
SUPPORTING QUERY PROCESSING ACROSS APPLICATION
SYSTEMS

Aspects of Wrapper-Based Foreign Function Integration

Klaudia Hergula
Research and Technology (Dept. FTK/A), DaimlerChryslerAG, HPC 0516, Epplestr. 225,70546 Stuttgart, Germany

Email: klaudia.hergula@daimlerchrysler.com

Gunnar Beck
Data Management, Marvin Consult,70197 Stuttgart,Germany

Email: g.beck@marvinconsult.de

Theo Härder
Dept. Of Computer Science (AG DBIS), University of Kaiserslautern,P.O. Box 3049, 67653 Kaiserslautern, Germany

Email: haerder@informatik.uni-kl.de

Key words: FDBS, WfMS, function integration, wrapper, heterogeneous query processing

Abstract: With the emergence of so-called application systems which encapsulate databases and related application
components, pure data integration using, for example, a federated database system is not possible anymore.
Instead, access via predefined functions is the only way to get data from an application system. As a result,
the combination of generic query as well as predefined function access is needed in order to integrate het-
erogeneous data sources. In this paper, we present a middleware approach supporting this novel and ex-
tended kind of integration. Starting with the overall architecture, we explain the functionality and coopera-
tion of its core components: a federated database system (FDBS) and a workflow management system
(WfMS) connected via a wrapper. Afterwards, we concentrate on essential aspects of query processing
across these heterogeneous components. Motivated by optimization demands for such query processing, we
describe the native functionality provided by the WfMS. Moreover, we discuss how this functionality can be
extended within the wrapper in order to obtain salient features for query optimization.

1. MOTIVATION

Most enterprises have to cope with heterogeneous
system environments where different network and
operating systems, database systems (DBSs), as well
as applications are used to cover the whole life cycle
of a product. Initial approaches primarily focusing
on problems of data heterogeneity were federated
database systems and multidatabase systems. So
there exist adequate solutions for database integra-
tion even if there are still open questions [HST99,
SL90].

But the database environment is changing now.
While many enterprises had selected „their“ DBS
and designed their tailored DB schema in the past,

they are now confronted with databases being deliv-
ered within packaged software. In such cases, the
database system and the related application are inte-
grated, and an application programming interface,
the so-called API, is the only way to access the data.
Thus, a (generic) database interface is not supported
anymore. In the following, we call systems realizing
such an encapsulation concept application systems.
One of the most frequently used application systems
is, for example, SAP R/3 [SAP01], whose data can
be accessed via predefined functions only. The same
characteristics can be found in proprietary software
solutions implemented by the enterprises.

As a consequence, pure data integration is not
possible anymore, since “traditional” DBSs have to
be accessed using a generic query language (SQL)
whereas application systems only provide data ac-
cess via predefined functions. Instead, a combined



approach of data and function access has to be
achieved. Such scenarios can be encountered in
many practical and/or legacy applications.

We consider an FDBS as an effective integration
platform, since it provides a powerful declarative
query language. Furthermore, it offers a large set of
numerical processing functions as well as a broad
range of scalability. Many applications are SQL-
based to take full advantage of these properties. A
query involving both databases and application sys-
tems includes SQL predicates as well as some kind
of foreign function access. According to SQL99
[ISO99] such a reference may occur as a function, as
a condition, or as a table. In our view, the most im-
portant case is the reference to a function as a table,
strictly considered as an abstract table.

To implement such an extended kind of integra-
tion, we have developed an integration architecture
consisting of two key components: an FDBS and a
workflow management system (WfMS). The FDBS
is responsible for the integration of data whereas the
WfMS is used to implement a kind of function inte-
gration. As a result, the WfMS provides so-called
global functions which are made available to the
FDBS. Obviously, efficient query processing re-
quires that these two components work together very
closely. Such heterogeneous query processing re-
veals interesting aspects, since two completely dif-
ferent models – a data model and a function model –
must be able to communicate and to work together.

In the remainder of this paper, we discuss basic
questions about a smooth cooperation of these two
components and we examine various implementa-
tion aspects of heterogeneous processing. For this
purpose, we introduce our integration architecture in
Sect. 2 by depicting the structure and the participat-
ing systems. Since the connection of FDBS and
WfMS is a fundamental part of our architecture, we
describe it in detail in Sect. 3. Next, we focus on
heterogeneous query processing considering re-
quirements of the functionality and its support in
Sect. 4. In the remaining sections, we briefly review
related work and summarize our ideas.

2. OVERALL ARCHITECTURE

The goal of our three-tier integration architecture is
to enable the applications to transparently access
heterogeneous data sources, no matter if they can be
accessed by means of SQL or functions (see Fig. 1).
Applications accessing the integrated data sources
comprise the upper tier, and the heterogeneous
sources represent the bottom tier. Due to space
limitations, we focus on the middle tier, the so-
called integration server, which consists of two key

components: an FDBS achieving the data integration
and a WfMS which realizes a kind of function inte-
gration by invoking and controlling the access to
predefined functions. In our terms, function integra-
tion means to provide global functions combining
functionality of one or more local functions [HH00].
The mapping from global to local functions is
guarded by a precedence graph and it typically con-
sists of a sequence of function calls observing the
specific dependencies between the local functions.
As a key concept of our approach, we use a WfMS
as the engine processing such a graph-based map-
ping [HH00]. The workflow to be executed is a pro-
duction workflow representing a highly automated
process [LR00]. These two components are con-
nected by an interface realized by means of a wrap-
per according to the draft of SQL/MED (Database
Languages – SQL – Part 9: Management of External
Data, [ISO00]). As a result, the WfMS provides so-
called global functions used by the FDBS to process
queries across multiple external data sources.

 Figure 1: Integration architecture.

The global applications can access the integra-
tion server via an object-relational interface con-
necting them to the FDBS. The FDBS’s query proc-
essor evaluates the global queries and those parts
requiring foreign function access are handed over to
the wrapper which activates the WfMS. The
workflow engine performs the function integration
by calling the local functions of the referenced ap-
plication systems as specified in the predefined
workflow process. The wrapper returns the result
back to the FDBS where it is mapped to an abstract
table. The remaining parts of the global query are
processed by the FDBS, i.e., the query is divided
into the appropriate SQL subqueries for the SQL
sources. Eventually, the subquery results are further
processed by the query processor, if necessary, and
merged to the final result.

All issues of query processing in the FDBS are
well explored [CRE87, MY95]. Therefore, we will
focus on the new aspects of our architecture. How
can we smoothly integrate calls of predefined func-
tions into the overall query processing of an FDBS?

FDBS

Wrapper

WfMS

FunctionsData



For this purpose, we have a deeper look at the wrap-
per-based connection between the FDBS and WfMS
and its realization in the next section.

3. WRAPPER CONNECTION
BETWEEN FDBS AND WFMS

Before discussing heterogeneous query processing in
our architecture, we will examine the mechanism
connecting the FDBS and the WfMS. Based on the
assumption that the reader is familiar with the con-
cept of a wrapper, we discuss how to map functions
to tables within the wrapper and describe the tasks of
the wrapper realizing the connection in detail.

3.1 Mapping Functions to Tables

The challenge of creating a wrapper between a rela-
tional FDBS and a WfMS is to bridge the conceptual
differences between a data model and a functional
model. A canonical mapping is to represent each
function as a tuple of its input values and output
values. Such a structure can be represented as a ta-
ble, so the wrapper can enable access to the WfMS
from the FDBS through abstract tables.

Functions can be classified in two categories.
For each set of valid input parameter values, scalar
functions return a single result tuple whereas rela-
tion-valued functions return a set of result tuples.

Our canonical mapping of relation-valued func-
tions creates an abstract table containing a set of one
or more rows of tuples containing input values and
output values. A scalar function returns for each
tuple of input values only a single output tuple.
Therefore, the simple canonical mapping of scalar
functions always creates a table with a single row.

3.2 Tasks of the WfMS Wrapper

In order to provide access to a WfMS for a relational
FDBS, the wrapper must mediate between both sys-
tems, map the functional model to the data model, as
well as provide support the communication between
FDBS and WfMS. From the FDBS side, it must be
able to accept a (partial) query regarding data access
to the abstract tables. This query may include op-
erators such as projection and selection using com-
parison predicates. Based on its knowledge about the
abstract table representations, the wrapper prepares a
local access plan. Such a local access plan consists
of calls to WfMS process instances and may include
wrapper-internal operations for requested function-
ality not natively supported by the WfMS. As usual,

the optimization target is to push down as many
predicates as possible to the WfMS to reduce data
shipment.

During the execution of a local access plan, the
wrapper invokes functions embodied by WfMS pro-
cess instances. For each call, the wrapper derives
input values from the query and receives result val-
ues from the WfMS. The input/output value pairs of
each WfMS function call are processed by opera-
tions further explained in section 4. Finally, the
query result set represented by an abstract table is
returned to the FDBS query execution engine.

4. HETEROGENEOUS
QUERY PROCESSING

In the following, we focus on basic technical aspects
of heterogeneous query processing performed in the
integration server. Starting with query processing
requirements, we outline the functionality which
should be provided by the wrapper. Afterwards, we
describe the native functionality which is actually
supported by the workflow engine. Based on our
requirements we discuss how this functionality can
be extended in the wrapper and how these exten-
sions influence heterogeneous query processing and
its optimization mechanisms.

4.1 Functional Requirements

In this section, we describe which operations should
be supported by the wrapper by grouping them in
core, base, and extended wrapper services. In addi-
tion, we explain why particular operations should
not be addressed by the wrapper, but left to the
FDBS instead.

Core functionality consists of all functions
needed to map between abstract tables and WfMS
function calls. If no additional functionality is avail-
able, each reference to an abstract table has to be
realized by materializing and delivering the com-
plete foreign table. For this reason, wrappers to be
integrated into DBMS or FDBS processing should
allow for basic optimization options, that is, they
should enable push-down of selection and projection
operations in the first place. Hence, base functional-
ity on abstract tables should include projection to a
subset of columns and selection of a subset of rows
using any boolean combination of comparison
predicates of columns with constants or a list of con-
stants. Such comparison predicates contain an op-
erator q ∈ {=, ≠, <, ≤, >, ≥}.

Core and base functionality could be extended by
more advanced query execution operations such as



test of null values, subqueries regarding abstract
tables, set comparison, and aggregation combined
with grouping. Furthermore, the cartesian product of
two abstract tables might be implemented within the
wrapper in order to minimize communication caused
by wrapper calls of the FDBS. On the other hand,
join operators have been implemented in FDBSs in
very efficient ways. Therefore, it should be critically
evaluated whether or not a reimplementation of join
functionality by the wrapper is justified.

Because wrappers receive only queries regarding
abstract tables, there is no need to implement any
functions beyond a subselect (such as union, except,
intersect). Separate subselects are usually repre-
sented by independent queries to be combined by the
FDBS. Subqueries regarding FDBS-managed tables
should not be executed by the wrapper, since such
functions can be handled better by an FDBS.

4.2 Native Query Support of the
Wrapper

In the following section, we discuss the native func-
tionality of the wrapper derived from the WfMS
functionality. Based on the mapping of functions to
tables described in Sect. 3.1, we now introduce the
native mapping supported by the wrapper.

The wrapper is able to call a WfMS function and
to receive its result set. In order to derive the input
parameters needed for the function call, all input
values are taken from the query. Hence, the input
values for WfMS functions are specified by con-
junctive combinations of comparison predicates
between input parameters and constant values. Once,
the set of function output tuples is received, these
tuples can be extended by the input values of the
function calls. The set of result tuples constructed in
this process represents the extension of the abstract
table. Finally, the result set is transferred to the
FDBS query execution engine through abstract table
queues.

In order to illustrate the mapped functionality,
we describe the function fi(in1, ..., inm, out1, ..., outn)
with inj (j = 1 – m) and outk (k = 1 – n) representing
the input and output parameters as an SQL state-
ment:
SELECT in1, ...,inm , out1, ..., outn
FROM fi_tab
WHERE in1θvalue1 AND ... AND inmθvaluem

All input parameters participate in comparison
predicates, bound by AND operators. None of the
output parameters is referenced in the where clause.
Hence, this SQL statement precisely characterizes
the expressiveness of our function evaluation on
application systems performed through workflow
processing.

4.3 Additional Query Function-
ality of the Wrapper

Describing the wrapper operations, we outline ex-
tensions of the supported functionality as introduced
in Sect. 4.1. The core functionality for the mapping
of WfMS functions to abstract tables is already cov-
ered by the native support as described in Sect. 4.2.
Due to space limitations, we do not describe the op-
erations in detail but rather focus on particular as-
pects caused by our approach and the resulting ef-
fects on query optimization.

4.3.1 Base functionality

In Sect. 4.1, base functionality was defined as pro-
jection and selection using boolean combinations of
comparison predicates.

Projection of a subset of abstract table columns
Considering the projection operation, we have to
distinguish two cases. In the first case, the projection
includes columns representing the input parameters
of workflow functions. As described in Sect. 4.2, the
wrapper adds the input values to the abstract table.
So the columns specified in the projection define
which of the input parameter columns have to be
added to the abstract table. In the second case, we
consider the projection of columns representing the
output parameters. The projection of all output pa-
rameter columns is equivalent to the result set re-
turned by the WfMS. As a consequence, those out-
put parameters not covered by the output specifica-
tion must be removed by the wrapper. Of course,
these two cases may appear in a single request.

Projection support within the wrapper can have a
great impact on the optimization, since the size of a
tuple and, as a consequence, the amount of data can
be reduced substantially. Assume a tuple consisting
of five attributes of comparable size. If the projec-
tion on a single attribute is supported, the size of the
data returned is reduced to 20%.

Selection on rows of abstract tables
Selection on rows of abstract tables is based on a
boolean combination of comparison predicates. The
wrapper’s core functionality supports conjunctive
coupling of comparison predicates between the un-
derlaying function’s input parameters and constant
values. The comparison operator must match the
function semantics. In order to enhance the selection
functionality, to minimize the number of wrapper
calls, as well as the data to be shipped it is desirable
to enhance the wrapper in three ways.
• Allow queries that do not bind all function input

parameters to constant values by means of com-



parison operators. Such a functionality would
enhance the overall query evaluation power.

• Process queries including comparison operators
other than the ones determined by the function
semantics. This includes comparison predicates
regarding function output parameters, as well as
additional comparison predicates regarding input
parameters. An implementation of such function-
ality would reduce the query result set and there-
fore minimize the data volume to be shipped.

• Allow any boolean combination of comparison
predicates. This functionality would minimize
the number of queries passed by the FDBS.

First, we will explore how a wrapper can support all
boolean combinations of comparison predicates.
Any boolean expression can be transformed into
disjunctive normal form (DNF). Disjunctive combi-
nations of conjunctive brackets are derived by
merging the results of all brackets. In the following,
we will restrict ourselves to the evaluation of con-
junctive brackets in DNF.

Within a conjunctive bracket, comparison op-
erators regarding function input parameters that
match the function semantics must be considered
separately. Such predicates are used to extract the
values needed for the function call. If not all input
parameters are bound to values by comparison op-
erators, those input parameters may contain any
valid value. Assume the function is stateless and the
input parameter domain is finite. Then such a partial
conjunctive bracket represents the set of rows gener-
ated by merging result sets of separate function calls
for each valid input value.

If the function is not stateless, the function’s re-
sult depends on the order of function calls and there-
fore this method can not be applied. If an input pa-
rameter’s domain does not have a limited number of
elements, the number of required function calls
might be infinite. In either case, the query must be
rejected. All other comparison predicates within the
conjunctive bracket can be applied to the intermedi-
ate result set generated by repeated function calls.

4.3.2 Extended Functionality

In this section, we outline functionality that we con-
sider useful in a wrapper, but that is not required for
a base implementation. The operations described
here exploit processing knowledge about the imple-
mentation of WfMS functions primarily to minimize
WfMS function calls or the data to be shipped to the
FDBS. Due to space limitations, we only give an
idea of how query processing is influenced when
these operations are supported by the wrapper.

Test of null values: The implementation of a
null-value test operator in a wrapper is desirable for

minimizing WfMS calls from the wrapper and for
minimizing the data volume transferred to the
FDBS. Based on knowledge about the requested
function, the wrapper might be able to answer a
predicate without calling the WfMS. For instance, a
column in an abstract table can not be null if this
column is derived from a function’s output and if it
is known that, for each input value, the return value
is not null.

Furthermore, the result of a not-null call is of
type boolean. In most implementations, boolean is
the most compact data type. Instead of returning the
functions output values, only a single boolean value
would be returned, minimizing the data shipment.

Subqueries regarding abstract tables: Consid-
ering subqueries, the distinction between correlated
and uncorrelated subqueries is interesting. If the
subquery is uncorrelated, it can be processed inde-
pendently of the outer query block and has to be
executed only once. The correlated case promises to
be more challenging, since the subquery must be
evaluated for each row of the outer table. This is
only possible if the domain of this table is finite and
if the domain elements can be enumerated. If the
domain is not finite, it must be restricted by means
of a predicate in the WHERE clause. In any other
case, the query must be rejected.

Set comparison: In each case of set comparison,
a set comparison predicate is followed by a sub-
query. Usually, comparison of sets requires much
more data to be shipped between WfMS and wrap-
per and requires much more computation overhead
than a subquery based on scalar comparisons. For
this reason, query rewrite is very desirable. Most
FDBSs use rule-based optimizers, but only a few of
them can be extended to specific domains. The
wrapper, however, may accomplish query rewrite
based on abstract tables into WfMS function calls.
Depending on the predicates applied to the abstract
tables, equivalent WfMS functions of varying costs
might be called. Hence, careful query rewrite offers
considerable performance gains.

Aggregation combined with grouping: Extend-
ing the wrapper functionality to support aggregation
combined with grouping, we have to differentiate
between grouping functions applied to input pa-
rameters and those applied to output parameters.

The first case is supported only when the domain
of the input parameter is finite and the enumeration
of the domain elements is possible. The number of
groups is known and, consequently, the number of
WfMS functions calls.

If grouping is applied to output parameters, the
grouping function has to be applied by the wrapper
after retrieving the entire result set from the WfMS,
no matter how many function calls are needed for



the set of qualified values. Again, the finiteness of
the domain must be guaranteed.

The support of aggregation combined with
grouping optimizes the overall query processing,
since the number of tuples shipped to the FDBS is
minimized.

5. RELATED WORK

Mediator- or wrapper-based approaches like Garlic
[TS97] or TSIMMIS [PGW95] focus on general
solutions and algorithms for integrating any kind of
data source. Since in our case, all non-SQL sources
are integrated by the WfMS, we have to consider
only one single non-SQL source to be integrated: the
WfMS. As a consequence, we can concentrate on a
specific solution integrating the workflow system.

Furthermore, we focus on the integration of a
functional interface at the FDBS side which has
been discussed very early by [CS93], thereby dem-
onstrating how references to foreign functions can
be expressed in a query language. But they did not
address the problem of limited access patterns, for
which approaches like [FLM99] propose solutions
by binding attributes in order to support queries on
such data sources.

6. SUMMARY

In this paper, we have introduced an approach for
the integration of heterogeneous data sources acces-
sible via generic queries or predefined functions. We
have described the components of our integration
architecture introducing the FDBS, the WfMS, and
its wrapper-based connection. Since FDBS and
WfMS must cooperate when processing a global
query, we have focused on heterogeneous query
processing in our approach. First, we have pointed
out the functional requirements of such a heteroge-
neous query processing system. We have described
the operations which should be provided by the
WfMS and the wrapper in order to support efficient
heterogeneous query processing. Based on these
requirements, we have shown how much of the re-
quired operations are supported natively by the
WfMS functionality. Moreover, we have identified
aspects which have to be taken into account when
extending the native functionality by implementing
additional operations within the wrapper. In addi-
tion, we have considered in what way the extended
functionality can have an impact on query optimiza-
tion.

REFERENCES

[CRE87] B. Czejdo, M. Rusinkiewicz, D.W. Embley: An
Approach to Schema Integration and Query Formula-
tion in Federated Database Systems, in: Proc. 3rd
IEEE Int. Conf. on Data Engineering, Los Angeles,
1987, pp. 477-484.

 [CS93] S. Chaudhuri, K. Shim: Query Optimization in
the Presence of Foreign Functions, in: Proc. 19th Int.
Conf. on Very Large Databases, Dublin, 1993, pp.
529-542.

[FLM99] D. Florescu, A. Levy, I.Manolescu, D. Suciu:
Query Optimization in the Presence of Limited Access
Patterns, in: Proc. ACM SIGMOD Conf. on Manage-
ment of Data, Philadelphia, 199, pp. 311-322.

[HH00] K. Hergula, T. Härder: A Middleware Approach
for Combining Heterogeneous Data Sources – Inte-
gration of Generic Queries and Predefined Function
Access, in: Proc. 1st Int. Conf. on Web Information
Systems Engineering, Hongkong, 2000, pp. 22-29.

[HST99] T. Härder, G. Sauter, J. Thomas: The Intrinsic
Problems of Structural Heterogeneity and an Ap-
proach to their Solution, in: VLDB Journal 8:1, 1999,
pp. 25-43.

[ISO99] ISO & ANSI: Database Languages - SQL -Part
2: Foundation, International Standard, 1999.

[ISO00] ISO & ANSI: Database Languages - SQL -Part 9:
Management of External Data, Working Draft, Sep-
tember 2000.

[LR00] F. Leymann, D. Roller: Production Workflow:
Concepts and Techniques, Prentice Hall, 2000.

[MY95] W. Meng, C. Yu: Query Processing in Multida-
tabase Systems, in: W. Kim (ed.) Modern Database
Systems: The Object Model, Interoperability, and Be-
yond, ACM Press and Addison-Wesley, 1995, pp.
551-572.

[PGW95]Y. Papakonstantinou, H. Garcia-Molina, J.
Widom: Object Exchange Across Heterogeneous In-
formation Sources, in: Proc. 11th IEEE Int. Conf. on
Data Engineering, Taipei, 1995, pp. 251-260.

 [SAP01] SAP AG: SAP R/3, 2001;
www.sap.com/solutions/r3/.

[SL90] A.P. Sheth, J.A. Larson: Federated Database
Systems for Managing Distributed, Heterogeneous,
and Autonomous Databases, ACM Computing Sur-
veys 22:3, 1990, pp. 183-236.

[TS97] M.Tork Roth, P. Schwarz: Don’t Scrap It, Wrap
It! A Wrapper Architecture for Legacy Data Sources,
in: Proc. 23rd Int. Conf. on Very Large Data Bases,
Athens, 1997, pp. 266-275.


