
A Lock Manager for Collaborative Processing
of Natively Stored XML Documents

Michael P. Haustein, Theo Härder
University of Kaiserslautern, 67653 Kaiserslautern, Germany

{haustein,haerder}@informatik.uni-kl.de

Abstract

Today, neither transactional provisions, in general, nor concurrency control, in particular, of DBMS-based pro-
cessing are tailored to the specific needs of large and collaboratively used XML documents. Existing DBMSs more
or less offer strictly serialized operations on them. To gain great progress in this area, we have implemented the
XTC testbed as an (O)RDBMS-connected native XML database management system to empirically explore fine-
granular concurrency control on XML documents which is, at the same time, adjusted to the specific needs of their
APIs. In this paper, we give a comprehensive description of locking protocols for direct and navigational access
to individual nodes of XML documents. Then, we focus on the implementation concepts for our lock manager which
realizes this functionality in XTC, before we characterize its performance behavior on a rich spectrum of locking
protocols using selective measurements in real applications.

1 Motivation

XML applications dramatically grow in number and complexity. At the same time, each appli-
cation is expected to process increasing data volumes under tight schedules. Collaborative
workflows in these application domains require concurrent read as well as write access to such
XML data [15].

Currently available relational or object-relational database management systems
((O)RDBMSs) only manage structured data well. There is no effective and straightforward way
for handling XML data. A “brute-force” mapping uses “long fields” or CLOBs where individual
and direct access to single XML document nodes (elements or attributes) is not possible. Alter-
natively, an innumerable number of algorithms maps semi-structured XML data to structured
relational database tables and columns (the so-called „shredding“). In any case, there are no spe-
cific provisions to process transactions on XML documents and, at the same time, to efficiently
provide the ACID properties [10]. Especially isolation of concurrent transactions in RDBMSs
is tailored to the relational data model and does not take the semi-structured data model and the
typical XML document processing (XDP) interfaces into account. CLOBs or “shredded” map-
pings of XML documents to relational tables may cause disastrous locking behavior, in partic-
ular, if relational systems lock entire pages or even entire tables as their minimal lock granular-
ity.

RDBMS-based approaches as XMLTM [7] cope with this problem by using a layer on top of
an existing DBMS which executes the client-side transaction operations within self-managed
transactions which have to be processed (under lower isolation levels) on an RDBMS thereby
confined to the existing “relational” lock modes. The DGLOCK concept of XMLTM, for exam-
ple, isolates transactions by managing path locks on a DataGuide structure and, in this way, pro-
vides for concurrent path-based transaction processing to the client applications. However, it
cannot support ID-based access and position-based predicates and is not tailored to fine-grained
1

navigational access. Another path-oriented protocol (without existing implementation) is pro-
posed in [4, 5] which also seems to be limited as far as the full expressiveness of XPath predi-
cates and direct jumps into subtrees are concerned.

Native XML database systems promise tailored processing of XML documents, but most of
the systems published in the DB literature are designed for efficient document retrieval and not
for frequently concurrent and transaction-safe document modifications [12, 13]. This primarily
results from the numbering schemes used to identify XML elements. These schemes allow for
very fast computation of structural dependencies, but modifications of the document structure
often lead to renumeration of large document parts.

A rare example of an update-oriented system, Natix is designed to support concurrent mod-
ifications [6] using the DOM interface. For transaction isolation, it uses special locks acquired
on database records which may contain subtrees of the stored XML document, that is, quite
large units of individual access. By acquiring locks on document parts in the neighborhood of
the actually processed subtree or node, navigational paths of transactions inside the XML doc-
ument can also be guarded [11].

To our knowledge, Natix embodies the only competing approach which is also navigation
oriented. In contrast, our approach applies different solutions for data storage and transaction
isolation. We aim at the adequate support of all known XDP interfaces (detailed in Section 2)
and for the fine-grained isolation (by elements or attributes) of XML documents. For this rea-
son, we have implemented XTC, an (O)RDBMS-connected XML DBMS, called XDBMS for
short, as a testbed for empirical concurrency control on XML documents [9]—a research area
hardly explored in universities or industry so far. Concurrent access is supported by locks tai-
lored to the taDOM tree—a data model which extends the DOM tree [15]—as outlined in Sec-
tion 3 and 4, thereby providing tunable, fine-grained lock granularity as well as navigational
transaction paths inside an XML document. In Section 5, we outline the implementation con-
cepts of our lock manager and give a series of performance measurement for the rich and com-
plex operations of the lock manager in Section 6, before we summarize our results and conclude
in Section 7.

2 Desirable APIs for XML Documents

Currently, there are a number of application programming interfaces (APIs) already standard-
ized by international organizations. They are designed for the coverage of different application
domains with varying operational demands. Most prominent are the Simple API for XML (SAX
[2]) which gives the user event-based read-only access to an XML document and the API for
the Document Object Model (DOM API) which offers method-based access to XML documents
for query, update, and navigation tasks [15]. Its expressive power is characterized by the indic-
ative names of its methods partially listed in Figure 1.

Other important APIs are specified by the XPath and XQuery standards [3, 1]. Their objec-
tives are primarily related to addressing entire XML document parts by a (possibly mixed nav-
igational and) declarative path expression and to transform query results into user-defined XML
structures. Hence, this brief discussion already reveals that all these requirements at the lan-
guage level of the various access models to XML data should be considered when designing ad-
justed concurrency control methods for collaborative use of XML documents. Most important
is the provision of tailored locking support of node-based declarative, path-oriented as well as
navigational access to single and typically very large XML documents. Hence, such a unified
support of concurrency control is our ultimate goal.
2

3 A Storage Model for XML Documents

Efficient and effective synchronization of concurrent access to an XML document is greatly fa-
cilitated if we use a specialized internal representation which enables fine-granular locking. For
this reason, we will introduce two new node types: attributeRoot and string. This representation-
al enhancement does not influence the user operations and their semantics on the XML docu-
ment, but is solely exploited by the lock manager to achieve certain kinds of optimizations when
an XML document is modified in a cooperative fashion. As a running example, we, therefore,
refer in the following to an XML document which is slightly enhanced for our purpose to a so-
called taDOM tree [8], as shown in Figure 2.

AttributeRoot separates the various attribute nodes from their element node. Instead of lock-
ing all attribute nodes separately when getAttibutes() is invoked, the lock manager obtains the
same effect by a single lock on attributeRoot. Hence, such a lock does not affect parallelism, but
leads to more effective lock handling and, thus, potentially to better performance. A string node,
in contrast, is attached to the respective text or attribute node and only contains the value of this
node. Because reference to that value requires an explicit invocation of getValue() with a pre-
ceding lock request, a simple existence test on a text or attribute node avoids locking such
nodes. Hence, a transaction which is only navigating across such nodes will not be blocked, al-
though a concurrent transaction have modified them and may still hold exclusive locks on them.

Essential for the locking performance is a suitable storage structure for taDOM trees support-
ing a flexible storage layout which allows a distinguishable (separate) node representation of all
node types to achieve fine-grained locking. Furthermore, fast access to and identification of all
nodes of an XML document is mandatory to enable efficient processing of direct-access meth-
ods (e. g., getElementById()) as well as navigational methods (e. g., getNextSibling()). Separate
node representation together with access and identification of all XML document nodes, on the
other hand, are prerequisites of fine-grained and, therefore, effective concurrency control.

For this reason, we have designed and implemented an XDBMS [9] which embodies a multi-
layered architecture and, most important to our discussion, which offers a native storage struc-
ture for XML documents tailored to our objectives. In summary, our storage mechanism offers
an extensible file structure as a container of single XML documents such that updates of an
XML document (by IUD operations) can be performed on any of its nodes. We have shown that
a very high degree of storage occupancy (> 96%) for taDOM trees is achieved under a variety

Query operations
– on contents:
Element getElementById (String)
NodeList getElementsByTagName (String)
boolean hasAttribute (String)
– on structure (navigation):
NamedNodeMap getAttributes()
NodeList getChildNodes ()
Node getFirstChild ()
Node getLastChild()
Node getNextSibling()
Node getPreviousSibling()
Node getParentNode()

Figure 1. Methods for the DOM API

Update operations
– on contents:
void insertData (Int, String)
void appendData (String)
void deleteData (Int, Int)
void replaceData (Int, Int, String)
void setNodeValue (String)
void removeAttribute (String)
– on structure:
Node insertBefore (Node1, Node2)
Node removeChild (Node)
Node replaceChild (Node1, Node2)
Node appendChild (Node)
3

of different update workloads [9]. Fast (indexed) access to each node is provided by a variant
of a B*-tree tailored to our requirements of node identification and direct or relative location of
any node.

4 Supporting Flexible and Fine-Granular Concurrency Control

So far, we have explained the newly introduced node types and how fast and selective access to
all nodes of an XML document can be guaranteed. In a concurrent environment, the various
types of XML operations have to be synchronized using appropriate protocols entirely transpar-
ent to the different XDP interfaces supported. Because the various XDP interfaces not only al-
low—at the language level—declarative document access as well as navigation along nodes
starting from the document root, but also enable jumps “out of the blue” to an arbitrary node
within the document, locks must be automatically acquired in either case for the path of ancestor
nodes. The currently accessed node is called context node in the following.

The lock modes depend on the type of access to be performed, for which we have tailored
the node lock compatibilities [8]; we repeat them to make the paper comprehensible. When an
XML document has to be traversed by navigational methods, then the actual navigation paths
also need strict synchronization. This means, a sequence of method calls must always obtain the
same sequence of result nodes. These mechanisms enable the isolation levels repeatable read
and, when using coarse lock granularities, serializable. Our first ideas to prevent phantoms by
fine-granularity locking are sketched in [8] and are not refined here.

4.1 Node Locks

While traversing or modifying an XML document, a transaction has to acquire a lock in an ad-
equate mode for each node before accessing it. Because the nodes in an XML document are or-
ganized by a tree structure, the principles of multi-granularity locking schemes can be applied.
The method calls of the different XDP interfaces used by an application are interpreted by the
lock manager to select the appropriate lock modes for the entire ancestor path. Such tree locking
is similar to multi-granularity locking in relational environments (SQL) where intention locks
communicate a transaction‘s processing needs to concurrent transactions. In particular, they

title author price

year ID last firstT

T T

T
2000 1 Data o... 39.95

T T T T
Abiteb... Serge Bunem... Peter Suciu Dan

book

editor

year ID last firstT

T T

T1999

Gerbarg Darcy

129.952 The E...
affiliation

T
CITI

bib

T

Document Root
Element Node
Attribute Root
Attribute Node

Text Node
String Node

Figure 2. A sample taDOM tree

book

title

author author

price

last lastfirst first
4

prevent a subtree s from being locked in a mode incompatible to locks already granted to s or
subtrees of s. However, there is a major difference, because the nodes in an ancestor path are
part of the document and carry user data, whereas, in a relational DB, user data is exclusively
stored in the leaves (records) of the tree (DAG) whose higher-level nodes are formed by orga-
nizational concepts (e. g., table, segment, DB). For example, it makes perfect sense to lock an
intermediate XML node n for reads, while in the subtree of n another transaction may perform
updates. For this and other reasons, we differentiate the read and write operations thereby re-
placing the well-known (IR, R) and (IX, X) lock modes with (NR, LR, SR) and (IX, CX, X)
modes, respectively. As in the multi-granularity scheme, the U mode plays a special role be-
cause it permits lock conversion. Here, we only summarize the compatibilities of locks acquired
on the same node by separate transactions (Figure 3a):
• An NR lock mode (node read) is requested for reading the context node. To isolate such a

read access, an NR lock has to be acquired for each node in the ancestor path. Note, the NR
mode takes over the role of IR together with a specialized R, because it only locks the spec-
ified node, but not any descendant nodes.

• An IX lock mode (intention exclusive) indicates the intent to perform write operations some-
where in the subtree (similar to the multi-granularity locking approach), but not on a direct-
child node of the node being locked (see CX lock).

• An LR lock mode (level read) locks the context node together with its direct-child nodes for
shared access. For example, the method getChildNodes() only requires an LR lock on the
context node and not individual NR locks for all child nodes. Similarly, an LR lock, requested
for an attributeRoot node, locks all its attributes implicitly (to save lock requests for the
getAttributes() method).

• An SR lock mode (subtree read) is requested for the context node c as the root of subtree s to
perform read operations on all nodes belonging to s. Hence, the entire subtree is granted for
shared access. An SR lock on c is typically used if s is completely reconstructed to be printed
out as an XML fragment.

• A CX lock mode (child exclusive) on context node c indicates the existence of an X lock on
some direct-child node and prohibits inconsistent locking states by preventing LR and SR
lock modes. In contrast, it does not prohibit other CX locks on c, because separate direct-
child nodes of c may be exclusively locked by concurrent transactions.

• A U lock mode (update option) supports a read operation on context node c with the option
to convert the mode for subsequent write access. It can be either converted (downgraded) to
a read lock if the inspection of c shows that no update action is needed or (upgraded) to an X
lock after all existing read locks on c are released. Note, the asymmetry in the compatibility
definition among U and (NR, IX, LR, SR, CX) which prevents granting further read locks on
c, thereby enhancing protocol fairness, that is, avoiding transaction starvation.

• To modify the context node c (updating its contents or deleting c and its entire subtree), an X
lock mode (exclusive) is needed for c. It implies a CX lock for its parent node and IX locks
on all other ancestors.

Note again, this differing behavior of CX and IX locks is needed to enable compatibility of IX
and LR locks and to enforce incompatibility of CX and LR locks.

Fig. 3b represents a cutout of the taDOM tree depicted in Figure 2 and illustrates the result
of the following example: Transaction T1 starts modifying the value Darcy and, therefore, ac-
quires an X lock for the corresponding string node. The lock manager complements this action
5

by accessing all ancestors and by acquiring a CX lock for the parent and IX locks for all further
ancestors. Simultaneously, transaction T2 wants to delete the entire <editor> node including the
string Gerbag for which T2 must acquire an X lock. This lock request, however, cannot be im-
mediately granted because of the existing IX lock of T1. Hence, T2—placing its request in the
lock request queue (LRQ: X2)—must synchronously wait for the release of the IX lock of T1 on
the <editor> node. Meanwhile, transaction T3 is generating a list of all book titles and has,
therefore, requested an LR lock for the <bib> node to obtain read access to all direct-child
nodes thereby using the level-read optimization. To access the title strings for each <book>
node, the paths downwards to them are locked by NR locks. Note, LR3 on <bib> implicitly
locks the <book> nodes in shared mode and does not prohibit updates somewhere deeper in the
tree. If X2 is eventually granted for the <editor> node, T2 gets its CX lock on the <book> node
and its IX locks granted up to the root.

4.2 Navigation Locks

So far, we have discussed optimization issues for locks where the node to be accessed was spec-
ified by its unique ID. In addition, the DOM API also provides for (>20) methods which enable
the traversal of XML documents where access is specified relative to the context node. In such
cases, synchronizing a navigation path means that a sequence of navigational method calls or
modification (IUD) operations—starting at a known node within the taDOM tree—must always
yield the same sequence of result nodes within a transaction. Hence, a path of nodes within the
document evaluated by a transaction must be protected against modifications of concurrent
transactions. Assume in Figure 2, a transaction T navigates through all or a range of <book>
nodes and wants to be isolated from concurrent inserts of new <book> nodes. Of course, we
have already introduced some lock modes which enable in this situation perfect, but (too) ex-
pensive isolation caused by (too) large lock granules. For example, if we acquire an LR lock on

Figure 3. Node locking for the taDOM tree

T T

T T

X1

CX1

IX1

IX1

IX1

IX1

X2

LR3

NR3

NR3

NR3

NR3

NR3

NR3

- NR IX LR SR CX U X

NR + + + + + + - -

IX + + + + - + - -

LR + + + + + - - -

SR + + - + + - - -

CX + + + - - + - -

U + + + + + + - -

X + - - - - - - -

a) Compatibility matrix b) Locking example

bib

book book

title title

last first

Data o... The E...

editor

Gerbarg Darcy

LRQ

prevSiblingEdge nextSiblingEdge

firstChildEdge lastChildEdge

Figure 4. Locking navigational operations in a taDOM tree

- ER EU EX

ER + + - -

EU + + - -

EX + - - -

a) Compatibility matrix b) Virtual navigation edges on an element-node
6

the <bib> node, all <book> nodes are implicitly granted in shared mode. An SR lock on <bib>
would even prohibit updates on the entire document. We, however, want to support a solution
only using minimal lock granules, that is, node locks of mode NR. Therefore, we introduce vir-
tual navigation edges for element and text nodes within the taDOM tree (Figure 4b) which are
locked in addition to their confining nodes.

While navigating through an XML document and
traversing the navigation edges, a transaction has to re-
quest a lock for each edge., in addition to the node
locks (NR) for the nodes visited. Note, these edges are
logical objects which are not materialized but embod-
ied by their confining nodes. Because each navigation
step only performs local operations (first/last, next/
previous) to a sibling or child of the context node c, the
R/U/X locks known from relational records or tables
are sufficient. Traversal operations between nodes
need bidirectional isolation: For example, if get-
NextSibling() is invoked on node c and delivers node
n, then, as a first step, the next-sibling edge of c is
locked. In addition, we must lock the previous-sibling
edge of n to prohibit path modifications between n and c through another transaction via node
n. To support such traversals efficiently, we offer ER, EU, and EX lock modes similar to R/U/
X. Their use observing the compatibilities shown in Figure 4a can be summarized as follows:
• An ER lock mode (edge read) is needed for an edge traversal in read mode, e. g., by calling

the getNextSibling() or getFirstChild() DOM method for the nextSiblingEdge or firstChild-
Edge, respectively.

• An EX lock mode (edge exclusive) enables an edge to be modified which may be needed
when nodes are deleted or inserted. For all edges, affected by the modification operation, EX
locks are acquired, before the navigation edges are redirected to their new target nodes.

• The EU lock mode (edge update) eases the starvation problem of write transactions (see lock
mode U in Section 4.1).
Figure 5 illustrates navigation locks on virtual navigation edges. To keep Figure 5 compre-

hensible, we do not show node locks, e.g., NR or CX. Transaction T1 starts at the <bib> node
and reads three times the first-child node (that is, the node sequence <bib>, <book>, <title>,
<text>) to get the string value (Data o...) of the first book title. Then T1 refers to the next-sibling
node of the current <book> node and repeats twice the first-child method to get the title of the
second book. At this point, the requested book is located, and T1 finally gets the next sibling of
the current <title> node which is the <editor> node. Apparently, our protocol allows concur-
rent transaction T2 to append a new book by acquiring EX locks for the next-sibling edge of the
last <book> node and for the last-child edge of the <bib> node. Of course, T2 has to protect its
ancestor path in a sufficient mode—its CX lock on <bib> is compatible with the NR lock of T1.

5 Realization Concepts for the XML Lock Manager

As already stated, the various XML language models enable declarative access to arbitrary doc-
ument parts, node navigation, and direct node access without giving any hints for operation syn-
chronization. Therefore, synchronization of concurrent operations has to be “automatically” ac-

Figure 5. Use of navigation locks

T T

T T

bib

book book

title title

last first

Data o... The E...

editor

Gerbarg Darcy

ER1

ER1

ER1

ER1 ER1
ER1

ER1

ER1ER1

EX2

EX2
7

complished by the lock manager which is responsible for the acquisition and maintenance of
locks, processing of the quite complex locking protocols and their adherence to correctness cri-
teria, as well as optimization issues such as adequate lock granularity and lock escalation. In
particular, the lock manager has to protect directly accessed nodes, edges traversed by naviga-
tional operations, and subtrees in the XML document.

5.1 Identifying Nodes

A node can be directly accessed, for example, by getElementById() if its ID is known. In such
a case, the entire ancestor path must be sufficiently locked together with the context node.
Hence, setting a lock in the tree typically results in an entire locking path. This up-to-the-root
locking procedure is performed as follows: If an ancestor path is traversed the first time and if
the IDs of the ancestors are not present in the so-called parent index, the document tree has to
be accessed and searched for all ancestor records. The IDs of these records are saved in the par-
ent index (on-demand indexing [9]). Hence, future traversals of this ancestor path can be pro-
cessed via the parent index only.

Another type of node access is based on navigation—next/previous sibling, first/last child,
parent—starting from the context node. Because the IDs of such relatively addressed objects are
not supplied by the application, the related records have to be accessed to identify the nodes if
no appropriate index is present. Depending on the size and structure of the document tree, this
identification may be expensive and may require searching of large portions of the tree, that is,
scanning of a large set of pages involving physical I/O. Again, on-demand indexing of structural
relationships, for example, next-sibling index or last-child index, helps to optimize locking per-
formance in a similar way as the parent index.

In any case, the lock manager protects the context node c by providing the weakest possible
locking path for c. Hence, a read operation on c results in a read lock mode on c (that is, NR,
SR, LR) and NR locks on all ancestors, whereas a U lock mode implies IX locks on all ances-
tors. The weakest possible locking path for all write operations consists of an X lock on c, a CX
lock on its parent p, and IX locks on all other ancestors.

5.2 Semaphore Tables

The actual lock management is based on a semaphore concept and is realized by so-called sema-
phore tables. Because we need to synchronize objects of varying types occurring at diverse sys-
tem layers (e.g., pages and XML-document-related objects such as nodes, edges, and indexes),
Which exhibit incomparable lock compatibilities, very short to very long lock durations, as well
as differing access frequencies, we decided to provide specialized semaphore tables for them
(and not a common one). Size and contents of these tables can be configured. They are statically
allocated at system start-up time in main memory and maintain the specific semaphores on ob-
jects that are identified by unique identifiers.

A semaphore table maintains the semaphores (locks) dynamically acquired for a specified
maximum number of transactions and lockable objects (e.g., XML nodes or database buffer
pages). Semaphores types (lock modes) are assigned to a semaphore table by using the corre-
sponding compatibility matrices. The dynamically acquired semaphores are maintained by a 2-
dimensional static array which makes request and release of semaphores very fast. To save
memory space, an encoded and thereby compact representation of the entries for semaphores
and transaction IDs can be used.
8

As illustrated in Figure 6, each transaction
T is mapped by its TAID to a column within
the semaphore table whereas the rows as-
signed to the objects are determined by a
hash function. Operations are provided on
behalf of T to add or replace semaphores on
an object and to remove it after completing
the processing of the object. The row for an
object is determined when the first sema-
phore is acquired for it. “Collisions” while
assigning a row to an object are resolved by
choosing the next free row as a collision han-
dling technique. The column determining to-
gether with the object row the array element
keeping the semaphore is selected by TAID. Hence, a transaction can only keep a single sema-
phore on a given object and sometimes has to replace it by another one of stronger mode (see
lock conversion). Furthermore, the ID of an object (e.g., an XML node) must be stable for the
entire time period the object is locked (even if the object is modified while keeping an exclusive
lock). If the last semaphore held on an object is removed, the object ID is deleted and the cor-
responding row is released. Hence, the row can be reused for future lock requests.

The set of granted locks per object is represented by the semaphore-table row assigned to an
object—the so-called object control block (OCB). All locks acquired by a transaction are rep-
resented by the respective column (indirectly) indexed by its TAID. Hence, they can be rapidly
located when released at transaction commit. Static allocation of fixed-size semaphore tables
enables fast lock table operations; it is, however, wasting memory space when the table is
sparsely occupied. Although acceptable for our XTC testbed, we will refine our implementation
using dynamically allocated linked OCBs for high transaction loads.

A lock request is performed in a FIFO manner to guarantee scheduling fairness when access-
ing objects (request mode). If the lock request queue (LRQ or TAID queue) of a requested object
is not empty, the transaction is deactivated and waits in the respective LRQ until the lock can
be granted. The setting of a semaphore requires a compatibility check which is performed by
means of the compatibility matrix provided at semaphore table initialization. Either the request-
ed semaphore is compatible to all semaphores already held on the object or the requested sema-
phore is not compatible to one or more semaphores already set. If compatible, the requested
semaphore is immediately set on behalf of the invoking transaction. Otherwise, the semaphore-
requesting transaction is added to the object’s LRQ and has to “sleep” until the incompatible
semaphores are removed or replaced by the transactions owning them. Additionally, the pend-
ing transaction is entered into a wait-for-graph (WfG) enabling deadlock detection. Such cen-
tralized deadlock detection is necessary because cyclic waiting relationships can occur across
several semaphore tables residing in different XDBMS layers (e.g. T1 is waiting for T2 because
of a node lock request and T2 is waiting for T1 because of a page fix request).

5.3 Lock Management

Lock management is performed by the lock manager which initializes 6 different semaphore ta-
bles to maintain the locks for the XML nodes, the previous and next sibling edges, the first and
last child edges, and the index accesses (e.g., using a B-tree to determine the physical address

Figure 6. Semaphore table layout

(TAIDs)0 1 2 3 ... n

0815

4711

...

H
as

h
fu

nc
tio

n
m

an
ag

ed
ob

je
ct

 ID
s

TAID queue

TAID queue

TAID queue

TAID queue

TAID queue

TAID queue

 TAID queue
9

of a node specified by its unique ID (see Section 3)). An additional semaphore table is created
by the DB buffer manager to maintain database page read and write fixes. The principal and
most frequent lock management operations are
• allocate a new object: locate a free row in the semaphore table
• remove an object: release the related row
• assign a semaphore: test compatibility (always limited to existing semaphores in the respec-

tive row)
• replace an existing semaphore: similar to semaphore assignment
• remove a semaphore: check TAID queue whether pending transactions can be resumed
• remove a transaction: remove all semaphores in the corresponding column.
Because of the static matrix implementation of semaphore tables, the elementary operation to
access a table element is very fast. Hence, all these principal operations need one or more table
element accesses and take advantage of the chosen implementation.

Locks on indexes or pages are “short” locks (kept only for the actual page or index access of
an operation), whereas acquisition and release of node and edge locks (which correspond to the
locking protocols described in Section 4) depend on the isolation levels none, uncommitted,
committed, repeatable, or serializable at which a transaction is running. Isolation level none
means that no node or edge locks at all are requested for individual operations. This mode is
used, for example, for internal transactions of the lock manager to determine hierarchical rela-
tionships of nodes (e.g., a lock request on node n1 requires a lock request on parent node n2). At
isolation level uncommitted only write locks (IX, CX, X, and EX) are requested and are imme-
diately released at the end of the operation (hence, it is possible to access uncommitted data).
Processing only committed data requires keeping “long” write locks (until transaction commit)
and “short” read locks (NR, LR, SR, U, ER, and EU). Isolation level repeatable keeps all locks
up to the end of the running transaction and guarantees that multiple read operations on the same
object always obtain the same result data within a transaction. Serializable avoids, in addition
to isolation level repeatable, phantom anomalies to happen.

The lock manager provides methods for the acquisition of the different lock types on DB ob-
jects (XML nodes, edges among XML nodes, index entries, and database pages) and forwards
the lock requests to the adequate semaphore tables. Additionally, a single node lock request for
working node w can result in further lock requests for nodes along the ancestor path or in lock
requests for direct-child nodes of w (see the locking protocols described in Section 4). These
additional lock requests are triggered by the lock manager; the requested nodes are identified by
an internal transaction. Furthermore, with a specific lock-depth parameter [8], the lock request
on a node below the given lock-depth level must be transformed by the lock manager into a lock
request on the first ancestor node located at the specified lock-depth level.

5.4 Node Lock Conversion

If a transaction T does not hold a lock on object o, locking is performed in request mode which
strictly observes scheduling fairness. In contrast, if T already holds a lock on o and wants to up-
grade/downgrade the lock or requests an additional lock for o in another locking path, lock con-
version is performed in the so-called convert mode. The latter case frequently occurs in trees,
because operations of the same transaction on separate parts of the tree imply locking paths
which are overlapping closer to the root. Downgrading a lock never causes problems, but up-
10

grading needs some special considerations. In convert mode, a lock is directly probed irrespec-
tive of transaction requests blocked in the corresponding LRQ. If the requested lock mode is
compatible with all granted locks on o, conversion is performed. Otherwise, lock conversion has
to be delayed. However, placing T at the end of the corresponding LRQ would provoke a dead-
lock situation. Therefore, we circumvent scheduling fairness and place T always at the top of
the LRQ.

Lock mode U is an obvious candidate for lock conversion. Assume that transaction T re-
quires a single U lock on node c somewhere in the taDOM tree. Before the lock can be granted,
the lock manager has to set on behalf of T IX locks on all ancestor nodes of c. If later no write
operation is needed, the U lock can be downgraded to an NR lock on c. To achieve minimal ob-
struction of concurrent transactions, we could reduce all related IX locks to NR, in principle.
Cost effectiveness (see argument at the end of Section 5.4), however, does not allow to weaken
lock protection on the ancestor nodes. More difficult is the situation where the U lock is upgrad-
ed to X. This action implies a CX lock on the parent p of c and IX locks (already present) on all
other ancestors. As stated in Figure 3a, p may already hold (NR, IX, LR, CX) locks of other
transactions. Therefore, CX of T is tested against all granted locks on c and p. As soon as in-
compatibility is found, e. g., with LR, T must wait in the related LRQ.

A second form of lock conversion occurs as follows: If T requests another lock on o (in an
overlapping locking path), without lock conversion we would have to keep two locks for T. In
general, k locks per transaction and object are conceivable. This proceeding would require larg-
er OCBs and a more complex run-time inspection algorithm checking for lock compatibility.
Therefore, also enforced by the chosen semaphore-table implementation, we replace all locks
of a transaction per node with a single lock in a mode giving sufficient isolation.

The corresponding rules are specified by
the lock conversion matrix in Figure 7 which
determines the resulting lock for context node
c, if a transaction already holds a lock (matrix
header row) and requests a further lock (matrix
header column) on c. A lock l1 specified by an
additional subscripted lock l2 (e. g., CXNR)
means that l1 has to be acquired on c and l2 has
to be acquired on each direct-child node of c.

As an example, assume that a user starts a
transaction T requesting all child nodes of c
which results in acquiring an LR lock on c. LR
mode locks c and all direct-child nodes in
shared mode. After that, the user wants to delete one of the previously determined child nodes.
Therefore, T acquires an X lock on the corresponding child node and—applying the locking
protocol—this requires the acquisition of a CX lock on c which already holds the LR lock. Us-
ing rule CXNR, T has to convert the LR lock on c to a CX lock and to acquire an NR lock on
each direct-child node of c (except the child node which is already locked for deletion by an X
lock). For large child sets, we provide some kind of lock escalation [8].

Lock conversion works fine in the isolation levels repeatable read or stronger. Isolation level
committed, however, releases read locks at the end of each operation and, therefore, requires re-
leasing of read locks represented by a single converted lock. Because the stronger mode of write
locks covers the effects of read locks, such converted locks don’t need to be converted back. In
principle, IX-converted locks resulting from (NR, IX) requests of the same transaction could be

- NR IX LR SR CX U X

NR NR - IX LR SR CX NR X

IX IX IX - IXNR IXSR CX IX X

LR LR LR IXNR - SR CXNR LR X

SR SR SR IXSR SR - CXSR SR X

CX CX CX CX CXNR CXSR - CX X

U U U U U U U - X

X X X X X X X X -

Figure 7. Lock conversion matrix
11

reduced to NR, if a U lock somewhere down the tree has to be downgraded to a read lock and
afterwards released, to guarantee the weakest lock modes possible along the ancestor chain.
However, this proceeding would require the logging of the transaction’s lock history on a node
and, therefore, contradict our lock conversion policy. Hence, we do not reduce the mode of con-
verted locks.

5.5 Deadlock Detection

Although we manage 6 semaphore tables in our system, we can represent the existing wait re-
lationships among concurrent transactions in a single WfG. Each transaction can at most wait
for a single lock request, for which it is blocked in the LRQ of the respective object. In such a
situation, it is represented by a node in the WfG. When a lock is released on an object, its LRQ
is checked whether blocking situations are disappeared or not. If successful, the respective set
of transactions are removed from the WfG; after having acquired their locks, they resume pro-
cessing.

Whenever a transaction enters the WfG, a blocking situation and possibly a deadlock has hap-
pened. One solution is to eagerly search for a cycle in the WfG starting from and limited to the
newly inserted node. Because, however, most blocking situations do not lead to deadlocks and
can be resolved by waiting, this eager approach is usually not cost-effective. Therefore, we have
implemented a lazy and more economic solution in which all nodes of the WfG are checked pe-
riodically (e. g., in intervals of 5 secs) for cycles. A deadlock is broken up by selecting the trans-
action in a detected cycle as the “victim” which has performed the lowest number of updates.
After its rollback the WfG is tested for further cycles. As an additional advantage, deadlock de-
tection can be executed by a separate thread and does not burden a thread dedicated to transac-
tion processing.

6 Performance Measurement of Lock Management

The goal of this performance evaluation is to learn about the behavior of lock management on
XML documents and to determine the cost to be attributed to lock acquisition and release. Be-
cause the weakest possible locking paths have to be established for each node access in a doc-
ument tree, more overhead is anticipated as compared to locking flat structures in relational sys-
tems. Furthermore, direct node access and navigational operations imply that parent/sibling/
child nodes have to be known by their IDs before a lock can be set. Such locking often requires
access to the physical document representation to look up the corresponding records and figure
out their IDs. Of course, these accesses are subject to index-based optimizations for which we
will identify appropriate measures and adjust them in our lock manager implementation.

First of all, we consider the basic cost of lock management described so far. For this purpose,
we use the xmlgen tool of the XMark XML benchmark project [14] to generate a variety of
XML documents consisting of 5,000 up to 25,000 individual XML nodes. The documents are
stored in our native XDBMS [9] and accessed by a client-side DOM application which requests
all nodes by separate RMI calls. Each document is reconstructed twice within a single transac-
tion by two consecutive traversals in depth-first order. Hence, we can directly illustrate the dif-
ferences in the behavior of isolation level committed (a read lock has to be acquired for each
node access, even if the node has already been read before by the transaction, and has to be re-
leased directly after the read operation) and isolation level repeatable read (a lock is only re-
quested for the first node access and is not released until the transaction commits).
12

The results of this first measure-
ment are depicted in Figure 8. Lock
management in repeatable-read mode
needs less than 25 percent of the pro-
cessing time even if 50,000 nodes are
requested within one transaction (re-
constructing the document consisting
of 25,000 nodes twice). Although iso-
lation level committed favors concur-
rent processing (only short read locks
are acquired), the reconstruction time
for the document increases dramatical-
ly, because each node request requires the acquisition and immediate release of several node
locks in the ancestor path of the XML tree hierarchy. Physical node access for the look-up of
their IDs is a major reason for this bad locking performance behavior which urgently needs to
be fixed. Index support is one option, but a better choice would be a numbering scheme where
each node ID immediately allows to infer the IDs of all its ancestor nodes.

For the next performance
experiment, we traverse a
25,000-node document only
once in repeatable-read
mode and consider the pro-
cessing time determined by
different values of the lock-
depth parameter. The results
are shown in Figure 9. Be-
cause the document has a
large fan-out at levels 4 and
below, the reconstruction
time and, in turn, the number
of lock requests increase sub-
stantially in this range. Nev-
ertheless, the cost for lock
management does not exceed
the 25-percent threshold mentioned (comparing a single document-granularity lock at lock
depth 0 with a lock on each node at maximum lock depth 13).

The final performance experiment gives a first impression of the advantages of node-based
lock management for concurrent transaction processing on XML documents. Therefore, we ex-
tend the sample document of Figure 2 to a small library database by encapsulating 100 books
into an additional <books> node and adding a <persons> node which includes 20 persons. The
DataGuide describing the resulting XML document is shown in Figure 10.

Different transaction types simulating read/write access to XML documents are executed on
the library document consisting of 1,943 nodes stored in our XDBMS. Transaction T1 is search-
ing for a book with a randomly selected title. This is a typical query of a library visitor. The li-
brary employees are simulated by transactions T2, T3, and T4. Transaction T2 is searching for a
randomly selected person by the last name. Transactions T3 and T4 are simulating the lending
of books. A person is randomly selected by transaction T3 and the person’s ID is added within

0

100

200

300

400

500

600

4000 6000 8000 10000 12000 14000 16000 18000 20000 22000 24000 260

Ti
m

e
[s

ec
on

ds
]

Number of Nodes

Isolation Level NONE
Isolation Level REPEATABLE READ

Isolation Level COMMITTED

Figure 8. Document reconstruction time

0

5000

10000

15000

20000

25000

0 2 4 6 8 10 12 14
Lock Depth

Figure 9. a) Reconstruction time b) Number of node locks

48

50
52

54

56
58

60

62
64

66

0 2 4 6 8 10 12 14

Ti
m

e
[s

ec
on

ds
]

Lock Depth
13

a new child node to a randomly selected book—lent by the person. Transaction T4 „returns“ the
book by deleting the corresponding child node from the <book> node.

Read transactions of type T1 and T2 are
continuously executed for five minutes on
the library document and embody a base load
on the XDBMS. Concurrently, five clients
are executing as many write transactions of
type T3 and T4 as possible. A deadlock detec-
tor is scanning the waiting relationships be-
tween the running transactions every five
seconds. The result of this transaction
throughput benchmark analyzing the influ-
ence of the lock-depth parameter is depicted in Figure 11.

The maximum of committed write transactions is reached using a lock-depth value of 3, be-
cause the inserted and deleted nodes of transactions T3 and T4 are occurring at this node level
and are explicitly locked. As a key advantage of our lock protocol, their sibling nodes are not
affected by this lock acquisition—particularly the <title> node can be concurrently accessed by
transaction T1.

A higher lock-depth value
decreases the number of com-
mitted write transactions a lit-
tle, because a few more locks
have to be acquired. A lower
lock-depth value decreases the
number of committed write
transactions dramatically, be-
cause the coarser lock gran-
ules cause more deadlocks
and suspend the exclusive
lock acquisition of the write
transactions until the read
transactions have committed and released their read locks. Because the read transactions T1 and
T2 are less time-consuming than the write transactions T3 and T4, the number of all committed
transactions is decreasing with the increasing number of committed write transactions and an
increasing lock-depth value (more lock acquisitions).

Again, another reason for the decreasing number of committed transactions is our simple
numbering scheme which assigns sequentially ascending IDs to the XML nodes of the storage
model (see Section 3). Hence, a locking path has to be determined by physical look-up. This
additional burden of the lock manager reduces the system’s overall throughput.

7 Conclusions and Future Work

In this paper, we have described the design, implementation, and performance evaluation of our
lock manager supporting efficient collaborative processing on XML documents. For this pur-
pose, we have introduced our concepts enabling fine-granular concurrency control on taDOM
trees representing our natively stored XML documents. We have sketched the locking protocols
for direct and navigational access to individual nodes of a taDOM tree and discussed some op-

Figure 10. DataGuide of the library document

book

author

lastfirst

bib

title price

books persons

person

name

lastfirst

addr phone

ID
ID year

Figure 11. Transaction throughput

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 1 2 3 4 5

N
um

be
r o

f T
ra

ns
ac

tio
ns

Lock Depth

Committed Write-Transactions
Aborted Write-Transactions

Overall Transactions committed
14

timization potential of the chosen approach. Furthermore, we have described the implementa-
tion of the lock manager, which provides its rich functionality in the XTC system, an XDBMS
primarily developed as a testbed to explore XML concurrency control. The performance eval-
uation has revealed the locking overhead of our complex protocols, but, on the other hand, has
confirmed the viability, effectiveness, and efficiency of our approach.

There are many other issues that wait to be resolved. We need to adapt our numbering scheme
to allow for flexible update operations as well as locking an arbitrary XML node and its ancestor
path without accessing any other node. Furthermore, we did not say much about the usefulness
of optimization features offered. More effective phantom control needs to be added, before we
can start to systematically evaluate the huge parameter space available for collaborative XML
processing (fan-out and depth of XML trees, mix of transactional operations, benchmarks for
specific application domains, degree of application concurrency, optimization of protocols, etc.)

References
1. S. Boag, D. Chamberlin, M. F. Fernández, D. Florescu, J. Robie, J. Siméon. XQuery 1.0:

An XML Query Language. W3C Working Draft (2003)
2. D. Brownell. SAX2. O’Reilly (2002)
3. J. Clark, S. DeRose. XML Path Language (XPath) Version 1.0. W3C Recommendation

(2000)
4. S. Dekeyser, J. Hidders. Path Locks for XML Document Collaboration. Proc. 3rd Conf. on

Web Information Systems Engineering (WISE), Singapore, 105-114 (2002)
5. S. Dekeyser, J. Hidders, J. Paredaens. A Transaction Model for XML Databases. World

Wide Web Journal 7(2): 29-57 (2004)
6. T. Fiebig, S. Helmer, C. Kanne, G. Moerkotte, J. Neumann, R. Schiele, T. Westmann.

Natix: A Technology Overview. A. Chaudri et al. (eds.): Web, Web Services, and Database
Systems, NODe 2002: Web and DB-Related Workshops, Erfurt, Germany, LNCS 2593,
Springer, 12-33 (2003)

7. T. Grabs, K. Böhm, H.-J. Schek. XMLTM: Efficient transaction management for XML
documents. Proc. Int. Conf. on Information and Knowledge Management (CIKM),
McLean, Virginia, 142-152 (2002)

8. M. Haustein, T. Härder. taDOM: A Tailored Synchronization Concept with Tunable Lock
Granularity for the DOM API. Proc. 7th East European Conf. on Advances in Databases
and Information Systems (ADBIS), Dresden, Germany, 88-102 (2003)

9. M. Haustein, T. Härder. Fine-Grained Management of Natively Stored XML Documents.
submitted (2004)

10. T. Härder, A. Reuter. Principles of Transaction-Oriented Database Recovery. ACM Com-
puting Surveys 15(4):287-317 (1983)

11. S. Helmer, C.-C. Kanne, G. Moerkotte. Evaluating Lock-based Protocols for Cooperation
on XML Documents. SIGMOD Record 33(1): 58-63 (2004)

12. H. V. Jagadish, S. Al-Khalifa, A. Chapman. TIMBER: A native XML database. The
VLDB Journal 11(4): 274-291 (2002)

13. H. Schöning. Tamino—A DBMS designed for XML. Proc. 7th Int. Conf. on Data Engi-
neering, Heidelberg, Germany, 149-154 (2001)

14. A. Schmidt, F. Waas, M. Kersten. XMark: A Benchmark for XML Data Management.
Proc. 28th Int. Conf. on Very Large Data Bases, Hong Kong, China, 974-985 (2002)

15. W3C Recommendations. http://www.w3c.org (2004)
15

