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ABSTRACT
With the emergence of application systems which encapsulate
databases and related application components, pure data
integration using, for example, a federated database system is not
possible anymore. Instead, access via predefined functions is the
only way to get data from an application system. As a result,
retrieval of such heterogeneous and encapsulated data sources
needs the combination of generic query as well as predefined
function access. In this paper, we present a middleware approach
supporting such a novel and extended kind of integration. Starting
with the overall architecture, we explain the functionality and
cooperation of its core components: a federated database system
and a workflow management system connected via a wrapper.
Afterwards, we concentrate on essential aspects of query
processing across these heterogeneous components focusing on
the impact of the functions included. We discuss the operations
the wrapper should provide in order to extend the workflow
system’s native functionality. In addition to selection and
projection, these operations could include aggregation and the
support of subqueries. Moreover, we point out modifications to
the traditional cost model needed to consider the cost estimates
for the function calls as well.

Keywords
Federated database system, workflow management system,
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1. MOTIVATION
Most enterprises have to cope with heterogeneous system
environments where different network and operating systems,
database systems (DBSs), as well as applications are used to cover
the whole life cycle of a product. Initial approaches primarily
focusing on problems of data heterogeneity were federated
database systems (FDBSs) and multidatabase systems. So there
exist adequate solutions for database integration even if there are

still open questions [5][15].

But the database environment is changing now. While many
enterprises had selected “their” DBS and designed their tailored
DB schema in the past, they are now confronted with databases
being delivered within packaged software. In such cases, the
database system and the related application are integrated, and an
application programming interface, the so-called API, is the only
way to access the data. Thus, a (generic) database interface is not
supported anymore. In the following, we call systems realizing
such an encapsulation concept application systems. One of the
most frequently used application systems is, for example, SAP
R/3 [13], whose data can be accessed via predefined functions
only. The same characteristics can be found in proprietary
software solutions implemented by the enterprises.

As a consequence, pure data integration is not possible, since
“traditional” DBSs have to be accessed using a generic query
language (SQL) whereas application systems only provide data
access via predefined functions. Instead, a combined approach of
data and function access has to be achieved. Such scenarios can
be encountered in many practical and/or legacy applications.

We consider an FDBS as an effective integration platform, since it
provides a powerful declarative query language. Furthermore, it
offers a large set of numerical processing functions as well as a
broad range of scalability. Many applications are SQL-based to
take full advantage of these properties. A query involving both
databases and application systems includes SQL predicates as
well as some kind of foreign function access. According to SQL99
[7] such a reference may occur as a function or as a table. In our
view, the most important case is the reference to a function as a
table, strictly considered as an abstract table.

To implement such an extended kind of integration, we have
developed an integration architecture consisting of two key
components: an FDBS and a workflow management system
(WfMS). The FDBS is responsible for the integration of data
whereas the WfMS is used to implement a kind of function
integration. As a result, the WfMS provides so-called federated
functions which are made available to the FDBS. Obviously,
efficient query processing requires that these two components
work together very closely. Such heterogeneous query processing
reveals interesting aspects, since two completely different models
– a data model and a function model – must be able to
communicate and to work together.

In the remainder of this paper, we discuss basic questions about a
smooth cooperation of these two components and we examine
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various implementation aspects of heterogeneous processing. For
this purpose, we introduce our integration architecture in Sect. 2
by depicting the structure and the participating systems. Since the
connection of FDBS and WfMS based on a wrapper is a
fundamental part of our architecture, we describe it in detail in
Sect. 3. Moreover, we consider requirements on its functionality
and outline its support for heterogeneous query processing in
Sect. 4. The impact on the cost model is shown in Sect. 5. Finally,
we briefly review related work and summarize our ideas.

2. OVERALL ARCHITECTURE
The goal of our three-tier integration architecture is to enable the
applications to transparently access heterogeneous data sources,
no matter if they can be accessed by means of SQL or functions
(see Figure 1). Applications accessing the integrated data sources
comprise the upper tier, and the heterogeneous sources represent
the bottom tier. Due to space limitations, we focus on the middle
tier, the so-called integration server, which consists of two key
components: an FDBS achieving the data integration and a WfMS
which realizes a kind of function integration by invoking and
controlling the access to predefined functions. In our terms,
function integration means to provide federated functions
combining functionality of one or more local functions [6].

In principle, specialized wrappers could be used to access each of
the local functions typically supplied by different applications
systems. These functions are frequently called together in a way
where the output data of a function call is the input data of a
subsequent function call. The execution of the single functions
could be directly controlled by the FDBS. However, such an
approach would require substantial extensions of the FDBS
components in addition to the writing of the specialized wrappers.
Furthermore, the FDBS had to cope with the different application
systems and their local functions which could be distributed,
heterogeneous, and autonomous.

Figure 1. Integration Architecture.

Our key idea is to use a workflow for the execution of a federated
function where its activities embody the local function calls and
where the WfMS controls the parameter transfer together with the
precedence structure among the local function calls. Then, a
unified wrapper can be used to isolate the FDBS from the
intricacies of the federated function execution and to bridge to the
WfMS thereby supplying missing functionality (glue) and making
various query optimization options available.

The mapping from federated to local functions is guarded by a
precedence graph and it typically consists of a sequence of
function calls observing the specific dependencies between the
local functions. As a key concept of our approach, we use a
WfMS as the engine processing such a graph-based mapping [6].

The workflow to be executed is a production workflow
representing a highly automated process [10]. We decided to use a
WfMS as a generic vehicle to obtain function access and, at the
same time, to make such accesses transparent for the FDBS.
Using such an approach, we can fall back on existing technology
incorporated in commercially available products that supports
complex mapping scenarios and transparent access to
heterogeneous platforms. Moreover, it provides interfaces to the
application systems to be integrated and can cope with different
kinds of error handling,  thereby facilitating distributed program
execution across heterogeneous applications. Another important
point is the fact that the solution is easier to adapt when the
environment has to be changed.

FDBS and  WfMS are connected by an interface realized by
means of a wrapper according to the draft of SQL/MED (Database
Languages - SQL - Part 9: Management of External Data, [8]).
Actually, this wrapper consists of two parts: one part is located at
the FDBS side serving the SQL/MED interface at the FDBS. The
other part should be placed at the WfMS side wrapping the WfMS
interface. Thus, communication between FDBS and WfMS is
basically realized between these two wrapper parts. As a result,
the WfMS provides so-called federated functions used by the
FDBS to process queries across multiple external data sources.

The applications (users) can access the integration server via an
object-relational interface connecting them to the FDBS. The
FDBS's query processor evaluates the user queries and those parts
requiring foreign function access are handed over to the wrapper
which activates the WfMS. The workflow engine performs the
function integration by calling the local functions of the
referenced application systems as specified in the predefined
workflow process. The wrapper returns the result back to the
FDBS where it is mapped to an abstract table. The remaining parts
of the user query are processed by the FDBS, i.e., the query is
divided into the appropriate SQL subqueries for the SQL sources.
Eventually, the subquery results are further processed by the
query processor, if necessary, and merged to the final result.

All issues of query processing in the FDBS are well explored
[2][11]. Therefore, we will focus on the new aspects of our
architecture. How can we smoothly integrate calls of predefined
functions into the overall query processing of an FDBS? For this
purpose, we have a deeper look into the wrapper-based
connection between FDBS and WfMS and its realization in the
next section.

3. HOW FUNCTIONS STEP INTO THE       
RELATIONAL WORLD

Before discussing how to handle functions within heterogeneous
query processing, we address the key problem of function
evaluation and how to map functions to tables. Moreover, we
point out the requirements on the wrapper’s functionality.

3.1 Mapping Functions to Tables
When mapping functions to tables, we have to distinguish
between structural and semantic aspects. The structural mapping
defines the way how to represent a function’s signature in the
form of a table so that it can be referenced in SQL queries.
Semantic mapping, on the other hand, considers the semantics of
the functionality implemented by a specific function and its
mapping to function references in the form of abstract tables

FDBS

Wrapper

     WfMS

FunctionsData



expressed by SQL queries. Unfortunately, this information cannot
be derived automatically from a function’s signature. Most
functions to be integrated are provided by legacy systems which
support a hierarchical view on their data. In most cases, the input
parameter values are used as input for predicates processing an
“equals” operation like “Give me the numbers of all departments
with a budget of X dollars“: SELECT deptno FROM
departments WHERE budget = X. Such legacy system
functionality is rather fixed and, therefore, inadequate for the
support of SQL queries using, for example, range conditions like
SELECT deptno FROM departments WHERE budget
< X. Obviously, the semantics of “<“ has to be reproduced by
multiple compensating function calls.1 Hence, future systems
should provide more flexible APIs allowing, for instance, to pass
in addition to input values the related (comparison) operator as
parameter. In that case, the expressiveness of SQL queries could
be more adequately simulated by function calls.

Next, we will describe our way of structurally mapping functions
to tables.

Structural Mapping

Realizing a structural mapping by a wrapper, we have to bridge
the conceptual differences between FDBS and WfMS. Relational
database systems are based on a data model. WfMSs, in turn, are
built on a functional model. The wrapper enables access to the
WfMS from the relational FDBS through abstract tables. A
canonical mapping is to represent each function as a tuple of its
input values and output values. Such a structure can be
represented as a table.

Functions can be classified in two categories. Scalar functions
return a single result value or result tuple for each set of valid
input values whereas relation-valued functions return a set or list
of result values or result tuples for each set of valid input
parameters. Our canonical mapping of relation-valued functions
creates a conventional abstract table consisting of a set of one or
more rows containing the given input values and the
corresponding output values. In addition, projection as well as
selection operators can be applied to such a table in order to
minimize data shipped between wrapper and FDBS. This enables
a wrapper to take over parts of the query evaluation by performing
such functions on behalf of the FDBS. A scalar function returns
for each tuple of input values only a single output tuple.
Therefore, the simple canonical mapping of scalar functions
always creates a table with a single row.

Proceeding this way, the mapping is absolutely transparent to
(external) users or applications. Neither they have to pay attention
to restrictions nor they have to learn a particular use of SQL when
accessing abstract tables.

3.2 Needed Wrapper Functionality
First, we take a look at the tasks the wrapper must fulfil in order
to provide for a relational FDBS access to a WfMS. In order to
achieve this functionality, the wrapper must mediate between both
systems and map the functional model to the data model, as well

                                                                
1 In this paper, we will not discuss synchronization issues to be

performed by the application systems, if repeatable results are
required.

as provide support for abstract table queues returning the result to
the FDBS.

From the FDBS side, it must be able to accept a partial query2

regarding data access to the abstract tables. This query may
include operators such as projection and selection using
comparison predicates.

Based on its knowledge about the abstract table representations,
the wrapper prepares a local access plan. In the first place, such a
local access plan consists of calls to WfMS process instances.
Additionally, it may include wrapper-internal operations for
requested functionality not natively supported by the WfMS. As
usual, the optimization target is to push down as many predicates
as possible to the WfMS.

During the execution of a local access plan, the wrapper invokes
functions embodied by WfMS process instances. For each call,
the wrapper derives input values from the query and receives
result values from the WfMS. The input/output value pairs of each
WfMS function can be processed by further operations. Finally,
the query result set is returned to the FDBS query execution
engine as an abstract table queue.

In addition to these basic tasks, the wrapper may be extended
supporting further operations. We group these functions in core,
base, and extended wrapper services. As our rationale, we follow
the idea of realizing as much optimization effect with as little
implementation effort as possible. Afterwards, we explain why
particular operations should not be addressed by the wrapper, but
left to the FDBS instead.

Core functionality consists of all functions needed to map
between abstract tables and WfMS function calls. If no additional
functionality is available, each reference to an abstract table in an
SQL query has to be realized by materializing and delivering the
complete foreign table. For this reason, wrappers to be integrated
into DBMS or FDBS processing should allow for basic
optimization options, that is, they should enable push-down of
selection and projection operations in the first place.

Hence, base functionality on abstract tables should include
projection to a subset of columns and selection of a subset of rows
using any boolean combination of comparison predicates of
columns with constants or list of constants. Such comparison
predicates contain an operator Θ ∈{=, ≠, <, ≤, >, ≥}.

Core and base functionality could be extended by more advanced
query execution operations such as grouping and aggregation,
subqueries regarding abstract tables, and set comparison.
Furthermore, the join of two abstract tables might be implemented
within the wrapper in order to minimize communication caused
by wrapper calls of the FDBS. On the other hand, join operators
have been implemented in FDBSs in very efficient ways.
Therefore, it should be critically evaluated whether a
reimplementation of join functionality is justified.

Because wrappers receive only queries regarding abstract tables,
there is no need to implement any functions beyond a subselect
(such as union, except, intersect). Separate subselects are usually
represented by independent queries to be combined by the FDBS.
                                                                
2 In the following, we denote a partial query delegated to the

wrapper as query for short.



Subqueries regarding FDBS-managed tables should not be
executed by the wrapper, since such functions can be handled
better by the FDBS.

Transfer of the result set is performed via an abstract table queue
which may be achieved in a pipeline mode depending on the
availability of result tuples or in a block mode at the end of the
function call. Furthermore, a result set returned by a function
invocation may have some useful characteristics important for the
overall query optimization. For example, a result contains an
interesting sort order. Such information should be passed as a hint
to the FDBS query processor to avoid further sort operations.

4. QUERY PROCESSING ACROSS FDBS
AND WfMS

So far, we have described how FDBS and WfMS are connected.
In the following, we focus on heterogeneous query processing
performed by these systems. First, we introduce some terms and
definitions describing the native functionality supported by the
workflow engine. Afterwards, we focus on the realization of the
operations defined as base and extended functionality within the
wrapper. Since optimization aspects like pushing down operations
and reducing the amount of data shipped between FDBS and
WfMS have been sufficiently analyzed in the past [16], we will
not elaborate on them.

4.1 Terms and Definitions
In the following, we describe our formal representation of the
query processing. It is based on the relational algebra extended by
two additional operators. Taking the signature of a function f(i1,
..., im, o1, ..., on) as a starting point, we define I:={ik | k=1, ..., m}
and O:={ol | l=1, ..., n} as the sets containing the input and output
parameters. Hence, the function signature can also be written as
f(I, O).

In Sect. 3.1, we have explained how to map functions to relations.
To enable a simple mapping, the function f(i1, ..., im, o1, ..., on) is
represented as an abstract relation R(i1, ..., im, o1, ..., on). Since the
input and output parameters are mapped to the attributes of the
relation, it also can be described as R(I, O).

A function call then represents the following algebraic expression:

( ) ( )( )ROIf IO σπ↔,

Hence, a function call is equivalent to a selection on relation R
specified by predicates based on the values of the input
parameters. In addition, there is a projection on the output
parameters. Since this term exactly describes the functionality of
our WfMS, we introduce a new operator ϕ representing the
workflow functionality:

( ) ( )( )RR IO σπϕ =:

In order to be able to map a SELECT * functionality, i.e. the
projection on all attributes πI,O, the input parameters have to be
concatenated to the corresponding tuples of the result set returned
by the WfMS. This operation is described by the operator κ:

( )( ) ( ) ( )( ) ( )( ) ( )RRRIRIR IIOIIOI σσπσπϕϕκ ==== ,:

Based on these definitions, we will now discuss the functionality
which should be made available by the wrapper in order to extend
the native query support provided by the WfMS.

4.2 Base Functionality
In our view, the combined functionality of wrapper and WfMS
should at least contain selection and projection in order to reduce
data shipping between FDBS and WfMS. Therefore, the wrapper
has to extend the WfMS core functionality by additional
functions. In the following, we discuss the realization of such a
functionality and its specific characteristics.

4.2.1 Selection
Before describing the selection operation in detail, we present
some prerequisites which are essential for our considerations.
Afterwards, we differentiate between selections on input
parameters and those on output parameters.

Prerequisites

As described above, the values for the input parameters have to be
derived from the predicates in the WHERE clause of the SQL
query to be evaluated. Only if the WHERE clause specifies a
comparison predicate (containing an equals operator) for each
single input parameter, i.e. σI(R), the result set can be captured by
a single function invocation. In any other case, additional function
calls have to be initiated to compensate the missing input
parameter values; in the extreme case, all possible values of a
missing input parameter have to be supplied. In order to perform
such substitutions, that is, to simulate the original query by
additional function calls, some restrictions on the value count as
well as the value set of an input parameter have to be applied:

1. The value count Vc(Ra, i) of each input parameter of an
abstract table Ra has to be finite.

2. It must be possible to enumerate the elements of its value set
Vs(Ra, i).

Otherwise, the number of compensating function calls cannot be
determined and, consequently, the query must be rejected.

Selection Based on Input Parameters

Assume the comparison operator specified in the predicate
matches the operator implemented by the function and all required
input values are given by constant predicates. Then, the selection
is defined as follows causing exactly one function call:

( ) ( )( )RR II ϕκσ =

As described above, the operation σI(R) is processed by calling
exactly one function. If one input parameter value vi is missing,
Vc(R, i) function calls must be executed to go through all possible
combinations of the given values and the missing input parameter
value. This number of calls is multiplied with the value count of
each unspecified input parameter value. Consequently, the
operation σi1(R) with only a single input parameter value causes
the following number of function calls:

( ) ( ) ( ) ( )∏
=

+=×××+
mi

ik
cmccc kRViRViRViRV

2

,1,...,,1 32

Thus, if I={i1, ..., im} and we want to process σ(i=1)(R), we get the
union of the result sets of the required function calls:

( )( ) ( )( ) ( )( ) ( )( )( )RRRR n
IIIi ϕκϕκϕκσ ∪∪∪== ...21

1

In this equation, n describes the number of function calls needed
to compute the entire result set and corresponds to the number
derived above based on the value counts.



Similar aspects have to be considered, if the comparison operator
of a predicate does not match the operator implemented by the
function. For instance, a function f(i, o) computes the predicate (i
= constant) whereas the SQL statement contains the predicate (i ≤
constant). This case also results in multiple function calls to
derive the anticipated result. Again, the restrictions described
above have to be applied to enable the derivation of the required
function calls. In our example, a function with (i = constant) and
further functions for every single element of the value set of i less
than the specified constant value must be processed.
Consequently, the union of the result sets of several selections has
to be derived as shown in the following example (provided that
Vs(R, i) = {1, 2, 3, ..., 10}):

( ) ( ) ( )( ) ( )( ) ( ) ( )
( ) ( ) ( )( )RR

RRRR

ii

iiii

12

3455

==

===≤

∪∪

∪∪=

σσ

σσσσ

Selection Based on Output Parameters

Considering predicates including output parameters, we again
identify two different cases. First, we suppose that all required
input values are specified by predicates in the SQL statement.
Then, the selection has to be applied on the result set returned by
the function call:

( ) ( )( ) ( )( )( )RRR IOIOOI ϕκσσσσ ==,

If, on the other hand, the predicates are based on output
parameters only, all combinations of input parameter values have
to be determined for the corresponding functions. Based on the
union of the returned result sets, the selection on the output
parameter can be processed. Obviously, this case can lead to an
enormous number of function calls.

4.2.2 Projection
Regarding projection we have to consider three different cases:
projection on a) input parameters only, b) output parameters only,
and c) both types of parameters.

When applied on input parameters, projection can be realized
without calling any function in some cases. For that, the wrapper
has to check if the specified input values are included in the
corresponding value set. If not, the result set is ∅ and no function
call is needed. Moreover, if the function’s signature contains only
one input parameter, the result of πi(R) is i, if the value specified
is part of Vs(R, i), derived without any function call. In any other
case, the wrapper must initiate the required functions and add the
input values to the result set. If there is a projection on a subset of
the input parameters, the wrapper has to cut off the parameter
values not needed.

Looking at projection on output values, i.e. πO(R), it is obvious
that it matches exactly the native functionality ϕ(R) of the WfMS.
Consequently, the result set of the WfMS can be passed on to the
FDBS. If there is a projection on the subset of the output
parameters, the wrapper has to cut off the other ones by applying
the operation πO(ϕ(R)).

Finally, input as well as output parameters are projected. The
general case of projecting on all parameters (SELECT *) is
described in Sect. 4.1. In any other case, the projection on subsets
of input and output parameters is the concatenation of the results
processed for each parameter type as described above. For
instance, the SQL statement

SELECT i1, o2,
FROM R
WHERE ...

is then processed as follows:

( )( ) ( )( )( )RR oioi ϕπκϕπ
2121, =

Summarizing our ideas, we get the following results (see Table 1):

Table 1. Projection

Case a) ( ) ( )IRVR sI ,⊆π ( ) ( )IRVR si ,
1

⊆π

Case b) ( ) ( )RRO ϕπ = ( ) ( )( )RR oo ϕππ
11

=

Case c) ( ) ( )( )RR IOI ϕκπ =, ( ) ( )( )( )RR oioi ϕπκπ
2121, =

4.3 Extended Functionality
Next, we discuss functionality which, in our opinion, is not
strictly necessary, but could improve query optimization by
reducing the amount of data shipped between FDBS and WfMS.

4.3.1 Grouping and Aggregation
Typically, the combination of grouping and aggregation
significantly reduces the number of result tuples and, therefore,
should be supported within the wrapper. Like in the cases before,
we have to distinguish between aggregations or groupings based
on input or output parameters. Since the considerations on
aggregation operations are similar to those on projection, we will
now focus on the grouping aspects.

Let γL represent the effect of grouping and aggregation. L is a list
of elements, each of which is either a grouping or an aggregated
attribute. In the following, we will not consider cases including a
WHERE clause, since selection already is discussed in Sect. 4.2.1.
In addition, we assume that the set of grouping attributes and that
of aggregated attributes are disjointed.

We start with grouping based on input parameters with any kind
of aggregation on any parameter x γI,aggr(x)(R). No matter if the
grouping is based on all input parameters or only a part of them,
the number of function calls nfc is always the same in order to get
all values:

( )∏
=

=
mi

ik
cfc kRVn

1

,

The difference is found in the number of result tuples which is
dependent on the value count Vc(R, i) for a single input parameter
or the combination of several of them. In order to illustrate this
result, we consider the following example. Assume a function
costs which returns as output values a department’s target costs,
actual costs, as well as a classification based on the actual costs.
The input parameters include a department number deptno and a
year. This function is mapped to an abstract table Costs
containing attributes based on the function’s parameters. Now we
want to process the operation γdeptno,sum(actual)(Costs) on the abstract
table Costs, adding up the actual costs over all years for each
department:

SELECT SUM(actual)
FROM Costs
GROUP BY deptno



For each single department, i.e. each element x of Vs(Costs,
deptno), the actual costs for every year have to be summed up by
processing the following operations:

( )
( )( )( )( )Costssum

Costs

xdeptnoactualdeptno

actualsumxdeptno

=

=

= σπκ

γ )(,

As described above, σ(deptno=x)(Costs) requires a function call for
each combination of the deptno values x and the values for the
stored years. This is necessary, because both deptno and year have
to be provided as input values for the function costs (cf section
4.2.1). The overall result of this grouping/aggregation operation is
the union of the result tuples of each group resp. department:

( )( ) ( )( )
( )

U
deptnoCostsVx

actualsumxdeptnoactualsumdeptno
s

CostsCosts
,

,,
∈

== γγ

In the next example, we consider grouping based on output
parameters γO,aggr(x)(R). Thus, we examine the following statement
returning the number of identified cases for each classification:

SELECT COUNT(deptno)
FROM Costs
GROUP BY class

Obviously, the number of function calls is nfc again, since we have
to receive all output parameters based on the combination of all
input parameter values. In order to identify the different groups,
this intermediate result has to be sorted, denoted by the operator
τclass(Costs), where class represents the attribute of Costs the sort
operator is based upon. Thus, an intermediate result Rint for
γclass,count(deptno)(Costs) is built up as follows:

( )( )( )CostsR classdeptnoclass πκτ=int

Since the count aggregation must be applied to each group of
deptno, the overall result set is obtained by:

( )( ) ( )( )
( )
U

classCostsVx
deptnocountxdeptnocountclass

s

RCosts
,

int,,
∈

= γγ

If a sort operator is not supported by the wrapper, grouping based
on output parameters cannot be processed within the wrapper.
Instead, the unsorted Rint has to be passed on to the FDBS for
further processing. When grouping is based on input as well as
output parameters, there are no new aspects to consider.

The huge number of function calls can be reduced if the
evaluation of the HAVING clause is added to the wrapper’s
functionality. Since it represents a selection on the grouping
attributes, it can be used to restrict the required function calls.
Unfortunately, this is only true for grouping on input parameters.
In the case of output parameters, we still get nfc function calls,
since a selection on output parameters has to be processed.

4.3.2 Subqueries and Set Comparison
Evaluation of subqueries is limited to abstract tables. In addition,
the subquery must not include operations that are not supported
by the wrapper or WfMS. These requirements have to be met in
order to guarantee that the subquery can be processed completely
by the wrapper and the WfMS. Moreover, we have to distinguish
between correlated and uncorrelated subqueries. In the
uncorrelated case, the subquery has to be evaluated only once and
does not reveal any new aspects. Therefore, we will focus on the
correlated case, where the subquery has to be evaluated for each
row of the outer relation. Since most subqueries are introduced by

set comparison predicates like IN, EXISTS, or SOME, set
comparison operations should be supported by the wrapper in
order to minimize the derivation steps as well as the amount of
data shipped between the systems. Assume the following SQL
statement has to be processed on a relational table Rr(a1, a2) and
an abstract table Ra(i, o):

SELECT a1
FROM Rr
WHERE a2 IN (SELECT o

  FROM Ra
  WHERE i = a2)

In order to call the wrapper only once, all values of a2 are passed
to the wrapper at a time. These values are used to prepare the
function calls needed to process the result of the correlated
subquery. For each element of Vs(Rr, a2) a function is called with
i=a2. Assume the wrapper supports set comparison; it can compare
the function’s output with a2 and can build a result tuple
containing a2 as well as “true” or “false” representing the result of
the set comparison. The union of the results of all the functions is
then returned to the FDBS as the basis for the selection of a1. So
the work to be done in the wrapper is the following, where the
operation IN(x,Y) represents the test whether x is an element of the
set Y:
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5. NEW ASPECTS OF THE COST MODEL
In this section, we outline new aspects which have to be taken
into account when elaborating a cost model including function
calls. In general, the costs of a query include the costs for
communication time, processor time, disk I/O’s, and memory. In
our case, the costs for communication time and those for disk
I/O’s are the lion share of the costs for a query execution plan
(QEP). Regarding communication time, the existing cost models
for heterogeneous query processing in FDBSs are also valid for
our approach. In order to minimize communication time between
FDBS and WfMS, the amount of data shipped should be reduced.
This is basically realized by pushing down as many operations as
possible to the WfMS or its wrapper.

However, the traditional cost calculation for accessing a relation
R has to be modified when including function calls. Selinger et al.
[14] introduced the following cost estimate based on disk I/O’s
and processor time:

( ) ( ) ( )RssystemcallWRspagefetcheRCost ×+=

In this formula, the function pagefetches describes the number of
physical accesses to the external storage (mainly disks). The
function systemcalls represents the number of calls to the access
system which is derived from the number of tuples needed for the
query processing. Consequently, this function is a good indicator
for the expected processor load. Factor W is used to include the
computer configuration. If the system is CPU-bound, W should be
a rather big value in order to make QEPs with low CPU demand
preferable. If the system is I/O-bound, W should be small to avoid
the selection of I/O-intensive QEPs.

Unfortunately, this formula does not fit to our approach, since we
do not access base relations R but abstract relations Ra which are
built up by means of one or more function calls. Hence, the
function systemcalls is replaced by the function wrapcalls and



represents the number of calls to the wrapper resp. the WfMS
needed to receive the specified contents of the abstract relation Ra.
Moreover, we introduce the function datacomm which depicts the
communication costs for shipping result tuples from the WfMS to
the FDBS. Furthermore, physical access to secondary storage is
replaced by the number of workflow process instances executed
which is described by the function procexec. Since the execution
of workflows is dependent on the number of their activities
invoked, we introduce a factor A indicating the number of
activities defined for the workflow. Our performance tests have
shown that the execution time of a workflow process increases
more or less linearly with the number of activities within that
process. Factor W can still be used to adjust the QEP
optimization. For instance, if the WfMS process is much slower
than that of the FDBS, i.e. the system is WfMS-bound, W should
be rather small in order to avoid the selection of WfMS-intensive
solutions. Consequently, we get the following cost estimate for
accessing an abstract relation Ra:

( ) ( ) ( ) ( )aaaa RdatacommRwrapcallsWRprocexecARCost +×+×=
To determine the number of function calls, the query processor
must know at least two things: the value count Vc(Ra, i) of each
attribute of Ra representing an input parameter as well as each
single value of its value set Vs(Ra, i). Many other parameters
which are usually contained in the optimizer statistics cannot be
determined at all or only for those attributes denoting the input
parameters of the function. Therefore, it is often difficult to
estimate selectivities for predicates in order to get an idea of the
size of intermediate results. As a consequence, standard
selectivities as described in [14] have to be used instead.

In the following, we consider the impact on the overall costs if
operations like selection, projection, aggregation, and subqueries
are pushed down to the wrapper. We will focus on the number of
wrapper calls as well as workflow process executions and the
amount of tuples shipped between FDBS and WfMS.

When estimating the costs for selection or projection processed by
the FDBS and WfMS respectively, the communication costs
represent the only varying factor. This is based on the fact that σI
is always processed at the WfMS side, since the predicates are
needed to determine the function calls. σO is then applied to the
result of the function calls, thus reducing the number of result
tuples. In the case of projection, the number of function calls is
the same, no matter where the operation actually is processed.
Since in both cases the data has to be retrieved by several function
calls, the communication costs only vary by the amount of data
returned to the FDBS. Since these observations are well known
from traditional query optimization, we will not further follow up
these considerations.

Instead, we discuss the costs for grouping and aggregation as well
as subqueries in greater detail. Starting with grouping and
aggregation, we get the results for wrapper calls, process
executions, and tuples shipped as described in Table 2.

Including a HAVING clause which is based on I, the processing
cost in the FDBS remains the same. For the WfMS, we get the
following result (with H := {having attributes}):
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Obviously, the amount of data shipped between FDBS and
WFMS is smaller when grouping is pushed down. If the HAVING
clause is also processed by the wrapper, the result set is further
reduced and, in turn, the number of process executions is
decreased.

Table 2. Cost comparison for grouping and aggregation
processed in FDBS and pushed down to WfMS

Overall cost for grouping and aggregation

FDBS With T(Ra) := # tuples of Ra
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WfMS With G := {grouping attributes}
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Finally, we compare the costs for subqueries and set comparisons.
Obviously, the correlated case of subqueries causes a lot of
interaction between FDBS and WfMS, since the subquery cannot
be processed completely in a single step by the wrapper.
Consequently, the cost estimates for the two cases should at least
differ in the number of wrapper calls. Our cost estimates are based
on the example introduced in Sect. 4.3.2 to illustrate them in a
comprehensive way (see table 3).

Table 3. Cost comparison for correlated subqueries

Correlated subqueries

FDBS ( ) ( ) ( )222 ,,, aRVaRVWaRVA rcrcrc +×+×

WfMS ( ) ( )22 ,1, aRVWaRVA rcrc +×+×

In summary, we can state that the functionality extension of the
wrapper can reduce costs not only by minimizing the amount of
data shipped, but also by reducing the number of wrapper calls
and process executions. However, the support of all comparison
operators by means of compensating function calls is
inappropriate, since the number of function calls may explode.
Assume a function has three input parameters with a value count
of only 10 for each of them. If, for instance, a selection with a
predicate for only one of these parameters is specified, we already
get 10x10=100 compensating function calls. Even worse, if no
predicate at all is specified, there are 10x10x10=1000 function
calls. Consequently, we must consider alternatives reducing this
huge number of function calls. One solution could be an enhanced
parser rejecting queries that do not specify predicates for each
single input parameter. Another way is to shift the specification of
input values from predicates to user-defined functions (UDFs) in
the WHERE clause. These UDFs would force the user to provide
values for each input parameter.



6. RELATED WORK
Most approaches dealing with the integration of heterogeneous
data sources focus on the capability to integrate different data
models and heterogeneous systems providing an interface which
is not as powerful as SQL. Approaches like Garlic [16],
Information Manifold [9], or TSIMMIS [12] embody mediator- or
wrapper-based solutions where missing functionality of the data
sources is compensated by the integration server. In contrast to
our work, these approaches provide general solutions and
algorithms for integrating any kind of data source. In our case, all
non-SQL sources are integrated by the WfMS and the SQL
sources are managed by the FDBS. As a consequence, the FDBS
has to integrate only a single non-SQL source: the WfMS. Hence,
the FDBS just has to integrate SQL sources and the functionality
provided through the single WfMS wrapper interface. This means
that we can concentrate on a specific solution integrating the
workflow system.

Furthermore, we focus on the integration of a functional interface
on the FDBS side. Chauduri et al. [1] have discussed this topic
very early, thereby demonstrating how references to foreign
functions can be expressed in a query language. But they did not
address the problem of limited access patterns. In such cases, for
example, a particular function input must be stated similar to
specific selection criterias in the WHERE clause of an SQL
statement. Approaches like [3] and [4] propose solutions for this
limitation by binding attributes in order to support queries on
such data sources.

7. SUMMARY
In this paper, we have introduced an approach for the integration
of heterogeneous data sources accessible via generic queries or
predefined functions. The consideration of predefined functions
has been motivated by current system environments where
databases and applications are encapsulated providing an API
with functions instead of a database interface. We have described
the components of our integration architecture introducing the
FDBS, the WfMS and its wrapper-based connection. Since FDBS
and WfMS must cooperate when processing a user query, we have
focused on heterogeneous query processing in our approach. First,
we have pointed out the functional requirements of such a
heterogeneous query processing system. We have described the
operations which should be provided by the WfMS and the
wrapper in order to support efficient heterogeneous query
processing. Based on these requirements, we have shown how
much of the required operations are supported natively by the
WfMS functionality. Moreover, we have identified aspects which
have to be taken into account when extending its native
functionality by implementing additional operations like selection,
projection, grouping, and aggregation within the wrapper. In
addition, we have considered the cost model and modifications to
it to estimate the costs for function calls.
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