointing to the filling
column f . In Fig. 3 we have illustrated this situation for the
filling columns C.a and C.k of our COP example (dark-gray
columns).

Having made this step, we can simply regard the domain
of fc as the set of candidate values of f , whereas the actual
contents of this “master control column” fc (i. e., some of the
candidate values) determines which predicate extensions are
in the cache. When looking for an entry point for a predicate
f = v, we can use our regular probing strategies (and probe
in the control column fc, for instance); in case of a cache
miss, the value v is inserted into the master control column
fc from where the cache manager will start its loading steps
to reestablish the validity of all cache constraints.

Example 6 In order to illustrate the interplay of filling col-
umns, artificial control columns, and candidate values, let us
start from an empty cache in Fig. 3: Tables C, O and P are
empty, as is control column kc. Let Ck = {x,z} be the set of
candidate values of filling column k.

Imagine two predicates C.k = v with different values v
arriving at the cache and producing cache misses.

– Value v = x is a candidate value. Because of the cache
miss it is inserted into kc; this makes x complete in C.k
and subsequently loads all dependent records into the
cache (i. e., , the predicate extension known from Fig. 4).

– Value v = y is not a candidate value. Despite the cache
miss it is neither inserted into kc nor made complete in
C.k.

Now imagine that a new record with C.k = z is loaded into
the cache table C (due to a cache miss on the other filling col-
umn C.a). Value z is a candidate value of filling column C.k,
but because the cache miss did not occur on C.k, nothing
happens: Value z does not need to be inserted into kc; it does
not matter whether it is complete in filling column C.k or
not.

Our artifical control columns have been inspired by the
control tables in the MTCache project [15; 21], which are
used in quite a similar way: In MTCache, a set of stacked
materialized views is used to describe the cache contents,
each dependent on the contents of another view (which re-
sembles RCCs) or ultimately on the contents of a control
table.

In following figures and examples we will assume that
you are aware of an artificial control column behind each fill-
ing column and we will no longer depict or draw attention to
those unless it is crucial to the discussion. Just keep in mind
that the only special thing about filling columns is their sen-
sitivity to references of values in equality predicates, which
leads to new values in their artificial control columns. With
respect to probing, query evaluation, and even filling via
RCCs they behave exactly like any other column.

3.3.3 Range predicates

When loading extensions of range predicates on a filling col-
umn, the cache manager must take into account intervals ri
that are in the cache already. In the simplest case, the cache
could be populated with all records belonging to the inter-
val rA when a range query with predicate S. f ∈ rA is evalu-
ated and leads to a (partial) cache miss (some sub-intervals
of rA may already be in the cache). Cache loading makes rA
interval complete in cache column S. f such that subsequent
queries with range predicates contained in rA can correctly
be answered from the cache.

To be aware of the intervals ri present in the cache, the
cache manager holds information on them in an ordered list
(this ordered list could be regarded as an implementation
of the artificial control column). As soon as two adjacent
ri overlap, they are merged into a single interval. Hence,
queries with range predicates rA contained in an ri that is
present (rA ⊆ ri) can be evaluated locally. If rA only over-
laps ri, the range predicate can only partially be evaluated in
the cache. If the remaining portions of rA are not specified
in the set of candidate values, no further cache population
takes place. Otherwise, the missing intervals could be made
complete.

Note that the selectivity and potential locality of inter-
vals must strictly be controlled to prevent “performance sur-
prises”due to excessive cache loading. This is even more im-
portant than in the case of single values and is especially
true for intervals where l or u is infinite: Again, cache filling
should be refined with a set of candidate values.

Value Complete, Column Complete, Predicate Complete 9

3.4 Cache groups

In general, our caching mechanism supports PSJ queries that
are characterized by predicate types of the form

(RP1∨ . . .∨RPn)∧EJ1∧ . . .∧EJm (1)

where RPi, 1≤ i≤ n, is a range predicate (an equality pred-
icate in the simplest case) on a specific cache table called
root table and the EJ j, 1≤ j ≤ m, correspond to RCCs that
(transitively) connect the root table with the remaining cache
tables involved.

We can use cache tables, filling columns and RCCs to
specify cache groups, which is our unit of design to support
a specific predicate type in the cache.

Definition 8 (Cache group) A cache group is a collection
of cache tables linked by a set of RCCs. A distinguished
cache table is called the root table R of the cache group and
holds one or more filling columns. The remaining cache ta-
bles are called member tables and must be reachable from R
via RCCs.

Example 7 Hence, our COP example constitutes a simple
cache group with root table C, filling columns C.a and C.k,
and two RCCs to the member tables O and P. It is designed
for the following predicate type (n = 2 and m = 2 in Eq. (1)):

(C.a = v1∨C.k = v2)∧C.a = O.c∧O.d = P.e .

Let us summarize our findings about how cache groups
are populated and where their entry points can be found
(with complete columns as a means for optimization).

A cache table T can be loaded via one or more RCCs
ending in one or more of its columns. (A filling column is a
special case in that an RCC coming from its artificial control
column ends there.)

A column T.c is a potential entry point if

– it has control columns (i. e., it has incoming RCCs) or
– it is a complete column.

A column T.c is complete (at all times) if

– it is a U column,
– it is a column with an (self-)RCC T.c→ T.c, or
– it is the only column in table T with incoming RCCs.

3.5 Units of cache unloading

Flexible adjustment of the (dynamic) set of candidate values
that are present in the cache is key to cache adaptivity.8 Be-
cause a probe query always precedes the actual query eval-
uation, completeness for a value v in a filling column S. f
can be abolished at any time by removing v from the control
column.

8 This is orthogonal to displacement of cache pages to a local disk.
If we allow this kind of flexibility in the cache, probing and query
processing has to consider both main memory and local disk contents.

In the simplest case, there may be no removal at all,
and thus a value, once made complete, is left in the cache
forever, or there may be a periodical purge (complete un-
loading) by continuing with an empty cache. Alternatively,
complex algorithms could be applied to support selective un-
loading (i. e., the predicate extension for S. f = v is removed
from the cache, if the re-reference probability for candidate
value v sinks). Note, besides the costs for memory and stor-
age space, there is always a trade-off between the savings
for query evaluation and the penalties for keeping the rec-
ords of a predicate extension consistent with their state in
the backend.

How difficult is it to cope with a unit of loading and un-
loading? Such a unit is dependent on a candidate value and
consists of a set of cache instances, each of which is a min-
imal collection of records satisfying all RCCs for a single
root record with that candidate value. For example, Fig. 4
shows a single unit of loading / unloading (for candidate
value x) and three cache instances having for C.a the values
1,2, and 3 in their root records. Depending on their complex-
ity, load units and, in turn, their cache instances may exhibit
good, bad, or even ugly maintenance properties.

The good load units are disjoint from each other and the
RCC relationships between the contained records form trees
for their cache instances. A simple example is provided by
cache group COL in Fig. 2 on page 5. Here a newly refer-
enced candidate value of C.k (NU) causes a forest of such
trees to be loaded, which, in case of unloading, can be re-
moved without interference with other cache instances.

For the bad load units, the cache instances form directed
acyclic graphs and weakly overlap with each other. Cache
group COP in Figures 3 and 4 on page 7 is an example where
several cache instances may share records of cache table P.
Because they may also overlap with cache instances of other
load units, cache loading must beware of duplicates. Accord-
ingly in case of unloading a cache unit, shared records must
be removed only together with their last sharing cache in-
stance.

To maintain cache groups with cross constraints or RCC
cycles can be characterized as ugly, because load units and
cache instances may strongly overlap so that duplicate recog-
nition and management of shared records may dominate the
work of the cache manager. The problems arising with cy-
cles during loading and unloading will be our subject of dis-
cussion in Sect. 4.4.

4 Safeness of cache groups

So far, we know how to configure a cache group by spec-
ifying the participating cache tables, the RCCs connecting
them, and the filling columns, which initiate the population
of the cache group. Using complete values as entry points for
query processing in the cache, we can produce correct results
for eligible query predicates. However, it is unreasonable to
accept all conceivable cache group configurations. As cache
misses on filling columns may provoke unforeseeable load-

10 Theo Härder, Andreas Bühmann

ing operations, we ought to estimate the effects and costs of
those operations as accurately as possible. In particular, we
would like to prevent excessive, uncontrollable cache table
loading.

Although the cache can be populated asynchronously to
the transaction that observes the cache miss and therefore
a burden on the response time of this transaction can be
avoided, uncontrolled loading is highly undesirable: It will
influence the transaction throughput in heavy-workload sit-
uations, because substantial extra work, which can hardly be
estimated and preplanned, will be required from the cache
and backend DB servers.

Specific cache group configurations may even exhibit a
recursive loading behavior, which jeopardizes their caching
performance. Once cache filling is initiated, the enforcement
of cache constraints may require multiple phases of record
loading until all specified constraints are re-satisfied.

Cache groups are called safe if such a recursive loading
behavior cannot occur under any circumstances. Therefore,
we elaborate safeness conditions for cache group configura-
tions: Upon a miss on a filling column, we want the initiated
cache loading to stop after a single pass of loading opera-
tions through the cache tables—starting from the root table
to all member tables reachable via RCCs.

Apparently, RCC cycles play the critical role for recur-
sive loading situations: They can make a cache group un-
safe. For this reason, we explore cycles in detail, looking at
safeness: Our goal is to find a set of design rules that will
preclude unsafe cache groups. In Sect. 4.3 we will shortly
revisit query evaluation correctness in the context of RCC
cycles.

4.1 Properties of RCC cycles

An RCC cycle (or cycle for short) is a closed path of tables
connected by RCCs. In an atomic cycle each table is visited
only once (apart from start and end table being the same);
such a cycle cannot be decomposed into smaller subcycles.
An atomic cycle can furthermore be isolated, which means
it does not share tables with any other cycle. (Non-atomic
cycles cannot be isolated: They share tables with their sub-
cycles.) If only U columns participate in a given cycle, we
call it a U-cycle.

An RCC cycle is said to be homogeneous, if it involves
only a single column per table, for example, T.c → V.d,
V.d →W.e, W.e→ T.c (Fig. 5). In contrast, a cycle is said
to be heterogeneous, if it involves more than one column in
some participating table [2].

An initiating column of a cycle is a column of some
cache table X (e. g., T in Fig. 5) whose values initiate the
loading of cycle-induced records. This means that table X
must be reached by an RCC not belonging to the cycle. In
general, more than one column can be initiating in a given
cycle.

T

V

W

NU

NU NU
c

d

e
NU
b

Fig. 5 A homogeneous RCC cycle

V

T

W

S

a

b c

d

e f
U

Fig. 6 Heterogeneous RCC cycles

4.1.1 Homogeneous cycles

Example 8 In Fig. 5, we have sketched an isolated homoge-
neous RCC cycle comprising only NU columns:

T.c→V.d→W.e→ T.c .

Let T.c be its only initiating column (the RCC responsible
for that is indicated). If cache table T is populated with some
records that have the values VS = {v1, . . . ,vm} in T.c, these
values become complete in the succeeding column V.d, be-
cause RCC T.c→ V.d forces all records of σd∈VS VB into
cache table V .

By the same argument, in each column of the cycle a
subset of VS is made complete: If some value v j of VS does
not occur in some (backend) table belonging to the cycle
(e. g., if σd=v j VB is empty), it cannot show up in the cache,
which is irrelevant for its completeness in V.d. But v j will
not be loaded into the following columns. This means only
a subset R ⊆ VS becomes value complete in the initiating
column T.c, before the loading stops.

The loading actions caused by an isolated homogeneous
cycle stop at the latest when the initiating table is reached
during the maintenance of RCCs: Because no new values
ever populate the initiating column, this process is not recur-
sive.

4.1.2 Heterogeneous cycles

We take a look at isolated heterogeneous cycles now: What
are the properties of NU columns participating in such a cy-
cle?

Example 9 Assume in Fig. 6 that V.b is an initiating column
and receives a set VS of values. The RCCs V.b→W.c and
W.c→ T.d populate columns W.c and T.d then. The set VS
may shrink along this population process to R⊆VS. The rec-
ords σd∈R TB inserted into T may carry a different set of val-
ues in T.a, which keeps the loading of this cycle “running”.

Value Complete, Column Complete, Predicate Complete 11

T
a bb

b

Fig. 7 Pair of smuggler relationships (path p)

We denote this effect that “smuggles” a set NV of new val-
ues into the RCC cycle by T.d T.a. Obviously, NV may
force the cycle-induced loading to begin a second round and
so on.

Definition 9 (Smuggler relationship) Let T.a and T.b be
two different columns of the same cache table T . We use the
term smuggler relationship between T.a and T.b, in sym-
bols T.a T.b, to describe the influence of T.a’s values on
T.b’s values due to the records of TB inserted into T .

As we have seen in the example, isolated heterogeneous
RCC cycles definitively cause extensive recursion [10]. This
is even true in very simple cache group configurations.

Example 10 Assume table S in Fig. 6 with an RCC S.e→
S. f , which may represent the employee hierarchy of some
company. As soon as a single record is inserted into table S
(representing a manager with S.e = v as primary key), the
entire (sub-)hierarchy of S under this person is recursively
loaded into S. Even in the degenerate case of a U/U RCC
S.e→ S. f , recursive loading operations may happen in S.
Such an RCC can be used to model linear list structures. A
single reference to some item (i. e., a value of S.e) forces all
following list items into S.

4.2 Dangerous cache groups

Having come so far, we are capable of evaluating two classes
of cycles in terms of safeness: Isolated homogeneous cycles
are safe, isolated heterogeneous cycles are not. In order to
generalize our findings to arbitrary cycles, let us study in de-
tail the properties of the specific effect that makes (isolated)
heterogeneous cycles unsafe.

Consider two columns T.a and T.b of a cache table T and
the smuggler relationship T.a T.b between them: When-
ever a set Ra of values reaches T.a, a different set Nb of (new)
values appears in (or is smuggled into) T.b. Of course, the
same is true for the other direction T.b T.a with different
sets Rb and Na. If we imagine an RCC cycle in which both
relationships occur, is there any dependency between these
two?

Assume that the path

p = T.a T.b→ ··· → T.b T.a

is the interesting part of such an RCC cycle (Fig. 7). We start
in T.a with a set Ra of values, walk along the path p observ-
ing the induced sets of values and finally reach T.a again
with a set Na of values. If Na \Ra is not empty, then new

values have been smuggled in; by analogy to the isolated
heterogeneous case, any cycle containing p would be unsafe.
Let us assume further that the subcycle T.b→···→ T.b of p
is homogeneous, so that it does not introduce new values,
which would disturb our considerations (i. e., Rb ⊆ Nb).

We distinguish two cases, T.b being U or NU. If T.b is
unique, there is in T only a single record per value of this
column. Any value v in T.a, which corresponds to some set
of records V ⊆σa=v TB, will thus be mapped by T.a T.b to
some values W unique in T.b. Therefore, when W is mapped
back by T.b T.a, we get v again: M = πa σb∈W TB consists
only of this single value. Together with Rb ⊆ Nb this yields
Na ⊆ Ra for the U case: No new values appear; all value
changes have been compensated. Because of this behavior
we arrive at the following recursive definition:

Definition 10 (Compensating smuggler relationship) We
call two smuggler relationships a b and b a (in this
order) compensating with respect to a path p, if b is a U
column and there are either no other smuggler relationships
between them on the path or only compensating pairs.

We write x! y if we want to refer to the pair x y and
y x, whether it is compensating or not.

If T.b is non-unique, the main conclusion of the U case
does not apply: M may contain new values besides v, and Na
may thus receive new values (compared with Ra).

In summary, every path that contains only pairs of com-
pensating smuggler relationships (if any) does not introduce
new values (not counting the different sets of values in col-
umns between the pair; they are shielded from the outside).
Any other path, however, may introduce new values, which
leads to recursive loading in case of a cycle. Therefore, a
cache group is safe if and only if it does not contain hetero-
geneous RCC cycles of such kind.

4.3 Correctness in cycles

RCC cycles do not offer any new challenges regarding query
evaluation correctness: For our probing approaches it does
not matter whether there are cycles or not, because they ex-
amine a table and its neighbors locally. The use of control
columns, the determination of complete columns for opti-
mized probing, and the subsequent use of RCCs for join
processing in the cache only rely on the validity of RCCs,
which is guaranteed in every case.9

But does a homogeneous cycle not resemble a somewhat
larger self-RCC, so that column completeness is guaranteed
for cycle columns? This would allow us to use our advanced
probing strategy.

Example 11 Let us return to the isolated homogeneous cycle
in Fig. 5:

T.c→V.d→W.e→ T.c .

9 The completeness of U columns may also be used; but this is in-
variant and independent of cycles, too.

12 Theo Härder, Andreas Bühmann

T

V NU

NU
b

c

a

U

ac

NU T a b
t1 x 1
t2 x 2
t3 y 1
t4 y 2

V e
v1 1
v2 1
v3 2

Fig. 8 Unloading in the presence of a cycle (TV)

If cache table T is populated with some records that have the
values VS = {v1, . . . ,vm} in the initiating column T.c, these
values are not (necessarily) value complete in T.c because T
does not contain all records of σc∈VS TB, which are needed.
Nevertheless, the succeeding column V.d is (induced) com-
plete, because RCC T.c→V.d forces all records of σd∈VS VB
into cache table V .

By the same argument, all columns in the cycle become
complete, for example, W.e via V.d →W.e, except for the
initiating column T.c: If some value v j of VS does not oc-
cur in some table belonging to the cycle (e. g., σd=v j VB is
empty), it cannot show up in the cache, which is irrelevant
for the completeness of all cycle columns but the initiating
column. Assume, some values v j were lost in this way while
the cycle was populated. Then the set of remaining values R
in the last but one table, from where an RCC is closing the
cycle (here W with W.e→ T.c), is a proper subset of VS
(R ⊂ VS). In this case, the cycle-closing RCC does not load
all records for all values of VS into the “initiating” table.
Hence, such an initiating column may carry some values v j
that are not complete in the cache and, in turn, the column
completeness is violated.

Because it is not guaranteed that all cycle-induced load-
ing operations reestablish (through R = VS) value complete-
ness in initiating columns, we cannot use our advanced prob-
ing strategies that rely on the columns’ completeness. This
result refutes a proof given by Altinel et al [2]: They claim
that all the columns involved in a homogeneous cycle were
complete; in their proof they neglect the fact that (in our
words) a value v j can be complete in a column even if it
does not exist in this column. This means that not all values
are necessarily propagated around the whole cycle.

As we have seen in the preceding example, we can guar-
antee (induced) completeness only for cycle columns that
are the only columns in their tables for which loading is in-
duced by an RCC; this matches Observation 1.

4.4 Unloading in cyclic cache groups

Although some types of cycles are acceptable in terms of
safeness, they are very hard to manage such that unloading
individual candidate values from cache tables containing cy-
cles does not always pay off.

Example 12 Assume cache group TV in Fig. 8 is initially
empty10, its filling column’s set CT.a of candidate values is
{x,y} and a query predicate T.a = x arrives. As a conse-
quence, x is loaded into control column ac in the example
and is is made complete in T.a by loading t1 and t2 into T .
RCC T.b→ V.c forces v1, v2, and v3 into table V , making
values 1 and 2 value complete there. In turn, V.c→ T.b im-
plies loading of t3 and t4 into T thereby making 1 and 2 value
complete (let t3 and t4 be the only records having y-values in
TB.a). Because y was not referenced by a query predicate,
it is not made complete (despite being a candidate value).
Assume in this situation, a query predicate T.a = y arrives,
which explicitly makes y complete (ac : x,y), although no
further record is loaded: Value y has already been complete
before, but this fact was not derivable from the cache con-
tents.

When either x or y is not referenced for a long time, its
predicate extension should be unloaded. Unloading y drops
it from ac and attempts to remove all cache instances with
root records carrying value y in T.a. Removing t3 and t4
(in either sequence or at once) would violate V.c → T.b;
these records must therefore remain in the cache. In the same
way, unloading x (besides dropping it from ac) has to check
whether t1 and t2 can be removed from T . However, unload-
ing of any of them would violate V.c→ T.b for value 1 or
value 2.

In this example we loaded and tried to unload the predi-
cate extensions of two candidate values x and y, which were
involved in a simple cycle. Because the RCC cycle forced
all cache instances to stay in the cache, removing each cache
instance or even each unload unit separately was unsuccess-
ful. The example further shows that testing which cache in-
stances can be or cannot be removed is very expensive in
the presence of cycles and is not always successful when ap-
proached step by step. In cyclic cache groups, only an entire
collection of intertwined units of unloading—corresponding
to a set of candidate values (in our example x and y)—could
simply be removed at once, which, however, often would af-
fect high-locality candidate values, too. Furthermore, to de-
tect an such an intertwined collection is very hard and, in the
worst case, the collection could comprise the entire cache
content. Therefore, depending on a cost model, we propose
to purge the cache from time to time and to continue with an
empty cache in such ugly cases.

5 Cache group design

When designing a cache group, we proceed top-down and
start with a predicate type—of the form given in Eq. (1)—
that we would like our cache group to primarily support. We
can then easily define a root cache table with a filling col-
umn for each range predicate RPi in our predicate type. For

10 In DBCache [2], T.a would have been loaded via a cache key,
which would create an unsafe cache group TV , because two complete
NU columns appear in a cache table.

Value Complete, Column Complete, Predicate Complete 13

each equi-join predicate EJ j, in turn, we add a correspond-
ing RCC to our cache group design, creating new (member)
cache tables as necessary.

On the one hand, a cache group so designed should en-
able an as flexible use as possible for predicate evaluation.
On the other hand, “dangerous” loading behavior—that is,
excessive population of cache groups—must be prevented.
Hence, only safe cache groups are acceptable.

5.1 Restrictions for cache group design

In the following, we capture our observations in some de-
sign rules for cache groups, which guarantee our design ob-
jective of safeness. We proceed with increasing complexity
and coverage of cache group configurations.

As already indicated in Sect. 4, we do not need to re-
strict the selection of filling columns in root tables of cache
groups. Therefore, we need to deal with RCC cycles only.

Rule 1 Isolated heterogeneous RCC cycles are not allowed.

Isolated heterogeneous RCC cycles are dangerous, no
matter, whether or not both cycle columns in some table
are U/U, U/NU or NU/NU. In contrast, isolated homoge-
neous RCC cycles are acceptable, because cache table load-
ing stops after a single round of cycle-induced loading oper-
ations.

Even multiple homogeneous U-cycles that share some
cache tables are acceptable: A new value in the column of
one RCC cycle induces a single new value in the column of
another RCC cycle, if both columns are in the same table.
This value induces a single round of loading in the second
cycle stopping at the initiating column at the latest. (The
U-cycles are subcycles of a heterogeneous cycle with only
compensating pairs of smuggler relationships.)

Rule 2 Heterogeneous RCC cycles with non-compensating
smuggler relationships are not allowed.

In Sect. 4.2 we have discovered which heterogeneous cy-
cles are unsafe; those ones are prohibited here. This rule
includes rule 1 as a special case: In isolated cycles there
are no pairs of smuggler relationships, which could be non-
compensating.

A proof that these two design rules identify exactly all
unsafe cache group configurations is given in Appendix A.

5.2 Optimization of cache group use

If we observe the two rules derived above when designing
a cache group, we come up with a set of cache tables that
guarantee the evaluation correctness of query predicates in
the cache and that do not hide performance surprises. We
may exploit all values known to be complete to check and
evaluate equality or range predicates; the RCCs serve equi-
join operations where the arrow of an RCC indicates the join
direction.

V

T

W

a

b c

Fig. 9 Synchronous RCCs and resulting optimization RCCs (G1)

V

T

W

a

b c

X
d

e

Fig. 10 Optimization RCCs depend on the context (G2)

5.2.1 Optimization RCCs

In special cases, we are able to extend the possibilities of
how joins can be performed without modifying the cache
contents. If we have an RCC r = S.a→ T.b between tables
S and T where S.a is a complete column, and if T.b is a com-
plete column because T is targeted only by r, then we can in-
fer that the inverse RCC T.b→ S.a always holds. Hence, we
can enhance our cache group design by an RCC without any
additional cost. Such RCCs are called optimization RCCs;
they are context dependent like the induced completeness of
a column. Note that optimization RCCs do not interfere with
induced completeness of any column of their target table.

Example 13 Let us take a look at more advanced examples
of optimization RCCs in cache group G1 (Fig. 9): Let us as-
sume that columns V.b and W.c are loaded only by a pair
of RCCs originating at the same column T.a; we might call
such RCCs synchronous, because they make the same set of
values in their target columns value complete: Each value v
of T.a is complete in both V.b and W.c, even if it does not ex-
ist there. Since no other values reach those columns, we can
add the optimization RCCs V.b→W.c and W.c→ V.b: If a
value exists in one column, it is complete in the other one.
Of course, every value in one of these columns is value com-
plete in the same column as well; in other words, V.b and W.c
are induced complete.

Adding another table X and an RCC X .d→W.e inhibits
induced completeness of W.c, because new values are smug-
gled into W.c and do not get complete there (G2; Fig. 10).
Because these new values do not occur in V.b (even if they
exist in VB), the optimization RCC W.c → V.b no longer
holds. In contrast, RCC V.b→W.c remains valid: Surplus
values in the target column of an RCC never matter; value
completeness of relevant values is never overridden.

All that does matter for the decision whether or not an
optimization RCC x → y is valid is the set of values for
which we know they are value complete in y. Let us denote
this set by K(y) for any column y. In general, K(y) is dif-
ferent from the set E(y) of values that exist in y. If we can
deduce from the constraints specified for a cache group that
K(y) ⊇ E(x) holds for an arbitrary pair of columns x and y,

14 Theo Härder, Andreas Bühmann

we are allowed to add x→ y. This is a direct consequence of
the definition of RCCs.

Example 14 Let us apply this thought to G2 and let us col-
lect what we know about the sets E(x) and K(x) for col-
umns x: Every value existing in T.a is complete in both
V.b and W.c, that is, E(T.a)⊆K(V.b) and E(T.a)⊆K(W.c).
Column V.b is loaded only via RCC T.a→ V.b, so we have
E(V.b) → E(T.a). Column W.c is loaded via T.a → W.c,
but also via W.e W.c; we describe the values smuggled
into W.c by means of a function f , which yields

E(W.c)⊆ E(T.a)∪ fW.e W.c(E(W.e)) .

From this set of subset relationships we can now deduce that
E(V.b) ⊆ E(T.a) ⊆ K(W.c), which confirms optimization
RCC V.b→W.c.

Such value-set considerations could lead to an algorithm
that finds all valid optimization RCCs and induced complete
columns of a given cache group. Before striving for this goal,
however, we still have to clarify the influence of smuggler
relationships (hidden above behind f) and incorporate their
compensating behavior in cycles into the reasoning.

5.2.2 More exotic cases

We revisit the differences between cache groups G1 and G2
in Figures 9 and 10 and assume that T.a is complete in both.
Given a value x in T.a we can then evaluate the following
predicate P in G1:

P = (T.a = x∧T.a = W.c∧W.c = V.b) .

In G2, however, we had to remove the optimization RCC
W.c→ V.b because of the additional values smuggled into
column W.c via W.e W.c. Therefore P does not seem to be
eligible for evaluation in G2 at first sight. But looking more
carefully, at W.c we are restricted to values that also exist
in T.a. We thus stay within the set of values that are com-
plete in both W.c and V.b due to synchronous RCCs. As we
know from G1, the join W.c =V.b is correct for these values.
Therefore the predicate P can be also evaluated in G2.

We have just discovered something that behaves like a
path-dependent RCC: Whenever we reach cache table W via
T.a→W.c during the construction of evaluable predicates,
we are allowed to use W.c→V.b; whenever we get there via
a different path, we are not.

6 Use of cache groups

6.1 Single cache groups

Let us illustrate all of our cache group concepts in a realis-
tic setting. In Fig. 11, we have visualized cache group G3
consisting of four cache tables Customer (C), Order (O), Or-
derLine (L), and Product (P), which are connected by three
RCCs C.cid → O.cid, O.oid → L.oid, and L.pid → P.pid.

O NU

NUU NU

NUU NU

C

L

PUU

cid

oid

cid

oid pid

lid

pid

ctype name

Fig. 11 Cache group G3

Let the column C.ctype be specified as the only filling col-
umn with a set CC.ctype of candidate values. Obviously there
are a number of columns that can be used as entry points of
queries (for complete values):

– by probing in control columns
– filling columns: C.ctype
– other columns having control columns: O.cid, L.oid,

P.pid
– by probing directly in the column

– U columns: C.cid, O.oid, L.lid, P.pid
– induced complete NU columns: O.cid, L.oid

In G3, we can add two optimization RCCs O.cid→C.cid
and L.oid → O.oid to identify all applicable equi-joins to-
gether with their directions. Because they do not influence
the loading of G3, induced completeness of O.cid and L.oid
remains intact.

As we know, if a probing operation for some entry col-
umn T.c verifies a value x to be complete, we can use T.c to
start the evaluation of T.c = x. Now, any enhancement of this
predicate with equi-join predicates is allowed if these predi-
cates correspond to RCCs reachable from cache table T . As-
sume, we find ‘gold’ in the control column of C.ctype, then
the predicate

C.ctype = ‘gold’∧C.cid = O.cid
∧O.oid = L.oid∧L.pid = P.pid

can be processed in the cache correctly. Because the predi-
cate extension (with all columns of all cache tables) is com-
pletely accessible, we may specify any column for output.
Of course, we can refine a correct predicate by “and-ing”
additional selection terms (referring to cache columns) to it,
for example,

C.ctype = ‘gold’∧C.name like ‘Smi%’∧O.oid > 99∧ . . .

To illustrate the subtle interplay of RCCs and induced
complete columns, we specify an additional RCC P.pid →
L.pid in cache group G4 shown in Fig. 12—assuming the
presence of the former optimization RCCs. Since now L.oid
is not an induced complete column anymore, RCC L.oid→
O.oid is no longer redundant; in contrast, it contributes to
the loading of additional records into cache table O. In turn,
O.cid looses its induced completeness. The RCC O.cid→

Value Complete, Column Complete, Predicate Complete 15

O NU

NUU NU

NUU NU

C

L

PUU

cid

oid

cid

oid pid

lid

pid

ctype name

Fig. 12 Cache group G4

C.cid now enforces the loading of additional records into
cache table C; these records have a disastrous effect on the
population of G4. They imply the loading of additional rec-
ords into O via C.cid → O.cid, and, in turn, these records
force additional records into L via O.oid → L.oid, which
again populate P with additional records via L.pid→ P.pid
and so on. As you may have noticed, we have created a het-
erogeneous cycle.

The NU filling column C.ctype may receive new val-
ues V = {v1,v2, . . .} when additional records are loaded into
table C through O.oid→C.cid. But even if these values are
candidate values of C.ctype (i. e., they are in CC.ctype), they
need not be made complete in our approach.11

We can describe the dependencies in the overall cycle by

C.cid→ O.cid O.oid→ L.oid L.pid→ P.pid
→ L.pid L.oid→ O.oid O.cid→C.cid .

It can be perceived as a combination of three homogeneous
subcycles, which are coupled by pairs of smuggler relation-
ships:

C.cid←→ O.cid! O.oid←→ L.oid! L.pid←→ P.pid .

While each of these cycles is non-recursive in its isolated
form, their combination is no longer harmless, because the
individual cycles exchange values. The second pair of smug-
gler relationships L.oid! L.pid (NU/NU) is not compen-
sating and makes this cache group unsafe.

Of course, if we remove the former optimization RCC
L.oid→O.oid from G4, the middle cycle disappears. All re-
maining cycles provoke no harm. However, as compared to
the situation in G3, the additional RCC P.pid→ L.pid abol-
ishes the induced completeness of L.oid: It completes a ho-
mogeneous cycle L.pid → P.pid → L.pid with L.pid as its
initiating column, which smuggles new values into L.oid.

11 If C.ctype were a cache key [2], the values V would have to be
made complete, which would insert sets of records σctype∈V CB into C,
which as a second filling source—independently of the records that
already are in the heterogeneous cycle and keep it “running”—would
pump this additional “feed” into the cycle.

O NU

NUU NU

NUU NU

C

L

PUU

cid

oid

cid

oid pid

lid

pid

ctype name

G5

G6

Fig. 13 A cache group federation F

6.2 Federation of cache groups

Often multiple applications should be supported by a DB
cache. Hence, for each application we must design a cache
group by observing the restrictions given in Sect. 5.1. Some
of these individually designed cache groups may have some
cache tables in common. The transparency requirements for
cache tables, however, demand that each table (logically) ap-
pears only once in the cache.

For this situation, there is no perfect solution12. If we
manage disjoint cache groups overlapping in some tables,
we may necessarily create copies in the cache. Then we have
to cope with keeping record copies consistent. Furthermore,
query optimization becomes more complex, because possi-
ble cache table collections in separate cache groups have to
be considered. When a query is evaluated, the cache man-
ager may have to probe in several tables to identify a match-
ing predicate extension.

For these reasons, cache groups overlapping in some ta-
bles should be merged into cache group federations, which
opens a number of research questions. As a first requirement,
we must apply our design restrictions to the cache group fed-
eration as a whole. When unsafe situations occur (e. g., a
heterogeneous cycle evolves upon federating a cache group)
we must modify and refine our design, which leads to mod-
ifications of the individual cache groups. For example, un-
safe cycles would have to be broken up by removing RCCs
from some of the participating cache groups. Although per-
formance surprises in the form of recursive loading opera-
tions will be prevented if we enforce our design restrictions,
the individual cache groups in the federation may strongly
influence the loading behavior of each other.

Example 15 Figure 13 shows two cache groups G5 and G6,
which have been derived from G3 by slight modifications.
P.pid is the only filling column of G6 and table L is shared
by both cache groups. Apparently, the induced completeness
of L.oid in G5 and of L.pid in G6 (when viewed separately)
has disappeared due to the shared representation of table L.

In this case, the federation F may provide some (small)
gains as compared to the individual cache groups G5 and G6.

12 If a problem has no solution, it may not be a problem but a fact,
not to be solved but to be coped with over time. (Shimon Perez)

16 Theo Härder, Andreas Bühmann

If the record sets of G5 and G6 overlap on table L, some stor-
age space is saved due to shared records. Because the RCCs
of both cache groups do not interfere, G5 and G6 remain
separated to a large degree.

This is no longer true if we replace G5 by G3. In this
case, we obtain a homogeneous RCC cycle L.pid→ P.pid→
L.pid, which is “activated” by insertions in both G3 and G6.
Although evaluation correctness is not challenged and cycle-
induced loading always stops in the first round, the RCC cy-
cle seems harmful in many situations. Technically the cy-
cle has two initiating columns that pump a lot of records—
unwanted in both G3 and G6—into the cache group federa-
tion.

Hence, in the general case, the penalty each group in a
federation must pay as “membership fees” is often much
larger than the gain due to record sharing. In practical sit-
uations, cost models have to be provided to decide whether
the management of multiple cache groups is more beneficial
in the form of cache group federations or separate caches.

7 Related work

7.1 TimesTen

In our terms, TimesTen cache groups [20] consist of a root
table and a number of member tables connected via mem-
ber constraints (corresponding to PK/FK relationships in the
backend DB). A TimesTen cache instance is a collection of
related records (also denoted as a complex object) that is
uniquely identifiable via a cache instance key. For this pur-
pose, the root table carries a single identifier column (U)
whose values represent cache instance keys.

Because all records of cache instances must be uniquely
identifiable, they form non-overlapping tree structures (or
simple disjoint directed acyclic graphs) where the records
embody the nodes and the edges are represented by PK/FK
value-based relationships. Individual cache instances repre-
sent the units of loading, aging, and replacement.

Note, there is no equivalence to our notion of filling col-
umns (possibly NU), because cache loading is not based on
reference to specific values (parameterized loading). In con-
trast, it is controlled by the application (which gives some-
thing like prefetching directives or hints) where various op-
tions are supported for the loading of cache instances (“all at
once”, “by id”, “by where clause”: specified independently
from a cache group). There is no automatic control of value
completeness or, as a consequence, of completeness of pred-
icate extensions. When declarative, set-oriented query pro-
cessing is performed in the cache, the user has to guarantee
for them. Prevalent operations seem to be based on naviga-
tion, where the application controls loading and unloading
of cache instances. Both operations are (at least conceptu-
ally) very simple, because they deal with disjoint collections
of records. Furthermore, we adhere to a value-based table
model—separate from the underlying relational model—,

which does not require the matching of RCCs and back-
end schema constructs (e. g., PK/FK pairs). In summary, the
TimesTen solution can be considered a simple special case
of our approach13.

7.2 DBCache

Cache groups in the DBCache project have their origin in the
TimesTen approach but are substantially enhanced towards
cache-supported declarative query processing. The approach
taken by DBCache rests on the concepts of domain com-
pleteness, cache keys, RCCs, and cache groups [2] (some of
which were co-defined by one of the authors while he was
participating in the DBCache project).

Domain completeness and cache keys are not orthogo-
nal concepts and are responsible for the limitation and some
undesired behavior of cache groups. A cache key column is
domain complete per se, which means that there is no way to
prevent cache loading for any value (even smuggled)in such
a column, although only loading of values that promise “lo-
cality of reference” is the ultimate goal of caching. Hence,
this approach does not enable controlled cache loading. On
the other hand, for cache safeness one needs to observe the
cache key rule that at most one cache key column may be of
type NU.

In our approach, the concepts candidate value and con-
trol column (borrowed from the MTCache project) together
with the pivotal term value completeness enable orthogonal
specification of what is to be cached and what is guaranteed
to be value complete. The concept cache key and the cache
key rule are not needed anymore. Domain completeness (our
term: column completeness) is reduced to an option for a
simple specification of candidate values and for rapid prob-
ing. The introduction of control columns for target columns
of RCCs and for filling columns extended the use of RCCs
and enabled a more powerful and flexible probing mecha-
nism; a direct consequence is the option of utilizing negative
caching.

The cache groups of DBCache are implicitly constructed
using cache keys and RCCs (bottom-up). In contrast, we
specify cache groups declaratively starting with the predi-
cate type that is to be supported (top-down). We start with
the concept value completeness and can constructively gen-
eralize our approach to predicate completeness for classes
of PSJ predicates. By rewriting the definition of RCCs in
terms of value completeness, we discovered the mistake in
the proof “domain completeness in homogeneous cycles” [2,
Sect. 3.4.2]. In contrast to DBCache, we have defined all
issues related to cycles more precisely and have explored
their properties in detail (centered around the concept smug-
gler relationship). Furthermore, this refined consideration
revealed the existence of optimization RCCs and also path-
dependent RCCs.

13 Note, we do not assess its practical usefulness nor its inherent
cache performance.

Value Complete, Column Complete, Predicate Complete 17

For convenience, we still use the two terms cache group
and RCC, although essential caching operations (controlled
loading, selective unloading, probing via an RCC’s source
column, use of negative caching) are different from the DB-
Cache approach. As a major advantage of our approach, we
regard cache groups as a unit of design and can explicitly
control their loading behavior (in our case, a cache group
does not grow if another set of RCCs (from another cache
group) makes more cache tables reachable from the root
table). Unexpected growing of such reachability graphs is
a problem of its own when constructing federations from
cache groups.

8 Conclusions and outlook

We have explored cache group design in full depth and have
derived two rules for safeness as well as simple conditions
for identifying complete columns. Flexible probing strate-
gies enable us to recognize single complete values in oth-
erwise non-complete columns. With these rules and strate-
gies, cache groups guarantee correct evaluation of specific
PSJ queries and safe loading of the related predicate exten-
sions whenever new instances are demanded. Furthermore,
we have shown that optimization RCCs can be exploited to
improve the flexibility and usability of cache groups at no
additional cost.

Our first attempts to design cache groups were based on
something like a bottom-up approach: We started with ta-
bles and RCCs and then added filling columns. In doing so,
we experienced many surprises when populating the cache
and essentially did not know what was influenced by what.
The decisive step that facilitated the understanding of cache
groups was to apply a top-down approach. Using this insight,
we arrived at the concept of cache group federations and
could easily explain the effects of different predicate types
on cache groups and their unwanted mutual augmentation of
cache table loading. Considering the cache group approach
in this way, it becomes clear that mutual RCC dependen-
cies quickly lead to large cache table populations. Hence, if
a number of different overlapping predicate types should be
supported by a cache, it is often better to provide the com-
plete table contents in the cache (full-table caching).

We are only at the beginning of a promising research
area concerning constraint-based and adaptive DB caching.
Hence, a number of important issues remains to be solved or
explored.

8.1 Updates and adaptation

Other interesting research problems occur if we apply dif-
ferent update models to DB caching. Instead of processing
all (transactional) updates in the backend DB first, one could
perform them in the cache (under ACID protection) or even
jointly in cache and backend DB under a 2PC protocol. Such
update models may lead to futuristic considerations where

the conventional hierarchic arrangement of frontend cache
and backend DB is dissolved: If each of them can play both
roles and if together they can provide consistency for DB
data, more effective DB support may be gained for new ap-
plications such as grid or P2P computing.

Improving the adaptability is another important problem.
How can constraint-based approaches evolve with changing
locality patterns of the workload? To support frequently re-
quested join operations by additional RCCs or to remove
RCCs not exploited anymore needs adaptive cache group
specifications!

Hence, for each variation of constraint-based caching,
quantitative analyses must help to understand which cache
configurations are worth the effort. For this purpose, a cache
group advisor can be designed to support the DBA in the
specification of a cache group when the characteristics of
the workload are known. Here, the expected costs for cache
maintenance and the savings gained by predicate evaluation
in the cache can be determined thereby identifying the trade-
off point of cache operation. For example, starting with the
cache tables and join paths exhibiting the highest degrees of
reference locality, the cache group design can be expanded
by additional RCCs and/or tables until the optimum point of
operation is reached. On the other hand, such a tool may
be useful during cache operation by observing the work-
load patterns and by proposing or automatically invoking
changes in the cache group specification. This kind of self-
administration or self-tuning opens a new and complex area
of research often referred to as autonomic computing.

8.2 Other predicate types

So far, predicate completeness can be achieved for equal-
ity and range predicates combined with equi-join predicates.
Varying the fundamental idea of cache groups, we can ex-
plore the probing and completeness conditions of other types
of predicates, for example, aggregate predicates or, for spe-
cialized use, recursion predicates. Of course, all these ideas
of constraint-based caching are not restricted to the rela-
tional model. They may be applied equally well to other data
models and the caching needs of their applications, for ex-
ample, to XML documents and XQuery operations.

Acknowledgements We would like to thank M. Altinel, Ch. Born-
hövd, and C. Mohan for many fruitful discussions while Theo Härder
spent his sabbatical at the Almaden Research Center of IBM.

A Proof

Let us show that our design rules prevent dangerous cache group feder-
ations (and dangerous cache groups as a special case, of course). More-
over, we are going to show that our rules are precise (i. e., that there is
not any safe cache group federation that our rules consider unsafe).

Theorem 1 A cache group federation F is safe if and only if Rules
1 and 2 are followed.

18 Theo Härder, Andreas Bühmann

We proceed by dividing the space of all possible cache group fed-
erations into disjoint classes (discussed in five cases below) for each of
which we will determine whether our rules match and analyze whether
the cache groups in this class are safe. If this analysis and our rules
agree in the question of safeness in every case, our proof is complete.

During the proof we use sketches of cache group configurations
for illustrations: Circle and arcs drawn with a straight line indicate ho-
mogeneous RCC cycles or parts thereof. The familiar zigzag arrows
represent smuggler relationships. The columns of cache tables that are
involved are not shown explicitly: Of course, at each end of a smuggler
relationship there is a column (both in the same table); a homogeneous
cycle may traverse any number of columns. Some columns may be
highlighted by a black dot in order to draw attention to them.

Let us begin with the simple cases. Each of the subsequent cases
is more complex and implicitly excludes the cache group federations
discussed so far.

Case 1 There are no cycles in F .

Cache loading follows RCCs (only): Since every path of loading
steps through F visits each RCC at most once (due to the absence of
cycles), no recursive loading is possible and F is safe. Our rules con-
sider F safe as well, because they only deal with cycles.

For the following cases, we can assume that there is at least one
cycle in F .

Case 2 Every cycle in F is homogeneous.

In this case, any two of the homogeneous cycles in F cannot be
coupled by a pair of smuggler relationships: Suppose there were such
cycles C1 and C2,

C1 2C 3C

then there would also be a heterogeneous cycle C3, which contradicts
our main assumption of this Case 2. So each homogeneous cycle is
either isolated or only connected to other homogenous cycles directly
on the same column.

If a new value v appears in a column c of such a cycle, the loading
proceeds along the cycle (and probably other connected homogeneous
cycles) with only this value v. As soon as the cycle has been traversed
once and the loading process has reached c again—given that v appears
in every (backend) column of the cycle—, no further loading steps are
necessary, since v has already been made complete in the successor
of c. If v does not appear in every column, the loading even stops ear-
lier. Therefore no recursive loading is possible and F is safe.

Since there are no heterogenous cycles, our rules do not apply and
thus consider F safe, too.

Here we are left with cache groups that have at least one heteroge-
nous cycle.

Case 3 There is a cycle C in F with a smuggler relationship R = T.a
T.b that does not pair up.

“R does not pair up” means that the inverse smuggler relation-
ship R′ = T.b T.a is not part of C. In this case, there must be an
atomic heterogeneous subcycle C′ of C that contains R. This cycle C′
is dangerous by the same arguments given in Sect. 4.1.2: R smuggles
new values into the cycle that have no chance of being compensated
because R′ is missing. Therefore, C enables recursive loading in the
cache group federation, which makes F unsafe.

Our Rule 1 applies only if C is isolated, in which case F would
be considered unsafe. Rule 2 does apply in any case, because R is a
non-compensating smuggler relationship. Federation F is thus deemed
unsafe, which matches the analysis above.

In the remaining cache group federations F , all smuggler relation-
ships appear in pairs in every cycle. This means that F basically con-
sists of homogeneous cycles coupled by pairs of smuggler relation-
ships. (Of course, there can be non-cyclic parts leading away from this

arrangement of cycles; but they cannot make the federation unsafe in
analogy to Case 1.) Here is an example:

Isolated homogeneous cycles are safe. To explore the interaction
between them, we regard the coupled homogeneous cycles as nodes
in a more abstract graph representation: The undirected graph M (for
meta-graph) comprises all homogeneous cycles as nodes and all pairs
of smuggler relationships (in cycles) as edges. Paths and cycles in this
graph are called meta-paths and meta-cycles accordingly.

The federations F in this Case 3 have another important property:
There are no meta-cycles in F (as indicated by the crossed-out edge
above): The meta-graph M is acyclic, which means it must be tree-
structured. Otherwise F would contain a heterogeneous cycle with
smuggler relationships that do not pair up—a contradiction, as illus-
trated by the following meta-cycle with three pairs of smuggler rela-
tionships:

Let us now consider linear sequences of coupled homogeneous
cycles in F (i. e., paths in M or meta-paths in F):

Obviously, if one such meta-path enables recursive loading, F is
unsafe. This also holds the other way round: If F is unsafe, there must
be at least one such meta-path responsible for this. If all meta-paths are
safe, F is, too. This means that all we need to analyze is the different
kinds of meta-paths.

The relevant columns in a meta-path are the ones participating in
the smuggler relationships (all other ones are only part of homoge-
neous paths). We say that two such columns a and b face each other if
they are arranged on opposite outer ends of smuggler relationships, as
shown here:

ba

Finally, we can distinguish two cases of facing columns.

Case 4 There is a meta-path in F that contains two NU columns facing
each other.

NU NU

Each NU column T.c shows the following behavior in combination
with its homogenous cycle: If a new value v appears in T.c, the ho-
mogeneous cycle may (given suitable backend contents) lead to value
completeness of v in the NU column T.c. This means that new records
are inserted into T , which may smuggle new values into the remaining
columns of T . These new values force loading steps in the meta-path
up to the facing NU column, where the behavior just explained starts
anew.

Therefore, these two remotely coupled homogenous cycles with
facing NU columns may activate each other recursively, and the feder-
ation F is unsafe.

It is easily checked that at least one of the two outermost pairs of
smuggler relationships is not compensating—no matter which point of
view in the overall cycle is chosen: For a pair a! b to be compensat-
ing, it is necessary that b is a U column. Here at least one of the two
NU columns appears in the role of b. This means that Rule 2 considers
F unsafe, too.

Case 5 In every meta-path in F , there are no NU columns facing each
other.

Value Complete, Column Complete, Predicate Complete 19

This means that either there are not any NU columns among the
facing columns of the meta-path or there is a configuration like the
following (as a part of the meta-path viewed from an arbitrary NU
column):

NU U U U

Here all pairs of smuggler relationships are compensating (when
viewed from the left): The rightmost one is compensating because it
has no smuggler relationships inbetween and the farther column is U.
Every other pair is compensating because the farther column is U and
all pairs to the right are compensating. This means that none of our
rules applies and the federation F is considered safe. The same ar-
guments hold in the above-mentioned case that there are not any NU
columns.

All that is left to show is that this kind of meta-path does not enable
recursive loading: Imagine a new value v inserted into the NU column
at the left-hand side. At first, this meta-path shows the same behavior as
sketched in Case 4: Value v may get value complete due to the homoge-
neous cycle; new records may be inserted because of the NU column,
which may smuggle new values into the other columns, which again
may force loading steps along the meta-path. But when this process
reaches the right end, it stops because for each value inserted into the
facing U column there is only a single record that has already been in-
serted (otherwise the value would not appear). Therefore the rightmost
homogeneous cycle has no further effect on the meta-path; only in the
homogeneous cycle itself the last loading steps will occur. Therefore,
this kind of meta-path and the federation F are safe.

As we have seen, our rules agree in every case with the result of
the safeness analysis. That concludes our proof. ut

References

1. Akamai Technologies Inc (2004) Akamai EdgeSuite. URL http:
//www.akamai.com/en/html/services/edgesuite.html

2. Altinel M, Bornhövd C, Krishnamurthy S, Mohan C, Pirahesh H,
Reinwald B (2003) Cache tables: Paving the way for an adaptive
database cache. In: VLDB Conference, pp 718–729

3. Amiri K, Park S, Tewari R, Padmanabhan S (2003) DBProxy: A
dynamic data cache for web applications. In: ICDE Conference,
pp 821–831

4. Andrews M (1998) Negative caching of DNS queries (DNS
NCACHE). Request for Comments (RFC) 2308, URL ftp://ftp.
rfc-editor.org/in-notes/rfc2308.txt

5. Anton J, Jacobs L, Liu X, Parker J, Zeng Z, Zhong T (2002)
Web caching for database applications with Oracle Web Cache.
In: SIGMOD Conference, pp 594–599

6. Bello RG, Dias K, Downing A, Feenan JJ Jr, Finnerty JL, Norcott
WD, Sun H, Witkowski A, Ziauddin M (1998) Materialized views
in Oracle. In: VLDB Conference, pp 659–664

7. Bühmann A (2005) Einen Schritt zurück zum negativen Daten-
bank-Caching (A step back towards negative database caching).
In: BTW Conference, Karlsruhe, pp 107–124

8. Dar S, Franklin MJ, Jónsson B, Srivastava D, Tan M (1996)
Semantic data caching and replacement. In: VLDB Conference,
Morgan Kaufmann, pp 330–341

9. Goldstein J, Larson P (2001) Using materialized views: A practi-
cal, scalable solution. In: SIGMOD Conference, pp 331–342

10. Härder T, Bühmann A (2004) Query processing in constraint-
based database caches. Data Engineering Bulletin 27(2):3–10

11. IBM (2004) IBM Cloudscape. URL http://www.ibm.com/
software/data/cloudscape/

12. IBM (2004) IBM DB2 Universal Database (V 8.1). URL http://
www.ibm.com/software/data/db2/

13. Keller A, Basu J (1996) A predicate-based caching scheme for
client-server database architectures. VLDB Journal 5(1):35–47

14. Larson P, Goldstein J, Guo H, Zhou J (2004) MTCache: Mid-
tier database caching for SQL server. Data Engineering Bulletin
27(2):35–40

15. Larson P, Goldstein J, Zhou J (2004) MTCache: Transparent mid-
tier database caching in SQL server. In: ICDE Conference, IEEE
Computer Society, pp 177–189

16. Levy AY, Mendelzon AO, Sagiv Y, Srivastava D (1995) Answer-
ing queries using views. In: PODS Conference, pp 95–104

17. Luo Q, Naughton JF (2001) Form-based proxy caching for
database-backed web sites. In: VLDB Conference, pp 191–200

18. Oracle Corporation (2004) Internet application server doc-
umentation library. URL http://otn.oracle.com/documentation/
appserver10g.html

19. Podlipinig S, Böszörmenyi L (2003) A survey of web cache re-
placement strategies. ACM Computing Surveys 35(4):374–398

20. The TimesTen Team (2002) Mid-tier caching: The TimesTen ap-
proach. In: SIGMOD Conference, pp 588–593

21. Zhou J, Larson P, Goldstein J (2005) Partially materialized views.
Tech. Rep. MSR-TR-2005-77, Microsoft Research, URL ftp://ftp.
research.microsoft.com/pub/tr/TR-2005-77.pdf

http://www.akamai.com/en/html/services/edgesuite.html
http://www.akamai.com/en/html/services/edgesuite.html
ftp://ftp.rfc-editor.org/in-notes/rfc2308.txt
ftp://ftp.rfc-editor.org/in-notes/rfc2308.txt
http://www.ibm.com/software/data/cloudscape/
http://www.ibm.com/software/data/cloudscape/
http://www.ibm.com/software/data/db2/
http://www.ibm.com/software/data/db2/
http://otn.oracle.com/documentation/appserver10g.html
http://otn.oracle.com/documentation/appserver10g.html
ftp://ftp.research.microsoft.com/pub/tr/TR-2005-77.pdf
ftp://ftp.research.microsoft.com/pub/tr/TR-2005-77.pdf

	Motivation
	Database caching
	Requirements
	Design space

	Constraint-based database caching
	Completeness
	Equality predicates
	Range predicates
	Equi-join predicates

	Probing for entry points
	Negative caching
	Probing strategies
	Complete columns

	Loading predicate extensions
	Candidate values in filling columns
	Control columns revisited
	Range predicates

	Cache groups
	Units of cache unloading

	Safeness of cache groups
	Properties of RCC cycles
	Homogeneous cycles
	Heterogeneous cycles

	Dangerous cache groups
	Correctness in cycles
	Unloading in cyclic cache groups

	Cache group design
	Restrictions for cache group design
	Optimization of cache group use
	Optimization RCCs
	More exotic cases

	Use of cache groups
	Single cache groups
	Federation of cache groups

	Related work
	TimesTen
	DBCache

	Conclusions and outlook
	Updates and adaptation
	Other predicate types

	Proof

