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Abstract. Processing XML documents in multi-user database management
environments requires a suitable storage model of XML data, support of typ-
ical XML document processing (XDP) interfaces, and concurrency control
(CC) mechanisms tailored to the XML data model. In this paper, we sketch
the architecture and interfaces of our prototype native XML database man-
agement system which can be connected to any existing relational DBMS
and provides for declarative and navigational data access of concurrent trans-
actions. We describe the fine-grained CC mechanisms implemented in our
system and give a first impression of the so achieved benefits for concurrent
transaction processing in native XML database management systems.

1 Introduction

Run an experiment on available DBMSs with collaboratively used XML documents
[16] and you will experience a "performance catastrophe" meaning that all transactional
operations are processed in strict serial order. Storing XML documents into relational
DBMSs forces the developers to use simple CLOBs or to choose among an innumerable
number of algorithms mapping the semi-structured documents to tables and columns
(the so-called shredding). In any case, there are no specific provisions to process con-
current transactions guaranteeing the ACID properties and using typical XDP interfaces
like SAX [2], DOM [16], and XQuery [16] simultaneously. Especially isolation in re-
lational DBMS does not take the properties of the semi-structured XML data model into
account and causes disastrous locking behavior by blocking entire CLOBs or tables.
Native XML database systems often use mature storage engines tailored to relational
structures [13]. Because their XML document mapping is usually based on fixed num-
bering schemes used to identify XML elements, they primarily support efficient docu-
ment retrieval and query evaluation. Frequently concurrent and transaction-safe modi-
fications would lead to renumeration of large document parts which could cause unac-
ceptable reorganization overhead and degrade XML processing in performance-critical
workload situations. As a rare example of an update-oriented system, Natix [5] is de-
signed to support concurrent transaction processing, but accomplishes alternative solu-
tions for data storage and transaction isolation as compared to our proposal.
Our approach aims at the adequate support of all known types of XDP interfaces (event-
based like SAX, navigational like DOM, and declarative like XQuery) and provides the
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well-known ACID properties [7] for their concurrent execution. We have implemented
the XML Transaction Coordinator (XTC) [9], an (O)RDBMS-connectable DBMS for
XML documents, called XDBMS for short, as a testbed for empirical transaction pro-
cessing on XML documents. Here, we present its advantages for concurrent transaction
processing in a native XDBMS achieved by a storage model and CC mechanisms tai-
lored to the XML data model. This specific CC improves not only collaborative XDP
but also SQL applications when "ROX: Relational Over XML" [8] becomes true. 
An overview of the XTC architecture and their XDP interfaces is sketched in Section 2.
Concurrent data access is supported by locks tailored to the taDOM tree [10]—a data
model which extends the DOM tree—as outlined in sections 3 and 4, thereby providing
tunable, fine-grained lock granularity and lock escalation as well as navigational trans-
action path locking inside an XML document. In Section 5, we give a first impression
of concurrent transaction processing gains, before we wrap up with conclusions and
some aspects of future work in Section 6.

2 System Architecture and XDP Interfaces

Our XTC database engine (XTCserver) adheres to the widely used five-layer DBMS ar-
chitecture [11]. In Figure 1, we concentrate on the representation and mapping of XML
documents. Processing of relational data is not a focus of this paper.
The file-services layer operates on the bit pattern stored on external, non-volatile stor-
age devices. In collaboration with the OS file system, the i/o managers store the phys-
ical data into extensible container files; their uniform block length is configurable to the
characteristics of the XML documents to be stored. A buffer manager per container file
handles fixing and unfixing of pages in main memory and provides a replacement algo-
rithm for them which can be optimized to the anticipated reference locality inherent in
the respective XDP applications. Using pages as basic storage units, the record, index,
and catalog managers form the access services. The record manager maintains in a set
of pages the tree-connected nodes of XML documents as physically adjacent records.
Each record is addressed by a unique life-time ID managed within a B-tree by the index
manager [9]. This is essential to allow for fine-grained concurrency control which re-
quires lock acquisition on unique identifiable nodes (see Section 4). The catalog man-
ager provides for the database metadata. The node manager implementing the naviga-
tional access layer transforms the records from their internal physical into an external
representation, thereby managing the lock acquisition to isolate the concurrent transac-
tions. The XML-services layer contains the XML manager responsible for declarative
document access, e. g., evaluation of XPath queries or XSLT transformations [16]. 
At the top of our architecture, the agents of the interface layer make the functionality
of the XML and node services available to common internet browsers, ftp clients, and
the XTCdriver thereby achieving declarative / set-oriented as well as navigational /
node-oriented interfaces. The XTCdriver linked to client-side applications provides for
methods to execute XPath-like queries and to manipulate documents via the SAX or
DOM API. Each API accesses the stored documents within a transaction to be started
by the XTCdriver. Transactions can be processed in the well-known isolation levels un-
committed, committed, repeatable, and serializable [1].



3 Storage Model

Efficient and effective synchronization of concurrent XDP is greatly facilitated if we
use a specialized internal representation which enables fine-granular locking. For this
reason, we will introduce two new node types: attributeRoot and string. This represen-
tational enhancement does not influence the user operations and their semantics on the
XML document, but is solely exploited by the lock manager to achieve certain kinds of
optimizations when an XML document is modified in a cooperative environment. As a
running example, we, therefore, refer to an XML document which is slightly enhanced
for our purpose to a so-called taDOM tree [10], as shown in Figure 2.
AttributeRoot separates the various attribute nodes from their element node. Instead of
locking all attribute nodes separately when the DOM method getAttibutes() is invoked,
the lock manager obtains the same effect by a single lock on attributeRoot. Hence, such
a lock does not affect parallelism, but leads to more effective lock handling and, thus,
potentially to better performance. A string node, in contrast, is attached to the respective
text or attribute node and exclusively contains the value of this node. Because reference
to that value requires an explicit invocation of getValue() with a preceding lock request,
a simple existence test on a text or attribute node avoids locking such nodes. Hence, a
transaction only navigating across such nodes will not be blocked, although a concur-
rent transaction may have modified them and may still hold exclusive locks on them.
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It is essential for the locking performance to provide a suitable storage structure for ta-
DOM trees which supports a flexible storage layout that allows a distinguishable (sep-
arate) node representation of all node types to achieve fine-grained locking. Therefore,
we have implemented various container types which enable effective storage of very
large and very small attribute and element nodes as well as combinations thereof [9].
Furthermore, fast access to and identification of all nodes of an XML document is man-
datory to enable efficient processing of direct-access methods, navigational methods,
and lock management. For this reason, our record manager assigns to each node a
unique node ID (rapidly accessible via a B-tree) and stores the node as a record in a data
page. The tree order of the XML nodes is preserved by the physical order of the records
within logically consecutive pages (chained by next/previous page pointers) together
with a so-called level indicator per record. 

4 Concurrency Control

So far, we have explained the newly introduced node types and how fast and selective
access to all nodes of an XML document can be guaranteed. In a concurrent environ-
ment, the various types of XML operations have to be synchronized using appropriate
protocols entirely transparent to the different XDP interfaces supported. Hence, a lock
manager is responsible for the acquisition and maintenance of locks, processing of the
quite complex locking protocols and their adherence to correctness criteria, as well as
optimization issues such as adequate lock granularity and lock escalation.
Because the DOM API not only supports navigation starting from the document root,
but also allows jumps "out of the blue" to an arbitrary node within the document, locks
must be automatically, that is, by the lock manager, acquired in either case for the path
of ancestor nodes. The currently accessed node is called context node in the following.
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This up-to-the-root locking procedure is performed as follows: If such an ancestor path
is traversed the first time and if the IDs of the ancestors are not present in the so-called
parent index (on-demand indexing of structural relationships [9]) for this path, the
record manager is invoked to access stored records thereby searching all ancestor
records. The IDs of these records are saved in the parent index. Hence, future traversals
of this ancestor path can be processed via the parent index only. Navigational locking
of children or siblings is optimized by such structural indexes in a similar way.
The lock modes depend on the type of access to be performed, for which we have tai-
lored the node lock compatibilities and defined the rules for lock conversion as outlined
in Section 4.1 and Section 4.2. To achieve optimal parallelism, we discuss means to
tune lock granularities and lock escalation in Section 4.3. When an XML document has
to be traversed by navigational methods, then the actual navigation paths also need strict
synchronization. This means, a sequence of method calls must always obtain the same
sequence of result nodes. To support this demand, we present so-called navigation locks
in Section 4.4. Furthermore, query access methods also need strict synchronization to
accomplish the well-known repeatable read property and, in addition, the prevention of
phantoms in rare cases. Our specific solution is outlined in Section 4.5.

4.1 Node Locks
While traversing or modifying an XML document, a transaction has to acquire a lock
in an adequate mode for each node before accessing it. Because the nodes in an XML
document are organized by a tree structure, the principles of multi-granularity locking
schemes can be applied. The method calls of the different XDP interfaces used by an
application are interpreted by the lock manager to select the appropriate lock modes for
the entire ancestor path. Such tree locking is similar to multi-granularity locking in re-
lational environments (SQL) where intention locks communicate a transaction‘s pro-
cessing needs to concurrent transactions. In particular, they prevent a subtree s from be-
ing locked in a mode incompatible to locks already granted to s or subtrees of s. How-
ever, there is a major difference, because the nodes in an ancestor path are part of the
document and carry user data, whereas, in a relational DB, user data is exclusively
stored in the leaves (records) of the tree (DAG) whose higher-level nodes are formed
by organizational concepts (e. g., table, segment, DB). For example, it makes perfect
sense to lock an intermediate XML node n for reads, while in the subtree of n another
transaction may perform updates. For this and other reasons, we differentiate the read
and write operations thereby replacing the well-known (IR, R) and (IX, X) lock modes
with (NR, LR, SR) and (IX, CX, X) modes, respectively. As in the multi-granularity
scheme, the U mode plays a special role because it permits lock conversion. Figure 3a
contains the compatibility matrix for our lock modes whose effects are described now:

• An NR lock mode (node read) is requested for reading the context node. To iso-
late such a read access, an NR lock has to be acquired for each node in the ances-
tor path. Note, the NR mode takes over the role of IR together with a specialized
R, because it only locks the specified node, but not any descendant nodes.

• An IX lock mode (intention exclusive) indicates the intent to perform write oper-
ations somewhere in the subtree (similar to the multi-granularity locking ap-
proach), but not on a direct-child node of the node being locked (see CX lock).



• An LR lock mode (level read) locks the context node together with its direct-child
nodes for shared access. For example, the method getChildNodes() only requires
an LR lock on the context node and not individual NR locks for all child nodes.
Similarly, an LR lock, requested for an attributeRoot node, locks all its attributes
implicitly (to save lock requests for the getAttributes() method).

• An SR lock mode (subtree read) is requested for the context node c as the root of
subtree s to perform read operations on all nodes belonging to s. Hence, the entire
subtree is granted for shared access. An SR lock on c is typically used if s is com-
pletely reconstructed to be printed out as an XML fragment.

• A CX lock mode (child exclusive) on context node c indicates the existence of an
X lock on some direct-child node and prohibits inconsistent locking states by pre-
venting LR and SR lock modes. In contrast, it does not prohibit other CX locks
on c, because separate direct-child nodes of c may be exclusively locked by con-
current transactions.

• A U lock mode (update option) supports a read operation on context node c with
the option to convert the mode for subsequent write access. It can be either con-
verted back to a read lock if the inspection of c shows that no update action is
needed or to an X lock after all existing read locks on c are released. Note, the
asymmetry in the compatibility definition among U and (NR, IX, LR, SR, CX)
which prevents granting further read locks on c, thereby enhancing protocol fair-
ness, that is, avoiding transaction starvation.

• To modify the context node c (updating its contents or deleting c and its entire
subtree), an X lock mode (exclusive) is needed for c. It implies a CX lock for its
parent node and an IX lock for all other ancestors up to the document root.

Note again, this differing behavior of CX and IX locks is needed to enable compatibility
of IX and LR locks and to enforce incompatibility of CX and LR locks.
Figure 3b represents a cutout of the taDOM tree depicted in Figure 2 and illustrates the
result of the following example: Transaction T1 starts modifying the value Darcy and,
therefore, acquires an X lock for the corresponding string node. The lock manager com-

Figure 3   Node locking for the taDOM tree
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plements this action by accessing all ancestors and by acquiring a CX lock for the parent
and IX locks for all further ancestors. Simultaneously, transaction T2 wants to delete the
entire <editor> node including the string Gerbag for which T2 must acquire an X lock.
This lock request, however, cannot be immediately granted because of the existing IX
lock of T1. Hence, T2 —placing its request in the lock request queue (LRQ: X2)—must
synchronously wait for the release of the IX lock of T1 on the <editor> node. Mean-
while, transaction T3 is generating a list of all book titles and has, therefore, requested
an LR lock for the <bib> node to obtain read access to all direct-child nodes thereby
using the level-read optimization. To access the title strings for each <book> node, the
paths downwards to them are locked by NR locks. Note, LR3 on <bib> implicitly locks
the <book> nodes in shared mode and does not prohibit updates somewhere deeper in
the tree. If X2 is eventually granted for the <editor> node, T2 gets its CX lock on the
<book> node and its IX locks granted up to the root.

4.2 Node Lock Conversion
The compatibility matrix shown in Figure 3a describes the compatibility of locks ac-
quired on the same node by separate transactions. If a transaction T already holds a lock
and requests a lock in a more restrictive or incomparable mode on the same node, we
would have to keep two locks for T on this node. In general, k locks per transaction and
node are conceivable. This proceeding would require longer lists of granted locks per
node and a more complex run-time inspection algorithm checking for lock compatibil-
ity. Therefore, we replace all locks of a transaction per node with a single lock in a mode
giving sufficient isolation. The corresponding rules are specified by the lock conversion
matrix in Figure 4, which determines the resulting lock for context node c, if a transac-
tion already holds a lock (matrix header row) and requests a further lock (matrix header
column) on c. A lock l1 specified by an additional subscripted lock l2 (e. g., CXNR)
means that l1 has to be acquired on c and l2 has to be acquired on each direct-child node
of c. An example for this procedure is given in the now following paragraph.
Assume, a user starts a transaction
requesting all child nodes of c
which results in acquiring an LR
lock on c. LR mode locks c and all
direct-child nodes in shared mode.
After that, the user wants to delete
one of the previously determined
child nodes. Therefore, the transac-
tion acquires an X lock on the cor-
responding child node and—apply-
ing the locking protocol—this re-
quires the acquisition of a CX lock
on c which already holds the LR
lock. Using rule CXNR specified in
Figure 4, the transaction has to convert the existing LR lock on c to a CX lock and to
acquire an NR lock on each direct-child node of c (except the child node which is al-
ready locked for deletion by an X lock).

- NR IX LR SR CX U X

NR NR - IX LR SR CX NR X

IX IX IX - IXNR IXSR CX IX X

LR LR LR IXNR - SR CXNR LR X

SR SR SR IXSR SR - CXSR SR X

CX CX CX CX CXNR CXSR - CX X

U U U U U U U - X

X X X X X X X X -

Figure 4   Lock conversion matrix



4.3 Tunable Node Lock Granularity and Lock Escalation
Entire subtrees in the taDOM tree can be locked by both SR locks enabling shared ac-
cess or X locks granting exclusive access. In either case, we want to improve flexibility,
efficiency, and potential parallelism of our locking protocols by enabling tunable lock
granularity and lock escalation. The combined use of them increases operational
throughput because, due to lock escalation, the number of lock requests can be reduced
enormously and, due to fine-tuned lock granularity, higher concurrency may be gained.
To tune the lock granularity of nodes for each transaction separately, the parameter lock
depth ( ) is introduced. Parameter ld describes the lock granularity by means of
the number of node levels (from document root) on which locks are to be held. If a lock
is requested for context node c whose path length to the document root element is great-
er than ld, only an SR lock for the ancestor node belonging to the lock-depth level is
requested. In this way, nodes at deeper levels than indicated by ld are locked in shared
mode using an SR lock on the node at level ld, that is, entire subtrees are locked starting
at the specified lock-depth level of the requesting transaction. As a corollary, ld = 0 pro-
vides document locks, e.g., locks on the <bib> node in Figure 5. This allows the tra-
versal of a large document fragment in read mode without acquiring any additional node
locks. In the same way, several X locks can be replaced with a single X lock at a chosen
document level .
Figure 5 shows the taDOM-tree cutout of
Figure 3b illustrating the effect of the lock-
depth parameter. With ld = 2, the NR locks
of transaction T3 on the <title> and <edi-
tor> nodes are replaced with SR locks for
the <title> nodes. The IX, CX, and X
locks of T1 on the <editor> node and its
descendants are replaced by a single X
lock on the <editor> node. As a prerequi-
site, it requires CX and IX locks on the an-
cestor nodes <book> and <bib>, respec-
tively. Transaction T2 is again in a wait
state, because the requested X lock is not
compatible to the existing X lock of T1.
In a similar way, lock escalation can be
achieved. To tune lock escalation, we introduce two parameters, the escalation thresh-
old (et) and the escalation depth (ed). The lock manager scans the taDOM tree at pre-
specified intervals. If the manager detects a subtree in which the number of locked
nodes of a transaction exceeds the percentage threshold value defined by et, the locks
held are replaced by an adequate lock at the subtree root, if possible (i. e., no conflicting
locks are encountered). Read and write locks are replaced by SR and X locks. The pa-
rameter ed defines the maximal subtree depth starting from the leaves of a taDOM tree
up to the scanned subtree root. Obviously, there is certainly a trade-off to be observed
for lock escalation which decreases concurrency of read and write transactions, but, in
turn, a reduction of the number of held locks and of lock acquisitions is achieved saving
lock management overhead. Its empirical evaluation remains a future task.
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Figure 5   Coarse-grained node locks 
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4.4 Navigation Locks
So far, we have discussed optimization issues for locks where the node to be accessed
was specified by its unique ID. In addition, the DOM API also provides for (~20) meth-
ods which enable the traversal of XML documents where access is specified relative to
the context node. In such cases, synchronizing a navigation path means that a sequence
of navigational method calls or modification (IUD) operations—starting at a known
node within the taDOM tree—must always yield the same sequence of result nodes
within a transaction. Hence, a path of nodes within the document evaluated by a trans-
action must be protected against modifications of concurrent transactions. Assume in
Figure 2, a transaction T navigates through all or a range of <book> nodes and wants
to be isolated from concurrent inserts of new <book> nodes. Of course, we have already
introduced some lock modes which enable in this situation perfect, but (too) expensive
isolation caused by (too) large lock granules. For example, if we acquire an LR lock on
the <bib> node, all <book> nodes are implicitly granted in shared mode. An SR lock
on <bib> would even prohibit updates on the entire document. We, however, want to
support a solution only using minimal lock granules, that is, node locks of mode NR.
Therefore, we introduce virtual navigation edges for element and text nodes within the
taDOM tree (Figure 6b) which are locked in addition to their confining nodes. 
While navigating through an XML docu-
ment and traversing the navigation edges, a
transaction has to request a lock for each
edge., in addition to the node locks (NR) for
the nodes visited. Note, these edges are log-
ical objects which are not materialized but
embodied by their confining nodes. Because
each navigation step only performs local op-
erations (first/last, next/previous) to a sib-
ling or child of the context node c, the R/U/
X locks known from relational records or ta-
bles are sufficient. Traversal operations be-
tween nodes need bidirectional isolation:
For example, if getNetxtSibling() is invoked
on node c and delivers node n, then, as a first step, the next-sibling edge of c is locked.
In addition, we must lock the previous-sibling edge of n to prohibit path modifications
between n and c through another transaction via node n. To support such traversals ef-
ficiently, we offer the ER, EU, and EX lock modes corresponding to R/U/X. Their use
observing the compatibilities shown in Figure 6a can be summarized as follows:

prevSiblingEdge nextSiblingEdge

firstChildEdge lastChildEdge

Figure 6   Locking navigational operations in a taDOM tree
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• An ER lock mode (edge read) is needed for an edge traversal in read mode, e. g.,
by calling the getNextSibling() or getFirstChild() DOM method for the nextSib-
lingEdge or firstChildEdge, respectively.

• An EX lock mode (edge exclusive) enables an edge to be modified which may be
needed when nodes are deleted or inserted. For all edges, affected by the modifi-
cation operation, EX locks are acquired, before the navigation edges are redirect-
ed to their new target nodes.

• The EU lock mode (edge update) eases the starvation problem of write transac-
tions (see lock mode U in Section 4.1).

Figure 7 illustrates navigation locks on virtual navigation edges. To keep Figure 7 com-
prehensible, we do not show the node locks, e.g., NR or CX. Transaction T1 starts at the
<bib> node and reads three times the first-child node (that is, the node sequence <bib>,
<book>, <title>, <text>) to get the string value (Data o...) of the first book title. Then
T1 refers to the next-sibling node of the current <book> node and repeats twice the first-
child method to get the title of the second book. At this point, the requested book is lo-
cated, and T1 finally gets the next sibling of the current <title> node which is the <ed-
itor> node. Apparently, our protocol allows concurrent transaction T2 to append a new
book by acquiring EX locks for the next-sibling edge of the last <book> node and for
the last-child edge of the <bib> node. Of course, T2 has to protect its ancestor path in a
sufficient mode—its CX lock on <bib> is compatible with the NR lock of T1. 

4.5 Prevention of Phantoms
As outlined so far, our protocols enable fine-grained solutions for repeatable read and
even serializable when record-oriented operations are used, i. e., direct as well as nav-
igational access to sequences of document nodes. Note, "gaps" between nodes can be
protected by edge locks which prohibit a newly inserted document node to appear as a
phantom.
But how do we solve the phantom problem in XML documents for set-oriented access?
If we are willing to lock larger granules and thereby potentially sacrifice some parallel-
ism, we can use the same trick known from multi-granularity locking: we just acquire
an exclusive lock one level above the working node, that is, on its direct ancestor, and
prevent the transaction from being confused by phantom inserts. Obviously, this
straightforward approach also increases blocking and deadlock probability. For exam-
ple, if the getElementsByTagName() method of the DOM API is invoked on an arbitrary
node n, all its sibling nodes and their subtrees are locked, because the parent node of n
holds the phantom-preventing lock. Hence, this approach may turn out to be too coarse. 
Because we may not guarantee "serializability" in the strict sense when fine-grained
lock protocols are used for set-oriented access, we currently support the so-called con-
sistency level 2.99 [7] in such situations. Our mechanism described in [10] is based on
the concept of precision locks [14]. Because our empirical experiments outlined in Sec-
tion 5 do not critically rely on effective phantom protection, we will not refine it here.
While it is path oriented and can, therefore, be also exploited for (simple) declarative
interfaces, phantom prevention for the full expressiveness of XQuery is subject of our
future research.



5 Performance Evaluation

In our first experiment, we consider the basic cost of lock management described so far.
For this purpose, we use the xmlgen tool of the XMark XML benchmark project [15] to
generate a variety of XML documents consisting of 5,000 up to 25,000 individual XML
nodes. The documents are stored in our native XDBMS [9] and accessed by a client-
side DOM application requesting every node by a separate RMI call. To reveal lock
management overhead, each XML document is reconstructed by a consecutive traversal
in depth-first order under isolation levels committed and repeatable read. Isolation level
committed certainly provides higher degrees of concurrency with (potentially) lesser
degrees of consistency of shared documents; when used, the programmer accepts a re-
sponsibility to achieve full consistency. Depending on the position of the node to be
locked, it may cause much more overhead, because each individual node access re-
quires short read locks along its ancestor path. In contrast, isolation level repeatable
read sets long locks until transaction commit and, hence, does not need to repetitively
lock ancestor nodes. In fact, they are already locked due to the depth-first traversal. 
These expectations are confirmed
by the results of this first experiment
as depicted in Figure 8. The poten-
tial performance gain of the reduced
isolation level committed is con-
trasted by the dramatically increas-
ing lock management overhead due
to repeated locking and releasing of
locks along the entire ancestor path.
Hence, substantial lock processing
time is consumed in committed mode (>300% of the reconstruction time under isolation
level none, i. e., without locking overhead), whereas the overhead for repeatable read
is acceptable (~25%). To guarantee highly consistent documents, repeatable read
should be used for concurrent transactions. However, its penalty of longer lock dura-
tions has to be compensated by effective and fine-granular lock modes which coincides
with the objectives of our proposal.
The second experiment illustrates the benefits for transaction throughput depending on
the chosen isolation level and lock-depth value. For this purpose, we extend the sample
document of Figure 2 to a library database by grouping the books into specific topics
and adding a persons’ directory. The DataGuide describing the resulting XML docu-
ment is depicted in Figure 9. We created the library document with 500 persons and
25,000 books grouped into 50 specific topics. The resulting document (requiring ap-
proximately 6,4 MB) consists of 483,317 XML nodes and is stored in our XDBMS [9].
We apply different transaction types simulating typical read/write access to XML doc-
uments. Transaction TB is searching for a book with a randomly selected title. This sim-
ulates a query of a library visitor. The activities of the library employees are represented
by transactions TP, TL, and TR. Transaction TP is searching for a randomly chosen per-
son by his/her last name. Transactions TL and TR are simulating the lending of books.
Transaction TL randomly locates a person and a book to be lent; then it adds a new child

Figure 8   Document reconstruction time
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node containing the person’s id to the <history> element within the located <book>
subtree. Transaction TR "returns" the book by setting the return attribute of the corre-
sponding <lend> element to the current system date.
Ten clients with read
transactions of type TB
and one client with a
read transaction of type
TP are continuously exe-
cuting for ten minutes on
the library document to
provide a base load on
the XDBMS. Two cli-
ents are executing write
transactions of type TL
and TR making a total of
13 concurrent transac-
tions in the system. A deadlock detector is scanning the wait-for graph of the transac-
tions every five seconds. The XDBMS is running on an IBM eServer xSeries 235 with
two Intel Xeon-A 2.4GHz processors. The server machine executes Microsoft Windows
Server 2003 Enterprise Edition, whereas the clients are running on an IBM R32 Think-
Pad, connected with a 100Mbps network to the server.
To explore transaction throughput in two different processing modes, we run this ex-
periment in batch mode (no human interaction while a transaction is running) and with
human interaction. The latter case is simulated by a delay of 5 seconds by which the du-
ration of long locks is extended in each transaction, before they are released at transac-
tion commit. At least in relational environments, everybody would expect a decrease of
transaction throughput with increasing isolation levels: none, uncommitted, committed,
repeatable read, serializable, where in our experiments both isolation levels repeatable
read and serializable produce identical results. On the other dimension, with increasing
lock depth—if facilitated by the element position processed in the tree—growing trans-
action throughput is anticipated because of shrinking lock granules.
Without surprise, maximum transaction throughput is reached for isolation level un-
committed in all experiments, because read locks are abandoned. Write locks, in turn,
seriously interfere with concurrent transactions only at lock depth 0 and 1 (see Figure
10a and 11a), whereas they hardly affect them at lock depths 2 to 7. 

5.1 Batched Transaction Processing
As the most striking observation, conducting our experiment in batch-processing mode
revealed in all cases a higher throughput at isolation level repeatable read than at com-
mitted, because the long read locks avoid the subsequent traversals of ancestor paths for
lock acquisitions in most cases. The curves of committed write transactions (depending
on the lock depth) are similar at all isolation levels (see Figure 10a). Most of the con-
flicts (waiting cycles or deadlocks) are occurring at lock depth 0 resp. 1, because trans-
actions TB, TL, and TR are locking the <bib> resp. the <topics> nodes. Hence, all iso-
lation levels nearly yield the same throughput of write transactions.

p
bib

persons

person

name adr phoneid¡

first last

topics

{topic0, topic1, ...}

book
id¡
year¡

title author price history

first last lend

person¡ return¡
Figure 9   DataGuide of the library document



Enhancing the lock depth value from 1 to 2, much more write transactions commit, be-
cause most of them are executed concurrently (only those accessing the same topic have
to be serialized). The number of successful write transactions is slightly increasing from
lock depth 2 to 7, because the transactions are keeping long locks which avoid a repeat-
ed traversal of complete ancestor paths in most cases when additional locks are request-
ed. But surprisingly, a higher degree of isolation also enables higher throughput of write
transactions, which can be explained by the following observation: Repeatable read
yields shorter transaction processing times than committed because the read operations
of the write transactions TL and TB do not acquire and immediately release (a set of)
short read locks for each node access.
The number of committed transactions (Figure 10b) is primarily depending on the com-
mits of the readers TB and TP, because, compared to the writers TL and TR, they contain
less operations and are executed by more client threads in parallel. Because of the short
read locks, the throughput for committed behaves even worse than for repeatable read.
The peak at lock depth 1 is caused by transaction TP which is executed without inter-
ference while TB, TL, and TR are frequently blocking each other. This peak number of
commits (mainly due to TP) decreases from lock depth 1 to 4, because more and more
transactions of type TB, TL, and TR successfully finish thereby increasing lock and
transaction management overhead. At lock depth 4, locking conflicts of transactions TL
and TR do not affect TB anymore. Hence, from lock depths 4 to 7, the XDBMS seems
to be in a kind of steady state and achieves stable transaction throughput.

5.2 "Interactive" Transaction Processing
Transactions interrupted by human interactions ("the human is in the loop") or perform-
ing complex operations may exhibit drastically increased lock duration times. While the
average transaction response time and lock duration was far less than a second in batch-
processing mode, now the average lock duration was "artificially" increased probably
by more than a factor of 10. As a consequence, the finer granularity of locks and the
duration of short read locks gained in importance on transaction throughput while the
relative effect of lock management overhead was essentially scaled down. Longer lock
durations and, in turn, blocking times reduced the number of successful commits (write
and overall transactions) to about 50% and 10% as shown in Figure 11a and b and
caused a relative performance behavior as anticipated in relational environments.
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Figure 10   Successful batch-processed transactions
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In general, transaction throughput can be increased by decreasing the level of isolation
(from repeatable read down to uncommitted) or increasing the lock depth (if possible).
As observed at lock depths 4 to 7 in Section 5.1, all transactions can be executed in par-
allel and our XDBMS approaches stable transaction throughput in this experiment.
For future benchmarks, we expect the gap between uncommitted and committed to grow
larger for "deeper" XML documents (longer paths from the root to the leaves). Similar-
ly, the gap between committed and repeatable read widens with an increasing percent-
age of write transactions (causing more waiting cycles).

6 Related Work, Conclusions and Future Work

So far, only a few papers deal with fine-grained CC in XML documents. DGLOCK [6]
explores a path-oriented protocol for semantic locking on DataGuides. It is running in
a layer on top of a commercial DBMS and can, therefore, not reach the fine granularity
and flexibility of our approach. In particular, it cannot support ID-based access and po-
sition-based predicates. Another path-oriented protocol is proposed in [3, 4] which also
seems to be limited as far as the full expressiveness of XPath predicates and direct
jumps into subtrees are concerned. To our knowledge, the only competing approach
which is also navigation oriented comes from the locking protocols designed for Natix
[12]. They are also tailored to typical APIs for XDP. While the proposed lock modes
are different to ours, the entire protocol behavior should be compared. Currently, we
have the advantage that we do not need to simulate our protocols, but we can measure
their performance on existing benchmarks and get real numbers.
In this paper, we have primarily explored transaction isolation issues for collaborative
XML document processing. We first sketched the design and implementation of our na-
tive XML database management system. For concurrent transaction processing, we
have introduced our concepts enabling fine-granular concurrency control on taDOM
trees representing our natively stored XML documents. As the key part, we have de-
scribed the locking protocols for direct and navigational access to individual nodes of a
taDOM tree, thereby supporting different isolation levels. The performance evaluation
has revealed the locking overhead of our complex protocols, but, on the other hand, has
confirmed the viability, effectiveness, and benefits of our approach. As a striking ob-
servation, lower isolation levels on XML documents do not necessarily guarantee better
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transaction throughput, because the potentially higher transaction parallelism may be
(over-)compensated by higher lock management overhead. There are many other issues
that wait to be resolved: For example, we did not say much about the usefulness of op-
timization features offered. Effective phantom control needs to be implemented and
evaluated (thereby providing for isolation level serializable), based on the ideas we de-
scribed. Then, we can start to systematically evaluate the huge parameter space avail-
able for collaborative XML processing (fan-out and depth of XML trees, mix of trans-
actional operations, benchmarks for specific application domains, degree of application
concurrency, optimization of protocols, etc.).
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