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Abstract 
Processing XML documents in multi-user database 

management environments requires a suitable storage 
model, support of typical XML document processing 
(XDP) interfaces, and concurrency control mechanisms 
tailored to the XML data model. In this paper, we sketch 
the architecture of our prototype native XML database 
management system and specify in detail the operations 
for accessing and modifying the stored documents. The 
key contribution is the design and optimization of fine-
grained locking protocols supporting collaborative proc-
essing of XML documents. For this reason, we introduce 
four XML locking protocols of growing sophistication and 
complexity, which are based on a tree-structured storage 
model. Finally, we present the ideas to prove the locking 
protocol correctness guaranteeing the specified data 
processing behavior of the given XDP operations. 

1. Introduction 
Storing XML documents in a relational database man-

agement system (RDBMS) forces the developers either to 
use simple CLOBs (character large objects), to select 
some data types which enable the mapping of the docu-
ments to predefined relational schemes, or to choose 
among an innumerable number of algorithms shredding 
the documents to tables and columns. Because of their 
number and size, collaboration on XML documents often 
becomes an important issue. Typical applications are 
managing XML-structured operational business data or 
applying XML standards for collaboration in word proc-
essing applications [11] using database backends. How-
ever, concurrency control in RDBMSs does not take the 
properties of the semi-structured XML data model into 
account and causes disastrous locking behavior by block-
ing entire CLOBs, tables, or unnecessarily large index 
ranges. 

Currently, native XML DBMSs (XDBMSs) are pri-
marily designed for efficient document retrieval and query 
evaluation. Their document storage model is usually 
based on fixed numbering schemes used to identify XML 
elements and optimized for read-only access. Frequently 

concurrent and transaction-safe modifications would lead 
to renumerations of large document parts which could 
cause unacceptable reorganization overhead and degrade 
data processing in performance-critical workload situa-
tions. As a rare example of an update-oriented system, 
Natix [5] conceptually supports concurrent transaction 
processing, but multi-user mode is not implemented yet. 

1.1 Problem Statement and Contribution 

Although predicate locking of XQuery statements 
[14]—and, in the near future, XUpdate-like statements 
[15]—would be powerful and elegant, its implementation 
rapidly leads to severe drawbacks such as undecidability 
problems and the need to acquire large lock granules for 
simplified predicates—a lesson learned from the (much 
simpler) relational world. To provide for an acceptable 
solution, we necessarily have to map XQuery operations 
to a navigational access model to accomplish fine-
granular concurrency control. Such an approach implicitly 
supports other XDP interfaces like DOM [13], and SAX 
[1], because their operations correspond more or less di-
rectly to a navigational access model. 

We have proposed a fine-granular locking protocol 
called taDOM2 in [8] which enables concurrent execution 
of transactions using either DOM, SAX, XQuery or all of 
them simultaneously. We will refine and optimize it as 
taDOM2+. The recent standard DOM Level 3 [13] addi-
tionally introduced new operations, for which we develop 
the taDOM3 protocol and its optimized version ta-
DOM3+. 

As a testbed for XML transaction processing, we have 
implemented the XML Transaction Coordinator (XTC) 
[8] which supports all known types of XDP interfaces 
(event-based like SAX, navigational like DOM, and de-
clarative like XQuery) and provides the well-known 
ACID properties [7] for concurrent operations. For all 
four protocols, we can thus give an empirical performance 
comparison which clearly indicates the performance po-
tential of our optimizations as far as enhanced parallelism 
and reduced locking overhead is concerned. Furthermore, 
we prove the correctness of the proposed lock mode com-
patibilities and lock conversions used by our protocols. 



1.2 Related Work 

As already mentioned, no (freely available) XDBMS 
implementation exists which would allow exploring fine-
grained XML concurrency control. Hence, the few publi-
cations related to our problem either refer to conceptual 
work or to simulations [10]. XMLTM [6] uses a layer on 
top of an RDBMS which executes the client-side transac-
tion operations within self-managed transactions which, in 
turn, have to be processed (under lower isolation levels) 
on the RDBMS thereby confined to the existing “rela-
tional” lock modes. The DGLOCK concept of XMLTM, 
for example, isolates transactions by managing path locks 
on a DataGuide structure and, in this way, provides for 
concurrent path-based transaction processing to the client 
applications. However, it cannot support ID-based access 
(direct jumps to internal nodes) and position-based predi-
cates and is not tailored to fine-grained navigational ac-
cess. Another path-oriented protocol is proposed in [3] 
and [4] which also seems to be limited as far as the full 
expressiveness of XPath predicates and direct jumps into 
subtrees are concerned. 

In this paper, Section 2 gives an overview of the XTC 
architecture, the storage model for XML documents, and 
the XDP operations. Our four locking protocols taDOM2, 
taDOM2+, taDOM3, and taDOM3+ are introduced and 
compared in Section 3, whereas Section 4 describes our 
ideas to prove the correctness of the locking protocols for 
the present XDP operations. Finally, Section 5 wraps up 
some aspects of future work. 

2. XML Data Processing 
Our XTC database engine (XTCserver) adheres to the 

widely used five-layer database architecture which is 
sketched in the following Section 2.1. Processing XML 
documents is based on the taDOM data model which is 
described in Section 2.2. The available node-based XDP 
operations for accessing and manipulating the stored 
documents are described in Section 2.3. 

2.1 System Architecture 

The five-layer architecture of our XTC system is de-
picted in Figure 1. The file services layer operates on the 
bit pattern stored on external, non-volatile storage de-
vices. In collaboration with the OS file system, the I/O 
managers store the physical data into extensible container 
files; their fixed-length block size is configurable to the 
characteristics of the XML documents to be stored. A 
buffer manager for each container file handles fixing and 
unfixing of pages in main memory and provides a page 
replacement algorithm for them which can be optimized 
to the anticipated reference locality inherent in the respec-
tive XDP application. Using pages as their basic storage 
units, the record, index, and catalog managers form the 
access services. The record manager maintains in a set of 
pages the tree-connected nodes of XML documents as 

physically adjacent records. Each record is addressed by a 
unique life-time ID managed within a B*-tree by the in-
dex manager. This is essential to allow for fine-grained 
concurrency control which requires lock acquisition on 
unique identifiable nodes (see Section 3). The catalog 
manager provides for the database meta-data. The node 
manager implementing the navigational access layer 
transforms the records from their internal physical into an 
external representation, thereby managing the lock acqui-
sition to isolate the concurrent transactions. The node-
based XDP operations for document accesses and modifi-
cations (considered in detail in Section 2.3) are provided 
at this layer’s interface. In contrast, the XML services 
layer contains the XML manager responsible for declara-
tive document access, e.g., evaluation of XQuery state-
ments or XSL transformations. 

At the top of our architecture, the agents of the inter-
face layer make the functionality of the XML and node 
services available to common internet browsers, ftp cli-
ents, and the XTCdriver thereby establishing declara-
tive/set-oriented as well as navigational/node-oriented 
interfaces. The XTCdriver linked to client-side applica-
tions provides for methods to execute XQuery statements 
and to browse or manipulate XML documents and materi-
alized XQuery results via the SAX or DOM API. All cli-
ent-side activities are processed within transactions run-
ning in one of the well-known isolation levels uncommit-
ted, committed, repeatable, or serializable. 

2.2 taDOM Storage Model 

Efficient and effective isolation of concurrent XDP 
operations is greatly facilitated, if we use a specialized 
internal document representation (the so-called taDOM 
tree) which enables fine-granular locking. For this reason, 
we have introduced two new node types: attribute root 
and string. This representation extension does not influ-

Figure 1: XTC system architecture 
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ence the user operations and their semantics on the XML 
document, but is solely exploited by the lock manager to 
achieve certain kinds of optimization when an XML 
document is modified in a cooperative environment. As a 
running example, we refer the XML document sam-
ple.xml which is transformed for our purpose to its ta-
DOM-tree representation as shown in Figure 2. 

The attribute root separates the various attribute nodes 
from their element node. Instead of locking all attribute 
nodes of an element separately when they are listed, the 
lock manager achieves the same effect by a single lock on 
the attribute root. Hence, such a lock does not affect par-
allelism, but leads to more effective lock handling and, 
thus, potentially to better performance. A string node, in 
contrast, is attached to the respective text or attribute node 
and exclusively contains the actual value of this node. 
Because reference to such a value requires an explicit 
operation invocation with a preceding lock request, a sim-
ple existence test on a text or attribute node avoids lock-
ing their values. Hence, a transaction only navigating 
across such nodes will not be blocked, although a concur-
rent transaction may have modified them and may still 
hold exclusive locks on their values1. 

Furthermore, fast access to and identification of all 
nodes of an XML document is mandatory to enable effi-
cient processing of direct-access methods, navigational 
methods, and lock management. For this reason, our re-
cord manager assigns to each node a unique node ID (rap-
idly accessible via a native B*-tree implementation) and 
stores the node as a record in a data page. In this way, we 
can enforce and preserve the order of the XML nodes by 
the physical order of the records within logically consecu-
tive pages (chained B*-tree leaves by next/previous page 
pointers). 

The unique node IDs are inspired by the ORDPATH 
approach [12] and are adapted as so-called DeweyIDs to 
our taDOM storage model (also shown in Figure 2). The 
DeweyID algorithm is based on the Dewey Decimal Clas-
sification and assigns odd division numbers to the nodes 
                                                           
1 These additional node types can be virtualized such that 
regular DOM trees are stored on disk but the main mem-
ory structures of an XDBS maintain our taDOM trees. 

within each document level consecutively in ascending 
order (e.g., 1.3.3, 1.3.5, 1.3.7, etc.). Except for the docu-
ment root element, the division value 1 is reserved for 
attribute root and string nodes. The different node levels 
are separated by dots; the DeweyID of the parent node is 
copied as a prefix into the DeweyID of each child node. 
The initial assignment of odd division values allows the 
insertion of an arbitrary number of new nodes at arbitrary 
positions into the document. For example, between the 
DeweyIDs 1.3.3 and 1.3.5 the new IDs 1.3.4.3, 1.3.4.5, 
1.3.4.7, etc. can be inserted. Again, between the IDs 
1.3.4.3 and 1.3.4.5, we are able to insert the IDs 1.3.4.4.3, 
1.3.4.4.5, and so forth. In this way, the DeweyID al-
lows—by considering the even and odd division values of 
a node ID—the calculation of its level and the IDs of all 
ancestor nodes upwards to the document root element 
without accessing the actual document, which may reside 
on an external device at reference time. This is a very 
important aspect for high-performance lock management. 

After an XML document is stored, a catalog page con-
taining some meta-data identifies the document. Its page 
number is attached to the DeweyID separated by a colon, 
to address a node uniquely within the entire XDBMS. For 
example, if the document given in Figure 2 is stored with 
catalog page number 4711, the element title is identified 
with the ID 4711:1.3.3. 

A further advantage using the DeweyID can be ex-
ploited for the manipulation of an XML document. An 
inserted node at an arbitrary position is always arranged in 
sequential order with respect to already existing sibling 
nodes. In this way, a single B*-tree is sufficient for stor-
ing the entire XML document in left-most depth-first or-
der, where an entry is formed by the byte representation 
of the DeweyID as the key part and the byte representa-
tion of the actual node as the value part. For element and 
attribute nodes, the bytes to be stored are additionally 
compressed using a vocabulary. This means, we do not 
store their names but tiny identifiers to address the names 
within a related tree data structure. 

<?xml version="1.0"?> 
<bib> 
  <book year="2004" id="book1"> 
    <title>The Title</title> 
    <author> 
      <fname>first name</fname> 
      <lname>last name</lname> 
    </author> 
    <price>49.99</price> 
  </book> 
</bib> 

bib 

book 

title author price 

fname lname year id 
book1 

The Title 

first name last name 

49.99 

Element node attribute root node 

text node 
attribute node 

string node 

Figure 2: Transformation of sample.xml into the taDOM tree 
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2.3 XDP Operations 

In the node services layer, our node manager provides 
for 19 node operations to browse and manipulate the 
stored XML documents in any contrivable manner. 

The getNode(), getParentNode(), getPrevSibling(), 
getNextSibling(), getFirstChild(), and getLastChild() op-
erations are used to address a single context node and 
perform simple navigation steps to its parent, one of its 
siblings, or its first or last child node. The getChild-
Nodes() resp. getFragmentNodes() operations return all 
direct-child nodes of a given context node resp. the con-
text node itself and all descendant nodes for a complete 
fragment reconstruction addressed by the context node. 

The getValue() operation identifies the actual value of 
a context node. In case of an element node, this is the 
element name; for attribute or text nodes, the associated 
attribute value or text content is returned. The other way 
around, the setValue() operation renames an element node 
or sets a new attribute or text value. 

Executed on an element node, the getAttribute() opera-
tion with an attribute name as a parameter returns the cor-
responding attribute node (or a null value if an attribute 
with the name handed over does not exist) and the getAt-
tributes() operations assembles a node list of all existing 
attributes of the element node. The setAttribute() opera-
tion sets a value for the attribute with the specified name 
or creates a new attribute with the name/value pair as-
signed, if such an attribute with the given name does not 
already exist. The renameAttribute() operation renames an 
already existing attribute node without changing its value. 

Creating new element nodes is performed with the op-
erations appendChild(), prependChild(), insertBefore(), 
and insertAfter() which insert a new last or first child, or a 
new previous or next sibling of the context element node 
on which they are invoked. 

Finally, the deleteNode() operation deletes a complete 
XML fragment identified by the root node on which the 
operation is executed. 

3. taDOM Locking Protocols 
While traversing or modifying an XML document, a 

transaction has to acquire a lock in an adequate mode for 
each node before accessing it. Because the nodes in an 
XML document are organized by a tree structure (see Sec-
tion 2.2), the principles of multi-granularity locking 

schemes can be applied. 
The method calls of different XDP interfaces used by 

an application are mapped by the node manager to ade-
quate node operations (see Section 2.3). Before the actual 
operation is performed, appropriate locks for the affected 
nodes and the entire ancestor paths are automatically set 
by the lock manager. For this purpose, the lock man-
ager—possibly with the help of other components such as 
index or record manager—has to identify the affected 
nodes and edges. In any case, the truly complex locking 
protocols are confined to the lock manager and not visible 
to any other component, let alone the application. 

The resulting tree locking is similar to multi-
granularity locking in relational environments (SQL) 
where intention locks communicate a transaction’s proc-
essing needs to concurrent transactions. In particular, they 
prevent a subtree s from being locked in a mode incom-
patible to locks already granted to s or subtrees of s. 
However, there is a major difference, because—in con-
trast to the relational world—the nodes in an ancestor path 
are part of the document and carry user data. In a rela-
tional database, user data is exclusively stored in the 
leaves (records) of the tree whose higher-level nodes are 
formed by organizational concepts (e.g., table, segment, 
database). For example, it makes perfect sense to lock an 
intermediate XML node n for an update operation, while 
other transactions may perform further reads or updates in 
the subtree of n. 

To support concurrent transaction processing exploit-
ing fine-grained concurrency control, we present and 
compare the four locking protocols taDOM2, taDOM2+, 
taDOM3, and taDOM3+ in the following sections. 

3.1 taDOM2 

Except for some optimizations in the compatibility 
and conversion matrices, the taDOM2 protocol is based 
on the protocol we presented in [8]. We differentiate the 
read and write operations thereby replacing the well-
known (IR, R) and (IX, X) lock modes with (IR, NR, LR, 
SR) and (IX, CX, SX) modes, respectively. As in the 
multi-granularity scheme, the U mode (SU in our proto-
col) plays a special role, because it permits lock conver-
sion. Figure 3a contains the compatibility matrix for our 
basic lock modes. Throughout the paper, the matrix 
header row characterizes the current lock state of the ob-
ject, whereas the matrix header column indicates the 

 - IR NR LR SR IX CX SU SX 
IR + + + + + + + - - 
NR + + + + + + + - - 
LR + + + + + + - - - 
SR + + + + + - - - - 
IX + + + + - + + - - 
CX + + + - - + + - - 
SU + + + + + - - - - 
SX + - - - - - - - - 

 

 - IR NR LR SR IX CX SU SX 
IR IR IR NR LR SR IX CX SU SX 
NR NR NR NR LR SR IX CX SU SX 
LR LR LR LR LR SR IXNR CXNR SU SX 
SR SR SR SR SR SR IXSR CXSR SR SX 
IX IX IX IX IXNR IXSR IX CX SX SX 
CX CX CX CX CXNR CXSR CX CX SX SX 
SU SU SU SU SU SU SX SX SU SX 
SX SX SX SX SX SX SX SX SX SX 

 a) lock compatibility matrix b) lock conversion matrix 
Figure 3: taDOM2 locking protocol 



mode of the incoming lock request. Here, we repeat the 
effects of the lock modes to facilitate comprehension: 
• An IR lock mode (intention read) indicates the inten-

tion to read a node (lock modes NR, LR, SR) some-
where in the subtree (equal to the multi-granularity 
locking approach). 

• An NR lock mode (node read) is requested for reading 
the context node. To isolate such a read access, an IR 
lock has to be acquired for each node in the ancestor 
path. Note, the NR mode takes over the role of IR 
combined with a specialized R, because it only locks 
the specified node, but not any descendant nodes. 

• An LR lock mode (level read) locks the context node 
together with its direct-child nodes for shared access. 
For example, the operation getChildNodes() only re-
quires an LR lock on the context node and not indi-
vidual NR locks for all child nodes. Similarly, an LR 
lock requested for an attribute root node, locks all its 
attributes implicitly (to save lock requests for the     
getAttributes() operation). 

• An SR lock mode (subtree read) is requested for the 
context node c as the root of subtree s to perform read 
operations on all nodes belonging to s. Hence, the en-
tire subtree is granted for shared access. An SR lock is 
typically used if s is completely reconstructed, e.g., to 
be transferred as an XML fragment. 

• An IX lock mode (intention exclusive) indicates the 
intent to perform write operations somewhere in the 
subtree (similar to the multi-granularity approach), but 
not on a direct-child node of the node being locked (in 
contrast to the CX lock). 

• A CX lock mode (child exclusive) on context node c 
indicates the existence of an SX lock on some direct-
child nodes and prohibits inconsistent locking states 
by preventing LR and SR locks. It does not prohibit 
other CX locks on c, because separate child nodes of c 
may be exclusively locked by other transactions. 

• An SU lock mode (subtree update option) supports a 
read operation on context node c with the option to 
convert the mode for subsequent write access. It can 
either be converted back to an SR read lock, if the in-
spection of c shows that no update action is needed or 
to an SX lock after all potentially existing read locks 
of other transactions on c are released. Note that there 
is an asymmetry in the compatibility matrix among 
SU and (IR, NR, LR, SR) which prevents granting fur-
ther read locks on c, thereby enhancing protocol fair-
ness by avoiding transaction starvation. 

• To modify the context node c (updating its contents or 
deleting c and its entire subtree), an SX lock mode 
(subtree exclusive) is needed for c. It necessitate a CX 
lock for its parent node and an IX lock for all other 
ancestors up to the document root element. 

Note again, this differing behavior of CX and IX locks is 
needed to enable compatibility of IX and LR locks and to 
enforce incompatibility of CX and LR locks. 

Figure 4 illustrates the result of the following exam-
ple. Transaction T1 starts modifying the value last name 
and, therefore, acquires an SX lock for the DeweyID of 
the corresponding string node. The lock manager com-
plements this action by acquiring a CX lock for the parent 
DeweyID and IX locks for all further ancestor IDs. Trans-
action T2 is generating a list of all child nodes of the book 
element and has, therefore, requested an IR lock on the 
bib element and an LR lock on the book node to obtain 
read access to all direct-child nodes thereby using level-
read optimization. Further on, the price of the book node 
is accessed and the path downwards to the corresponding 
string node is locked by NR locks. Simultaneously, trans-
action T3 wants to delete the entire author node for which 
T3 must acquire an IX lock on the bib node, a CX lock on 
the book node, and an SX lock on the author node. The 
lock request on the book node cannot immediately be 
granted because of the existing LR lock of T2. Hence, 
T3—placing its request in the lock request queue (LRQ: 
CX3)—must synchronously wait for the release of the LR 
lock of T2 on the book node. 

Note, the IR and NR modes exhibit the same behavior 
in the taDOM2 and taDOM2+ locking protocols. In a real 
implementation (like our XTCserver) they can be replaced 
with one proxy lock mode (e.g., NR). Here, both lock 
modes IR and NR are kept for completeness; later on, 
they will differ in the protocols taDOM3 and taDOM3+. 

If a transaction T already holds a lock and requests a 
lock in a different mode on the same node, we would have 
to keep two locks for T on this node. In general, several 
locks per transaction and node are conceivable which 
would require longer lists of granted locks per node and a 
more complex run-time inspection algorithm checking for 
lock compatibility. To cope with this problem, we always 
replace an existing lock of a transaction with a single lock 
in a mode giving sufficient isolation for both the re-
quested and the existing lock mode. The actions needed 
by the lock manager are described in [9]. The correspond-
ing rules are specified by the lock conversion matrix in 
Figure 3b which determines the resulting lock for a con-
text node c if a transaction already holds a lock (matrix 
header row) and requests a further lock (matrix header 
column). A lock l1 specified by an additional subscripted 
lock l2 (e. g. CXNR) means that l1 has to be acquired on c 
and l2 has to be acquired on each direct-child node of c. 

IX1 

IX1 

bib 

book 

title author 

fname lname The Title 

first name last name 

price 

49.99 

SX1 

CX1 

IX1 

IX1 

LR2 

IR2 

NR2 

NR2 
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LRQ: CX3 

Figure 4: taDOM2 locking example 



Additionally, all edges (explained below) on the child 
nodes’ level have to be locked to prevent the insertion of 
new children. An example for this procedure is given in 
the following. 

Assume, a user starts requesting all child nodes of c 
which results in acquiring an LR lock on c. Note again, 
LR locks c and all direct-child nodes in shared mode. 
Then the user wants to delete one of the previously de-
termined child nodes. Therefore, the transaction acquires 
an SX lock on the resp. child node and—applying the 
locking protocol—this requires the acquisition of a CX 
lock on c which already holds the LR lock. Using rule 
CXNR specified for the conversion, the lock manager con-
verts the existing LR lock on c to a CX lock and acquires 
an NR lock on each direct-child node of c (except the 
node which is already locked for deletion by SX). 

In addition to the node lock management described 
above, we maintain so-called navigation locks to isolate 
navigation paths. This means, a sequence of navigational 
method calls or modification operations—starting at a 
known node within the taDOM tree—must always yield 
the same sequence of result nodes within a transactional 
context. Hence, a path of nodes evaluated by a transaction 
must be protected against concurrent modifications. As-
sume, the sample.xml document in Figure 2 contains sev-
eral books and a transaction T navigates through a range 
of book nodes, then T wants to be isolated from concur-
rent inserts of new books in the examined node range. 

Of course, we have already introduced some lock 
modes which protect such a situation, but (too) large lock 
granules cause (too) expensive isolation. For example, if 
we acquire an LR lock on the bib node, all book nodes 
(and not only the navigated ranges) are implicitly granted 
in shared mode and the LR lock prevents any insertion 
with its incompatibility to the required CX lock for an SX 
on a new book node. An SR lock on bib would even pro-
hibit updates on the entire document. We, however, want 
to support a solution only acquiring minimal lock gran-
ules, that is, node locks of mode NR only for nodes vis-
ited by the navigation. Therefore, we introduce virtual 
navigation edges [8] within the taDOM tree (Figure 5) 
which are locked in addition to their confining nodes. 

While navigating through an XML document and 
traversing the navigation edges, a transaction has to re-

quest a lock for each edge, in addition to the node locks 
for the nodes visited. Because each navigation step only 
performs local operations (first/last, next/previous) to a 
sibling or child node, the R/U/X locks known from nor-
mal record locking are sufficient. Traversal operations 
between nodes need bidirectional isolation: For example, 
if getNextSibling() is invoked on node c and delivers node 
n, then, as a first step, the next-sibling edge of c is locked 
and, in addition, the previous-sibling edge of n to prohibit 
concurrent path modifications between n and c via node n. 
If the getNextSibling() operation returns a null value, we 
also have to lock the last-child edge of the parent node of 
c, because the null value informs the transaction about the 
last-child position of c. To support such traversals effi-
ciently, we offer ER, EU, and EX lock modes correspond-
ing to R/U/X. Their use can be summarized as follows: 
• An ER lock mode (edge read) is needed for an edge 

traversal in read mode, e.g., by calling the getNextSib-
ling() or getFirstChild() operation. 

• An EX lock mode (edge exclusive) enables an edge to 
be modified which may be needed when nodes are in-
serted, appended, or deleted. For all edges redirected 
by the modification operation, EX locks are required. 

• The EU lock mode (edge update option) eases the oc-
currence of deadlocks for write transactions (see SU). 

Note, the navigation edges are only logical objects which 
are not materialized within the stored document. They are 
only maintained by the lock manager in main memory. 
Additionally, as a positive side effect, the acquisition of 
shared navigation locks on the traversed document paths 
prevents the occurrence of phantoms by protecting these 
areas with edge locks against concurrent node insertions. 

The additional concept of tunable node lock granular-
ity and lock escalation [8] to reduce the number of main-
tained locks thus paying with less concurrency is not con-
sidered in the focus of this paper. 

The locking protocol taDOM2 described so far con-
sisting of the node lock compatibility and conversion ma-
trices and the virtual navigation edge locks is able to iso-
late all methods specified in DOM Level 2 [13] in an ap-
propriate way. But considering the new methods intro-
duced by DOM Level 3 and all our operations provided by 
the node services layer, a new problematic situation ap-
pears. The renameNode() method of the DOM specifica-
tion and the setValue() operation of our node manager 
executed on an inner element node e of the taDOM tree 
(not a leaf element node) requires the exclusive locking of 
the element node. With a tailored locking protocol, how-
ever, it should be possible to directly address and isolate 
an arbitrary node n in the subtree of e (e.g., via a secon-
dary index) and perform arbitrary operations on n. In 
other words, the exclusive locking of a single inner node 
should not affect the subtree of this inner node in any 
way. 

To support this situation in an adequate way, we in-
troduce for the taDOM2 and taDOM2+ locking protocols 

prevSiblingEdge nextSiblingEdge 

firstChildEdge lastChildEdge 

 - ER EU EX 
ER + + - - 
EU + + - - 
EX + - - - 
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additional virtual name nodes for each element and attrib-
ute node. Similarly to the virtual navigation edges, the 
virtual name nodes are not materialized in the stored 
document and are only maintained by the lock manager in 
main memory. As a consequence, a lock request in shared 
mode on context node c (NR lock) is always extended by 
the lock manager to an NR lock request on the actual node 
and, in addition, on its corresponding virtual name node. 
The exclusive locking of a single context node c (and not 
its entire subtree) is obtained by an exclusive SX lock on 
its virtual name node, an implicit CX lock on the actual 
context node c, and an additional CX lock on the parent 
node of c. This idea is clarified in the following example. 

An attached virtual name node is addressed with the 
DeweyID of its owning element extended with a 0. For 
example, assuming the assigned DeweyIDs of Figure 2, 
the book’s (1.3) virtual name node ID is 1.3.0, the title’s 
(1.3.3) name node ID is 1.3.3.0, and so forth. In this way, 
the determined “parent node” for lock requests along all 
ancestor nodes up to the document root element is the 
actual element owning the virtual name node. Figure 6 
illustrates the resulting locks after applying the virtual 
name-node concept. Transaction T1 is renaming the au-
thor element and, therefore, locking the virtual name node 
of the author node with SX, the author element itself with 
CX, and—applying the locking protocol—all ancestor 
nodes with IX. An additional CX lock on the parent of the 
author node (book) is required to prevent another transac-
tion from determining all direct-child nodes of the book 

element. Although transaction T1 is now renaming the 
author element, transaction T2 is allowed to “jump” into 
the document (via a secondary index) and to reconstruct 
the lname element with its complete subtree. The IR locks 
on the ancestor nodes required for the SX lock on lname 
comply with the existing IX and CX locks of T1. Transac-
tion T3 which wants to determine all direct-child nodes of 
the book element is blocked (LRQ: LR3), because LR is 
incompatible with the existing CX of transaction T1. 

3.2 taDOM2+ 

Considering again the lock conversion matrix of the 
taDOM2 locking protocol in Figure 3b, the subscripted 
node lock conversions IXNR, IXSR, CXNR, and CXSR repre-
sent indispensable rules to guarantee sufficient transaction 
isolation against concurrent modifications. But in the 
same way, these rules cause an additional dramatic run-
time overhead on the XDBMS. It is true that, for a given 
DeweyID of an arbitrary node, the lock manager can cal-
culate the IDs of all ancestor nodes (without accessing the 
stored XML document) and set the implicitly requested 
locks on them. This kind of lock acquisition is performed 
very rapidly. However the other way around, determining 
all children of a given node to set NR resp. SR locks on 
them (needed to conform to the conversion rules) is a very 
expensive operation. For a context node c, its direct-child 
nodes chi cannot be calculated, but have to be determined 
by fetching c and each chi from the stored document. 

To cope with this problem, we ease the node lock 
conversion by introducing four new lock modes tailored 
to the situations triggering one of the conversions de-
scribed above: 
• An LRIX lock mode (level read intention exclusive) 

locks the context node together with all its direct-child 
nodes for shared access and, in addition, indicates the 
intention to perform write operations somewhere in 
the subtree, but not on a direct-child node. 

• An SRIX lock mode (subtree read intention exclusive) 
locks the context node c and its entire subtree to per-
form read operations and indicates the intention to per-
form write operations somewhere in that subtree, but 
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 - IR NRLR SR IX LRIX SRIX CX LRCX SRCX SU SX 
IR + + + + + + + + + + + - - 
NR + + + + + + + + + + + - - 
LR + + + + + + + + - - - - - 
SR + + + + + - - - - - - - - 
IX + + + + - + + - + + - - - 

LRIX + + + + - + + - - - - - - 
SRIX + + + + - - - - - - - - - 
CX + + + - - + - - + - - - - 

LRCX + + + - - + - - - - - - - 
SRCX + + + - - - - - - - - - - 

SU + + + + + - - - - - - - - 
SX + - - - - - - - - - - - - 

 

 - IR NR LR SR IX LRIX SRIX CX LRCX SRCXSUSX 
IR IR IR NR LR SR IX LRIX SRIX CX LRCX SRCXSUSX 
NR NR NR NR LR SR IX LRIX SRIX CX LRCX SRCXSUSX 
LR LR LR LR LR SR LRIX LRIX SRIX LRCX LRCX SRCXSUSX 
SR SR SR SR SR SR SRIX SRIX SRIX SRCX SRCX SRCXSR SX 
IX IX IX IX LRIX SRIX IX LRIX SRIX CX LRCX SRCXSXSX 

LRIX LRIX LRIX LRIX LRIX SRIX LRIX LRIX SRIX LRCX LRCX SRCXSXSX 
SRIX SRIX SRIX SRIX SRIX SRIX SRIX SRIX SRIX SRCX SRCX SRCXSXSX 
CX CX CX CX LRCX SRCX CX LRCX SRCX CX LRCX SRCXSXSX 

LRCX LRCX LRCX LRCX LRCX SRCXLRCX LRCX SRCXLRCX LRCX SRCXSXSX 
SRCX SRCX SRCX SRCX SRCX SRCXSRCX SRCX SRCXSRCX SRCX SRCXSXSX 

SU SU SU SU SU SU SX SX SX SX SX SX SUSX 
SX SX SX SX SX SX SX SX SX SX SX SX SXSX 

 
a) lock compatibility matrix a) lock conversion matrix 

Figure 7: taDOM2+ locking protocol 



not on a direct-child node of c. 
• An LRCX lock mode (level read child exclusive) 

locks the context node together with all its direct-child 
nodes for shared access and indicates an exclusive 
lock on one of these child nodes. 

• An SRCX lock mode (subtree read child exclusive) 
locks the context node c as the root of subtree s to per-
form read operations on s and indicates exclusive ac-
cess to one of the direct-child nodes of c. 

Adding these new lock types to the lock compatibility and 
conversion matrices, we obtain the taDOM2+ protocol. 
Note, now all lock requests can be handled without ac-
cessing the stored XML document at all. For example, an 
existing LR lock and an IX request does not lead anymore 
to an NR lock on each direct-child node during conver-
sion (like in taDOM2), but can now simply be replaced 
with an LRIX lock. The complete lock compatibility and 
conversion matrices of taDOM2+ are shown in Figure 7. 

3.3 taDOM3 

To support the modification of a context node by exclu-
sively locking only the affected node and not its entire 
subtree, the taDOM2 and taDOM2+ protocols have intro-
duced the so-called virtual name nodes (see Section 3.1). 
On the one hand, this approach enables improved concur-
rent transaction processing by reusing the existing locking 
protocols. But on the other hand, this enhanced processing 
carries the obligation to maintain two locks for each node 
(one lock for the actual node and a second one for the 

virtual name node). Of course, this management overhead 
reduces transaction throughput. 

taDOM3 enriches our protocols with a special lock 
mode that allows locking a single node without affecting 
the attached subtree. In this way, the concurrent process-
ing capabilities are preserved and only a single lock per 
node is maintained. The combined use of the lock modes 
IX and CX would only indicate the intention of write op-
erations on some descendant nodes, but would not reveal 
information about read accesses to the nodes they are 
maintained for. For performance reasons, we cannot col-
lect the entire locking history of nodes (otherwise for each 
node, several different lock modes would have to be re-
corded for the same transaction [9]); therefore, a currently 
requested IX on node n cannot be distinguished from an 
initial NR on n converted later to IX. For this reason, the 
new exclusive node lock provided in taDOM3 implies 
some refined lock modes: 
• An NRIX lock mode (node read intention exclusive) 

locks a node in shared mode and, in addition, indicates 
the intention of an exclusive lock request somewhere 
in the subtree, but not on a direct-child node. 

• An NRCX lock (node read child exclusive) locks the 
context node for read access and indicates an exclu-
sive lock on one of its direct-child nodes. 

• An NU lock mode (node update option) supports a 
read operation on the context node with the option to 
convert the mode for a subsequent write access or 
downgrade to a read lock (see lock mode SU or EU). 

• An NX lock (node exclusive) locks the context node 
in exclusive mode for an update operation on the con-
text node’s content. The subtree attached to the con-
text node is not affected by this lock. 

Note again, these four new lock modes allow the same 
concurrent transaction processing capabilities as provided 
by the taDOM2 protocol with only one acquired lock per 
node. The concept of virtual name nodes is not required 
any longer. The corresponding lock compatibility and 
conversion matrices controlling the taDOM3 protocol are 
shown in Figure 8 and Figure 9. In contrast to the ta-
DOM2 and taDOM2+ protocols, here the lock modes IR 
and NR embody different behaviors and have to be im-
plemented both as individual lock modes. 

 - IR NRLR SR IX NRIX CX NRCXNU NX SU SX
IR + + + + + + + + + + + - - 
NR + + + + + + + + + - - - - 
LR + + + + + + + - - - - - - 
SR + + + + + - - - - - - - - 
IX + + + + - + + + + + + - - 

NRIX + + + + - + + + + - - - - 
CX + + + - - + + + + + + - - 

NRCX + + + - - + + + + - - - - 
NU + + + + + + + + + - - - - 
NX + + - - - + - + - - - - - 
SU + + + + + - - - - - - - - 
SX + - - - - - - - - - - - - 

 
Figure 8: taDOM3 lock compatibility matrix 

Figure 9: taDOM3 lock conversion matrix 
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LR LR LR LR LR SR NRIXNR NRIXNR NRCXNR NRCXNRNUNR NXNR SUSX 
SR SR SR SR SR SR NRIXSR NRIXSR NRCXSR NRCXSR NUSR NXSR SR SX 
IX IX IX NRIX NRIXNR NRIXSR IX NRIX CX NRCX NX NX SXSX 

NRIX NRIX NRIX NRIX NRIXNR NRIXSR NRIX NRIX NRCX NRCX NX NX SXSX 
CX CX CX NRCXNRCXNR NRCXSR CX NRCX CX NRCX NX NX SXSX 

NRCX NRCXNRCX NRCXNRCXNR NRCXSR NRCX NRCX NRCX NRCX NX NX SXSX 
NU NU NU NU NUNR NUSR NX NX NX NX NU NX SUSX 
NX NX NX NX NXNR NXSR NX NX NX NX NX NX SXSX 
SU SU SU SU SU SU SX SX SX SX SU SX SUSX 
SX SX SX SX SX SX SX SX SX SX SX SX SXSX 

 



3.4 taDOM3+ 

Similarly to the subscripted node lock conversions in 
Section 3.2, the taDOM3 protocol contains the lock con-
version rules NRIXNR, NRCXNR, NRIXSR, NRCXSR, 
NUNR, NUSR, NXNR, and NXSR, which cause explicit 
fetching of direct-child nodes—only to set the appropriate 
locks. In an analogous way to taDOM2+, the taDOM3+ 
protocol introduces eight tailored lock modes to prevent 
the lock manager from accessing nodes stored on external 
devices: 
• An LRIX lock mode (level read intention exclusive) 

locks the context node c and all its direct-child nodes 
in shared mode and indicates an exclusive lock some-
where in the subtree of c on a non-direct-child node. 

• An SRIX lock mode (subtree read intention exclusive) 

locks in addition to LRIX the entire subtree of the con-
text node for shared access (and indicates an exclusive 
lock somewhere in the subtree). 

• An LRCX lock mode (level read child exclusive) 
locks the context node and all its direct-child nodes in 
shared mode and indicates exclusive child locking on 
one of the child nodes. 

• An SRCX lock mode (subtree read child exclusive) 
locks in addition to LRCX the entire subtree of the 
context node in shared read mode. 

• An LRNU lock mode (level read node update option) 
locks all direct-child nodes of the context node c in 
shared mode and supports read operations on c with 
the option to convert the mode to write or back to read 
access later on. 

• An SRNU lock mode (subtree read node update op-

 - IR NR LR SR IX NRIX LRIX SRIX CX NRCX LRCX SRCX NU LRNU SRNU NX LRNX SRNXSUSX 
IR IR IR NR LR SR IX NRIX LRIX SRIX CX NRCX LRCX SRCX NU LRNU SRNU NX LRNX SRNXSUSX 
NR NR NR NR LR SR NRIX NRIX LRIX SRIX NRCX NRCX LRCX SRCX NR LR SR NX LRNX SRNXSUSX 
LR LR LR LR LR SR LRIX LRIX LRIX SRIX LRCX LRCX LRCX SRCX LRNU LRNU SRNULRNX LRNX SRNXSUSX 
SR SR SR SR SR SR SRIX SRIX SRIX SRIX SRCX SRCX SRCX SRCX SRNU SRNU SRNUSRNX SRNX SRNXSR SX 
IX IX IX NRIX LRIX SRIX IX NRIX LRIX SRIX CX NRCX LRCX SRCX NX LRNX SRNX NX LRNX SRNXSXSX 

NRIX NRIX NRIX NRIX LRIX SRIX NRIX NRIX LRIX SRIX NRCX NRCX LRCX SRCX NX LRNX SRNX NX LRNX SRNXSXSX 
LRIX LRIX LRIX LRIX LRIX SRIX LRIX LRIX LRIX SRIX LRCX LRCX LRCX SRCX LRNX LRNX SRNXLRNX LRNX SRNXSXSX 
SRIX SRIX SRIX SRIX SRIX SRIX SRIX SRIX SRIX SRIX SRCX SRCX SRCX SRCX SRNX SRNX SRNXSRNX SRNX SRNXSXSX 
CX CX CX NRCX LRCX SRCX CX NRCX LRCX SRCX CX NRCX LRCX SRCX NX LRNX SRNX NX LRNX SRNXSXSX 
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SRNU SRNU SRNU SRNU SRNU SRNU SRNX SRNX SRNX SRNX SRNX SRNX SRNX SRNXSRNU SRNU SRNUSRNX SRNX SRNXSUSX 

NX NX NX NX LRNX SRNX NX NX LRNX SRNX NX NX LRNX SRNX NX LRNX SRNX NX LRNX SRNXSXSX 
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Figure 11: taDOM3+ lock conversion matrix 

 - IR NR LR SR IX NRIX LRIX SRIX CX NRCX LRCX SRCX NU LRNU SRNU NX LRNX SRNXSUSX 
IR + + + + + + + + + + + + + + + + + + + - - 
NR + + + + + + + + + + + + + - - - - - - - - 
LR + + + + + + + + + - - - - - - - - - - - - 
SR + + + + + - - - - - - - - - - - - - - - - 
IX + + + + - + + + - + + + - + + - + + - - - 

NRIX + + + + - + + + - + + + - - - - - - - - - 
LRIX + + + + - + + + - - - - - - - - - - - - - 
SRIX + + + + - - - - - - - - - - - - - - - - - 
CX + + + - - + + - - + + - - + - - + - - - - 

NRCX + + + - - + + - - + + - - - - - - - - - - 
LRCX + + + - - + + - - - - - - - - - - - - - - 
SRCX + + + - - - - - - - - - - - - - - - - - - 

NU + + + + + + + + + + + + + - - - - - - - - 
LRNU + + + + + + + + + - - - - - - - - - - - - 
SRNU + + + + + - - - - - - - - - - - - - - - - 

NX + + - - - + - - - + - - - - - - - - - - - 
LRNX + + - - - + - - - - - - - - - - - - - - - 
SRNX + + - - - - - - - - - - - - - - - - - - - 

SU + + + + + - - - - - - - - - - - - - - - - 
SX + - - - - - - - - - - - - - - - - - - - - 

 
Figure 10: taDOM3+ lock compatibility matrix 



tion) locks additionally to LRNU the complete subtree 
of the context node in shared mode. 

• An LRNX lock mode (level read node exclusive) 
locks all direct-child nodes of the context node c in 
shared mode and c itself in exclusive mode. 

• An SRNX lock mode (subtree read node exclusive) 
locks the entire subtree of the context node c in shared 
mode and c itself in exclusive mode. 

The node lock compatibility and conversion matrices of 
our most efficient locking protocol taDOM3+ are shown 
in Figure 10 and Figure 11. 

3.5 Comparing the Locking Protocols 

To illustrate the benefits and performance gains of our 
stepwise protocol evolution for XML data processing, we 
ran a benchmark comparing transaction throughputs and 
number of locks maintained. The XTCserver is installed 
on an IBM xSeries 4-Xeon-Processor machine, the client 
applications are running on an IBM Thinkpad R32 con-
nected via a 100 Mbit/s network, both running a Linux 
operating system. 

We extended the sample.xml document in Figure 2 
with a chapters element containing a random number (be-
tween 10 and 20) of chapter nodes, each with a title and a 
summary element, and created a library XML document 
with 25,000 books. This library document (184 MB) 
matching the taDOM model contains over 4.5 million 
XML nodes and is stored via the network connection in 
about 4 minutes into the server (an average bulk load per-
formance of over one million nodes per minute). 

In the benchmark, a single transaction reconstructs a 
random book for which it determines the nodes of the 
book structure by invoking the getChildNodes() operation 
at each level. This requires a lock for shared level access. 
After that, a randomly selected chapter is renamed (exclu-
sive lock on the chapter name; CX and IX locks on the 
ancestor path) which enforces a lock conversion on the 
nodes holding the level read locks. The benchmark client 
starts 25 threads, each executing a constant workload with 
the sketched transaction operations for 5 minutes on the 
XTCserver. The number of successfully committed trans-
actions and the maximal number of concurrently main-
tained locks are shown in Figure 12. 

Comparing the protocols, the number of concurrently 

maintained locks is dramatically reduced. First, this is 
caused by the especially tailored locks (from taDOM2(3) 
to taDOM2(3)+) which avoid lock requests on direct-
child nodes when performing the subscripted conversion 
rules. Second, NRIX, NRCX, NU, and NX locks intro-
duced from taDOM2(+) to taDOM3(+) do not need addi-
tional virtual name nodes for each element and attribute 
node and, in turn, the corresponding locks. The number of 
successfully committed transactions is increasing from 
taDOM2 to taDOM2+ and from taDOM3 to taDOM3+, 
because the substantial costs of child-node accesses can 
be avoided. This improves performance in such a manner 
that even taDOM2+ enables more transaction commits 
than taDOM3: Hence, fetching document nodes (stored 
records) is more performance-critical than maintaining 
(even a high number of) locks. 

4. Correctness of the Locking Protocols 
To trust the taDOM locking protocols (each has to 

guarantee a correct schedule), to safely exploit their per-
formance potential, and to establish them as implementa-
tion fundamentals to be taken seriously by XDBMS ven-
dors, we describe the basic ideas of their correctness proof 
in this section. This approach requires considering the full 
database interface providing the 19 XDP operations intro-
duced in Section 2.3. The complete report of the proof can 
be accessed via our website [2]; it comprises about 280 
MB of generated HTML code and contains over 38,000 
individually checked test cases and over 250,000 checked 
lock compatibilities. Here, we can only explain the ration-
ale of our proof technique. 

4.1 The Compatibility Matrices 

Observing the diversity of lock requests, the “worst 
case” of a request is an SX or NX lock on the context 
node, a CX lock on its parent, and IX locks on each an-
cestor node up to the document root. Hence, all different 
types of requested lock mode constellations for executing 
an arbitrary operation on a context node can be discussed 
on the node-relationship graph shown in Figure 13. 

For our proof, we describe in a first step the behavior 
of each XDP operation provided by our node manager 
with so-called base operations. For example, base opera-
tions are actions like use first child edge, redirect next 
sibling edge, read previous sibling node, or write new 
context node value. Using these base operations, we can 
determine the read and write sets of each XDP operation 
executed on any node within the graph of Figure 13. 

In our proof, we specify use cases to “execute” an 
XDP operation o on the context node CO and define for 
each use case four scenarios in which the lock requests of 
operation o using one of our locking protocols are speci-
fied. For some operations, we have to specify multiple use 
cases. As an example, the lock requests of operation get-
FirstChild() depend on the fact whether or not the context 
node owns child nodes; this must be distinguished by two Figure 12: Comparing the locking protocols 
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different use cases. With a large number of resulting 
combinations, each XDP operation oi is executed for each 
scenario in each use case on each node of the graph. Ex-
amining the combinations, we now calculate the read and 
write sets of the use case operation o and the compared 
operation oi. A read-write, write-read, or write-write con-
flict (up to this point only caused by the description with 
base operations) indicates a prohibition for executing 
these XDP operations concurrently. In such a case—now 
considering also the requested locks of the operations in 
the current scenario—at least one lock incompatibility 
must occur to block the concurrent execution. The other 
way around, if only the read sets intersect or even both the 
read and write sets do not intersect at all, the XDP opera-
tions can be executed in parallel and, in consequence, all 
requested locks of the two operations must be compatible. 

As already mentioned above, 38,000 checked opera-
tion executions with over 250,000 checked lock compati-
bilities prove the correctness of our locking protocols cor-
responding to the 19 XDP operations and their correct 
behavior specified via base operations. 

4.2 The Conversion Matrices 

To prove the correctness of the conversion matrices 
we first define the strength-relationship of lock modes. 

A lock l1 is stronger than a lock l2 (l1>l2) if each lock 
li that is incompatible to l2 is also incompatible to l1. This 
means, the lock requests blocked by an existing lock l2 are 
also blocked by the stronger lock l1 (l1 may even block 
more lock requests). 

If l1 is not stronger than l2 then l1 is only weaker than 
l2 (l1<l2) if l2 is stronger than l1. As a conseqence this 
means, that there are also locks which are neither stronger 
nor weaker than each other (e.g., LR and CX). 

Corresponding to the theory of serializability [7], these 
definitions can be used to preserve the operation execu-
tion sequences of interlocked transactions: If transaction 

T1 holds a lock l1 for operation o1 and operation o2 of 
transaction T2 is blocked on this lock until the end of T1 

(where all locks of T1 are released), then the replacement 
of l1 with a stronger lock l1’ blocks the execution of o2 
until the end of T1 in the same manner. This means if the 
rules specified by the lock conversion matrices lead in 
each case to a resulting lock that is equal or stronger than 
both the previously existing lock and the requested lock, 
then this lock conversion preserves the operation se-
quences of the transactions. 

A first special situation occurs for the update option 
locks. A downgrade request that sets the update option 
lock down to a weaker shared lock mode (and which 
would cause a violation of the correctness criteria defined 
above) requires the additional check of transitivity rela-
tionships. The downgrade conversion of an update lock 
down to a weaker shared lock mode is allowed if, for each 
existing lock le which is replaced with an update lock lu, 
all locks, to which lu may be converted to, are equal or 
stronger than the orginially existing lock le. For example, 
considering node lock conversion in taDOM2, an existing 
NR lock can be converted to SU. This is correct because 
SU may be converted to SR, SU, or SX, and all of them 
are still stronger than NR. In contrast, the conversion of 
an existing IX lock for a requested SU must obtain an SX. 
Although a resulting SU would be stronger than the exist-
ing IX and equal to the requested SU, in a following step 
SU may be converted down to SR which is not stronger 
than the previously acquired IX and would lead to an in-
consistent lock state in this way. 

The second special situation occurs for the subscripted 
lock conversion rules in taDOM2 and taDOM3 (e.g., an 
existing IX is converted to IXNR for a requested LR). Al-
though the resulting IX on the context node is not stronger 
than the requested LR, this conversion is correct. Of 
course, the resulting IX also blocks all requests that are 
blocked by the previously existing IX, because they are 
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NN virtual name of NS 
FC first child of CO 
FN virtual name node of FC 
CH arbitrary child of CO 
LC last child of CO 
LN virtual name node of LC 
DC arbitrary descendant node 
 

AR attribute root node of CO 
CA context attribute affected 

by an attribute operation 
AN virtual name node of CA 
AS value string node of CA 
AX arbitrary attribute of CO 

not affect by an attribute 
operation 

XN virtual name node of AX 
XS value string node of AX 

PSE previous sibling edge 
NSE next sibling edge 
FCE first child edge 
LCE last child edge 
 

Figure 13: General operation execution on context node and surrounding elements 



equal. At a first sight, looking at the compatibility matrix, 
CX is not blocked by the resulting IX, but this is required 
for the requested LR. Considering the additionally re-
quired NR locks on each child (IXNR), a CX lock request 
cannot be granted. All locks, requested on any child node 
and causing a CX lock on the context node (these are SX 
in taDOM2 and taDOM3 and NX in taDOM3), are in-
compatible to the conversion-acquired NR locks on each 
child node. In that way, the compatible CX lock on the 
context node is acceptable, because the lock request will 
not be completed due to the incompatibility of SX and 
NX to the NR locks on the child nodes. Further new chil-
dren cannot be added because of the acquired shared edge 
locks applying the IXNR rule (see again Section 3.1). 

Checking now the strength-relationships of the exist-
ing, requested, and converted node locks, and considering 
the two described special situations above (over 32,000 
conditions), we can also prove the correctness of our con-
version matrices. 

Comprising sections 4.1 and 4.2, the complete cor-
rectness of our locking protocols is proved by the correct-
ness of both the compatibility and conversion matrices. 

5. Conclusions and Future Work 
In this paper, we explored transaction isolation issues 

for collaborative XML document processing. We first 
sketched the design and implementation of our native 
XDBMS prototype and described the provided XDP op-
erations. For concurrent transaction processing, we intro-
duced our concepts enabling fine-granular concurrency 
control on taDOM trees representing XML documents. A 
tailored node identification algorithm supports native 
document storage and maintenance by providing for life-
time stable DeweyIDs. As the key part, we have intro-
duced four locking protocols for direct and navigational 
access to individual XML nodes, thereby supporting dif-
ferent isolation strategies. The performance evaluation has 
compared their locking overhead and transaction through-
put capabilities and has strongly confirmed the viability 
and effectiveness of our approaches. Finally, we ex-
plained our solution to prove the correctness of the proto-
cols corresponding to a semantic description of the XDP 
interface. Our proof procedure systematically generates 
all ever possible operation execution constellations, de-
termines their read-set and write-set intersections, and 
verifies the corresponding node and edge lock compatibil-
ities with nearly 300,000 separately checked situations. 

In our next steps, we concentrate on providing for an 
efficient phantom prevention for transactions using the 
SAX, DOM, and XQuery interfaces in parallel. Currently, 
phantoms are only prevented by our navigation locks on 
document areas traversed by navigation steps; but phan-
toms may also occur if nodes are directly addressed by 
their DeweyIDs via secondary index structures (e.g. ac-
cessing elements by indexed ID/IDREF values). In our 
design, this problem is to be solved by extended key-

range locks which, in addition to a specified key range, 
are acquired on selected fragments of an XML document. 
In summary, we then can present a locking scheme which 
enables strict serializability and supports transactions us-
ing all common XML interfaces. 
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