

Optimizing Concurrent XML Processing

Michael P. Haustein, Theo Härder

University of Kaiserslautern
P.O. Box 3049, 67653 Kaiserslautern, Germany

{haustein | haerder}@informatik.uni-kl.de

Abstract
Processing XML documents in multi-user database

management environments requires a suitable storage
model, support of typical XML document processing
(XDP) interfaces, and concurrency control mechanisms
tailored to the XML data model. In this paper, we sketch
the architecture of our prototype native XML database
management system and specify in detail the operations
for accessing and modifying the stored documents. The
key contribution is the design and optimization of fine-
grained locking protocols supporting collaborative proc-
essing of XML documents. For this reason, we introduce
four XML locking protocols of growing sophistication and
complexity, which are based on a tree-structured storage
model. Finally, we present the ideas to prove the locking
protocol correctness guaranteeing the specified data
processing behavior of the given XDP operations.

1. Introduction
Storing XML documents in a relational database man-

agement system (RDBMS) forces the developers either to
use simple CLOBs (character large objects), to select
some data types which enable the mapping of the docu-
ments to predefined relational schemes, or to choose
among an innumerable number of algorithms shredding
the documents to tables and columns. Because of their
number and size, collaboration on XML documents often
becomes an important issue. Typical applications are
managing XML-structured operational business data or
applying XML standards for collaboration in word proc-
essing applications [11] using database backends. How-
ever, concurrency control in RDBMSs does not take the
properties of the semi-structured XML data model into
account and causes disastrous locking behavior by block-
ing entire CLOBs, tables, or unnecessarily large index
ranges.

Currently, native XML DBMSs (XDBMSs) are pri-
marily designed for efficient document retrieval and query
evaluation. Their document storage model is usually
based on fixed numbering schemes used to identify XML
elements and optimized for read-only access. Frequently

concurrent and transaction-safe modifications would lead
to renumerations of large document parts which could
cause unacceptable reorganization overhead and degrade
data processing in performance-critical workload situa-
tions. As a rare example of an update-oriented system,
Natix [5] conceptually supports concurrent transaction
processing, but multi-user mode is not implemented yet.

1.1 Problem Statement and Contribution

Although predicate locking of XQuery statements
[14]—and, in the near future, XUpdate-like statements
[15]—would be powerful and elegant, its implementation
rapidly leads to severe drawbacks such as undecidability
problems and the need to acquire large lock granules for
simplified predicates—a lesson learned from the (much
simpler) relational world. To provide for an acceptable
solution, we necessarily have to map XQuery operations
to a navigational access model to accomplish fine-
granular concurrency control. Such an approach implicitly
supports other XDP interfaces like DOM [13], and SAX
[1], because their operations correspond more or less di-
rectly to a navigational access model.

We have proposed a fine-granular locking protocol
called taDOM2 in [8] which enables concurrent execution
of transactions using either DOM, SAX, XQuery or all of
them simultaneously. We will refine and optimize it as
taDOM2+. The recent standard DOM Level 3 [13] addi-
tionally introduced new operations, for which we develop
the taDOM3 protocol and its optimized version ta-
DOM3+.

As a testbed for XML transaction processing, we have
implemented the XML Transaction Coordinator (XTC)
[8] which supports all known types of XDP interfaces
(event-based like SAX, navigational like DOM, and de-
clarative like XQuery) and provides the well-known
ACID properties [7] for concurrent operations. For all
four protocols, we can thus give an empirical performance
comparison which clearly indicates the performance po-
tential of our optimizations as far as enhanced parallelism
and reduced locking overhead is concerned. Furthermore,
we prove the correctness of the proposed lock mode com-
patibilities and lock conversions used by our protocols.

1.2 Related Work

As already mentioned, no (freely available) XDBMS
implementation exists which would allow exploring fine-
grained XML concurrency control. Hence, the few publi-
cations related to our problem either refer to conceptual
work or to simulations [10]. XMLTM [6] uses a layer on
top of an RDBMS which executes the client-side transac-
tion operations within self-managed transactions which, in
turn, have to be processed (under lower isolation levels)
on the RDBMS thereby confined to the existing “rela-
tional” lock modes. The DGLOCK concept of XMLTM,
for example, isolates transactions by managing path locks
on a DataGuide structure and, in this way, provides for
concurrent path-based transaction processing to the client
applications. However, it cannot support ID-based access
(direct jumps to internal nodes) and position-based predi-
cates and is not tailored to fine-grained navigational ac-
cess. Another path-oriented protocol is proposed in [3]
and [4] which also seems to be limited as far as the full
expressiveness of XPath predicates and direct jumps into
subtrees are concerned.

In this paper, Section 2 gives an overview of the XTC
architecture, the storage model for XML documents, and
the XDP operations. Our four locking protocols taDOM2,
taDOM2+, taDOM3, and taDOM3+ are introduced and
compared in Section 3, whereas Section 4 describes our
ideas to prove the correctness of the locking protocols for
the present XDP operations. Finally, Section 5 wraps up
some aspects of future work.

2. XML Data Processing
Our XTC database engine (XTCserver) adheres to the

widely used five-layer database architecture which is
sketched in the following Section 2.1. Processing XML
documents is based on the taDOM data model which is
described in Section 2.2. The available node-based XDP
operations for accessing and manipulating the stored
documents are described in Section 2.3.

2.1 System Architecture

The five-layer architecture of our XTC system is de-
picted in Figure 1. The file services layer operates on the
bit pattern stored on external, non-volatile storage de-
vices. In collaboration with the OS file system, the I/O
managers store the physical data into extensible container
files; their fixed-length block size is configurable to the
characteristics of the XML documents to be stored. A
buffer manager for each container file handles fixing and
unfixing of pages in main memory and provides a page
replacement algorithm for them which can be optimized
to the anticipated reference locality inherent in the respec-
tive XDP application. Using pages as their basic storage
units, the record, index, and catalog managers form the
access services. The record manager maintains in a set of
pages the tree-connected nodes of XML documents as

physically adjacent records. Each record is addressed by a
unique life-time ID managed within a B*-tree by the in-
dex manager. This is essential to allow for fine-grained
concurrency control which requires lock acquisition on
unique identifiable nodes (see Section 3). The catalog
manager provides for the database meta-data. The node
manager implementing the navigational access layer
transforms the records from their internal physical into an
external representation, thereby managing the lock acqui-
sition to isolate the concurrent transactions. The node-
based XDP operations for document accesses and modifi-
cations (considered in detail in Section 2.3) are provided
at this layer’s interface. In contrast, the XML services
layer contains the XML manager responsible for declara-
tive document access, e.g., evaluation of XQuery state-
ments or XSL transformations.

At the top of our architecture, the agents of the inter-
face layer make the functionality of the XML and node
services available to common internet browsers, ftp cli-
ents, and the XTCdriver thereby establishing declara-
tive/set-oriented as well as navigational/node-oriented
interfaces. The XTCdriver linked to client-side applica-
tions provides for methods to execute XQuery statements
and to browse or manipulate XML documents and materi-
alized XQuery results via the SAX or DOM API. All cli-
ent-side activities are processed within transactions run-
ning in one of the well-known isolation levels uncommit-
ted, committed, repeatable, or serializable.

2.2 taDOM Storage Model

Efficient and effective isolation of concurrent XDP
operations is greatly facilitated, if we use a specialized
internal document representation (the so-called taDOM
tree) which enables fine-granular locking. For this reason,
we have introduced two new node types: attribute root
and string. This representation extension does not influ-

Figure 1: XTC system architecture

File System Container Logs Container Files Transaction Log

File Services

I/O Manager

Buffer Manager

Record Mgr Index Mgr Catalog Mgr
Access Services

Node Services
Node Mgr

Propagation

XML Services

Transaction
Services

Lock Mgr

TA Mgr

Deadlock
Detector

Interface Services

XQuery Processor XML Mgr XSLT Processor

Http Agent Ftp Agent DOM RMI SAX RMI API RMI

Browser Ftp Client XTC Driver

ence the user operations and their semantics on the XML
document, but is solely exploited by the lock manager to
achieve certain kinds of optimization when an XML
document is modified in a cooperative environment. As a
running example, we refer the XML document sam-
ple.xml which is transformed for our purpose to its ta-
DOM-tree representation as shown in Figure 2.

The attribute root separates the various attribute nodes
from their element node. Instead of locking all attribute
nodes of an element separately when they are listed, the
lock manager achieves the same effect by a single lock on
the attribute root. Hence, such a lock does not affect par-
allelism, but leads to more effective lock handling and,
thus, potentially to better performance. A string node, in
contrast, is attached to the respective text or attribute node
and exclusively contains the actual value of this node.
Because reference to such a value requires an explicit
operation invocation with a preceding lock request, a sim-
ple existence test on a text or attribute node avoids lock-
ing their values. Hence, a transaction only navigating
across such nodes will not be blocked, although a concur-
rent transaction may have modified them and may still
hold exclusive locks on their values1.

Furthermore, fast access to and identification of all
nodes of an XML document is mandatory to enable effi-
cient processing of direct-access methods, navigational
methods, and lock management. For this reason, our re-
cord manager assigns to each node a unique node ID (rap-
idly accessible via a native B*-tree implementation) and
stores the node as a record in a data page. In this way, we
can enforce and preserve the order of the XML nodes by
the physical order of the records within logically consecu-
tive pages (chained B*-tree leaves by next/previous page
pointers).

The unique node IDs are inspired by the ORDPATH
approach [12] and are adapted as so-called DeweyIDs to
our taDOM storage model (also shown in Figure 2). The
DeweyID algorithm is based on the Dewey Decimal Clas-
sification and assigns odd division numbers to the nodes

1 These additional node types can be virtualized such that
regular DOM trees are stored on disk but the main mem-
ory structures of an XDBS maintain our taDOM trees.

within each document level consecutively in ascending
order (e.g., 1.3.3, 1.3.5, 1.3.7, etc.). Except for the docu-
ment root element, the division value 1 is reserved for
attribute root and string nodes. The different node levels
are separated by dots; the DeweyID of the parent node is
copied as a prefix into the DeweyID of each child node.
The initial assignment of odd division values allows the
insertion of an arbitrary number of new nodes at arbitrary
positions into the document. For example, between the
DeweyIDs 1.3.3 and 1.3.5 the new IDs 1.3.4.3, 1.3.4.5,
1.3.4.7, etc. can be inserted. Again, between the IDs
1.3.4.3 and 1.3.4.5, we are able to insert the IDs 1.3.4.4.3,
1.3.4.4.5, and so forth. In this way, the DeweyID al-
lows—by considering the even and odd division values of
a node ID—the calculation of its level and the IDs of all
ancestor nodes upwards to the document root element
without accessing the actual document, which may reside
on an external device at reference time. This is a very
important aspect for high-performance lock management.

After an XML document is stored, a catalog page con-
taining some meta-data identifies the document. Its page
number is attached to the DeweyID separated by a colon,
to address a node uniquely within the entire XDBMS. For
example, if the document given in Figure 2 is stored with
catalog page number 4711, the element title is identified
with the ID 4711:1.3.3.

A further advantage using the DeweyID can be ex-
ploited for the manipulation of an XML document. An
inserted node at an arbitrary position is always arranged in
sequential order with respect to already existing sibling
nodes. In this way, a single B*-tree is sufficient for stor-
ing the entire XML document in left-most depth-first or-
der, where an entry is formed by the byte representation
of the DeweyID as the key part and the byte representa-
tion of the actual node as the value part. For element and
attribute nodes, the bytes to be stored are additionally
compressed using a vocabulary. This means, we do not
store their names but tiny identifiers to address the names
within a related tree data structure.

<?xml version="1.0"?>
<bib>
 <book year="2004" id="book1">
 <title>The Title</title>
 <author>
 <fname>first name</fname>
 <lname>last name</lname>
 </author>
 <price>49.99</price>
 </book>
</bib>

bib

book

title author price

fname lname year id
book1

The Title

first name last name

49.99

Element node attribute root node

text node
attribute node

string node

Figure 2: Transformation of sample.xml into the taDOM tree

2004

 1

1.3

1.3.3 1.3.5 1.3.7

1.3.3.3

1.3.3.3.1

1.3.5.3 1.3.5.5

1.3.5.3.3

1.3.5.3.3.1

1.3.5.5.3

1.3.5.5.3.1

1.3.7.3

1.3.7.3.1

1.3.1

1.3.1.3 1.3.1.5

1.3.1.3.1 1.3.1.5.1

2.3 XDP Operations

In the node services layer, our node manager provides
for 19 node operations to browse and manipulate the
stored XML documents in any contrivable manner.

The getNode(), getParentNode(), getPrevSibling(),
getNextSibling(), getFirstChild(), and getLastChild() op-
erations are used to address a single context node and
perform simple navigation steps to its parent, one of its
siblings, or its first or last child node. The getChild-
Nodes() resp. getFragmentNodes() operations return all
direct-child nodes of a given context node resp. the con-
text node itself and all descendant nodes for a complete
fragment reconstruction addressed by the context node.

The getValue() operation identifies the actual value of
a context node. In case of an element node, this is the
element name; for attribute or text nodes, the associated
attribute value or text content is returned. The other way
around, the setValue() operation renames an element node
or sets a new attribute or text value.

Executed on an element node, the getAttribute() opera-
tion with an attribute name as a parameter returns the cor-
responding attribute node (or a null value if an attribute
with the name handed over does not exist) and the getAt-
tributes() operations assembles a node list of all existing
attributes of the element node. The setAttribute() opera-
tion sets a value for the attribute with the specified name
or creates a new attribute with the name/value pair as-
signed, if such an attribute with the given name does not
already exist. The renameAttribute() operation renames an
already existing attribute node without changing its value.

Creating new element nodes is performed with the op-
erations appendChild(), prependChild(), insertBefore(),
and insertAfter() which insert a new last or first child, or a
new previous or next sibling of the context element node
on which they are invoked.

Finally, the deleteNode() operation deletes a complete
XML fragment identified by the root node on which the
operation is executed.

3. taDOM Locking Protocols
While traversing or modifying an XML document, a

transaction has to acquire a lock in an adequate mode for
each node before accessing it. Because the nodes in an
XML document are organized by a tree structure (see Sec-
tion 2.2), the principles of multi-granularity locking

schemes can be applied.
The method calls of different XDP interfaces used by

an application are mapped by the node manager to ade-
quate node operations (see Section 2.3). Before the actual
operation is performed, appropriate locks for the affected
nodes and the entire ancestor paths are automatically set
by the lock manager. For this purpose, the lock man-
ager—possibly with the help of other components such as
index or record manager—has to identify the affected
nodes and edges. In any case, the truly complex locking
protocols are confined to the lock manager and not visible
to any other component, let alone the application.

The resulting tree locking is similar to multi-
granularity locking in relational environments (SQL)
where intention locks communicate a transaction’s proc-
essing needs to concurrent transactions. In particular, they
prevent a subtree s from being locked in a mode incom-
patible to locks already granted to s or subtrees of s.
However, there is a major difference, because—in con-
trast to the relational world—the nodes in an ancestor path
are part of the document and carry user data. In a rela-
tional database, user data is exclusively stored in the
leaves (records) of the tree whose higher-level nodes are
formed by organizational concepts (e.g., table, segment,
database). For example, it makes perfect sense to lock an
intermediate XML node n for an update operation, while
other transactions may perform further reads or updates in
the subtree of n.

To support concurrent transaction processing exploit-
ing fine-grained concurrency control, we present and
compare the four locking protocols taDOM2, taDOM2+,
taDOM3, and taDOM3+ in the following sections.

3.1 taDOM2

Except for some optimizations in the compatibility
and conversion matrices, the taDOM2 protocol is based
on the protocol we presented in [8]. We differentiate the
read and write operations thereby replacing the well-
known (IR, R) and (IX, X) lock modes with (IR, NR, LR,
SR) and (IX, CX, SX) modes, respectively. As in the
multi-granularity scheme, the U mode (SU in our proto-
col) plays a special role, because it permits lock conver-
sion. Figure 3a contains the compatibility matrix for our
basic lock modes. Throughout the paper, the matrix
header row characterizes the current lock state of the ob-
ject, whereas the matrix header column indicates the

 - IR NR LR SR IX CX SU SX
IR + + + + + + + - -
NR + + + + + + + - -
LR + + + + + + - - -
SR + + + + + - - - -
IX + + + + - + + - -
CX + + + - - + + - -
SU + + + + + - - - -
SX + - - - - - - - -

 - IR NR LR SR IX CX SU SX
IR IR IR NR LR SR IX CX SU SX
NR NR NR NR LR SR IX CX SU SX
LR LR LR LR LR SR IXNR CXNR SU SX
SR SR SR SR SR SR IXSR CXSR SR SX
IX IX IX IX IXNR IXSR IX CX SX SX
CX CX CX CX CXNR CXSR CX CX SX SX
SU SU SU SU SU SU SX SX SU SX
SX SX SX SX SX SX SX SX SX SX

 a) lock compatibility matrix b) lock conversion matrix
Figure 3: taDOM2 locking protocol

mode of the incoming lock request. Here, we repeat the
effects of the lock modes to facilitate comprehension:
• An IR lock mode (intention read) indicates the inten-

tion to read a node (lock modes NR, LR, SR) some-
where in the subtree (equal to the multi-granularity
locking approach).

• An NR lock mode (node read) is requested for reading
the context node. To isolate such a read access, an IR
lock has to be acquired for each node in the ancestor
path. Note, the NR mode takes over the role of IR
combined with a specialized R, because it only locks
the specified node, but not any descendant nodes.

• An LR lock mode (level read) locks the context node
together with its direct-child nodes for shared access.
For example, the operation getChildNodes() only re-
quires an LR lock on the context node and not indi-
vidual NR locks for all child nodes. Similarly, an LR
lock requested for an attribute root node, locks all its
attributes implicitly (to save lock requests for the
getAttributes() operation).

• An SR lock mode (subtree read) is requested for the
context node c as the root of subtree s to perform read
operations on all nodes belonging to s. Hence, the en-
tire subtree is granted for shared access. An SR lock is
typically used if s is completely reconstructed, e.g., to
be transferred as an XML fragment.

• An IX lock mode (intention exclusive) indicates the
intent to perform write operations somewhere in the
subtree (similar to the multi-granularity approach), but
not on a direct-child node of the node being locked (in
contrast to the CX lock).

• A CX lock mode (child exclusive) on context node c
indicates the existence of an SX lock on some direct-
child nodes and prohibits inconsistent locking states
by preventing LR and SR locks. It does not prohibit
other CX locks on c, because separate child nodes of c
may be exclusively locked by other transactions.

• An SU lock mode (subtree update option) supports a
read operation on context node c with the option to
convert the mode for subsequent write access. It can
either be converted back to an SR read lock, if the in-
spection of c shows that no update action is needed or
to an SX lock after all potentially existing read locks
of other transactions on c are released. Note that there
is an asymmetry in the compatibility matrix among
SU and (IR, NR, LR, SR) which prevents granting fur-
ther read locks on c, thereby enhancing protocol fair-
ness by avoiding transaction starvation.

• To modify the context node c (updating its contents or
deleting c and its entire subtree), an SX lock mode
(subtree exclusive) is needed for c. It necessitate a CX
lock for its parent node and an IX lock for all other
ancestors up to the document root element.

Note again, this differing behavior of CX and IX locks is
needed to enable compatibility of IX and LR locks and to
enforce incompatibility of CX and LR locks.

Figure 4 illustrates the result of the following exam-
ple. Transaction T1 starts modifying the value last name
and, therefore, acquires an SX lock for the DeweyID of
the corresponding string node. The lock manager com-
plements this action by acquiring a CX lock for the parent
DeweyID and IX locks for all further ancestor IDs. Trans-
action T2 is generating a list of all child nodes of the book
element and has, therefore, requested an IR lock on the
bib element and an LR lock on the book node to obtain
read access to all direct-child nodes thereby using level-
read optimization. Further on, the price of the book node
is accessed and the path downwards to the corresponding
string node is locked by NR locks. Simultaneously, trans-
action T3 wants to delete the entire author node for which
T3 must acquire an IX lock on the bib node, a CX lock on
the book node, and an SX lock on the author node. The
lock request on the book node cannot immediately be
granted because of the existing LR lock of T2. Hence,
T3—placing its request in the lock request queue (LRQ:
CX3)—must synchronously wait for the release of the LR
lock of T2 on the book node.

Note, the IR and NR modes exhibit the same behavior
in the taDOM2 and taDOM2+ locking protocols. In a real
implementation (like our XTCserver) they can be replaced
with one proxy lock mode (e.g., NR). Here, both lock
modes IR and NR are kept for completeness; later on,
they will differ in the protocols taDOM3 and taDOM3+.

If a transaction T already holds a lock and requests a
lock in a different mode on the same node, we would have
to keep two locks for T on this node. In general, several
locks per transaction and node are conceivable which
would require longer lists of granted locks per node and a
more complex run-time inspection algorithm checking for
lock compatibility. To cope with this problem, we always
replace an existing lock of a transaction with a single lock
in a mode giving sufficient isolation for both the re-
quested and the existing lock mode. The actions needed
by the lock manager are described in [9]. The correspond-
ing rules are specified by the lock conversion matrix in
Figure 3b which determines the resulting lock for a con-
text node c if a transaction already holds a lock (matrix
header row) and requests a further lock (matrix header
column). A lock l1 specified by an additional subscripted
lock l2 (e. g. CXNR) means that l1 has to be acquired on c
and l2 has to be acquired on each direct-child node of c.

IX1

IX1

bib

book

title author

fname lname The Title

first name last name

price

49.99

SX1

CX1

IX1

IX1

LR2

IR2

NR2

NR2

IX3

LRQ: CX3

Figure 4: taDOM2 locking example

Additionally, all edges (explained below) on the child
nodes’ level have to be locked to prevent the insertion of
new children. An example for this procedure is given in
the following.

Assume, a user starts requesting all child nodes of c
which results in acquiring an LR lock on c. Note again,
LR locks c and all direct-child nodes in shared mode.
Then the user wants to delete one of the previously de-
termined child nodes. Therefore, the transaction acquires
an SX lock on the resp. child node and—applying the
locking protocol—this requires the acquisition of a CX
lock on c which already holds the LR lock. Using rule
CXNR specified for the conversion, the lock manager con-
verts the existing LR lock on c to a CX lock and acquires
an NR lock on each direct-child node of c (except the
node which is already locked for deletion by SX).

In addition to the node lock management described
above, we maintain so-called navigation locks to isolate
navigation paths. This means, a sequence of navigational
method calls or modification operations—starting at a
known node within the taDOM tree—must always yield
the same sequence of result nodes within a transactional
context. Hence, a path of nodes evaluated by a transaction
must be protected against concurrent modifications. As-
sume, the sample.xml document in Figure 2 contains sev-
eral books and a transaction T navigates through a range
of book nodes, then T wants to be isolated from concur-
rent inserts of new books in the examined node range.

Of course, we have already introduced some lock
modes which protect such a situation, but (too) large lock
granules cause (too) expensive isolation. For example, if
we acquire an LR lock on the bib node, all book nodes
(and not only the navigated ranges) are implicitly granted
in shared mode and the LR lock prevents any insertion
with its incompatibility to the required CX lock for an SX
on a new book node. An SR lock on bib would even pro-
hibit updates on the entire document. We, however, want
to support a solution only acquiring minimal lock gran-
ules, that is, node locks of mode NR only for nodes vis-
ited by the navigation. Therefore, we introduce virtual
navigation edges [8] within the taDOM tree (Figure 5)
which are locked in addition to their confining nodes.

While navigating through an XML document and
traversing the navigation edges, a transaction has to re-

quest a lock for each edge, in addition to the node locks
for the nodes visited. Because each navigation step only
performs local operations (first/last, next/previous) to a
sibling or child node, the R/U/X locks known from nor-
mal record locking are sufficient. Traversal operations
between nodes need bidirectional isolation: For example,
if getNextSibling() is invoked on node c and delivers node
n, then, as a first step, the next-sibling edge of c is locked
and, in addition, the previous-sibling edge of n to prohibit
concurrent path modifications between n and c via node n.
If the getNextSibling() operation returns a null value, we
also have to lock the last-child edge of the parent node of
c, because the null value informs the transaction about the
last-child position of c. To support such traversals effi-
ciently, we offer ER, EU, and EX lock modes correspond-
ing to R/U/X. Their use can be summarized as follows:
• An ER lock mode (edge read) is needed for an edge

traversal in read mode, e.g., by calling the getNextSib-
ling() or getFirstChild() operation.

• An EX lock mode (edge exclusive) enables an edge to
be modified which may be needed when nodes are in-
serted, appended, or deleted. For all edges redirected
by the modification operation, EX locks are required.

• The EU lock mode (edge update option) eases the oc-
currence of deadlocks for write transactions (see SU).

Note, the navigation edges are only logical objects which
are not materialized within the stored document. They are
only maintained by the lock manager in main memory.
Additionally, as a positive side effect, the acquisition of
shared navigation locks on the traversed document paths
prevents the occurrence of phantoms by protecting these
areas with edge locks against concurrent node insertions.

The additional concept of tunable node lock granular-
ity and lock escalation [8] to reduce the number of main-
tained locks thus paying with less concurrency is not con-
sidered in the focus of this paper.

The locking protocol taDOM2 described so far con-
sisting of the node lock compatibility and conversion ma-
trices and the virtual navigation edge locks is able to iso-
late all methods specified in DOM Level 2 [13] in an ap-
propriate way. But considering the new methods intro-
duced by DOM Level 3 and all our operations provided by
the node services layer, a new problematic situation ap-
pears. The renameNode() method of the DOM specifica-
tion and the setValue() operation of our node manager
executed on an inner element node e of the taDOM tree
(not a leaf element node) requires the exclusive locking of
the element node. With a tailored locking protocol, how-
ever, it should be possible to directly address and isolate
an arbitrary node n in the subtree of e (e.g., via a secon-
dary index) and perform arbitrary operations on n. In
other words, the exclusive locking of a single inner node
should not affect the subtree of this inner node in any
way.

To support this situation in an adequate way, we in-
troduce for the taDOM2 and taDOM2+ locking protocols

prevSiblingEdge nextSiblingEdge

firstChildEdge lastChildEdge

 - ER EU EX
ER + + - -
EU + + - -
EX + - - -

Figure 5: Virtual navigation edges and locks modes

additional virtual name nodes for each element and attrib-
ute node. Similarly to the virtual navigation edges, the
virtual name nodes are not materialized in the stored
document and are only maintained by the lock manager in
main memory. As a consequence, a lock request in shared
mode on context node c (NR lock) is always extended by
the lock manager to an NR lock request on the actual node
and, in addition, on its corresponding virtual name node.
The exclusive locking of a single context node c (and not
its entire subtree) is obtained by an exclusive SX lock on
its virtual name node, an implicit CX lock on the actual
context node c, and an additional CX lock on the parent
node of c. This idea is clarified in the following example.

An attached virtual name node is addressed with the
DeweyID of its owning element extended with a 0. For
example, assuming the assigned DeweyIDs of Figure 2,
the book’s (1.3) virtual name node ID is 1.3.0, the title’s
(1.3.3) name node ID is 1.3.3.0, and so forth. In this way,
the determined “parent node” for lock requests along all
ancestor nodes up to the document root element is the
actual element owning the virtual name node. Figure 6
illustrates the resulting locks after applying the virtual
name-node concept. Transaction T1 is renaming the au-
thor element and, therefore, locking the virtual name node
of the author node with SX, the author element itself with
CX, and—applying the locking protocol—all ancestor
nodes with IX. An additional CX lock on the parent of the
author node (book) is required to prevent another transac-
tion from determining all direct-child nodes of the book

element. Although transaction T1 is now renaming the
author element, transaction T2 is allowed to “jump” into
the document (via a secondary index) and to reconstruct
the lname element with its complete subtree. The IR locks
on the ancestor nodes required for the SX lock on lname
comply with the existing IX and CX locks of T1. Transac-
tion T3 which wants to determine all direct-child nodes of
the book element is blocked (LRQ: LR3), because LR is
incompatible with the existing CX of transaction T1.

3.2 taDOM2+

Considering again the lock conversion matrix of the
taDOM2 locking protocol in Figure 3b, the subscripted
node lock conversions IXNR, IXSR, CXNR, and CXSR repre-
sent indispensable rules to guarantee sufficient transaction
isolation against concurrent modifications. But in the
same way, these rules cause an additional dramatic run-
time overhead on the XDBMS. It is true that, for a given
DeweyID of an arbitrary node, the lock manager can cal-
culate the IDs of all ancestor nodes (without accessing the
stored XML document) and set the implicitly requested
locks on them. This kind of lock acquisition is performed
very rapidly. However the other way around, determining
all children of a given node to set NR resp. SR locks on
them (needed to conform to the conversion rules) is a very
expensive operation. For a context node c, its direct-child
nodes chi cannot be calculated, but have to be determined
by fetching c and each chi from the stored document.

To cope with this problem, we ease the node lock
conversion by introducing four new lock modes tailored
to the situations triggering one of the conversions de-
scribed above:
• An LRIX lock mode (level read intention exclusive)

locks the context node together with all its direct-child
nodes for shared access and, in addition, indicates the
intention to perform write operations somewhere in
the subtree, but not on a direct-child node.

• An SRIX lock mode (subtree read intention exclusive)
locks the context node c and its entire subtree to per-
form read operations and indicates the intention to per-
form write operations somewhere in that subtree, but

bib

book

title author

fname lname The Title

first name last name

price

49.99

IR2
SX1

CX1

CX1

SR2

IR2

IR2 IR3

LRQ: LR3

IX1

virtual
name node

Figure 6: Locks on virtual name nodes

 - IR NRLR SR IX LRIX SRIX CX LRCX SRCX SU SX
IR + + + + + + + + + + + - -
NR + + + + + + + + + + + - -
LR + + + + + + + + - - - - -
SR + + + + + - - - - - - - -
IX + + + + - + + - + + - - -

LRIX + + + + - + + - - - - - -
SRIX + + + + - - - - - - - - -
CX + + + - - + - - + - - - -

LRCX + + + - - + - - - - - - -
SRCX + + + - - - - - - - - - -

SU + + + + + - - - - - - - -
SX + - - - - - - - - - - - -

 - IR NR LR SR IX LRIX SRIX CX LRCX SRCXSUSX
IR IR IR NR LR SR IX LRIX SRIX CX LRCX SRCXSUSX
NR NR NR NR LR SR IX LRIX SRIX CX LRCX SRCXSUSX
LR LR LR LR LR SR LRIX LRIX SRIX LRCX LRCX SRCXSUSX
SR SR SR SR SR SR SRIX SRIX SRIX SRCX SRCX SRCXSR SX
IX IX IX IX LRIX SRIX IX LRIX SRIX CX LRCX SRCXSXSX

LRIX LRIX LRIX LRIX LRIX SRIX LRIX LRIX SRIX LRCX LRCX SRCXSXSX
SRIX SRIX SRIX SRIX SRIX SRIX SRIX SRIX SRIX SRCX SRCX SRCXSXSX
CX CX CX CX LRCX SRCX CX LRCX SRCX CX LRCX SRCXSXSX

LRCX LRCX LRCX LRCX LRCX SRCXLRCX LRCX SRCXLRCX LRCX SRCXSXSX
SRCX SRCX SRCX SRCX SRCX SRCXSRCX SRCX SRCXSRCX SRCX SRCXSXSX

SU SU SU SU SU SU SX SX SX SX SX SX SUSX
SX SX SX SX SX SX SX SX SX SX SX SX SXSX

a) lock compatibility matrix a) lock conversion matrix

Figure 7: taDOM2+ locking protocol

not on a direct-child node of c.
• An LRCX lock mode (level read child exclusive)

locks the context node together with all its direct-child
nodes for shared access and indicates an exclusive
lock on one of these child nodes.

• An SRCX lock mode (subtree read child exclusive)
locks the context node c as the root of subtree s to per-
form read operations on s and indicates exclusive ac-
cess to one of the direct-child nodes of c.

Adding these new lock types to the lock compatibility and
conversion matrices, we obtain the taDOM2+ protocol.
Note, now all lock requests can be handled without ac-
cessing the stored XML document at all. For example, an
existing LR lock and an IX request does not lead anymore
to an NR lock on each direct-child node during conver-
sion (like in taDOM2), but can now simply be replaced
with an LRIX lock. The complete lock compatibility and
conversion matrices of taDOM2+ are shown in Figure 7.

3.3 taDOM3

To support the modification of a context node by exclu-
sively locking only the affected node and not its entire
subtree, the taDOM2 and taDOM2+ protocols have intro-
duced the so-called virtual name nodes (see Section 3.1).
On the one hand, this approach enables improved concur-
rent transaction processing by reusing the existing locking
protocols. But on the other hand, this enhanced processing
carries the obligation to maintain two locks for each node
(one lock for the actual node and a second one for the

virtual name node). Of course, this management overhead
reduces transaction throughput.

taDOM3 enriches our protocols with a special lock
mode that allows locking a single node without affecting
the attached subtree. In this way, the concurrent process-
ing capabilities are preserved and only a single lock per
node is maintained. The combined use of the lock modes
IX and CX would only indicate the intention of write op-
erations on some descendant nodes, but would not reveal
information about read accesses to the nodes they are
maintained for. For performance reasons, we cannot col-
lect the entire locking history of nodes (otherwise for each
node, several different lock modes would have to be re-
corded for the same transaction [9]); therefore, a currently
requested IX on node n cannot be distinguished from an
initial NR on n converted later to IX. For this reason, the
new exclusive node lock provided in taDOM3 implies
some refined lock modes:
• An NRIX lock mode (node read intention exclusive)

locks a node in shared mode and, in addition, indicates
the intention of an exclusive lock request somewhere
in the subtree, but not on a direct-child node.

• An NRCX lock (node read child exclusive) locks the
context node for read access and indicates an exclu-
sive lock on one of its direct-child nodes.

• An NU lock mode (node update option) supports a
read operation on the context node with the option to
convert the mode for a subsequent write access or
downgrade to a read lock (see lock mode SU or EU).

• An NX lock (node exclusive) locks the context node
in exclusive mode for an update operation on the con-
text node’s content. The subtree attached to the con-
text node is not affected by this lock.

Note again, these four new lock modes allow the same
concurrent transaction processing capabilities as provided
by the taDOM2 protocol with only one acquired lock per
node. The concept of virtual name nodes is not required
any longer. The corresponding lock compatibility and
conversion matrices controlling the taDOM3 protocol are
shown in Figure 8 and Figure 9. In contrast to the ta-
DOM2 and taDOM2+ protocols, here the lock modes IR
and NR embody different behaviors and have to be im-
plemented both as individual lock modes.

 - IR NRLR SR IX NRIX CX NRCXNU NX SU SX
IR + + + + + + + + + + + - -
NR + + + + + + + + + - - - -
LR + + + + + + + - - - - - -
SR + + + + + - - - - - - - -
IX + + + + - + + + + + + - -

NRIX + + + + - + + + + - - - -
CX + + + - - + + + + + + - -

NRCX + + + - - + + + + - - - -
NU + + + + + + + + + - - - -
NX + + - - - + - + - - - - -
SU + + + + + - - - - - - - -
SX + - - - - - - - - - - - -

Figure 8: taDOM3 lock compatibility matrix

Figure 9: taDOM3 lock conversion matrix

 - IR NR LR SR IX NRIX CX NRCX NU NX SUSX
IR IR IR NR LR SR IX NRIX CX NRCX NU NX SUSX
NR NR NR NR LR SR NRIX NRIX NRCX NRCX NR NX SUSX
LR LR LR LR LR SR NRIXNR NRIXNR NRCXNR NRCXNRNUNR NXNR SUSX
SR SR SR SR SR SR NRIXSR NRIXSR NRCXSR NRCXSR NUSR NXSR SR SX
IX IX IX NRIX NRIXNR NRIXSR IX NRIX CX NRCX NX NX SXSX

NRIX NRIX NRIX NRIX NRIXNR NRIXSR NRIX NRIX NRCX NRCX NX NX SXSX
CX CX CX NRCXNRCXNR NRCXSR CX NRCX CX NRCX NX NX SXSX

NRCX NRCXNRCX NRCXNRCXNR NRCXSR NRCX NRCX NRCX NRCX NX NX SXSX
NU NU NU NU NUNR NUSR NX NX NX NX NU NX SUSX
NX NX NX NX NXNR NXSR NX NX NX NX NX NX SXSX
SU SU SU SU SU SU SX SX SX SX SU SX SUSX
SX SX SX SX SX SX SX SX SX SX SX SX SXSX

3.4 taDOM3+

Similarly to the subscripted node lock conversions in
Section 3.2, the taDOM3 protocol contains the lock con-
version rules NRIXNR, NRCXNR, NRIXSR, NRCXSR,
NUNR, NUSR, NXNR, and NXSR, which cause explicit
fetching of direct-child nodes—only to set the appropriate
locks. In an analogous way to taDOM2+, the taDOM3+
protocol introduces eight tailored lock modes to prevent
the lock manager from accessing nodes stored on external
devices:
• An LRIX lock mode (level read intention exclusive)

locks the context node c and all its direct-child nodes
in shared mode and indicates an exclusive lock some-
where in the subtree of c on a non-direct-child node.

• An SRIX lock mode (subtree read intention exclusive)

locks in addition to LRIX the entire subtree of the con-
text node for shared access (and indicates an exclusive
lock somewhere in the subtree).

• An LRCX lock mode (level read child exclusive)
locks the context node and all its direct-child nodes in
shared mode and indicates exclusive child locking on
one of the child nodes.

• An SRCX lock mode (subtree read child exclusive)
locks in addition to LRCX the entire subtree of the
context node in shared read mode.

• An LRNU lock mode (level read node update option)
locks all direct-child nodes of the context node c in
shared mode and supports read operations on c with
the option to convert the mode to write or back to read
access later on.

• An SRNU lock mode (subtree read node update op-

 - IR NR LR SR IX NRIX LRIX SRIX CX NRCX LRCX SRCX NU LRNU SRNU NX LRNX SRNXSUSX
IR IR IR NR LR SR IX NRIX LRIX SRIX CX NRCX LRCX SRCX NU LRNU SRNU NX LRNX SRNXSUSX
NR NR NR NR LR SR NRIX NRIX LRIX SRIX NRCX NRCX LRCX SRCX NR LR SR NX LRNX SRNXSUSX
LR LR LR LR LR SR LRIX LRIX LRIX SRIX LRCX LRCX LRCX SRCX LRNU LRNU SRNULRNX LRNX SRNXSUSX
SR SR SR SR SR SR SRIX SRIX SRIX SRIX SRCX SRCX SRCX SRCX SRNU SRNU SRNUSRNX SRNX SRNXSR SX
IX IX IX NRIX LRIX SRIX IX NRIX LRIX SRIX CX NRCX LRCX SRCX NX LRNX SRNX NX LRNX SRNXSXSX

NRIX NRIX NRIX NRIX LRIX SRIX NRIX NRIX LRIX SRIX NRCX NRCX LRCX SRCX NX LRNX SRNX NX LRNX SRNXSXSX
LRIX LRIX LRIX LRIX LRIX SRIX LRIX LRIX LRIX SRIX LRCX LRCX LRCX SRCX LRNX LRNX SRNXLRNX LRNX SRNXSXSX
SRIX SRIX SRIX SRIX SRIX SRIX SRIX SRIX SRIX SRIX SRCX SRCX SRCX SRCX SRNX SRNX SRNXSRNX SRNX SRNXSXSX
CX CX CX NRCX LRCX SRCX CX NRCX LRCX SRCX CX NRCX LRCX SRCX NX LRNX SRNX NX LRNX SRNXSXSX

NRCXNRCX NRCX NRCX LRCX SRCX NRCX NRCX LRCX SRCX NRCX NRCX LRCX SRCX NX LRNX SRNX NX LRNX SRNXSXSX
LRCX LRCX LRCX LRCX LRCX SRCX LRCX LRCX LRCX SRCX LRCX LRCX LRCX SRCX LRNX LRNX SRNXLRNX LRNX SRNXSXSX
SRCX SRCX SRCX SRCX SRCX SRCX SRCX SRCX SRCX SRCX SRCX SRCX SRCX SRCX SRNX SRNX SRNXSRNX SRNX SRNXSXSX

NU NU NU NU LRNU SRNU NX NX LRNX SRNX NX NX LRNX SRNX NU LRNU SRNU NX LRNX SRNXSUSX
LRNU LRNU LRNU LRNU LRNU SRNU LRNX LRNX LRNX SRNX LRNX LRNX LRNX SRNXLRNU LRNU SRNULRNX LRNX SRNXSUSX
SRNU SRNU SRNU SRNU SRNU SRNU SRNX SRNX SRNX SRNX SRNX SRNX SRNX SRNXSRNU SRNU SRNUSRNX SRNX SRNXSUSX

NX NX NX NX LRNX SRNX NX NX LRNX SRNX NX NX LRNX SRNX NX LRNX SRNX NX LRNX SRNXSXSX
LRNX LRNX LRNX LRNX LRNX SRNX LRNX LRNX LRNX SRNX LRNX LRNX LRNX SRNXLRNX LRNX SRNXLRNX LRNX SRNXSXSX
SRNX SRNX SRNX SRNX SRNX SRNX SRNX LRNX SRNX SRNX SRNX SRNX SRNX SRNXSRNX SRNX SRNXSRNX SRNX SRNXSXSX

SU SU SU SU SU SU SX SU SX SU SX SX SX SX SU SU SU SX SX SX SUSX
SX SXSX

Figure 11: taDOM3+ lock conversion matrix

 - IR NR LR SR IX NRIX LRIX SRIX CX NRCX LRCX SRCX NU LRNU SRNU NX LRNX SRNXSUSX
IR + + + + + + + + + + + + + + + + + + + - -
NR + + + + + + + + + + + + + - - - - - - - -
LR + + + + + + + + + - - - - - - - - - - - -
SR + + + + + - - - - - - - - - - - - - - - -
IX + + + + - + + + - + + + - + + - + + - - -

NRIX + + + + - + + + - + + + - - - - - - - - -
LRIX + + + + - + + + - - - - - - - - - - - - -
SRIX + + + + - - - - - - - - - - - - - - - - -
CX + + + - - + + - - + + - - + - - + - - - -

NRCX + + + - - + + - - + + - - - - - - - - - -
LRCX + + + - - + + - - - - - - - - - - - - - -
SRCX + + + - - - - - - - - - - - - - - - - - -

NU + + + + + + + + + + + + + - - - - - - - -
LRNU + + + + + + + + + - - - - - - - - - - - -
SRNU + + + + + - - - - - - - - - - - - - - - -

NX + + - - - + - - - + - - - - - - - - - - -
LRNX + + - - - + - - - - - - - - - - - - - - -
SRNX + + - - - - - - - - - - - - - - - - - - -

SU + + + + + - - - - - - - - - - - - - - - -
SX + -

Figure 10: taDOM3+ lock compatibility matrix

tion) locks additionally to LRNU the complete subtree
of the context node in shared mode.

• An LRNX lock mode (level read node exclusive)
locks all direct-child nodes of the context node c in
shared mode and c itself in exclusive mode.

• An SRNX lock mode (subtree read node exclusive)
locks the entire subtree of the context node c in shared
mode and c itself in exclusive mode.

The node lock compatibility and conversion matrices of
our most efficient locking protocol taDOM3+ are shown
in Figure 10 and Figure 11.

3.5 Comparing the Locking Protocols

To illustrate the benefits and performance gains of our
stepwise protocol evolution for XML data processing, we
ran a benchmark comparing transaction throughputs and
number of locks maintained. The XTCserver is installed
on an IBM xSeries 4-Xeon-Processor machine, the client
applications are running on an IBM Thinkpad R32 con-
nected via a 100 Mbit/s network, both running a Linux
operating system.

We extended the sample.xml document in Figure 2
with a chapters element containing a random number (be-
tween 10 and 20) of chapter nodes, each with a title and a
summary element, and created a library XML document
with 25,000 books. This library document (184 MB)
matching the taDOM model contains over 4.5 million
XML nodes and is stored via the network connection in
about 4 minutes into the server (an average bulk load per-
formance of over one million nodes per minute).

In the benchmark, a single transaction reconstructs a
random book for which it determines the nodes of the
book structure by invoking the getChildNodes() operation
at each level. This requires a lock for shared level access.
After that, a randomly selected chapter is renamed (exclu-
sive lock on the chapter name; CX and IX locks on the
ancestor path) which enforces a lock conversion on the
nodes holding the level read locks. The benchmark client
starts 25 threads, each executing a constant workload with
the sketched transaction operations for 5 minutes on the
XTCserver. The number of successfully committed trans-
actions and the maximal number of concurrently main-
tained locks are shown in Figure 12.

Comparing the protocols, the number of concurrently

maintained locks is dramatically reduced. First, this is
caused by the especially tailored locks (from taDOM2(3)
to taDOM2(3)+) which avoid lock requests on direct-
child nodes when performing the subscripted conversion
rules. Second, NRIX, NRCX, NU, and NX locks intro-
duced from taDOM2(+) to taDOM3(+) do not need addi-
tional virtual name nodes for each element and attribute
node and, in turn, the corresponding locks. The number of
successfully committed transactions is increasing from
taDOM2 to taDOM2+ and from taDOM3 to taDOM3+,
because the substantial costs of child-node accesses can
be avoided. This improves performance in such a manner
that even taDOM2+ enables more transaction commits
than taDOM3: Hence, fetching document nodes (stored
records) is more performance-critical than maintaining
(even a high number of) locks.

4. Correctness of the Locking Protocols
To trust the taDOM locking protocols (each has to

guarantee a correct schedule), to safely exploit their per-
formance potential, and to establish them as implementa-
tion fundamentals to be taken seriously by XDBMS ven-
dors, we describe the basic ideas of their correctness proof
in this section. This approach requires considering the full
database interface providing the 19 XDP operations intro-
duced in Section 2.3. The complete report of the proof can
be accessed via our website [2]; it comprises about 280
MB of generated HTML code and contains over 38,000
individually checked test cases and over 250,000 checked
lock compatibilities. Here, we can only explain the ration-
ale of our proof technique.

4.1 The Compatibility Matrices

Observing the diversity of lock requests, the “worst
case” of a request is an SX or NX lock on the context
node, a CX lock on its parent, and IX locks on each an-
cestor node up to the document root. Hence, all different
types of requested lock mode constellations for executing
an arbitrary operation on a context node can be discussed
on the node-relationship graph shown in Figure 13.

For our proof, we describe in a first step the behavior
of each XDP operation provided by our node manager
with so-called base operations. For example, base opera-
tions are actions like use first child edge, redirect next
sibling edge, read previous sibling node, or write new
context node value. Using these base operations, we can
determine the read and write sets of each XDP operation
executed on any node within the graph of Figure 13.

In our proof, we specify use cases to “execute” an
XDP operation o on the context node CO and define for
each use case four scenarios in which the lock requests of
operation o using one of our locking protocols are speci-
fied. For some operations, we have to specify multiple use
cases. As an example, the lock requests of operation get-
FirstChild() depend on the fact whether or not the context
node owns child nodes; this must be distinguished by two Figure 12: Comparing the locking protocols

 600

 650

 700

 750

 800

 850

taDOM2

taDOM2+

taDOM3

taDOM3+
Transaction throughput

 3500
 4000
 4500
 5000
 5500
 6000
 6500
 7000
 7500

taDOM2

taDOM2+ taDOM3

taDOM3+

Concurrently maintained locks

different use cases. With a large number of resulting
combinations, each XDP operation oi is executed for each
scenario in each use case on each node of the graph. Ex-
amining the combinations, we now calculate the read and
write sets of the use case operation o and the compared
operation oi. A read-write, write-read, or write-write con-
flict (up to this point only caused by the description with
base operations) indicates a prohibition for executing
these XDP operations concurrently. In such a case—now
considering also the requested locks of the operations in
the current scenario—at least one lock incompatibility
must occur to block the concurrent execution. The other
way around, if only the read sets intersect or even both the
read and write sets do not intersect at all, the XDP opera-
tions can be executed in parallel and, in consequence, all
requested locks of the two operations must be compatible.

As already mentioned above, 38,000 checked opera-
tion executions with over 250,000 checked lock compati-
bilities prove the correctness of our locking protocols cor-
responding to the 19 XDP operations and their correct
behavior specified via base operations.

4.2 The Conversion Matrices

To prove the correctness of the conversion matrices
we first define the strength-relationship of lock modes.

A lock l1 is stronger than a lock l2 (l1>l2) if each lock
li that is incompatible to l2 is also incompatible to l1. This
means, the lock requests blocked by an existing lock l2 are
also blocked by the stronger lock l1 (l1 may even block
more lock requests).

If l1 is not stronger than l2 then l1 is only weaker than
l2 (l1<l2) if l2 is stronger than l1. As a conseqence this
means, that there are also locks which are neither stronger
nor weaker than each other (e.g., LR and CX).

Corresponding to the theory of serializability [7], these
definitions can be used to preserve the operation execu-
tion sequences of interlocked transactions: If transaction

T1 holds a lock l1 for operation o1 and operation o2 of
transaction T2 is blocked on this lock until the end of T1

(where all locks of T1 are released), then the replacement
of l1 with a stronger lock l1’ blocks the execution of o2
until the end of T1 in the same manner. This means if the
rules specified by the lock conversion matrices lead in
each case to a resulting lock that is equal or stronger than
both the previously existing lock and the requested lock,
then this lock conversion preserves the operation se-
quences of the transactions.

A first special situation occurs for the update option
locks. A downgrade request that sets the update option
lock down to a weaker shared lock mode (and which
would cause a violation of the correctness criteria defined
above) requires the additional check of transitivity rela-
tionships. The downgrade conversion of an update lock
down to a weaker shared lock mode is allowed if, for each
existing lock le which is replaced with an update lock lu,
all locks, to which lu may be converted to, are equal or
stronger than the orginially existing lock le. For example,
considering node lock conversion in taDOM2, an existing
NR lock can be converted to SU. This is correct because
SU may be converted to SR, SU, or SX, and all of them
are still stronger than NR. In contrast, the conversion of
an existing IX lock for a requested SU must obtain an SX.
Although a resulting SU would be stronger than the exist-
ing IX and equal to the requested SU, in a following step
SU may be converted down to SR which is not stronger
than the previously acquired IX and would lead to an in-
consistent lock state in this way.

The second special situation occurs for the subscripted
lock conversion rules in taDOM2 and taDOM3 (e.g., an
existing IX is converted to IXNR for a requested LR). Al-
though the resulting IX on the context node is not stronger
than the requested LR, this conversion is correct. Of
course, the resulting IX also blocks all requests that are
blocked by the previously existing IX, because they are

FN

CO-PSE CN PN

VN

NN

LN

AN
XN

AC

PA PA-FCE PA-LCE

CO PS NS
PS-NSE CO-NSE

NS-PSE

FC LC CH

DC

FC-PSE

FC-FCE FC-LCE

FC-NSE LC-PSE LC-NSE

LC-FCE LC-LCE

CS
AR

CA AX
AS XS

AC arbitrary ancestor node
PA parent node of CO
VN virtual name node of PA
CO context node
CN virtual name node of CO
CS string node if CO is text
PS previous sibling of CO
PN virtual name node of PS
NS next sibling of CO
NN virtual name of NS
FC first child of CO
FN virtual name node of FC
CH arbitrary child of CO
LC last child of CO
LN virtual name node of LC
DC arbitrary descendant node

AR attribute root node of CO
CA context attribute affected

by an attribute operation
AN virtual name node of CA
AS value string node of CA
AX arbitrary attribute of CO

not affect by an attribute
operation

XN virtual name node of AX
XS value string node of AX

PSE previous sibling edge
NSE next sibling edge
FCE first child edge
LCE last child edge

Figure 13: General operation execution on context node and surrounding elements

equal. At a first sight, looking at the compatibility matrix,
CX is not blocked by the resulting IX, but this is required
for the requested LR. Considering the additionally re-
quired NR locks on each child (IXNR), a CX lock request
cannot be granted. All locks, requested on any child node
and causing a CX lock on the context node (these are SX
in taDOM2 and taDOM3 and NX in taDOM3), are in-
compatible to the conversion-acquired NR locks on each
child node. In that way, the compatible CX lock on the
context node is acceptable, because the lock request will
not be completed due to the incompatibility of SX and
NX to the NR locks on the child nodes. Further new chil-
dren cannot be added because of the acquired shared edge
locks applying the IXNR rule (see again Section 3.1).

Checking now the strength-relationships of the exist-
ing, requested, and converted node locks, and considering
the two described special situations above (over 32,000
conditions), we can also prove the correctness of our con-
version matrices.

Comprising sections 4.1 and 4.2, the complete cor-
rectness of our locking protocols is proved by the correct-
ness of both the compatibility and conversion matrices.

5. Conclusions and Future Work
In this paper, we explored transaction isolation issues

for collaborative XML document processing. We first
sketched the design and implementation of our native
XDBMS prototype and described the provided XDP op-
erations. For concurrent transaction processing, we intro-
duced our concepts enabling fine-granular concurrency
control on taDOM trees representing XML documents. A
tailored node identification algorithm supports native
document storage and maintenance by providing for life-
time stable DeweyIDs. As the key part, we have intro-
duced four locking protocols for direct and navigational
access to individual XML nodes, thereby supporting dif-
ferent isolation strategies. The performance evaluation has
compared their locking overhead and transaction through-
put capabilities and has strongly confirmed the viability
and effectiveness of our approaches. Finally, we ex-
plained our solution to prove the correctness of the proto-
cols corresponding to a semantic description of the XDP
interface. Our proof procedure systematically generates
all ever possible operation execution constellations, de-
termines their read-set and write-set intersections, and
verifies the corresponding node and edge lock compatibil-
ities with nearly 300,000 separately checked situations.

In our next steps, we concentrate on providing for an
efficient phantom prevention for transactions using the
SAX, DOM, and XQuery interfaces in parallel. Currently,
phantoms are only prevented by our navigation locks on
document areas traversed by navigation steps; but phan-
toms may also occur if nodes are directly addressed by
their DeweyIDs via secondary index structures (e.g. ac-
cessing elements by indexed ID/IDREF values). In our
design, this problem is to be solved by extended key-

range locks which, in addition to a specified key range,
are acquired on selected fragments of an XML document.
In summary, we then can present a locking scheme which
enables strict serializability and supports transactions us-
ing all common XML interfaces.

References
[1] D. Brownell. SAX2 - Processing XML Efficently

with Java. O’Reilly (Jan. 2002)
[2] The XTC Project Website, Database and Information

Systems Group, University of Kaiserslautern, http://
wwwdvs.informatik.uni-kl.de/agdbis/projects/xtc

[3] S. Dekeyser, J. Hidders, J. Paredaens. A Transaction
Model for XML Databases. World Wide Web
Journal 7(2): 29-57 (2004)

[4] S. Dekeyser, J. Hidders. Path Locks for XML
Document Collaboration. Proc. 3rd Conf. on Web
Information Systems Engineering (WISE),
Singapore, 105-114 (2002)

[5] T. Fiebig, S. Helmer, C.-C. Kanne, G. Moerkotte, J.
Neumann, R. Schiele, T. Westmann. Anatomy of a
native XML base management system. VLDB
Journal 11, 292-314 (2002)

[6] T. Grabs, K. Böhm, H.-J. Schek: XMLTM: Efficient
transaction management for XML documents. Proc.
CIKM 2002: 142-152

[7] J. Gray, A. Reuter. Transaction Processing: Concepts
and Techniques. Morgan Kaufmann (1993)

[8] M. Haustein, T. Härder. Adjustable Transaction
Isolation in XML Database Management Systems.
Proc. 2nd International Database Symposium
Toronto, Canada, LNCS 3186, 173-188 (2004)

[9] M. Haustein, T. Härder. A Lock Manager for
Collaborative Processing of Natively Stored XML
Documents, in: Proc. 19th Brazilian Symposium on
Databases (SBBD), Brasilia, Brazil, 230-244 (2004)

[10] S. Helmer, C.-C. Kanne, G. Moerkotte. Evaluating
Lock-Based Protocols for Cooperation on XML
Documents. SIGMOD Record 33(1), 58-63 (2004)

[11] OASIS Open Document Format for Office
Applications, http://www.oasis-open.org

[12] P. O’Neil, E. O’Neil, S. Pal, I. Cseri, G. Schaller, N.
Westbury. ORDPATHs : Insert-Friendly XML Node
Labels. Proc. SIGMOD 2004, Paris, France, 903-908
(2004)

[13] Document Object Model (DOM) Level 2 / Level 3
Core Specification, W3C Recommendation (Nov.
2000 / Apr. 2004)

[14] XQuery 1.0: An XML Query Language. W3C
Working Draft (Oct. 2004)

[15] XUpdate – XML Update Language. http://xmldb-
org.sourceforge.net/xupdate/

