
Demonstration of Index Techniques for
Similarity-based Search in ORDBMSs

Michael P. Haustein1, Wolfgang Mahnke1, Norbert Ritter2

1 Databases and Information Systems
University of Kaiserslautern

P. O. Box 3049, D-67653 Kaiserslautern
{haustein|mahnke}@informatik.uni-kl.de

2 Distributed Systems and Information Systems
University of Hamburg

Vogt-Kölln-Straße 30, D-22527 Hamburg
ritter@informatik.uni-hamburg.de

Abstract: Today similarity-based search is used in numerous fields of applica-
tions like e-commerce, case-based reasoning, knowledge management, or text
and image retrieval. To realize a similarity-based search in ORDBMSs, concepts
and mechanisms are needed calculating the similarity of a comparison instance
and the stored objects. Due to extremely high cost of function calls during query
processing and the need to fetch all objects of the search space for calculating
similarity values in order to rank the query results, it is essential to offer an index
access for similarity-based queries to reduce response times.
In this demonstration, we present local indices for symbolic, numeric, and string
attributes, and show the calculation of similarity values for entire objects. These
indices support a new way for direct calculation of similarity values also consid-
ering table structures without having to access the actual data objects. This can
lead to enormous performance benefits.

1 Introduction

Similarity-based search is deployed in numerous fields of applications. In all these ap-
plications, mechanisms are needed providing various functions to calculate the similar-
ity of heterogeneous objects (stored in a database). Because there is no technique sup-
porting a parametrized similarity-based access to arbitrary data in object-relational
database management systems (ORDBMSs), we have to calculate a given instance’s
similarity to every single object stored in the database in order to get a ranked result set.
Obviously, the cost for this large number of (parametrized and even nested) function
calls is extremely high. Since the availability of such a complex search facility is part
of the requirements of the SFB-501 Reuse Repository [MR02], we have to provide in-
dex techniques supporting a similarity-based ranked retrieval [Ha02].

2 Similarity

To calculate the similarity of two objects we first define the distance measure and the
similarity measure [Be01]:
 distance measure
 similarity measure
The distance measure expresses the differences of two objects in domain . The
similarity measure sim calculates the similarity of two objects as a numeric value within
the interval . Thereby, 0 means the least, 1 the highest similarity.
The local-global principle is used to calculate a similarity of two attribute vectors

 and , and is the domain of xi resp. yi.
First of all, we define n local similarity measures which calculate
the similarity values for xi and yi, respectively.
Afterwards the global similarity measure
calculates the similarity of and by dint of the local similarity values . The func-
tion is called the aggregation function and allows weighting each
attribute, additionally.
As basic means for object-oriented representations, ORDBMSs [SQL99a, SQL99b]
support table hierarchies and inheritance. To calculate the similarity of two objects pos-
sibly belonging to different tables within the hierarchy, we use the intra-class and inter-
class similarity approach [Be01].
Thus, in a first step, the local similarities of the common attributes of the instances are
calculated. Then, the local similarities are aggregated by an aggregation function to the
so-called intra-class similarity. Since the structure of the table hierarchy is not consid-
ered by that method, we additionally assign a similarity value to each table. This value
is supposed to express similarity in terms of the degree of structural concordance and
allows the calculation of the inter-class similarity. The final similarity of two objects o1
and o2 is calculated as .

3 Indices

To compute the ranked result set of a similarity query, it is inevitable to calculate the
similarity of the comparison instance and each record of the queried type (possibly each
record within a table hierarchy). Since every single calculation requires several expen-
sive function calls, the query time dramatically increases with the number of records.
Hence, it is mandatory to provide index structures for similarity search. Therefore, we
present index tables [Ha02] which store the precalculated similarity values and allow to
get ranked search results without having to calculate the similarity values at query time.
In order to precalculate the similarity of two attribute values we distinguish attribute
types in symbolic, numeric, and string attributes, which covers precalculation of index
data for many different data types.
To determine the similarity of two values of a symbolic attribute (an attribute which val-
ue is a reference to the actual attribute value), the similarity can be retrieved from the
corresponding similarity value table. This table stores the so-called similarity matrix.

δ : ID I× D 0 1,[]→

sim : ID I× D 0 1,[]→

δ ID

0 1,[]

x x1 … xn, ,()= y y1 … yn, ,()= xi yi Ti∈, Ti

simi : Ti Ti 0 1,[]→×

simΦ x y,() Φ sim1 x1 y1,() … simn xn yn,(), ,()=
x y simi

Φ : 0 1,[]n 0 1,[]→

simΦ o1 o2,() simIntra o1 o2,() simInter o1 o2,()⋅=

Since the domain of a symbolic attribute is finite, all potential search values are known
in advance. Thus, the similarity of the attribute value and all possible search values can
be computed at insert or update time of the corresponding data tuple.
Due to the infinity of numeric domains there is no conventional way of precalculating
similarity values in advance of actual query evaluations. However, for similarity func-
tions complying with some conditions [Ha02], it is possible to precalculate index data.
These conditions ensure the termination of the index data calculation algorithm.
To get a similarity value for two strings we consider similarity functions using a trigram
based approach. Without any additional (index) support the similarity calculations are
very expensive because the functions has to operate on string data. When a data tuple is
inserted, the string attribute values are decomposed to their trigrams. Each trigram is
stored in a separate index table and allows an effective similarity calculation by using a
group-by clause and a count function.

4 Demonstration

To demonstrate the index support for similarity based search we implemented a small
Java application which performs similarity queries on a hierarchical table structure with
user-defined attribute weights by use of both similarity function calls and index tables.
The application sends the queries to the database system and measures the execution
times. The queries are executed on a DB2 V8.1 installation on an IBM R32 Thinkpad.
The database contains 100,000 data records including symbolic, numeric, and string at-
tributes. In order to support the queries with index data, about 2,000,000 index tuples
are created by triggers which guarantee integrity of the index data with regard to insert,
update, and delete operations on the data tables.
The demonstration shows that similarity queries using precalculated index data can be
executed in only 17 percent of the time similarity queries with conventional function
calls require.

References

[Be01] Bergmann, R.: Experience Management: Foundations, Development
Methodology and Internet-Based Applications, Dissertation, University of
Kaiserslautern, Germany, 2001

[Ha02] Haustein, M.: Similarity Search in Object-Relational Database Systems,
Diploma Thesis, Databases and Information Systems, University of Kai-
serslautern, 2002, in German

[MR02] Mahnke, W.; Ritter, N.: The ORDB-based SFB-501-Reuse-Repository,
Proc. 28th EDBT Conference, Software Demonstration Session, Pages 745-
748, Prague, 2002

[SQL99a] American National Standard ANSI/ISO/IEC 9075-1:1999 Information
Systems, Database Language - SQL Part 1: Framework, 1999

[SQL99b] American National Standard ANSI/ISO/IEC 9075-2:1999 Information
Systems, Database Language - SQL Part 2: Foundation, 1999

