
SFB-Bericht 26/88, SFB 124, University of Kaiserslautern, 1988
 Supporting Engineering Applications by new DB-Processing Concepts
- An Experience Report

Christoph Hübel , Bernd Sutter
University Kaiserslautern
Erwin-Schrödinger-Straße
D - 6750 Kaiserslautern

Federal Republic of Germany

Abstract

Database management systems for non-standard applications, in particular for engineering applications

(NDBS), constitute nowadays one of the most important challenges in the area of database research.

Some of the major obstacles are concerned with problems of modelling and processing complex engi-

neering objects. Some new kinds of overall system architectures have been proposed, and appropriate

concepts for handling the new types of application objects have been developed in the last five years.

Based on PRIMA, an NDBS-kernel prototype implementation, we motivate a workstation-oriented archi-

tecture for NDBS application systems. We explain a prototyped application system in the environment of

VLSI-chip design, which serves as a practical example in handling complex objects. Analyzing the weak-

nesses of this initial approach, we derive general concepts for application linkage, discussing in particular

key issues for an efficient object processing and language binding.

1. Introduction

Adequate modelling and efficient processing of application objects constitute the key problems of em-

ploying database management systems (DBMS) which support so-called non-standard applications. By

comparison with conventional applications, the relevant entities of the non-standard ’world’ are much

more complex, i.e. they are internally structured and consist of heterogeneous components. Describing

such entities with means of a conventional data model results in a modelling problem. Based only on sim-

ple tuples, records, and sets, etc., it is very difficult or nearly impossible to describe and process these

application objects as a whole, including all essential semantic aspects. In addition, application-indepen-

dent operations, such as insertion of new objects, selection of objects with specific (complex) properties,

or object deletion, as well as object modification must be tediously implemented by a great number of

elementary operations on elementary objects. The molecule-atom data model (MAD) outlined in /1/, is

one step in solving these problems (other approaches are described in the literature /2/, /3/, /4/). Atoms

are the basic elements of the MAD model used to represent the real world entities. They play a similar

role to tuples in the relational model. Each atom is composed of attributes of various types, is uniquely

identifiable, and belongs to its corresponding atom type. The attributes’ data types can be chose from a

richer selection than in conventional models yielding a more powerful structuring capability at the at-

tribute level. Relationships between atoms (entities) are expressed by so-called links that are defined as

link types between atom types. Links are used to efficiently map all types of relationships. This direct

mapping and the provision of bidirectional yet symmetric links (represented via reference/back-reference

pairs) greatly increases the flexibility of the MAD model. Thus, in the database all atoms are connected
1

by links form meshed structures. Based on this atom network, it is feasible to dynamically construct mol-

ecules using atoms as elementary building blocks. Molecules are defined within statements of the so-

called molecule query language (MQL) and have to be derived at run time. Each molecule belongs to a

molecule type specified in the MQL query. This type description establishes a connected, directed, and

mainly acyclic type graph as subgraph of the database schema (this graph becomes cyclic only if recur-

sive types are involved). Thus, each type description specifies a starting point (i.e. root atom type) and

all participating atom and link types. MAD’s most important objectives can be characterized as follows:

• dynamic definition and derivation of molecules

• molecules are dynamically derived based on the elementary building blocks called atoms

• molecules consist of structured sets of atoms of possibly different types

• all relationships among atoms are represented in a direct and symmetrical way allowing for shared

subobjects

• set oriented molecule processing is offered by the descriptive SQL-like query language MQL

Having in mind all these characteristics, we believe that the MAD model constitutes a powerful tool for

the description and the representation of engineering world’s entities. Until now, we have developed a

prototype system that offers MAD as its data model interface. This system is called PRIMA (PRototype

Implementation of the Molecule Atom data model) /5/, and serves in the main as a research vehicle gain-

ing experiences in both implementing and utilizing the proposed NDBS concepts.

Similar to the modelling problem, the use of processing schemes, which are associated with convention-

al data models, results in a processing problem for non-standard applications. The traditional schemes

are restricted to the simple data structures provided by such data models as well as to the ’one tuple at

a time’ semantics determined by the concept of ’subschema’ application linkage. However, the applica-

tion programs prefer to handle the molecular objects in an application-oriented manner, since these rep-

resent the application entities. Therefore, application-dependent operations have to be integrated into

the NDBS. In this paper, we discuss the concepts of an additional system layer (as part of the NDBS),

the so-called application layer (AL), giving a solution to the processing problem

AL constitutes the topmost layer of a non-standard database system (NDBS), as described in /6/. Fig. 1

shows the overall NDBS architecture and illustrates the central role of AL as the link between the appli-

cation and the application-independent NDBS-kernel system, i.e. between the application model inter-

face and the data model interface. An application model is characterized by a special interface which

supports a specific class of applications by offering expressive, application-oriented data structures com-

bined with their corresponding operations. Based on the data model objects (molecules and atoms), the

AL achieves this orientation towards the application. The encapsulation of data and algorithms results in

application

application model

application layer

data model MAD

NDBS-kernel-system

PRIMA

Fig. 1: Our overall NDBS architecture

NDBS
2

a kind of abstract data type (ADT) /7/. Some approaches to integrate ADT’s into data models are de-

scribed in literature /8/, /9/. These investigations are founded on the same aim: ADT’s should enrich the

modelling capability by aspects of procedural description. So it is in our case, the ADT operations con-

stitute the AL programs which have to manipulate the neutral, but complex molecular objects delivered

by the data model interface. Since this is done by means of conventional programming languages, we

require adequate concepts for language binding.

The remainder of this paper is organized as follows. In the next chapter, we discuss some architectural

aspects placing further restrictions on the application linkage. In chapter 3, we introduce a concrete ap-

plication in the environment of VLSI-chip design. The implementation issues of the prototyped design tool

is described in detail, in order to illuminate our first approach in processing molecular objects. These in-

vestigations deliver arguments and examples which influence the discussion of general concepts for ap-

plication linkage. Based on these insights, we explain our refined approach in efficient molecule process-

ing and illustrate the key issues for AL organization.

2. Architectural Aspects of Engineering Applications

New kinds of computer-based applications require new and suitable concepts for data management sup-

port. The following account sketches the characteristic properties of such applications, especially in an

engineering environment. Engineering applications are in the main:

• Data intensive: one reference at the application level normally produces a great number of references

at the representation level (i.e. employing a conventional DBMS this will be the data model level).

• I/O intensive: often, the results of application operations can only be understood by representing them

on a graphic screen.

• Dialogue oriented: the engineering user must frequently interact during the development process; this

implies that response time is one of the most important optimization subjects.

• Power consuming: the algorithms carrying out the application operations, often consume a great deal

of processor power.

In addition, there are further requirements from the application environment, which concern:

• special I/O functions (graphic I/O, acoustic I/O, analogous I/O, ...),

• dynamic extensibility of system architecture (an application system for one or two engineers should

be extensible to a system for one or two hundred of engineering users, without any loss of perfor-

mance and without any change of the system’s interface).

The consideration of these application properties leads to a workstation-based hardware architecture. In

this case, we have decentralized and autonomous processors. Each processor provides processing

power to a fixed number of users (mostly, it will be one user). Coupled via a local area network (LAN),
3

the workstations have access to a central database server maintaining all the data representing the ap-

plication environment.

When the number of workstations is increased, the overall application system will be able to serve an

increased number of users. However, from a certain number, response time will overrun, because of the

bottleneck given by the central database server and the LAN. The closer the coupling between database

server and workstation is, the more they will mutually influence one another (due to increasing commu-

nication traffic). Therefore, it is a very important aim of system design to realize a loosely coupled system

of components, which are more independent and have only a limited need for database access and com-

munication. To reduce the access frequency we introduce a private database, which is managed by the

corresponding workstation. The private database can be loaded dynamically from the central DB, with

the data representing a specific part of the application environment (this usually depends on current user

activities). Normally, data are kept in the private database for a long span of time (hours, days, or weeks)

until the engineering user decides to leave his current work in order to finish a single task or to reach the

next step of design.

Fig. 2 shows the architecture mentioned above. This proposal implies the usage of a kind of workstation,

which offers enough processing power, universal functionalism, and sizable main memory and second-

ary storage (at least 1 MIPS, 8 Mbytes main memory, and a few hundred Mbytes of secondary storage).

The presented arguments concern not only hardware, but also software aspects. For example, the de-

centralized components within the distributed system can work autonomously, if and only if the software

permits this. So, in the following, we would like to discuss some software requirements. In particular, we

answer the question of assigning software and hardware components. To simplify the problem, one must

distribute the boxes sketched in Fig. 1 among the boxes shown in Fig. 2. /10/ contains a more general

consideration of these architectural aspects. In the context of this paper, we concentrate our explanation

on two different approaches. These are illustrated in Fig. 3. /11/ proposed the concept of so-called tight

workstation

local area network

central
DBMS
server

private
database

central
database

Fig. 2: A detailed hardware architecture for non-standard
application systems
4

database cooperation based on coherent DBMS (resp. NDBS-kernel) for workstation and server site

(Fig. 3a). The central idea of this approach consists of the following issues:

• high level for request formulation, and

• low level for data preparation.

This means, the workstation requests are made at the query language level, whereas the extracted/in-

jected data are transmitted at page level. This aims to reduce the server processing time, since the da-

tabase server has only to determine the pages with relevant information (in particular, no projection, only

basic qualifications, no join operation, and no type conversion). It seems, however, that there is a serious

disadvantage in this proposal: the extracted and transmitted data are not restricted to the required data.

Thus, the expected mutual influence is very strong, because multiple database management systems

running on multiple workstations have to handle copies of internal data (i.e. description and control data)

outside the central database. This has consequences for the validation of access and control structures,

too. All these problems are known in the context of multiprocessor database systems /12/. Certainly,

there are solutions, but we do not believe that these are very efficient in the context of over one hundred

coupled database management systems.

Another approach is shown in Fig. 3b. Here, the NDBS-kernel runs on the central server. The AL and the

application themselves are associated with the workstation site. The cooperation between AL and kernel

system is also provided at query language level. Contrary to the first approach, the data transmission is

made at the data model level. The transmitted data are exactly limited to the required information. Mutual

influence is reduced to the case of accessing overlapping information (in particular, when several work-

stations require the same data). In any case, the dependencies between database server and worksta-

tion processing decrease, since no internal structures leave the boundary of the kernel system.

The second approach has the advantage that the transmitted objects already approximate the process-

ing objects. Hence, no further object evaluation becomes necessary on the workstation site. The stron-

gest argument, however, is given by the fact that we use only a single main memory area to buffer sub-

jects of transmission as well as subjects of processing. This so-called object buffer is placed on worksta-

tion site, and consequently lies near to the programs, which have initially demanded the corresponding

objects. Therefore, the access to this data can be implemented in a more efficient way, than in the case

of buffering pages in a conventional DBMS buffer /13/, /14/.

With these arguments in mind, the outlined overall system architecture (see Fig. 3b) will constitute our

reference architecture for the following considerations.

application

application

application

application

application
layer layer

NDBS
NDBS kernel

a) b)

workstation
site

server
site

Fig. 3: Distributions of software components

kernel
NDBS
kernel
5

3. A VLSI Application on PRIMA

Now, we present PRIMACHIP, our prototype chip planning tool. PRIMACHIP is used to gain first expe-

riences in processing molecular objects. After an introduction in the VLSI-design process, a brief descrip-

tion of the architecture of PRIMACHIP follows. Then, we discuss the interface to the NDBS kernel, and

furthermore, we explain and illustrate our processing model for manipulating molecular objects.

3.1 The VLSI-design process

Todays VLSI technology allows the integration of more than two million elements (e.g. transistors, ca-

pacitors or resistors) on a single chip. Therefore, a partitioning of the overall design is necessary. There

are two distinguishable division strategies:

• design domains

/15/ suggests a subdivision of the design process into the behavioral (or functional), structural, and

physical part. The behavioral part results in a functional description of the circuits (e.g. algorithms,

functions). The structural part describes e.g. functional blocks, register-transfer units, or circuit plans.

Finally, the physical part provides details of the physical structures of the corresponding geometric ob-

jects.

• hierarchical levels

Structuring the design process in several hierarchical levels is an orthogonal concept to reduce the

design complexity. At the highest level, a chip is divided into cells representing data memory, program

memory, I/O-driver, ALU, control unit, etc. At the next level, a cell is partitioned into subunits, e.g.

ROM, instruction decoder, or busses. Consequently, these cells can be divided into further subcells

(multiplexer, comparator, AND-circuit, etc.). Fig. 4 shows a hierarchical partitioning of a chip into three

levels at the example of an floor plan. The cell currently being processed is called ’cell under design’

(CUD), and the cells of the next subordinate level constitutes subcells.

In the following, we wish to consider the physical design in more detail. We will orientate ourselves on

the PLAYOUT system, a chip planning tool currently under development at the University of Kaiserslau-

tern /16/. A chip planner generates a floor plan for every cell (synonymously called module), i.e. a topo-

a

A B C

F

H

D

G

c d

b

e

g

floor plan

• • •

•• • •
•

• • • • • •

• • •

A
E

H

gfba

cell under design

structure hierarchy

Fig. 4 : Hierarchical partitioning of a chip into three levels

•

• • •

E

6

graphical placement of all its submodules and, at the next level, for their submodules. This process is

separated in several phases which are illustrated in Tab. 1. As we will see, most phases of the process

are double-faced: they consider the actions at one hierarchical level as well as the cooperation between

the levels.

In a first phase, the bipartition (cluster) algorithm takes up the task of topologically placing all submodules

of the CUD. It receives a module list and a net list as input information from the structural description.

The module list contains information about all submodules of a CUD, whereas the net list describes the

connections among the modules. Corresponding to a cost function, the algorithm places a topological

order on the submodules and organizes them in a so-called slicing tree (Fig. 5). The leaves contain the

submodules and the root represents the CUD. The inner nodes represent subclusters for the associated

modules and contain topological neighborhood information. In a latter step however, the nodes will be

assigned information as to whether the two modules (or subclusters) are connected by a vertical or hor-

izontal cut (h/v orientation); for example, there is a horizontal cut between the cell group A,B,C and the

other cells.

Before describing the bottom-up sizing as the next step, we have to introduce a sizing function. There-

fore, we have a look at the underlying sizing model of the chip planner which determines the possible

module sizes. In the sizing model, only rectangular modules are allowed. The basic modules are stan-

dard cells, called macros. For technological reasons the ratio of the module side lengths is not arbitrarily

deformable. The module size is therefore given by a list of point pairs (called sizing function) each spec-

ifying the possible breadth and height of a module. The addition of the sizing functions of two modules in
7

8

5

5

5

5

10

10

5

5

10

10

5

5

5

5

10

10

15

15

sizing function of module M1 sizing function of module M2

addition of M1 and M2
for a horizontal cut

addition of M1 and M2
for a vertical cut

sizing function of the cluster

Fig. 6: Evaluating the sizing function for the cluster of two modules

horizontal
cut better

vertical
cut better

y- and x-direction (horizontal or vertical cut) results in a sizing function for the cluster representing both

modules ..(Fig. 6)

Accordingly, bottom-up sizing evaluates the sizing function for each CUD from its submodules by deter-

mining the sizing function of each inner node in the slicing tree, and then evaluating the sizing function

of the root node which corresponds to the CUD module. Note, that there is still no h/v orientation in the

slicing tree.

In the next phase, the top-down dimensioning, the side lengths of all submodules are estimated from the

given CUD size, the slicing tree and the evaluated sizing functions. Generally, if one side length of a mod-

ule is given, the other side length can be evaluated from the sizing function (Fig. 6). Each point of the

sizing function has a h/v orientation, depending on whether the subcells have been added in y- or x-di-

rection for this point. If the cut is vertical, the sons in the slicing tree have the same y-dimension as the

father, otherwise they have the same x-dimension. From this value and the sizing function of the sons,

the other dimension is evaluated. Finally, the side lengths of the submodules (the leaves in the slicing

tree) are determined.

However, we have not yet taken into account the wiring areas. In order to do this, a certain increase is

evaluated and generally added to the module dimension /17/. Consequently, top-down dimensioning de-

module list and net list from the
structural description

slicing-tree and sizing functions of
the primitive elements

slicing tree, sizing functions, cell siz-
es

slicing tree, sizing functions, net list,
pin information

 design phase task input information

bipartitioning

bottom-up sizing

top-down dimensioning

global and local routing

slicing tree evaluation

sizing function evaluation

h/v orientation in the slicing tree, di-
mension estimation for all submod-
ules

planning the wiring areas

Tab1.: The main phases of the chip planning process

h

v

v

v

v

h

h

D G E

F H

A

B C

h = horizontal cut ; v = vertical cut

Fig. 5: Example for a slicing tree of the chip in Fig. 4

CUD
9

livers a raw channel distribution. In a latter phase (global and local routing) the wiring areas are exactly

determined.

After this brief introduction in the VLSI-design process, with special emphasis on chip planning, we

present our NDBS based prototype system PRIMACHIP.

3.2 PRIMACHIP - a Chip Planning System

PRIMACHIP /18/ is a non-standard application which realizes some of the chip planning phases listed

above. The PRIMACHIP system is structured into three layers: the NDBS kernel PRIMA, the application

layer, and the actual application (compare Fig. 1). Fig. 7 sketches the entire architecture of PRIMACHIP.

At the data model interface, a set of neutral yet powerful operations is provided (MAD model, see /1/).

After a MAD retrieval statement is evaluated, the result is stored in the object buffer, which is a repository

for the complex, heterogenous set of atoms. Primitive operations allow access to the atoms and molecule

structure information, which reflects the internal structure of every molecule.

Fig. 8 shows the MAD schema for PRIMACHIP. A detailed discussion of MAD schema definition can be

found in /1/. The central atom type is MODULE. Each MODULE is either a standard module (not further

divided) or consists of certain submodules. For modelling the slicing tree, the atom type GRAPHNODE

is required. The sizing function is modeled by the atom types CURVE and POINT. The relationships

among modules are recorded in NET. In order to store the wiring information, two other atom types are

of interest: CHANNEL to model the wiring area attached to each module and PIN to store the I/O-con-

nections to other modules.

The application layer achieves a kind of tailoring mechanism for the VLSI chip planner (PRIMACHIP).

The programs in the AL transform the objects and operations of the application model into those known

at the data model interface. The application model interface provides an object-oriented application mod-

el: Some objects are e.g. module list, net list, slicing tree, etc., for which the corresponding operations

are offered by the AL. Therefore we have introduced the classical ADT (abstract data type) concept to

organize the AL. The following four ADT operations may serve as an illustrative example:

• READ_AND_STORE_LIST takes module lists and net lists as input information and stores them in the

database using an INSERT statement.

• The BIPARTIONING operation selects the affected modules and net information from the database

and executes the cluster algorithm in order to determine the topological placement of all submodules.

Thereby, new graph nodes are created and arranged in the slicing tree.

• BU_SIZING determines the sizing function of each module from its submodules sizing functions and

the slicing tree.

• TD_DIMENSIONING estimates recursively the size of each submodule from the given CUD size.

Finally, the application uses the objects and operations provided by the application layer according to the

performing task. It delivers a graphic, menu-driven end-user interface. The top menu presents all avail-

able design phases in PRIMACHIP. In PRIMACHIP, the structural chip description, as it is normally de-
10

livered by the structural domain, is supplied by an interactive, graphic user dialogue. The result of the

individual ADT operation is also represented in a graphic manner.

3.3 Processing Complex Objects in PRIMACHIP

Now we investigate the object processing in the application layer in more detail. It is the task of the ap-

plication layer to transform the VLSI objects such that they are known at the kernel interface (molecules

GRAPH-
NODE

MODULE CURVE POINT

CHANNEL

PIN NET

1..n

1..1

1..1 1..n

1..n

n..m

n..m

n..m

n..m

1..n

1..n

n..m

Fig. 8: The MAD schema of PRIMACHIP

application
(with graphic user interface)

application model
interface

data model
object buffer

NDBS kernel PRIMA

Fig. 7: The system architecture of PRIMACHIP

interface

READ_
AND_
STORE_
LIST

BIPAR-
TITIO-

NING

BU-
SIZING

application layer

TD_
DIMEN-
SIO-
NING
11

and sets of molecules), and to execute the application operations by transforming them into a sequence

of primitive object buffer operations and MAD statements.

An object buffer, as presented in chapter 2, involves some characteristic steps in executing an applica-

tion operation. Firstly, the required data are downloaded from the database into the object buffer using

the SELECT statement of MAD. Then, object buffer operations allow access to the basic components of

the molecules, i.e. the atoms and their attributes. There are two possible ways to change the molecules

in the object buffer and in the DB: The executing of MAD modification statements (INSERT, UPDATE,

DELETE) reflects directly the modifications in the database, whereas the MODIFY statement of MAD is

utilized to propagate changes to the database which have been firstly made in the object buffer using

special buffer operations. This processing model is well known as the checkin/checkout mechanism /13/

, /19/.

Execution of a MAD statement

Before describing the usage of the object buffer, we have to clarify the result of a SELECT statement.

The execution of a MAD statement is divided into a definition and an evaluation phase:

• Defining a MAD statement

Insert @ insert2 : graph_node

From graph_node recursive

graph_node . is_father_of-

graph_node

until rec_max = 100

TOP_DOWN_

DIMEN-

SIONING

READ_AND_

STORE_LISTS
BIPAR-

TITIONING

BOTTOM_UP

_

SIZING

CHIP PLANNER

sizing functions of

the submodules
CUD sizemodule list and

net list

object buffer

Select (mod1(module_name, module_id),

mod2(module_name, module_id),

curve(), point(x_dim, y_dim),

net(net_name, net_weight))

From mod1(module) . is_tm_of-mod2(module)-

(. module_net-net,

. module_curve-curve-point)

Where mod1 . module_name = $module

Select all

From mod1(module)-(. module_graph_node-

graph_node-mod2(module)-

(. module_net-net,

. module_curve-curve-point),

. module_curve-curve-point)

recursive graph_node . is_father_of-graph_node

until rec_max = 100

Modify @ select_bufferInsert @ insert1 mod1, mod2,

net, curve, point

From mod1(module) .

if _tm_of-mod2(module)-

(. module_net-net,

. module_curve-curve-point)

Fig. 9: The DB interaction of PRIMACHIP
12

Defining a MAD statement is a data model interface call activating the MAD compiler, which will check

the statement for syntactic and semantic correctness and generate an access module. Furthermore,

the MAD compiler delivers a type description of the latter statement result containing information about

- the molecule type structure which describes the molecule type assembly (atom types and the re-

lated reference attributes, see Fig. 9),

- the atom type structure which describes the related reference attributes, and attributes, as well as

their sequence for every atom type, and

- the attribute structure (e.g. data type, attribute length).

• Evaluating a MAD statement

Evaluating a MAD statement initializes the execution of the corresponding access module generated dur-

ing the definition phase. A SELECT statement delivers a set of molecules in the object buffer. Every MAD

statement has its own object buffer to deposit the corresponding molecules.

Representation of molecules in the object buffe

The result of a query is a set of molecules. Every molecule has its own molecule structure which de-

scribes the relationships between the atoms in the molecule (Fig. 10). A molecule can be identified by a

singular atom (root atom). Starting from this atom, every other atom in the molecule can be reached fol-

lowing the corresponding atom references, since the molecules are defined to be coherent. A molecule

can therefore be considered as a special view on the database. If two molecules have overlapping views,

they share common atoms in the buffer.

A MAD statement enables the definition of different atom roles /1/ with different atom projection lists. The

qualified projection, another important concept in MAD, allows that the same atom in the database can

have different atom relationships in different molecules. For these reasons, the representation of an atom

in the object buffer is divided into an atom descriptor, the appropriate attribute values, and the molecule

structure information which belongs to this atom. Hence, if an atom exists in different molecules with de-

viated atom relationships or if it has different roles, then it is represented in the object buffer by multiple

atom descriptors (comprising the reference information) and uniquely stored attribute values. The atom

descriptor is organized as a list of pointers to the molecule structure information and the associated at-

tribute values. The structure of the atom descriptor is defined by the above mentioned atom type struc-

ture information. For each relationship, recorded in the molecule type structure, the molecule structure

information is organized as a reference list to the atom descriptors of all related atoms. This implies, that
13

the system-defined atom identifier in the database is not sufficient to identify an atom descriptor uniquely

in the object buffer.Therefore, a structure identifier is introduced, which isr

unique for every atom descriptor, and from which the molecule structure information is derived. Fig. 11

shows an example for the object buffer representation of an atom in two different roles.

Access to the molecule data

The operations on the objects in the buffer are summarized in Tab. 2 /20/. In order to select the appro-

priate molecule, the operations first_root_atom and next_root_atom carry out a scan across the set of

molecules and deliver the structure identifier of the root atom. Once a molecule is selected, get_atom

delivers a pointer to the atom descriptor of the root atom, identified by a given structure identifier.

For accessing the atoms in a certain relationship, the structure identifier list of this relationship must be

determined, and the identifiers must be extracted from that list. The operation get_atom then delivers a

pointer to the corresponding atom descriptor. The access to an attribute value is similar. Once the cor-

responding index in the atom descriptor is determined from the atom type structure information, the at-

molecule type structure

mod1

curve

point
mod2

curve net

point

molecule structure

module

graphnode

curve

graphnode

graphnode graphnode graphnode graphnode

module module module module

curve net net • • •

• • •

Fig. 10: Example for the molecule type structure and molecule structure of a SELECT statement

root atom

• • •

graph-
node

MAD query

SELECT ALL
FROM mod1 (module) - (.module - graphnode - graphnode - mod2 (module) -(.module_net - net,

.module_curve - curve - point), .module_curve - curve - point)
RECURSIVE graphnode.is_parent_of - graphnode

UNTIL REC_MAX = 100

graphnode

pointpoint
14

tribute can be reached via the corresponding pointer in the atom descriptor. Then, the attribute can be

accessed in the same way as a program variable for further processing.

The above stated atom access shows the usage of the type description delivered by a query definition.

Every time an attribute or a structure identifier list are accessed, their position in the atom descriptor must

be determined from the atom type structure. As a consequence, we choose another approach. Once a

MAD statement is defined, every query compilation results in the same type description. Therefore, we

hardwired the atom descriptor index for each attribute or structure identifier list in our programs (Fig. 11).

Modification of molecules

So far, we only discussed operations to retrieve the objects and deposit them in the object buffer. The

propagation of molecule modifications in the database can be achieved in two ways:

• The MAD modification operations such as DELETE, UPDATE, and of course for inserting the INSERT

statement reflect the changes directly in the database. One variant of the INSERT command works

similarly to the SELECT statement. After the molecule type is specified by an INSERT command, the

application programmer has to build up the molecules using the operations listed in Tab. 2. The oper-

ation give_new_struct_id provides a unique, temporary structure identifier, which allows a new atom

to be composed in the application program. The propagate_atom operation places the atom in the ob-

ject buffer and, as an option, the sign_root_atom operation labels an atom as root atom. However, the

programmer has to build up a molecule on his own. For example, to store a module and all related

•

•
•

structure_id lists to
curve, net, and

attribute values

data structures of the atom descriptors:

MODULE_ROLE1 =

record

ref_to_curve : pointer;

ref_to_graph_node_ptr : pointer;

module_name_ptr : pointer;

x_dimension_ptr : pointer;

end;

MODULE_ROLE2 =

record

ref_to_graph_node_ptr : pointer;

ref_to_net_ptr : pointer;

ref_to_curve_ptr : pointer;

module_name_ptr : pointer;

x_dimension_ptr : pointer;

no_feedthrough_ptr : pointer;

end;

•
•

•
•
•

structure_id lists to
curve and graph_node
atoms

(module_name,
x_dimension,
no_feedthroughs)

Fig. 11: Example for the object buffer representation of aone atom in two different roles

••

graph_node atoms

atom descriptor

•

for RETRIEVAL

first_root_atom
next_root_atom
get_atom

for INSERT

give_new_structure_id

propagate_atom

sign_root_atom

Tab. 2 : List of object buffer operations
15

nets, the programmer has to deposit all nets in the object buffer and then, before deposing the module

atom, the reference information of all related net atoms must be established in the module atom.

• The second possibility is to make changes in the object buffer, which contains the result of a previous

SELECT statement. This comprises of the general checkin/checkout mechanism as described above.

The insertion of new atoms in the buffer occurs in the same manner as described by the INSERT com-

mand. At checkin time, all changes (e.g. modification of an attribute value, insertion or deletion of var-

ious atoms, modification of relationships) are propagated simultaneously using the

MODIFY statement.

However, the arbitrary usage of modification operations on objects in the buffer leads to serious semantic

problems. Each molecule is a materialized view of the database as mentioned above and the modifica-

tion operations are performed on these views. A detailed examination of these problems can be found in

/21/. However, the current prototype system does not support this kind of object processing at all.

3.4 Analyses and Evaluation of the PRIMACHIP Processing Concept

After having explained our initial approach in handling molecules, we would like to outline an evaluation.

Therefore, we characterize the main processing properties which we have introduced above. First of all,

we can state that there is a clear division between data preparation (evaluation of MAD statements) and

data processing. The algorithms of the AL retrieve mainly all the molecules which represent the whole

processing subject. In doing this by MAD statements, preparation activities are triggered, and all the cor-

responding data are loaded into the object buffer. The processing phase is then reached and the algo-

rithms manipulate the molecules placed in main memory. This can be implemented very efficiently, since

locality can be exploited, implying that the data access is normally provided by a few pointer references.

After finishing the manipulations, the modified objects are passed back into the database. In comparison

with a similar chip planning tool (called DBCHIP), which is based on a conventional database system,

PRIMACHIP shows a significant reduction in database access frequency. The main reason for this is the

above illustrated preparing and processing model. For example, the algorithm to build up the slicing tree

requires two DBMS statements only, whereas the same task in the DBCHIP system yields some thou-

sand database operations (for about 12 submodules of a CUD) /22/. Certainly, these operations are less

complex than the corresponding MAD statements, but despite this, each simple operation produces a

fixed processing overhead.

The structure of data, constituting the input as well as output argument of a MAD statement, is deter-

mined by the meta-data known only inside the kernel system. To work with this data, the AL programs

must be supplied with this knowledge. In our prototype system this is done by the programmers them-

selves. They freeze the concrete knowledge in programs’ coding, defining compatible data structures,

and including the operations for some MAD-specific data types (list type, set type,...).

Having in mind these observations, we can state two main issues of criticism, which constitute the start-

ing point for the improvements proposed in chapter 4:

• After checking out the data from the central database, there is only elementary support for molecule

processing.

• The conversion from internal and persistent data to external and temporary data (from the DBMS point

of view) is not supplied. That means, there is no support for adaptation of data structures and data

types (language binding).
16

4. General Issues of Molecular Objects’ Linkage to the Application

After a detailed description of the implementation model of our VLSI application system, we concentrate

on the general issues for application linkage, generalizing for this purpose some important processing

properties of the PRIMA kernel interface. We explain then a refined approach of interfacing the AL and

the NDBS-kernel, focusing in particular on concepts for AL organization and efficient molecule process-

ing as well as suitable methods for language embedding. Furthermore, we touch on some issues of the

application model interface which have to be carried out by the AL. Finally, we consider a few basic as-

pects of modelling the AL as ADTs.

4.1 Generalization of Processing Properties

For the purpose of generalizing processing properties, it should be advantageous to contrast the simpli-

fied processing scheme (used in PRIMACHIP) with the alternatively used concepts. The typical process-

ing scheme in PRIMACHIP can be characterized as a scheme for external processing (Fig. 12a). It is

determined by three steps :

• Retrieve the whole (or nearly the whole) subject of processing (checkout).

• Manipulate this subject ’nearby’ the application.

• Propagate all modifications into the database (checkin).

A processing scheme, which obeys a different philosophy is shown in Fig. 12b. Here, the work is done

inside the kernel system (scheme for internal DB processing). In other words, the differences among the

underlying ideas are embodied in data supply for the algorithms (Fig. 12a) and, on the other hand, in

transmitting the algorithms to the data (Fig. 12b). Considering this dualism, it becomes obvious that the

external processing scheme seems to be typical, not only for our prototype system, but also for all appli-

cations which are based on complex algorithms manipulating complex objects. This is mainly caused by

the fact that these algorithms cannot be formulated in the data model language (e.g. MAD language). For

example, it is impossible to describe the evaluation of a slicing tree by means of a data model language
17

only. However, the scheme for internal DB processing has more advantages in the case of simple algo-

rithms manipulating simple objects (e.g. increment the salary of all employees by 5%).

In the environment of non-standard applications, the central point of improvement is obviously the check-

out/checkin processing scheme. In particular, we have to eliminate the weaknesses in handling mole-

cules by the AL programs, which are pointed out in section 3.4 (molecule processing, language binding).

4.2 Molecule Processing

Having in mind the above observations, we can state that molecule preparation does not cause a prob-

lem, since this can be handled adequately by the MAD query language: a few MAD statements are

grouped together to checkout the subject of processing, or alternatively to checkin the modified data.

However, it is obviously difficult to handle retrieved molecules, since there is no efficient addressing sup-

port to access molecule components. This problem depends on the complexity of the retrieved objects.

Therefore, conventional DBMS applications do not have a similar problem because retrieved records or

tuples have simple data structures. So, the main memory address of each attribute can be evaluated

from the object’s base address by adding a fixed offset.

Improvement of molecule processing facilities

The improvement of molecule processing facilities forces extensions of the main memory data struc-

tures, which represent molecules and atoms (in/out parameter of MAD statements), by access and con-

trol information. This information is mainly used to support new access functions (e.g. address evaluation

and navigational access). In conventional DBMS, data structures used in a similar way are called cur-

sors. Cursors are known in the environment of the network data model /23/ and in the programming in-

terfaces of several implementations of the relational data model /24/, /25/. The concrete semantics of

them, however, is different in several data models. For example, in the network data model, implicit cur-

sors are used to support navigational access and to define explicitly the semantics of data model oper-

ations. In the context of the relational data model, cursors are only required for accessing query results

object specification
algorithm formulation
processing activation

•

°°° ° °° ° ° °
••
•

°°°°
° ° ° °

°°°°

°°°°
° ° ° °

°°°° •
•

retrieval propagation

processing

a)externalprocessingscheme b)internalprocessingscheme

Fig. 12 : Schemes for external/internal processing

Set of heterogenous
elementary objects

data model interface
18

by the application. This means, that application programs can employ them to handle the set-oriented

data model objects (relations) step by step, one set element after the other. Hence, the programmer will

run into some problems if he requires more than one set element at a time. All these cursor semantics

and the associated problems are worth more detailed considerations, which however, lie beyond the

scope of this discussion.

Molecule processing requires multiple cursor types in different semantics. Handling molecules in a set-

oriented manner, cursors are used to indicate a single molecule within the set. Such a cursor usage is

similar to the cursor concept in the relational environment. Having determined one molecule, we must

employ the cursor in another way, since navigation through the corresponding atom network is required

now. Therefore, we have developed the cursor concept with a special semantics, which fulfills the re-

quirements of set and network processing. Additionally, our approach allows explicit cursor definition,

that is, the programmer can dynamically generate cursors as often as required. In order to define a cur-

sor, he must specify at least one atom type, determining the type of atom instances which he desires to

access via the cursor. Specifying exactly one atom type, the programmer will get a flat cursor, which may

only be used to scan a set of homogeneous atoms. When the programmer determines the root atom type

of the corresponding molecule type, the cursor provides some kind of molecule scan. Thus, this special

case serves the same function as do the operations first_root_atom and next_root_atom (compare chap-

ter 3). In addition, the definition of hierarchical cursors is allowed, in order to support the navigational pro-

cessing of hierarchical molecule components. The cursor hierarchy is determined by a list of atom type

names, marking the cursor paths. The concept of hierarchical cursors may be implemented by a hierar-

chy of dependent flat cursors. Navigation via one cursor automatically affects the cursors on subordinate

levels. The binding between cursor and data to be referenced, is provided by the programmer. He defines

the scope of data which may be referenced, associating the cursor with a set of molecules delivered by

MAD statement evaluation. Then, the cursor may be moved in the atom network by explicit cursor oper-

ations enabling access to each atom. For detailed explanation of the implementation issues, the reader

is referred to /21/.

Administration of the object buffer

The essential condition for efficient molecule processing consists in buffering molecules nearby to the

algorithms operating on them. Therefore, the considered prototype system was already based on an ob-

ject buffer at the kernel interface. The issue we would like to illuminate now, is how this central data struc-

ture should be organized in order to satisfy the discussed requirements in an efficient way. Note, the ob-

ject buffer is associated with the workstation site (cf. chapter 2). The data loaded into the object buffer

are usually kept there for a long span of time. It will therefore become necessary to move the objects from

the main memory to the private DB existing on secondary storage (local for this workstation). Thus, we

organize the object buffer using so-called main memory areas. The required relocation can be easily

managed, if all logical references among molecules or atoms, included in the object buffer, are substitut-
19

ed by some kind of area relative addresses. The relocation can then be achieved without need of recal-

culation by simply moving whole areas.

Fig. 13 illustrates the representation of a molecule set within the object buffer. Based on the molecule set

descriptor, the overall structure can be divided into three parts:

• The cursor table contains all cursors, which are linked with molecules within the considered molecule

set, and is mainly used for cursor administration.

• The area table and the set of areas obtain structures to support the control of memory which is allo-

cated for atoms. The area concept supplies not only relocatability, but also prevents the scattering of

main memory by numerous small atoms.

Furthermore, the atom type table and atom table allow us to calculate atom addresses by using logical

atom identifiers. The atom type table separates the atoms by their corresponding atom type and enables

efficient type-oriented access. Each entry bears an internal type key and the address of the atom table.

This table is organized as a dynamic hash table, since the number of stored atoms can shrink or expand

significantly. The atom table entries contain further administrative information. The modification flag in-

dicates the type of modification (insert, delete, update) and is later used for propagating back to the cen-

tral database. Additionally, there are also the fields area index and area offset. The area index deter-

mines an entry of the area table, which finally leads to the area containing the required atom. The area

base address incremented by the area offset delivers the atom’s main memory address.To maintain and

use all these data structures, we need efficient algorithms for address calculation and memory manage-

ment. Moreover, a further component becomes necessary to deposit/reload molecule objects to/from the

private DB. Fig. 14 shows all the components which are necessary to support adequate molecule pro-

cursor
information

•
•
•

••
•

•
•
•

int.
name

•
•
•

mod. flag
area index
area offset

•
•
•

•

base adr

atom
data

area offset
area index

•
•

•cursor
table

area table area

atom type table atom table

molecule set descriptor

Fig. 13 : Representation of a molecule set within the object buffer.

status,type,etc.
20

cessing. These modules cooperate with a preparation component, which handles the checkin/checkout

operations and offers the functions of the MAD language.

4.3 Language Embedding

Another problem derived from our prototype observations concerns data structure adaptation. During the

implementation of the VLSI application system, the AL programmers have to define a great number of

internal data structures, which must be compatible with the one delivered or expected by the NDBS-ker-

nel. Additionally, there is no adaptation of MAD-specific data types (list type, set type, hull, time,...). The

programmers have to know internal representation issues and must carry out the associated operations

manually. These unpleasant properties are typically related to the concept of a call interface, the simplest

concept for language binding. In the context of conventional DBMS, four different approaches for binding

database and programming languages are well known:

• call interface (e.g. sketched above),

• simple host language extension (e.g. CODASYL COBOL-DML),

• embedding database languages in general purpose languages (precompiler, e.g. embedded SQL),

• integrated languages (new data types, e.g. PASCAL/R).

/26/ contains a detailed consideration of these binding concepts. Here, we would only like to state the

results: the most advantages lie in the fourth approach, because the internal (with respect to the pro-

gram) and temporary data are compatible with the external and persistent data (since they have the

same logical structure). However, it is not the best procedure from an implementation point of view, i.e.

a new language must be designed, a compiler must be written, etc.

A precompiler approach

Therefore, our own proposal for an application programming interface (API) is based on a mixture be-

tween the third and the fourth approach. We have designed a precompiler to handle the inclusion of MAD

cursor administration

address
calculation

memory
mangement

object buffer

private
database
interface

(load/
unload)

preparation
&

propagation

component

Fig. 14 : Interface architecture supporting adequate molecule processing

NDBS kernel

AL programs
21

statements, to enrich the underlying host language in order to handle MAD-specific data types, and ad-

ditionally to integrate special language constructs for supporting the molecule processing concepts men-

tioned in the previous section (cursor, object buffer).

The use of precompiler statements is sketched in Fig. 15. It depicts the scheme of an AL program (ADT)

in a PASCAL-like programming language. We distinguish between the definition of query types and cur-

sor types, as well as the declaration of corresponding instances. The AL programmers can therefore gen-

erate multiple instances of the same type. These are handled like host language variables. The query

type declaration is the place for MAD statement specification. Therefore, all functions of molecule prep-

aration are included in the program by query types. The query variable corresponds to the object buffer

introduced above. Note that the instance of a query represents the data which is the parameter of MAD

statement’s activation. The linkage between variable and data is done via the built-in function eval. Eval

directs actual parameters to the kernel interface and triggers the evaluation and preparation activities.

Similar to the definition of query instances, the programmers can generate cursor variables supporting

the processing of object buffers (query variables). The binding of cursor variable and object buffer is pro-

vided by the attach function. The bounded cursor can be moved in molecules around atoms, which are

currently in the object buffer, and is also used to specify the required molecule-oriented access (cf. Fig.

15).

Steps of compilation

The transformation of AL programs into executable object code is divided into two phases. In the first

phase, the precompiler replaces the definitions of queries and cursors by the declaration of correspond-

ing host language data structures. In particular, data structures are generated for all atom types. The re-

quired meta-data can be extracted from the internal schema information (known in the NDBS-kernel) by

pretranslating all the MAD statements which occur in the program. Query evaluation and cursor binding

statements are converted into host language operations (subroutine calls). These subroutine references

are later satisfied by a run time system (RTS) of the NDBS-kernel interface, which supports molecule

processing and preparation (compare Fig. 14, e.g. cursor maintenance component). Moreover, the MAD-

specific data types are taken into account. Therefore, the precompiler includes an extension of the nor-

mal host language run time system. In the second phase of transformation, the standard host language

compiler runs finally generating the object code.

Detailed considerations of syntactical issues and further information about the precompiler are given in

/21/, where the reader can additionally find the implementation model for the RTS of the NDBS-kernel

interface.
22

4.4 ADT Modelling

At the beginning of this chapter, we introduced the AL as the linkage between NDBS-kernel and applica-

tion. So far, the interface between AL and kernel system as well as the AL organization were explained

above. Now, we sketch our ideas about interfacing the application with AL.

All the concepts just explained should support the AL to offer application objects at the level of the appli-

cation model. The application objects can be described by their specific data structure and their associ-

ated operations. One method which allows an integration of data structure and operation specification is

provided by the well-known ADT concept. The sum of the existent ADTs forms the application model.

That means, it embodies the user’s mental image of the behavior of relevant application entities (behav-

ioral object orientation /26/, /28/.

Mapping of ADTs

The application often distinguishes entity types from entity instances. Thus, we correspondingly map en-

tity types to ADTs, and in turn, entity instances to instances of ADTs. Not only application-specific oper-

ations are required (defined by ADT types), but also a few other ones which are more general. Simple

examples are given by the create, destroy, and assign operations. Furthermore, storing and loading of

ADT instances must be supplied, and descriptive methods for selection are desirable. We propose a di-

rect mapping of the ADT instances to the molecules delivered by the MAD model. This has the advantage

Fig. 15: An AL program scheme

PROGRAM example;
definition of ’normal’ types and variables

QUERY TYPE mcp_query_type =
’Select module, curve, point
From module-curve-point
Where module.x_dim < $max’
(max : integer);

•••

CURSOR TYPE mcp_cursor_type =
module, curve, point > mcp_query_ type

•••
mcp_cursor : mcp_cursor_type;

mcp_buffer : mcp_query_type;
•••

BEGIN

•••
EVAL (mcp_buffer, ... max_value ...);

•••
ATTACH (mcp_cursor, mcp_buffer);

•••
DISPLAY (mcp_cursor @ module @name);

•••
END.
23

that we can use the full MAD functionalism to maintain ADT instances. For example, we can select ADT

instances by an SELECT.. FROM.. WHERE..-Statement giving an instance identifier as the qulification

criteria.

Fig. 16 illustrates the mapping principles. An ADT is defined as a program module which offers some

operations and characteristic attributes. Internally, there exist further attributes for state description, as

well as some query and cursor definitions. The type of molecules (i.e. molecule instances) which repre-

sent the ADT instances is determined by a special atom type, the ADT descriptor. This atom type con-

tains all the characteristic attributes as well as the references to all molecule types, which are defined by

MAD statements inside the ADT definition.

Further considerations are required, if we want to represent the ADT themselves (i.e. ADT types, not

ADT instances) by the molecules. The relevant issues concern mainly the handling of ADT operations.

Of course, these operations can be represented as attributes of type ’code’, but the associated values

must be loaded, linked together, and executed dynamically which is not supported by the MAD model.

Taking into account the characteristic properties of processing, we have to deal with some other aspects.

The ADTs themselves may be used by further application programs at the application model interface.

In the most simple case, the application programs carry out the user’s system image. For this reason,

the application model offers additionally some application-independent operations to organize users’ ac-

tivities. For instance, an engineering user can determine the beginning, the end, the suspension, and the

resumption of a design process. Furthermore, he can activate an ADT, making the corresponding oper-

ations available, and he can save or restore the state of ADT instances. All these activities must be car-

ried out by a further refined processing model for ADTs and, in particular, by suitable transaction con-

cepts at the kernel interface. These related issues are outlined in /13/ and must be refined by future work.

5. Conclusions

In this paper, we have presented our ideas for supporting engineering applications by the NDBS kernel

PRIMA and have stated experiences which we gained with the prototype system PRIMACHIP. Firstly,

we have pointed out the modelling and processing problems in handling complex database objects in an

engineering environment. Due to the special requirements of engineering applications, we proposed a

ADT chip planning
•
•
definition of chacteristic attributes
definition of query and cursor (type & variables
•
•

OPERATION : bipartitioning (...)
definition of query and cursor (type & variables)
•••
use of cursor, processing the data within the object buffer

END

OPERATION : •••
•••

.

characteristic
attributes

references

• • •

ADT description

molecule types for the representation of
ADT instances

Fig. 16: ADT molecule mapping

molecule
type a

molecule
 type z
24

confederate hardware architecture, which based on a loose workstation/host coupling. This hardware

architecture supports the division of the non- standard database system in an application independent

kernel and an application layer in a natural way. According to the suggested processing model, a central

host processor works as a database server and an autonomous workstation download the required data

from the database server in a local object buffer (checkout), where the complex objects are manipulated

independently. During a commit phase, all changes are propagated to the central database server

(checkin).

The PRIMACHIP system, which comprises some of the chip planning phases of the VLSI design pro-

cess, was implemented to obtain experience in the usage of the NDBS kernel architecture. The process-

ing model of PRIMACHIP involves an object buffer and realizes a checkin/checkout mechanism. From

this prototype system, we observed some demands for efficient object processing:

• a generalized hierarchical cursor concept for navigating in complex object structures, and

• an adequate concept for object buffering.

Based on these experiences, we outlined our generalized application programming interface, a mixture

of language embedding and integration, which embodies language constructs for effective object pro-

cessing in a conventional programming language. A precompiler is employed to transform the application

programs into equivalent host language code. Our API allows for:

• access to program variables and buffered data in a homogeneous manner

• a 'natural' handling of queries and cursors in the application programs.

Future work will be concerned with the development of a application layer for CAD/ CAM applications in

order to valid the utilization of the database kernel architecture in engineering applications.

Acknowledgements

We would like to thank T. Härder for his helpful comments and our colleagues N. Mattos, B. Mitschang

and A. Sikeler for their careful reading of an earlier version of this paper. They have contributed to clarify

and improve the preparation of important issues. The help of I. Littler polishing our english style is great-

fuly acknowledged.

References

/1/ Mitschang, B.: The Molecule-Atom Data Model in: The PRIMA Project, Design and Implementation
of a Non-Standard Database System, T. Härder (ed.), Report Nr. 26/88, SFB 124, University Kai-
serslautern, März 1988.

/2/ Lorie, R., Kim, W., et. al.: Supporting Complex Objects in a Relational System for Engineering Da-
tabases, IBM Research Laboratory, San Jose, CA, 1984.

/3/ Schek, H.-J., Scholl, M. H.: The Relational Model with Relation-Valued Attributes, in: Information
Systems, Vol. 2, No. 2, 1986, pp. 137-147.

/4/ Pistor, P., Anderson, F.: Designing a Generalized NF2 Data Model with a SQL-Type Language In-
terface, Proc. 12th VLDB Conf., Kyoto, 1986.

/5/ HMMS87 Härder, T., ...

/6/ Härder, T.: Overview of the PRIMA Project, in: The PRIMA Project, Design and Implementation of
a Non-Standard Database System, T. Härder (ed.), Research Report No. 26/88, SFB 124, Univer-
sity Kaiserslautern, 1988

/7/ Liskov, B., Zilles, S.: Programming with Abstract Data Types, in: Proc. ACM SIGPLAN, Conf. on
Very High Programming Language, SIGPLAN Notices, Vol. 9, No. 4, April 1974, pp. 50-59.

/8/ Stonebraker, M.: Quel as a Data Type, Proc. 1984 ACM SIGMOD Conference on Management of
Data, Boston, 1984.
25

/9/ Dadam, P., et. al.: Managing Complex Objects in R2D2; in: HECTOR - Heterogeneous Computer
Together (Krueger, G., Mueller, G. ed.), Berlin, Heidelberg, 1988.

/10/ Deppisch, U., Günauer, J., Küspert, K., Obermeit, V., Walch, G.: Überlegungen zur Datenbank-Ko-
operation zwischen Server und Workstations, in: Proc. of the 16th GI-annual Conf., Berlin, 1986,
IFB 126/127, Springer Verlag, 1986.

/11/ Deppich, U., Obermeit, V.: Tight Database Cooperation in a Server-Workstation Environment, in:
Proc. 7 th Int. Conf. on Distributed Computing Systems, Berlin, 1987.

/12/ Härder, T., Rahm, E.: Mehrrechner-Datenbankssysteme für Transaktionssysteme hoher Leistungs-
fähigkeit, in: Informationstechnik it, No. 4, 1986, pp. 214-225.

/13/ Härder, T., Hübel, Ch., Meyer-Wegener, K., Mitschang, B.: Coupling Engineering Workstations to
a Database Server, in: Proc. Conf. on Data and Knowledge Systems for Manufacturing and Engi-
neering, Hartford, Connecticut, 1987, pp. 36-44.

/14/ Küspert, K., Dadam, P., Günauer, J.: Cooperative Object Buffer Management in the Advanced In-
formation Management Prototype, in: Proc. VLDB ’87, Brighton U.K., Sept. ’87, pp 483-492.

/15/ Zimmermann, G.: A new Area and Shape Function Estimation Technique for VLSI Layouts; in:
Proc. of the 25th Design Automation Conference, pp. 60-65, 1988.

/16/ Schürmann, B.: Hierarchisches Top Down Chip Planning; in: Informatik Spektrum, Bd. 11, Heft 2,
S.57-70, Heidelberg, 1988.

/17/ Klein, A., Schreiner, F., Zimmermann, G.: Ein Sizing-Modell für den VLSI-Entwurf, SFB 124, Report
No 25/87, University Kaiserslautern, 1987.

/18/ Krück, D.: Realisierung eines NDBS-basierten Werkzeuges für den VLSI-Chip-Entwurf, University
Kaiserslautern, 1988 (in preparation).

/19/ Lorie, R., Plouffe, W.: Complex Objects and Their use in Design Transactions, in: Proc. of the Data
Base Week: Engineering Design Applications, pp. 115-121, 1983.

/20/ Müller, Th., Schöning, H.: Entwurf und Implementierung des Datensystems von PRIMA, University
Kaiserslautern, 1987.

/21/ Hübel, Ch., Sutter, B.: Verarbeitung Komplexer DB-Objekte in Ingenieuranwendungen, University
Kaisersslautern, 1988 (in preparation).

/22/ Härder, T., Hübel, Ch., Pahle, H., Zimmermann, G.: Ansätze Zur DB-Unterstützung für den VLSI-
Entwurf, Research Report, No. 31/88, SFB 124, University Kaiserslautern, 1988.

/23/ CODASYL Data Description Language Comittee Report, Information Systems, Vol. 3, No. 4, 1978,
pp. 247-320.

/24/ Astrahan, M.M., et. al.: System R: A Relational Database Management System, IEEE, Vol. 12, No.
5, 1979, pp. 42-48.

/25/ Date, C.J.: A Guide to Ingres, Addison-Wesley Publishing Compony, 1987.

/26/ Dittrich, K.R., Dayal, U. (eds.): Proc. Int. Workshop on Object-Oriented Database System, Pacific
Grove, 1986.

/27/ Lacroix, M., Pirotte, A.: Comparison of Database Interfaces for Application Programming, in: Inf.
Systems, Vol. 8, No. 3, 1983, pp. 217-229.

/28/ Hübel, Ch., Mitschang, B.: Object Orientation Within the PRIMA-NDBS, appears in: Proc. 2nd
Workshop on Object-Oriented Database Systems, Sept. 1988, Bad Münster am Stein.
26

27

	1. Introduction
	2. Architectural Aspects of Engineering Applications
	3. A VLSI Application on PRIMA
	3.1 The VLSI-design process
	3.2 PRIMACHIP - a Chip Planning System
	3.3 Processing Complex Objects in PRIMACHIP
	3.4 Analyses and Evaluation of the PRIMACHIP Processing Concept

	4. General Issues of Molecular Objects’ Linkage to the Application
	4.1 Generalization of Processing Properties
	4.2 Molecule Processing
	4.3 Language Embedding
	4.4 ADT Modelling

	5. Conclusions
	Acknowledgements
	References

