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Abstract. More than two decades ago, DB researchers faced up to the question of
how to design a data-independent database management system (DBMS), that is, a
DBMS which offers an appropriate application programming interface (API) to the
user and whose architecture is open for permanent evolution. For this purpose, an ar-
chitectural model based on successive data abstraction steps of record-oriented data
was proposed as kind of a standard and later refined to a five-layer hierarchical
DBMS model. We review the basic concepts and implementation techniques of this
model and survey the major improvements achieved in the system layers to date.
Furthermore, we consider the interplay of the layered model with the transactional
ACID properties and again outline the progress obtained. In the course of the last 20
years, this DBMS architecture was challenged by a variety of new requirements and
changes as far as processing environments, data types, functional extensions, heter-
ogeneity, autonomy, scalability, etc. are concerned. We identify the cases which can
be adjusted by our standard system model and which need major extensions or other
types of system models.

1 Introduction

In the seventies, the scientific discussion in the database (DB) area was dominated by
heavy arguments concerning the most suitable data model, sometimes called a religious
war. It essentially focussed on the question of which abstraction level is appropriate for a
DB application programmer. The network data model seems to be best characterized by
“the more complex the pointer-based data structure, the more accurate is the mini-world
representation”. However, it offers only very simple operations forcing the programmer to
navigate through cursor-controlled data spaces. In contrast, a “data structure of spartan
simplicity” (E. F. Codd) and value-based relationship representation are provided by the
relational data model. Each additional embellishment (modeling option) needs additional
operations and thus leads to greater model complexity. Because the result of every DB op-
eration is a table (a multi-set of an unnamed type in SQL), it offers the closure property
which was a prerequisite for its practically very significant concept of views. In that time,
the decision concerning the most appropriate data model could be pinpointed to “record
orientation and pointer-based, navigational use” vs. “set orientation and value-based, de-
clarative use”. Far ahead of the common belief of his time, E. F. Codd taught us that sim-
plicity is the secret of data independence—a property of the data model and the database
1



management system (DBMS) implementing it. A high degree of data independence is ur-
gently needed to let a system “survive” the permanent change in computer science in gen-
eral and in the DB area in particular.

How should we design a DBMS whose architecture is open for permanent change or evo-
lution? More than two decades ago, this was already a difficult question, because nobody
knew what “permanent change” means. On the other hand, it was rather simple compared
to the time being, because we only thought about storing and managing objects of the re-
lational or network (or hierarchical) data models, that is, sets of simply structured records
or tables. Nowadays, however, important DBMS requirements include data streams, un-
structured or semi-structured documents, time series, spatial objects, and so on. What were
the recommendations to achieve the system properties for which the terms physical and
logical data independence were coined?

It is immediately clear that a monolithic approach to DBMS implementation is not very
reasonable. It would mean to map the data model functionality (e.g., SQL) in a single step
to the interfaces offered by external storage devices, e.g., read/write block. As we have ex-
perienced during the last decades, DBMSs have a lifetime >20 or even >30 years. In that
time, system evolution requirements were abundant: growing information demand led to
enhanced standards with new object types, constraints, etc.; advances in research and de-
velopment bred new storage structures and access paths, etc.; rapid changes of the technol-
ogies used and especially Moore’s law had far-reaching consequences on storage devices,
memory, connectivity (e.g., Web), and so on. But what are the guidelines of system devel-
opment in such a situation to be anticipated?

The ideas of structured programming and information hiding were cornerstones guiding
the way of development. “The Goto Statement Considered Harmful” (E. W. Dijkstra [13])
was translated into the DB world as the battle cry “Pointers are the Evil!”. On the other
hand, the concept of information hiding introduced by D. L. Parnas [46] was widely ac-
cepted in academic circles as a software design principle. However, most industrial soft-
ware developers did not apply the idea and many considered it unrealistic.1 Parnas con-
vinced us of the advantages of the use relation2 [47] to be applied to hierarchical layers of
large software systems. Developing a hierarchically structured system offers the following
important benefits:

• The implementation of higher-level system components is simplified by the usage of
lower-level system components.

• Lower-level system components are independent of functionality and modifications in
higher-level system components.

• Testing of lower-level system components is possible, before the higher system levels
are put into use.

1 taken from a Parnas’ talk Modularization by Information Hiding: The napkin of doom—Compiler and data-
base experts have a lunch.They exchange a control block format on a napkin. Napkin is punched, copied, and
filed. Format changes, but napkin does not. Components are coupled and don‘t work. They had to do some-
thing. I did not know what they should have done. (www.sdm.de/download/sdm-konf2001/f_3_parnas.pdf)

2 “Module A uses module B, if A calls B and the complete execution of A requires the correct execution of B.”
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The resulting abstraction hierarchy hides some properties of a system level (an abstract
machine) from higher-layer machines. Furthermore, the implementation of higher-level
operations extends the functionality of an abstract machine. System evolution is often re-
stricted to the internals of such abstract machines when, for example, a function implemen-
tation is replaced by a more efficient one. In case new functionality extends their interfac-
es, the invocation of these operations implies “external” changes which are, however, lim-
ited to the next higher layer. 

But how can these concepts and objectives be accomplished? Although it is fundamentally
true that “systematic abstraction is the prime task of computer science” (H. Wedekind), it
is always very hard to translate the appropriate abstraction into a system structure. Did this
multi-level information-hiding approach fulfil the far-reaching expectations during the last
20 years we try to look back to?

In section 2, we review the concepts of the five-layer hierarchical DBMS model and use it
as an explanation model for run-time aspects, binding and information-flow dependencies.
Furthermore, we survey the major improvements achieved in the various layers in the
course of the past two decades. In section 3, we consider the interplay of the layered model
with the transactional ACID properties and again outline the progress achieved. Section 4
discusses a variety of DBMS architectures where our layered model can be used to de-
scribe the mapping abstractions and to gain better insight into the operations modeled. In
section 5, we consider the role of our architectural model when applied to other kinds of
data management scenarios and sketch extensions to adjust for a variety of new data types,
before we briefly summarize our findings in section 6.

2 Hierarchical DBMS Architecture

2.1 Static Engine Architecture

Given the arguments introduced so far, it was clear to select a multi-layered hierarchical
architecture to implement a centralized DBMS. However, when starting with a concrete
design, many questions with no obvious answer emerged. How many layers are adequate
for the entire DB-mapping process? What is an appropriate decomposition of DBMS func-
tionality into individual layers? Do we have to provide auxiliary mapping data or meta-
data for each layer separately or is a centralized meta-data repository more appropriate?
Where do we allocate the transaction functionality, i.e., the ACID properties? And many
questions more...

About 20 years ago, Andreas Reuter and the author proposed a mapping model or refer-
ence architecture consisting of five layers [25, 27] depicted in Table 1. The architectural
description embodies the major steps of dynamic abstraction from the level of physical
storage up to the user interface. At the bottom, the database consists of huge volumes of
bits stored on non-volatile storage devices, which are interpreted by the DBMS into mean-
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ingful information on which the user can operate. With each level of abstraction (proceed-
ing upwards), the objects become more complex, allowing more powerful operations and
being constrained by a growing number of integrity rules. The uppermost interface sup-
ports a specific data model, in our case by a declarative data access via SQL.

The bottom layer, called File Management, operates on the bit pattern stored on some ex-
ternal, non-volatile storage device. Often in collaboration with the operating system’s file
management, this layer copes with the physical characteristics of each type of storage de-
vice. Propagation Control as the next higher layer introduces different types of pages
which are fixed-length partitions of a linear address space and mapped into physical blocks
which are, in turn, stored on external devices by the file management. The strict distinction
between pages and blocks offers additional degrees of freedom for the propagation of
modified pages. For example, a page can be stored in different blocks during its lifetime
in the database thereby enabling atomic propagation schemes (supporting failure recovery
based on logical logging, see section 3.4.1). To effectively reduce the physical I/O, this
layer provides for a (large) DB buffer which acts as a page-oriented interface (with fix/un-
fix operations) to the fraction of the DB currently resident in memory. 

The Record and Access Path Management implements mapping functions much more
complicated than those provided by the two subordinate layers. For performance reasons,
the partitioning of data into segments and pages is still visible at this layer. It has to provide
clustering facilities and maintain all physical object representations, that is, data records,
fields, etc. as well as access path structures, such as B-trees, and internal catalog informa-
tion. It typically offers a variety of access paths of different types to the navigational access
layer. Especially with the clustering options and the provision of flexibly usable access
paths that are tailored to the anticipated workloads, this layer plays a key role for the entire
DBMS performance.

Table 1 Description of the DBMS mapping hierarchy

Level of abstraction Objects Auxiliary mapping data

L5 Nonprocedural or 
algebraic access Tables, views, tuples Logical schema description

L4 Record-oriented, 
navigational access

Records, sets, 
hierarchies, networks

Logical and physical
schema description

L3 Record and access
path management

Physical records,
access paths

Free space tables, DB-key 
translation tables

L2 Propagation control Segments, pages  DB buffer, page tables

L1 File management Files, blocks Directories, VTOCs, etc.
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The Navigational Access Layer maps physical objects to their logical representations and
vice versa. At this interface, the user (or the modules at the next higher layer) navigates
through a hierarchy or network of logical records or along logical access paths using scans
of various types. A special ability is to dynamically order (sort) sets of records to support
higher operations such as sort/merge joins. Finally, the Non-procedural Access Layer pro-
vides logical data structures (such as tables and views) with declarative operations or a
non-procedural interface to the database. At the API, it provides an access-path-indepen-
dent data model with descriptive languages (e.g., SQL). 

Each layer needs a number of auxiliary data structures for mapping higher-level objects to
more elementary ones. To indicate the type of data, Table 1 characterizes some of them. 

2.2 Dynamics of Query Execution

To gain a more detailed insight into the internal DBMS tasks and dynamics, we sketch im-
portant translation, optimization, and execution steps exemplified by the following SQL
query Q1: 

Select B.Title, B.P-Year, B.Publisher, A.Name 
From Books B, Authors A  
Where B.AuthId = A.AuthId And A.Name = ’S*’ And B.Subject = ’DBMS’

It is highly desirable to relieve run time from all preparation aspects of query processing
and to shift as much of it as possible to query compilation time. Therefore, a particular de-
sign objective is to generate for each query a so-called access module (incorporating the
query evaluation plan (QEP)), the operations of which can be directly invoked at the L4
interface (see Fig. 1). Missing (suitable) indexes on Books and Authors would enforce ta-
ble (segment) scans on them in our example. Therefore, let us assume that indexes IAu-
thors(Name) and IBooks(Subject) exist and that, in turn, the optimizer plans a sort/merge
join for the query evaluation. When using I-scans on the given indexes (with start and stop
conditions) for the selection operations, the required sort orders on AuthId do not come for
free. Hence, sorted objects have to be created explicitly in L4, before the join can be pro-
cessed. In turn, the I-scans, which deliver the records to be sorted, fetch them via physical
access paths and storage structures managed by L33. The resulting access module is illus-
trated in Fig. 1. This module directly returns the result set of Q1. Normally, L3 offers a
variety of storage structures which physically embody the indexes or other types of access
paths. The most prominent ones are, of course, the “ubiquitous” B-trees or B*-trees [9]
which grant rapid direct and, equally important, sorted sequential access to the indexed da-
ta. Because they are search trees, they can support range queries or may give the index sort
order to the subsequent QEP operator for free. 

The functionality provided by L3 needs to refer to the physical data of the DB. For this
reason, the DB buffer (as part of L2) acts as the memory interface to the DB on external

3 For example, a list prefetch operator is provided by DB2 to optimize such situations.
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devices and provides access to pages based on explicit request and release (so-called log-
ical page references). Its prime objective is to exploit the (space and time) locality of
DBMS processing (inter- and intra-transaction locality of page references) to minimize the
number of physical page references (usually disk accesses). Because DB buffer space as
well as DB volumes roughly grow at the same pace, the size ratio buffer/DB (memory/stor-
age ratio) remains constant over time—often a ratio of 1:1000 is a good estimate. Hence,
random access to DB pages and random page replacement in the buffer would result in a
hit ratio of 0.1%. Fortunately, the locality of reference and replacement algorithms tailored
to the workload characteristics reduce the number of physical page references that hit ra-
tios of 95% and higher can normally be expected in the buffer. Nevertheless, large sequen-
tial scans or other “peculiar” access patterns may produce miss ratios close to 100% (in
rare cases). Despite the query optimization in L5, the following extreme cases may occur
for the evaluation example of Q1: All index pages and all referenced data pages are located
in the DB buffer and enough memory space can be provided for the sorts. In the other ex-
treme, each logical page reference requires a physical page reference. For large intermedi-
ate record sets, even external sort/merge operations may be anticipated.

Because modified pages have to be propagated back to external storage, the output of a
modified page may precede each physical page reference to make room for the requested
page in the buffer. Special L2 functionality may be dedicated to recovery provisions from
failures [24]. In contrast, L1 encapsulates number, type and location of external devices.
It may be implemented directly above the raw disk interface or, more frequently, perform
its task in cooperation with the OS file management. Even in the L1 layer, dedicated de-
vices, tailored file clustering or declustering measures (depending on disk access frequen-
cies or set-oriented and parallel access interfaces [60]) or block mapping techniques re-
garding special workload characteristics [58] have a major impact on query processing.

Fig. 1   Access module for query Q1

Open Scan (IBooks(Subject), Subject = ’DBMS’, Subject > ’DBMS’)  /* SCB1 */
Sort Access (SCB1) ASC AuthId Into T1 (AuthId, Title, P-Year, Publisher)
Close Scan (SCB1)
Open Scan (IAuthors(Name), Name >= ’S’, Name > ’S’) /* SCB2 */
Sort Access (SCB2) ASC AuthId Into T2 (AuthId, Name)
Close Scan (SCB2)
Open Scan (T1, BOF, EOF) /* SCB3 */
Open Scan (T2, BOF, EOF) /* SCB4 */
While Not Finished
Do

Fetch Tuple (SCB3, Next, None)
Fetch Tuple (SCB4, Next, None)
. . . 

End
6



2.3 Number of Layers Reconsidered

Ideal layers strictly enforcing the Parnas’ use relation behave like abstract machines where
the abstract machine of layer i+1 is implemented by using the abstract machine of layer i.
Hence, in the worst case, six formal interfaces have to be crossed before data stored on disk
is reached to evaluate a DB request. This performance-critical observation prompts us to
reconsider the number of system layers. On the one hand, a growing number of layers re-
duces the complexity of the individual layers which, in turn, facilitates system evolution.
On the other hand, a growing number of interfaces to be crossed for the DB request exe-
cution increases the run-time overhead and generally reduces the DBMS optimization po-
tential. Due to the ideal layer encapsulation, each service invocation implies parameter
checking, additional data transport, and more difficult handling of non-local errors. For ex-
ample, the requested data has to be copied—in its layer-specific format—from layer to lay-
er up to the requestor. In the same way, data modified has to be propagated—again in its
layer-specific format—eventually down to the disk. Hence, the number of layers seems to
have a major influence on the overall system performance4. Above all, data copying and
update propagation should be minimized across the system layers. However, our proposed
architectural DBMS model is already a compromise between layer complexity/system
evolution potential and request optimization/run-time overhead, as far as adequate data
mapping is concerned. 

Our discussion in section 2.2 already revealed the way to reduce the performance penalty
introduced by the layered structure of our model. Based on these observations, we propose
run-time optimizations to our static five-layer model leading to two or three effective lay-
ers in the dynamic case. As illustrated in Fig. 2, L5 is replaced by the access module whose
operations directly refer to the L4 interface. At the other side, the use of a large DB buffer
effectively reduces disk accesses such that almost all logical page references can be locat-
ed by L2 in memory.

4 For DBMSs, it is especially true: “Performance is not everything, but without performance everything is worth
nothing.”

L4

L3

L2

DB request

large
DB buffer

Fig. 2   Dynamic DBMS model at run time

. . . . . .
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There are precompilation approaches conceivable where the access module directly maps
the SQL requests to the L3 interface to further save the crossing of the L4 interface. Hence,
query preparation is pushed as far as possible. Even ad-hoc queries may be prepared in this
way, because it turned out that generated access code is more effective than query inter-
pretation. In this way, the extra cost of preparation (which extends the query response time
in this case) is quickly amortized especially when large sets of records have to be
accessed [7]. On the other hand, some systems pass on query preparation (at program com-
pile time) and use—at the cost of extending the query response time—interpreters which
can be understood as replacements of L5 at run time. An interpreter is a general program
which, in this case, accepts any SQL statement as input and immediately produces its que-
ry resultthereby referring to the L4 interface. Mixed approaches use a preparation phase at
compile time, but do not go to the extreme—the access module. They prepare intermediate
query artifacts such as query graphs or execution plans in varying details, and use specific
interpreters that “execute” these artifacts at run time by invoking L4 operations (and, in
turn, lower-layer operations). 

2.4 Binding and Information Channels

Compilation and early binding are good ideas. Of course, important aspects have to be ob-
served when dealing with the compilation/optimization problem. Lack of run-time param-
eter values introduces imprecise selectivity estimates at compile time even for up-to-date
statistical data. Furthermore, all preparation approaches necessarily bind their generated
artifacts to the meta-data valid at preparation time, that is, compilation time in general. Lat-
er changes to the meta-data (table definition alterations, new or dropped index definitions,
etc.) cannot be taken into account; hence, binding makes the artifacts data dependent and
requires an automated compensation mechanism for invalidation/re-preparation. Ideally,
this concept of early binding enhanced with such a compensation should combine the que-
ry evaluation efficiency of compile-time preparation with the convenience and data inde-
pendence of late binding, i.e., that of a full interpreter. 

So far, we have avoided to introduce control measures (dependency relationships) across
the system layers, typically necessary to increase query performance/throughput or to
guarantee specific system properties, e.g., dependencies to realize some functionality for
load control or ACID protection. Hence, a real DBMS implementation will soften the
claims of our explanation model strictly adhered to the information hiding and hierarchical
layer principles. Normally, a few carefully selected dependencies or mechanisms have to
be provided for control and optimization measures across system layers, that is, we need a
few “vertical” information channels. For example, when the hot set model [52] is used to
make frame reservations supporting specific QEPs in the DB buffer, query optimization in
L1 has to communicate some hints to L4. On the other hand, thrashing behavior in the DB
buffer or extreme situations for lock contention (occurring in lower layers) need an infor-
mation channel to the load control and transaction entry queue allocated in L1.
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2.5 Extensions and Optimizations 

While the explanation model concerning the DBMS architecture is still valid, an enormous
evolution/progress has been made during the last two decades concerning functionality,
performance, and scalability. The fact that all these enhancements and changes could be
adopted by the proposed architecture, is a strong indication that we refer to a salient DBMS
model. We cannot elaborate on all extensions, let alone to discuss them in detail, but we
want to sketch some major improvements/changes.

20 years ago, SQL—not standardized at that time—and the underlying relational model
were simple. Today, we have to refer to SQL:1999 or SQL:2003 and an object-relational
model which are complex and not well understood in all parts. Many of the new aspects
and functions—such as user-defined types, type and table hierarchies, recursion, con-
straints, triggers—have to be adjusted in L5. While initially query translation and optimi-
zation started with solid foundations [55, 39, 34], enabled the integration of new mecha-
nisms, and could be successfully improved [41], in particular, by using refined statistics
(in particular, histograms [35]), some of the new language concepts turn out to be very
hard for the optimization. For example, SQL’s new landmark concept of user-defined
types—despite some proposals such as enhanced abstract data types [56]—is not solved at
all. Rule-based optimizers are here foredoomed because sufficiently general rules cannot
be provided for them. In contrast, user-defined types have to carry their own cost model to
be integrated by cost-based optimizers, which is no general proceeding: first, the “type”
writers have to deliver the complex cost models and, second, many of the models’ param-
eters are hard to determine at run time. 

Work on building effective optimizers for dynamic QEPs to address the problem of chang-
es in resource availability [17] or to “reduce the braking distance” of the query engine [6]
is in progress, but far away from the point where practical techniques are ready for their
use in products. Proposals typically leave resource availability to the individual algo-
rithms, rather than to arrange for dynamic plans with alternative algorithms or alternative
plan shapes. Available adaptive techniques (in L4) are not only related to the internal be-
havior of single algorithms (operators), but also among operators within a single query and
among multiple concurrent queries. Furthermore, new dynamic optimization opportunities
come up, for example, for special query types where the result set is characterized by “N
tuples only” or “top/bottom N tuples”. The challenge for the optimizer is to provide dy-
namic QEPs that try to stop the evaluation when the size N is reached. New partition-based
techniques or even a kind of “gambling” help to reduce the wasted sorting and/or joining
effort. 

DB research delivered new algorithms to improve and extend the functionality in L4 for
SQL’s standard operations required. Hash joins are a success [57] and complement each
sufficiently broad and efficient DBMS implementation. Furthermore, functionality for
“arbitrary” join predicates, reuse of intermediate query evaluation results, sorting (inter-
nally usually optimized for relatively small sets of variable length records in memory as
well as external sort/merge), etc. was improved and much better integrated. In particular,
space-adaptable algorithms contribute to great improvements and support load balancing
9



and optimized throughput, even for high multi-programming levels [16]. For example, the
replacement selection sort, which can react to presortedness, dynamically adjusts its mem-
ory requirements to save merge runs [18]. Other adaptive techniques for operators include
setting or adjusting the degree of parallelism depending on the current workload, reorder-
ing and merging ranges to optimize repeated probes into an index, sharing scans among
multiple queries, etc. [17]. On the other hand, the language extensions mentioned above
enforced entirely new functionality to be provided by L4. Support for some of them, close
enough to the original concepts of the relational model, is successfully made available and
extends the spectrum of algorithms towards enabling (originally called) non-standard ap-
plications [26]. Examples include spatial joins [5, 21] or operations supporting functional-
ity for OLAP or data warehouses [36]. However, it seems to be inadequate or even impos-
sible to integrate adjusted operators for the “exploding” set of new types, e.g., video, im-
age, text, audio (referenced by the acronym VITA) and others. For the management and
integration of these kinds of types, see section 5.2. 

All these operations have to be “made efficient” by providing appropriate access paths and
storage structures in L3. A “firestorm” of research in the last two decades tried to respond
to this challenge—partly because the search problems to be solved could be described in
isolation and empirical results could be produced by various kinds of simulation, that is,
without the need to embed the structures into an existing DBMS. A survey article on mul-
tidimensional access methods [15] compared a large set of structures and their genealogy
(with about 200 references published until 1998). Besides the ubiquitous B-tree and maybe
some variants of the R-tree and the UB-tree [2], why did these structures not make their
way into L3? Of course, a few of them are successfully integrated into specialized data
handling system (Grid, Hashing). However, the lion’s share of the proposed access paths
fails to pass the DBMS acid test for various reasons. A suitable method should not be data
dependent (on the value set or UID sequence) and should not require static reorganization.
Moreover, it should not rely on special data preparation and its optimal use should not re-
quire the knowledge on system internals or expert experience. Furthermore, over-special-
ized use and tailoring to narrow applications do not promise practical success in DBMSs5.
Finally, many of these methods (often Ph.D. proposals) disregard the DBMS environment,
where dependencies to locking and recovery issues, integration into optimizer decisions,
support of mixed and unexpected workload characteristics have to be regarded. 

The most drastic improvements occurred at the L2 level—without much endeavor of the
DB researchers. Moore’s Law did the job, because the available memory is now increased
by a factor of 104. Therefore, DB buffer sizes may now range in the area of up to 1–10
million frames while, in the same period, the individual frame size has grown from 2K to
8K–32K bytes. The classical demand-driven replacement algorithms were enhanced by
ideas combining LRU together with reference density, e.g., in the form of LRU-K [45].
Furthermore, they were complemented by various prefetching algorithms and pipelined
double buffering which together can automatically detect and optimize scan-based opera-

5 Optimal support of point queries in high-dimensional spaces (say k in the range of 10–20) and nothing else is
not a broad requirement.
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tions. Buffer allocation algorithms, on the other hand, were proposed to exploit knowledge
of declarative, set-oriented DB languages and may be used in the form of the hot set model.
Finally, the huge DB buffer capacity facilitated the provision of buffer partitions where
each partition can individually be tailored to the anticipated locality behavior of a specific
workload. Nevertheless, buffering demands of VITA applications, considered in various
projects [40], cannot be integrated in any reasonable way into L2, let alone the transfer of
the huge data volumes through the layered architecture up to the application. Again, spe-
cialized handling is mandatory, as discussed in section 5.2. 

While the separation of segments/pages (L2) and files/blocks (L1) opens opportunities for
sophisticated data mappings and update propagations, nothing has really happened in this
part of the architecture. The old and elegant concepts of shadow pages and differential
files, which allow for Atomic update propagation and, depending on the selected check-
point mechanism, for materialized DB states of guaranteed consistency after crashes, were
considered too expensive in the normal DB processing mode. Because failures are very
rare events, normal update propagation uses update-in-place (NonAtomic) and is per-
formed in some optimistic way—with logging as the only failure precaution –, and more
burden is shifted to the recovery and restart phases. 

To conclude our pass through the DBMS layers, L1 was not a focus of interest for DB re-
searchers. OS people proposed various improvements in file systems where only some
were helpful for DB management, e.g., distribution transparency. Log-structured
files [51], for example, turned out to be totally unsuitable. Furthermore, there is still no
transaction support available at this layer of abstraction. However, standard file mapping
was considerably refined - now supporting long fields or large objects (Blob, Clob, DClob)
up to 2G bytes. A lot of new storage technology was invented during the last two de-
cades—disks of varying capacity, form and geometry, DVDs, WORM storage, electronic
disks, etc.. Their integration into our architectural model could be transparently performed
in L1 as far as the standard file interfaces were concerned. New opportunity arrived with
the disk arrays [48] supporting different clustering and declustering strategies at the file
level [61, 62]. To enable parallel access, file interfaces had to be extended at the L1 inter-
face. Their use, possibly exploiting set-oriented and parallel I/O requests, has led to new
algorithms to be allocated in L2.

3 Layered Model and Transactional Properties 

So far, we have discussed an explanation model for the data abstraction hierarchy in a
DBMS. In particular, we have sketched the state of the art reached after 20 or more years
of research and development. However, we have excluded all considerations of the failure
case and the interplay of the transactional properties with the operations at the different ab-
straction levels. As far as ACID is concerned, the layered model again helps to describe
the concepts and to derive appropriate solutions.
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3.1 Atomicity

All transactional properties are not “natural” properties of computer systems. In the pres-
ence of failures we even cannot guarantee atomic execution of instructions or I/O opera-
tions. Hence, these properties have to be accomplished by complex software mappings.
Early attempts to provide atomicity were based on the recovery blocks [50]. However, they
were impractical already for atomic actions in a single layer, let alone for DML operations
executed across several layers or even a set of separate DML operations bracketed into a
transaction. Although atomic propagation of modified blocks/pages can be met by partic-
ular update propagation schemes [24, 19], transaction atomicity must be achieved through
a two-phase commit (2PC) protocol by combined use of concurrency control and logging/
recovery measures. 

3.2 Consistency

The C in ACID guarantees DB schema consistency which is preserved by every successful
transaction. To develop a framework for transaction implementation, we will refine our
notion of consistency. For this purpose, it is helpful to introduce a hierarchy of opera-
tions—I/O operations, elementary actions, actions, DML operations, transactions—which
corresponds to our layered model, a simplified version of which is sufficient for the refined
consideration of transactional aspects. An obvious, but nevertheless important observation
is that a data granule to which an operation has to be applied must be consistent w.r.t. this
operation (operation consistency, layer-specific consistency). After successful execution
it is again operation consistent. In this sense, a transaction can be explained as a hierarchy
of nested atomic actions. Hence, object consistency needs layer-specific consistency of all
layers below. At each level in Fig. 3, we give an example for an operation that requires the
given type of consistency and which preserves it after successful (atomic) completion. 

To reduce the complexity of discussion, Fig. 3 simplifies our five-layer model to the well-
known three-layer model and we will refer to it when appropriate. The lowest layer, called
storage system, comprises L1 and L2. For our ACID considerations, the separation of
blocks and pages would not capture new aspects. On the other hand, in L3, called access
system, we distinguish between elementary action consistency (EAC) and action consis-
tency. A single action (at L3) may cause updates of several pages, for example, when a B-
tree insertion causes page splits, whereas an elementary action is always confined to a sin-
gle page. 

Again, a separate consideration of L4 and L5 would not reveal new insights for ACID, be-
cause their operations affect multiple pages in general. L4 roughly corresponds to a navi-
gational one-record-at-a-time DBMS interface (e.g., for the network or (simple) object-
oriented data models), whereas L5 characterizes declarative set-oriented DBMS interfaces
(e.g., SQL). As indicated by the upper layer in Fig. 3, called data system, single DML op-
erations require and guarantee (DBMS) API consistency. This relationship is emphasized
by the golden rule6 of C. J. Date [10] and explains why integrity constraints attached to
atomic DML operations (statement atomicity in SQL) have to be satisfied at end of oper-
12



ation (e.g., a complex case of it are referential actions). In turn, only “higher” DB schema
constraints can be declared deferrable, to be satisfied later and checked at the latest in the
commit phase to fully guarantee transaction consistency.

3.3 Isolated execution

By passing the I in ACID, we only remark that the operation hierarchy in Fig. 3 is appro-
priate to explain the various conflict serializability models in the context of a DBMS. The
schedules/histories of the page model could be derived by a history writer observing the
interface between access system and storage system, whereas other models would choose
the interfaces of the operations considered. Because only the specification of conflict rela-
tions among concurrent operations—but not their specific semantics—is needed for con-
flict serializability, appropriate protocols achieving transaction isolation can be provided
at any abstraction level. For a comprehensive discussion see the textbook of Gerhard Wei-
kum and Gottfried Vossen [64]. 

20 years ago, multi-granularity locking was the method of choice for multi-user synchro-
nization in DBMSs and, surprisingly, it still is—extended by a larger set of specialized
lock modes. While early DBMSs used the page granule as the smallest lockable unit, today
records or even smaller units are a must to cope with resource contention in an acceptable
manner [44]. Of course, practical progress has been made on efficiently synchronizing op-
erations on special structures (indexes, trees, hot spots) and for specific sequences of ac-
cess requests [42, 43]. Furthermore, multi-version methods currently seem to gain more

6 “No update operation must ever be allowed to leave any relation or view in a state that violates its own pred-
icate. Likewise no update transaction must ever be allowed to leave the database in a state that violates its own
predicate.”
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importance, because plenty of memory allows keeping multiple versions per object to in-
crease the effective level of transaction parallelism. However, considering the myriads of
conflict-serializable synchronization protocols proposed [59], it is humbling how few of
these ideas have entered the DBMS world. 

3.4 Durability

Recording of redundancy during normal processing—to be prepared for the event of fail-
ures—and an application of recovery algorithms in case of a failure remain the standard
measures to achieve durability. Recovery from failures always aims at the most recent
transaction-consistent state of the DB. Because the level-specific operations preserve lay-
er-specific consistency for their data, they can be exploited to extract logging information.
Hence, logging can be performed at each level, as illustrated in Fig. 4.

3.4.1 Logging

Log data is collected during normal processing and applied by the recovery algorithms in
case of a failure. While transaction recovery can refer to the current state of the DB and
use context information, recovery from a crash or a media failure must use the materialized
DB or the archive DB, respectively. Hence, in these cases the DB has to satisfy the corre-
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sponding layer-specific consistency required for the successful application of the log in-
formation to redo or undo the transaction effects at the chosen abstraction level. Therefore,
we establish a strong and performance-critical relationship, in particular, for the crash re-
covery if we select a specific logging method. Furthermore, logging has to observe a num-
ber of rules such that transaction-oriented recovery is possible at any rate [24].

Physical logging is sufficient when device or file consistency can be expected at the time
of crash recovery (restart). In turn, EAC enables physiological logging and LSNs [19]
which leads to the practically most important logging/recovery method. Because the ef-
fects of an elementary action are always confined to a page, non-atomic propagation of
pages to disk is sufficient to enable the corresponding Redo and Undo operations in history
sequence. Hence, physiological logging7—physical to a page, logical within a page there-
by tolerating displacements and rearrangements of data within a page—can be applied.
Furthermore, the use of log sequence numbers (LSNs) allows a simple check at restart of
whether or not the modifications of an elementary action have reached the materialized
DB. In contrast, logical logging implies the atomic propagation of all pages modified by
the corresponding operation to successfully perform Redo or Undo recovery for such op-
erations (actions and operations at higher levels). 

The question is which kind of consistency for the materialized DB can be guaranteed at
restart, i.e., after a crash has occurred? Table 2 summarizes the required logging methods
for a given consistency level.

The converse conclusion is, however, not compelling. For example, if we use DML oper-
ation logging, we do not automatically assure the API consistency for the materialized DB.
Therefore, extra precautions are needed during normal processing. Usually, the higher the
consistency level guaranteed, the more expensive are the mapping and propagation algo-
rithms (e.g., shadow pages, checkpoints) to establish the respective level. If we can rely on
a consistency level at restart, it is possible to choose logging methods corresponding to a
lower consistency level. However, this idea is not cost-effective, because logging costs
typically decrease with increasing consistency levels.

7 Its implementation could be shifted to the buffer manager (fix page, ..., write log), because only objects in in-
dividual pages are involved [29].

Table 2 Consistency and logging

consistency level at restart adjusted log information

file consistency pages (before- and after-images)

elementary action consistency physiological logging

action consistency actions (entries)

API consistency DML operations

transaction consistency transaction program invocations with params
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How do we establish a consistency level of the materialized DB? If a device is destroyed,
we cannot provide the minimum consistency for the logging methods discussed. There-
fore, we must usually8 perform recovery algorithms tailored to device failures, the so-
called media recovery with archive DB and archive log. In the following, we assume file
consistency as a minimum consistency level.

3.4.2 Non-atomic Update Propagation

If we use non-atomic propagation methods, the DB is only file consistent when a crash
occurs; all individual blocks are readable, but they are nicknamed as chaos consistent, be-
cause the DB contains actual, outdated, and invalid blocks. But the correctness of non-
atomic propagation methods does not rely on specific requirements of page I/O, because
the corresponding recovery methods based on logging of pages or elementary actions can
be correctly applied to individual pages only. 

If all before- and after-images of the modified pages are logged, which is extremely ex-
pensive and log-space consuming, entire pages can be exchanged and transaction-oriented
recovery is possible. Another significant cost factor is given by the minimum lock granule9

implied by page locking. Physiological logging brings a substantial improvement, because
an Undo and a Redo of modifications in elementary-action-consistent pages can be per-
formed based on a space-saving logging method. Using LSNs, the recovery manager can
efficiently decide whether an Undo or a Redo operation has to be applied to a page ad-
dressed, even for lock granules smaller than a page. 

3.4.3 Atomic Update Propagation

Because operations in higher system layers may affect multiple pages, the corresponding
recovery operations based on the resp. logging methods imply the existence of the entire
data granule. For this reason, the set of resp. pages must be completely or not at all in the
materialized DB, a property which can only be obtained by checkpointing and atomic
propagation methods [24]. Referring to Fig. 4, action consistency for pages to be recovered
is accomplished when the set of pages involved in an update action is either completely in
the materialized DB or not at all; this is obtained by action-consistent checkpoints. Then
all effects of the actions starting from this checkpoint can be repeated or undone on this
DB state. The same is true for DML operations with API-consistent checkpoints or trans-
actions with transaction-consistent checkpoints. Because only entire pages can be written
to disk, checkpointing has to be synchronized with concurrency control; otherwise, large
lock granules (at least page locks) have to be applied which enforce serial operations in
pages.

It is interesting to note that higher-level operation-consistent DB states can be reconstruct-
ed (Redo) based on physiological logging and LSNs. As a consequence, Undo operations

8 In special cases of destroyed blocks, page logging may work if the entire block can be replaced.
9 The lock granule must be larger or equal to the log granule used [24], see appendix.
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are possible using operation-consistent logical logging methods [29]. As a prerequisite,
only pages with operation-complete modifications must reach the disk which can be
achieved by fixing all pages involved in an update until the end of the specific operation
(which is trivially satisfied for elementary actions). However, this idea becomes quickly
impractical with growing operation granules. At the level of DML operations, this would,
for example, require a “long-term ” buffer fixing of all pages involved in a set-oriented up-
date request.

3.4.4 The Winner Solution

In early DBMSs, logging/recovery schemes were rather simple, exhibiting little or no op-
timization. They were often dominated by non-atomic propagation and page logging
which implied page locking as a minimal granularity (see appendix). Therefore, they were
neither efficient nor elegant. An exception was System R which implemented an atomic
recovery scheme [4] whose atomicity mechanism was based on shadow pages [38]. Em-
pirical studies [8] certified its high overhead during normal processing. Furthermore, the
presence of rapidly growing DB buffers made direct checkpoints infeasible for interactive
DB processing. As a consequence, no effective solution exists for atomic propagation
schemes eliminating, in practice, all recovery methods which require higher DB consisten-
cy levels at restart (logging granularity: transaction, DML operation, action). It is safe to
say that all clean and elegant crash recovery solutions do not pay off (e.g., Atomic,
NoSteal, Force [24]). Hence, they disappeared from the DBMS world. Nowadays, non-
atomic propagation, also compatible with indirect checkpointing techniques, is the clear
winner in this area. Hence, the best performing recovery schemes, which effectively cope
with huge buffers and unburden normal processing with logging-related I/O overhead, are
characterized by NonAtomic, Steal, NoForce supported by Fuzzy checkpoints and some
more I/O saving tricks [43]. 

4 Architectural Variants 

Up to now, we have intensively discussed the questions of data mapping and transactional
support in a centralized DBMS architecture. In the last two decades, however, a variety of
new data management scenarios emerged in the DBMS area. How can these be linked to
the core issues of our architectural discussion so far? 

A key observation is that the invariants in database management determine the mapping
steps of the supporting architecture. In our case, we started with the primary requirement
of navigational or set-oriented processing of record-like data which led to the layered ar-
chitecture sketched in Fig. 2 and 4. In many of the new data management scenarios, the
basic invariants still hold true: page-oriented mapping to external storage, management of
record-oriented data, set-oriented database processing. Hence, we should be able to iden-
tify the resp. layers/components in the evolved architectures and to explain the similarity
in database processing using their architectural models.
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4.1 Horizontal Distribution of DB Processing

A variety of DB processing scenarios can be characterized as the horizontal distribution of
the entire DB functionality and of partitioned/replicated data to processing nodes connect-
ed by a network. As a consequence, the core requirements remain, leading to an architec-
tural model sketched in Fig. 5, which consists of identical layered models for every node
together with a connection layer responsible for communication, adaptation, or mediation
services. In an implementation, this layer could be integrated with one of the existing lay-
ers or attached to the node architecture to encapsulate it for the remaining system. 

Shared-nothing DBMSs partition their data and need some functionality to decompose DB
requests, forward them to the corresponding node, and assemble the answers to the query
result thereby providing a local and homogeneous view of the entire DBMS to the user
(single system view). While the functionality of the individual nodes essentially remains
unchanged, some new cross-node tasks are needed for optimal DBMS processing, e.g.,
load balancing, global query optimization in addition to the local one, deadlock detection,
2PC protocol, global recovery precautions, etc. [37]. For shared-disk DBMSs, the adjust-
ment and coordination aspects are primarily in the area of buffer management and once
more in the failure recovery from individual node crashes [49]. In contrast, parallel
DBMSs provide their services to run identical operations on partitioned data in parallel (da-
ta parallelism) or to apply intra-operation parallelism to the same data. Hence, the major
challenge is to decompose a problem for a large number of processors and to coordinate
them such that a linear scale-up or speed-up is achieved [12]. 

When heterogeneity of the data models or autonomy of database systems comes into play,
the primary tasks of the connection layer are concerned with adaptation and mediation.
Federated DBMSs represent the entire spectrum of possible data integration scenarios and
usually need an adjustment of the DB requests at the level of the data model [49] or a com-
pensation of functionality not generally available. As opposed to the distributed homoge-
neous DBMSs, some users (transactions) may only refer to a local view thereby abstaining
from federated services, while, at the same time, other users exploit the full services of the
data federation. The other extreme case amang the federation scenarios is represented by

access system

data system

storage system

access system

data system

storage system

communication / adaptation / mediation

. . . 

Fig. 5   Horizontal DBMS distribution
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Multi-DBMSs, for which the connection layer primarily takes over the role of a global
transaction manager passing unmodified DB requests to the participating DB servers [54].

4.2 Vertical Distribution of DBMS Processing

The typical (most important) representatives of this class of DBMS architectures belong
to the so-called client/server DBMSs. Their major concern is to make DBMS processing
capacity available close to the application in the client (computer). Usually, client/server
DBMSs are used in applications relying on long-running transactions with a checkout/
checkin mechanism for (versioned) data. Hence, the underlying data management scenar-
ios are tailored to engineering applications [23]. As indicated in Fig. 6, various forms of
this architectural variant exist [28]. They are characterized by DBMS-controlled data or
object buffers at the client side to exploit data reference locality as the major mechanism
to enhance performance. The most sophisticated one is the query server, in its functionality
comparable to DBMS kernel architectures [53]. Its real challenge is declarative, set-orient-
ed query processing thereby using the current content of the query result buffer [11]. 

Until recently, query processing in such buffers was typically limited to queries with pred-
icates on single tables (or equivalent object types). Now, a major enhancement is pursued
in scenarios called database caching. Here, full-fledged DBMSs, used as DB frontends
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close to application servers in the Web, take over the role of cache managers for a backend
DB. As a special kind of vertical distribution, their performance-enhancing objective is to
evaluate more complex queries in the cache which, for example, span several tables orga-
nized as cache groups by equi-joins [31]. While the locality preservation of the query result
buffer in query servers can take advantage of application hints [11], adaptivity of database
caching is a major challenge for future research [1]. Furthermore, precise specification of
relaxed currency and consistency of data is an important future task to better control the
widespread and growing use of distant caches and asynchronous copies [22].

5 New Architectural Requirements

So far, our architectural layers perfectly match the invariants of set-oriented, record-like
database management such that they could be reused more or less unchanged in the out-
lined DBMS variants. However, recent requirements strongly deviate from this processing
paradigm. Integration efforts developed during the last 10 years were primarily based on
a kind of loose coupling of components—called Extenders, DataBlades, or Cardridges—
and a so-called extensibility infrastructure. Because these approaches could neither fulfil
the demands for seamless integration nor the overblown performance and scalability ex-
pectations, future solutions may face major changes in the architecture. 

5.1 XTC Architecture

First attempts to provide for DB-based XML processing focused on using the lower layer
features of relational DBMSs (RDBMSs) such that roughly the access and storage system
layers were reused and complemented by the data system functionality tailored to the de-
mands of the XML data model (e.g., DOM, SAX, XQuery). This proceeding implied the
mapping (called “shredding”) of XML document structures onto a set of tables for which
numerous proposals were published [14]. 

Although viable within our five-layer architecture (by reusing L1 to L4), this idea had se-
rious performance trade-offs, mainly in the areas of query optimization and concurrency
control. New concepts and implementation techniques in the reused layers are required to
achieve efficient query processing. For these reasons, so-called native XML DBMSs
(XDBMSs) emerged in recent years, an architectural example of which is illustrated in
Fig. 7. The current state of the XTC architecture (XML Transaction Controller [30]) per-
fectly proves that native XDBMSs can be implemented along the lines of our five-layer
architecture. Special mappings of XML documents to trees of records and, in turn, to con-
tainer files which contribute to excellent storage utilization [30] as well as fine-grained
concurrency control are characteristic for the XTC architecture. Furthermore, the use of
the Dewey numbering system supports dynamic modifications of the XML structure at any
document location thereby enabling the setting of locks along the entire ancestor path
(through their identifier structure) without the need to access the XML document [29]. 
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The issues of a simultaneous support of XML and relational database management were
explored in [32]. Questions controversially discussed so far are “Will the DBMSs of the
future be hybrids, storing both relational and XML data?” or “Will everything be stored in
XML format?” making myriads of SQL systems “legacy applications”. Besides hybrid ar-
chitectures which map XML documents and tables by separate storage and access systems
and support coexistence/combination of DB requests of both kinds, a futuristic scenario
motivated by the latter question was discussed under the name ROX: Relational over
XML. While XML operations on native XML structures are the target of optimization in
XDBMSs, such future DBMS architectures represent mixed SQL and XQuery systems to
run SQL applications on native XML or on hybrid structures concurrently. Mapping SQL
requests onto XQuery and attaining high-performance transaction workloads as familiar
from RDBMSs on native XML document trees would probably lead to a kind of “killer
application”. However, it seems to be very unlikely that query evaluation efficiency and
concurrency control optimization common in RDBMSs can be achieved by a system
which needs additional layers for the SQL/XQuery mapping on top of those in Fig. 7. 

5.2 The Next Database Revolution Ahead?

The discussion above has revealed that even XML data cannot be adequately integrated
into the original layer model because the processing invariants, especially those of access
and data system, valid in record-oriented DBMS architectures do not hold true for docu-
ment trees with other types of DB requests. Furthermore, what has to be done when the
conceptual differences of the data types such as VITA or data streams are even larger?
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Because the new data types can often only reuse the external storage mapping, specialized
higher-level layers have to be implemented for each of them. For example, VITA types
managed in tailored DB buffers are typically delivered (in variable-length junks) to the ap-
plication thereby avoiding additional layer crossings. In turn, to avoid data transfers, the
application may pass down some operations to the buffer to directly manipulate the buff-
ered object representation. Hence, Fig. 8 illustrates that the OS services or, at best, the stor-
age system represent the least common denominator for the desired DBMS extensions. 

If the commonalities in data management invariants for the different types and thus the re-
use opportunities for functionality are so marginal, it makes no sense to squeeze all of them
into a unified DBMS architecture. As a proposal for future research and development, Jim
Gray sketched a framework leading to a diversity of type-specific DBMS archi-
tectures [20]. As a consequence, we obtain a collection of heterogeneous DBMSs which
have to be made accessible for the applications—as transparently as possible by suitable
APIs. Such a collection embodies an “extensible object-relational system where non-pro-
cedural relational operators manipulate object sets. Coupled with this, each DBMS is now
a Web service” [20]. Furthermore, because they cooperate on behalf of applications, ACID
protection has to be assured for all messages and data taking part in a transaction. 

5.3 Dependability versus Adaptivity

Orthogonal to the desire to provide functional extensions, the key role of DBMSs in mod-
ern societies places other kinds of “stress” on their architecture. Adaptivity to application
environments with their frequently changing demands in combination with dependability
in critical situations will become more important design goals—both leading to contradict-
ing guidelines for the architectural design. 

So far, information hiding and layers as abstract machines were the cornerstones for the
design of large evolutionary systems. Typically, adaptable component (layer) behavior

Fig. 8   Desirable extensions for future DBMS architectures

access system

data system

storage system

no
tif

ic
at

io
n

tra
ns

ac
tio

ns
/u

til
iti

es

pr
oc

ed
ur

es

qu
eu

es

X
M

L

ET
L/

cu
be

s

re
pl

ic
at

io
n

V
IT

A

tim
e/

sp
ac

e

st
re

am
in

g/
pu

b&
su

b

. . .
22



cannot be achieved by exploiting local “self”-observations (knowledge) alone. Hence, au-
tonomic computing principles applied to DBMS components require more information ex-
change across components (introducing additional dependencies) to gain a more system-
oriented view when decisions relevant for behavioral adaptations have to be made. For ex-
ample, optimized dynamic index selection, i.e., whether a new index for a table is cost-ef-
fective, cannot be performed by the index manager alone. Several components have to col-
lect statistical data to identify potential costs and savings caused by new indexes, before a
“performance planner” decides that such an adaptation measure is beneficial for the entire
system behavior. Or the resolution of overload conflicts due to lock contention can only
be handled by a cooperation of the lock manager and load balancer. For these reasons, on-
line feedback control loops consisting of observation, analysis, planning, and reaction
were proposed for achieving the “self-*” system properties in [63] which, however, am-
plify the information channels across system layers. 

On the other hand, too many information channels increase the inter-component complex-
ity and are directed against salient software engineering principles for highly evolutionary
systems. In this respect, they work against the very important dependability objective
which is much broader than self-tuning or self-administration. To develop future DBMSs
which can be defined as “dependable = self-* + trouble-free” , Gerhard Weikum et al. call
for a highly componentized system architecture with small, well-controlled component in-
terfaces (as narrow as possible) and limited and relatively simple functionality per compo-
nent which implies the reduction of optional choices [63]. On the other hand, most self-*
properties are not easily amenable to mathematical modeling and run-time analysis, be-
cause they are non-functional in general. The giant chasm to be closed results from diverg-
ing requirements: growing system complexity due to new extensions and improved adap-
tivity as opposed to urgent simplification needs mandatory for the development of depend-
able systems. 

6 Conclusions and Outlook

In the tradition of [3], we looked at the progress of database research and development
which happened in the 20 years of history of the BTW—the German conference “Database
Systems in Business, Technology, and the Web”. Because of the growing breadth and
depth of the database area, this paper primarily focused on the developments concerning
the DBMS architecture for the declarative and set-oriented (relational) processing para-
digm of record-like structures. We showed that the five-layer hierarchical model proposed
more than 20 years ago was able to accommodate all the extensions and optimizations for
the originally established paradigm. Even new data management scenarios incorporating
the processing invariants of our five-layer model could be well embraced by architectural
variants of it. 

The more the integration of new data types required new processing invariants, the less our
architecture was able to accommodate them. It is an open question how the architecture for
an extensible object-relational system where non-procedural relational operators manip-
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ulate object sets will evolve in detail. Furthermore, a future architecture has to observe the
implications of autonomic and trouble-free computing even under various forms of “pres-
sures” and deliberate attacks, that is, it has to be guided by data independence and evolu-
tion and, at the same time, developed along the lines of adaptivity and dependability. At
any rate, the good news for all DB researchers is that there are plenty of challenges still
ahead in the area of DBMS architecture.

Acknowledgements. Discussions with Stefan Deßloch, Jernej Kovse, Bernhard
Mitschang, and Joachim Thomas who also carefully read a preliminary version helped to
shape the paper and to improve its final version. 

Appendix: The Ten Commandments10

General Rules

I. Recovery based on logical logging relies on a matching operation-consistent state of
the materialized DB at the time of recovery.

II. The lock granule must be at least as large as the log granule.
III. Crash recovery under non-atomic propagation schemes requires Redo Winners resp.

Redo All (repeatable history) before Undo Losers, whereas the order of Undo and
Redo is irrelevant under atomic schemes. 

Rules for Undo Recovery

IV. State logging requires a WAL protocol (if pages are propagated before Commit).
V. Non-atomic propagation combined with logical logging is generally not applicable

(for Redo and Undo recovery). 
VI.  If the log granularity is smaller than the transfer unit of the system (block size), a sys-

tem crash may cause media recovery.
VII. Partial rollback within a transaction potentially violates the 2PL protocol (program-

ming discipline necessary).

Rules for Redo Recovery

VIII. Log information for Redo must be collected independently of measures for Undo.
IX. Log information for Redo must be written at the latest in phase 1 of Commit.
X. To guarantee repeatability of results of all transactions using Redo recovery based

on logical logging, their DB updates must be reproduced on a transaction basis (in
single-user mode) in the original Commit sequence.

10 Theo Härder, Andreas Reuter: A Systematic Framework for the Description of Transaction-Oriented Logging
and Recovery Schemes, Internal Report DVI 79-4, FG Datenverwaltungssysteme I, TH Darmstadt, Dec. 1979.
Commandments I and V are valid for logical and physical transition logging. The latter based on EXOR dif-
ferences does not seem to be used anymore in DBMSs [28].
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