
Layered DBMS Architecture

Theo Härder

DBMS Architecture—the Layer Model
and its Evolution
More than two decades ago, DB re-
searchers faced up to the question of how
to design a data-independent database
management system (DBMS), that is, a
DBMS which offers an appropriate appli-
cation programming interface (API) to
the user and whose architecture is open
for permanent evolution. For this pur-
pose, an architectural model based on
successive data abstraction steps of
record-oriented data was proposed as
kind of a standard and later refined to a
five-layer hierarchical DBMS model. We
review the basic concepts and implemen-
tation techniques of this model and sur-
vey the major improvements achieved in
the system layers to date. Furthermore,
we consider the interplay of the layered
model with the transactional ACID prop-
erties and again outline the progress ob-
tained. In the course of the last 20 years,
this DBMS architecture was challenged
by a variety of new requirements and
changes as far as processing environ-
ments, data types, functional extensions,
heterogeneity, autonomy, scalability, etc.
are concerned. We identify the cases
which can be adjusted by our standard
system model without the need of major
extensions or other types of system mod-
els.1

1 Motivation

In the seventies, the scientific discussion
in the database (DB) area was dominated
by heavy arguments concerning the most
suitable data model, sometimes called a
religious war. It essentially focussed on
the question of which abstraction level is
appropriate for a DB application pro-
grammer. The network data model seems
to be best characterized by »the more
complex the pointer-based data structure,
the more accurate is the mini-world rep-
resentation«. However, it offers only
very simple operations forcing the pro-
grammer to navigate through cursor-con-
trolled data spaces. In contrast, a »data

1. This contribution is the first part of an extend-
ed version of [Härder 2005].
Datenbank-Spektrum 1
structure of spartan simplicity« (E. F.
Codd) and value-based relationship rep-
resentation are provided by the relational
data model. Each additional embellish-
ment (modeling option) needs additional
operations and thus leads to greater mod-
el complexity. Because the result of ev-
ery DB operation is a table (a multi-set of
an unnamed type in SQL), it offers the
closure property which was a prerequisite
for its practically very significant concept
of views. In that time, the decision con-
cerning the most appropriate data model
could be pinpointed to »record orienta-
tion and pointer-based, navigational use«
vs. »set orientation and value-based, de-
clarative use«. Far ahead of the common
belief of his time, E. F. Codd taught us
that simplicity is the secret of data inde-
pendence—a property of the data model
and the database management system
(DBMS) implementing it. A high degree
of data independence is urgently needed
to let a system »survive« the permanent
change in computer science in general
and in the DB area in particular.

How should we design a DBMS
whose architecture is open for permanent
change or evolution? More than two de-
cades ago, this was already a difficult
question, because nobody knew what
permanent change means. On the other
hand, it was rather simple compared to
the time being, because we only thought
about storing and managing objects of the
relational or network (or hierarchical)
data models, that is, sets of simply struc-
tured records or tables. Nowadays, how-
ever, important DBMS requirements in-
clude data streams, unstructured or semi-
structured documents, time series, spatial
objects, and so on. What were the recom-
mendations to achieve the system proper-
ties for which the terms physical and log-
ical data independence were coined?

It is immediately clear that a mono-
lithic approach to DBMS implementation
is not very reasonable. It would mean to
map the data model functionality (e.g.,
SQL) in a single step to the interfaces of-
fered by external storage devices, e.g.,
read/write block. As we have experi-
enced during the last decades, DBMSs
have a lifetime >20 or even >30 years. In
that time, system evolution requirements
were abundant: growing information de-
mand led to enhanced standards with new
object types, constraints, etc.; advances
in research and development bred new
storage structures and access paths, etc.;
rapid changes of the technologies used
and especially Moore’s law had far-
reaching consequences on storage devic-
es, memory, connectivity (e.g., Web), and
so on. But what are the guidelines of sys-
tem development in such a situation to be
anticipated?

The ideas of structured programming
and information hiding were corner-
stones guiding the way of development.
»The Goto Statement Considered Harm-
ful« [Dijkstra 1968] was translated into
the DB world as the battle cry »Pointers
are the Evil!«. On the other hand, the con-
cept of information hiding introduced by
[Parnas 1972] was widely accepted in ac-
ademic circles as a software design prin-
ciple. However, most industrial software
developers did not apply the idea and
many considered it unrealistic.2 Parnas
convinced us of the advantages of the use
relation3 [Parnas & Siewiorek 1975] to
be applied to hierarchical layers of large
software systems. Developing a hierar-
chically structured system offers the fol-
lowing important benefits:
• The implementation of higher-level

system components is simplified by
the usage of lower-level system com-
ponents.

• Lower-level system components are
independent of functionality and mod-
ifications in higher-level system com-
ponents.

• Testing of lower-level system compo-
nents is possible, before the higher
system levels are put into use.
The resulting abstraction hierarchy

hides some properties of a system level
(an abstract machine) from higher-layer
machines. Furthermore, the implementa-
tion of higher-level operations extends
the functionality of an abstract machine.

2. taken from a Parnas’ talk Modularization by
Information Hiding: The napkin of doom—
Compiler and database experts have a
lunch.They exchange a control block format
on a napkin. Napkin is punched, copied, and
filed. Format changes, but napkin does not.
Components are coupled and don‘t work.
They had to do something. I did not know
what they should have done. (www.sdm.de/
download/sdm-konf2001/f_3_parnas.pdf)

3. »Module A uses module B, if A calls B and the
complete execution of A requires the correct
execution of B.«
1

Layered DBMS Architecture

 Table 1: Description of the DBMS mapping hierarchy

Level of abstraction Objects Auxiliary mapping data

L5 Nonprocedural or
algebraic access Tables, views, tuples Logical schema description

L4 Record-oriented,
navigational access

Records, sets,
hierarchies, networks

Logical and physical
schema description

L3 Record and access
path management

Physical records,
access paths

Free space tables, DB-key
translation tables

L2 Propagation control Segments, pages DB buffer, page tables

L1 File management Files, blocks Directories, VTOCs, etc.
System evolution is often restricted to the
internals of such abstract machines when,
for example, a function implementation
is replaced by a more efficient one. In
case new functionality extends their in-
terfaces, the invocation of these opera-
tions implies »external« changes which
are, however, limited to the next higher
layer.

But how can these concepts and ob-
jectives be accomplished? Although it is
fundamentally true that »systematic ab-
straction is the prime task of computer
science« (H. Wedekind), it is always very
hard to translate the appropriate abstrac-
tion into a system structure. Did this
multi-level information-hiding approach
fulfil the far-reaching expectations dur-
ing the last 20 years we try to look back
to?

In section 2, we review the concepts
of the five-layer hierarchical DBMS
model and use it as an explanation model
for run-time aspects, binding and infor-
mation-flow dependencies. Furthermore,
we survey the major improvements
achieved in the various layers in the
course of the past two decades. In section
3, we consider the interplay of the layered
model with the transactional ACID prop-
erties and again outline the progress
achieved. Section 4 discusses a variety of
DBMS architectures where our layered
model can be used to describe the map-
ping abstractions and to gain better in-
sight into the operations modeled, before
we briefly summarize our findings in sec-
tion 5.

2 Hierarchical DBMS
Architecture

2.1 Static Engine Architecture

Given the arguments introduced so far, it
was clear to select a multi-layered hierar-
chical architecture to implement a cen-
tralized DBMS. However, when starting
with a concrete design, many questions
with no obvious answer emerged. How
many layers are adequate for the entire
DB-mapping process? What is an appro-
priate decomposition of DBMS function-
ality into individual layers? Do we have
to provide auxiliary mapping data or
meta-data for each layer separately or is a
centralized meta-data repository more
appropriate? Where do we allocate the
transaction functionality, i.e., the ACID
properties? And many questions more...
2

Mike Senko developed initial archi-
tectural concepts which resulted in the
Data Independent Accessing Model
[Senko et al. 1973]. DIAM consists of
four hierarchically layered levels called
entity set model, string model, encoding
model, and physical device level model.
Some years later, [Härder & Reuter
1983b, 1985] refined these ideas and pro-
posed a mapping model or reference ar-
chitecture consisting of five layers de-
picted in Table 1. The architectural de-
scription embodies the major steps of
dynamic abstraction from the level of
physical storage up to the user interface.
At the bottom, the database consists of
huge volumes of bits stored on non-vola-
tile storage devices, which are interpreted
by the DBMS into meaningful informa-
tion on which the user can operate. With
each level of abstraction (proceeding up-
wards), the objects become more com-
plex, allowing more powerful operations
and being constrained by a growing num-
ber of integrity rules. The uppermost in-
terface supports a specific data model, in
our case by a declarative data access via
SQL.

The bottom layer, called File Man-
agement, operates on the bit pattern
stored on some external, non-volatile
storage device. Often in collaboration
with the operating system’s file manage-
ment, this layer copes with the physical
characteristics of each type of storage de-
vice. Propagation Control as the next
higher layer introduces different types of
pages which are fixed-length partitions of
a linear address space and mapped into
physical blocks which are, in turn, stored
on external devices by the file manage-
ment. The strict distinction between pag-
es and blocks offers additional degrees of
freedom for the propagation of modified
pages. For example, a page can be stored
in different blocks during its lifetime in
the database thereby enabling atomic
propagation schemes (supporting failure
recovery based on logical logging, see
section 3.4). To effectively reduce the
physical I/O, this layer provides for a
(large) DB buffer which acts as a page-
oriented interface (with fix/unfix opera-
tions) to the fraction of the DB currently
resident in memory.

The Record and Access Path Man-
agement implements mapping functions
much more complicated than those pro-
vided by the two subordinate layers. For
performance reasons, the partitioning of
data into segments and pages is still visi-
ble at this layer. It has to provide cluster-
ing facilities and maintain all physical
object representations, that is, data
records, fields, etc. as well as access path
structures, such as B-trees, and internal
catalog information. It typically offers a
variety of access paths of different types
to the navigational access layer. Especial-
ly with the clustering options and the pro-
vision of flexibly usable access paths that
are tailored to the anticipated workloads,
this layer plays a key role for the entire
DBMS performance.

The Navigational Access Layer maps
physical objects to their logical represen-
tations and vice versa. At this interface,
the user (or the modules at the next higher
layer) navigates through a hierarchy or
network of logical records or along logi-
cal access paths using scans of various
types. A special ability is to dynamically
order (sort) sets of records to support
higher operations such as sort/merge
Datenbank-Spektrum 1

Layered DBMS Architecture

Open Scan (IBooks(Subject), Subject = ’DBMS’, Subject > ’DBMS’) /* SCB1 */
Sort Access (SCB1) ASC AuthId Into T1 (AuthId, Title, P-Year)
Close Scan (SCB1)
Open Scan (IAuthors(Name), Name >= ’S’, Name > ’S’) /* SCB2 */
Sort Access (SCB2) ASC AuthId Into T2 (AuthId, Name)
Close Scan (SCB2)
Open Scan (T1, BOF, EOF) /* SCB3 */
Open Scan (T2, BOF, EOF) /* SCB4 */
While Not Finished
Do

Fetch Tuple (SCB3, Next, None)
Fetch Tuple (SCB4, Next, None)
. . .

End
Fig. 1: Access module for query Q1
joins. Finally, the Non-procedural Access
Layer provides logical data structures
(such as tables and views) with declara-
tive operations or a non-procedural inter-
face to the database. At the API, it pro-
vides an access-path-independent data
model with descriptive languages (e.g.,
SQL).

Each layer needs a number of auxilia-
ry data structures for mapping higher-lev-
el objects to more elementary ones. To in-
dicate the type of data, Table 1 character-
izes some of them.

2.2 Dynamics of Query Execution

To gain a more detailed insight into the
internal DBMS tasks and dynamics, we
sketch important translation, optimiza-
tion, and execution steps exemplified by
the following SQL query Q1.:
Select B.Title, B.P-Year, A.Name
From Books B, Authors A
Where B.AuthId=A.AuthId
 And A.Name = ’S*’
 And B.Subject = ’DBMS’

It is highly desirable to relieve run
time from all preparation aspects of query
processing and to shift as much of it as
possible to query compilation time.
Therefore, a particular design objective is
to generate for each query a so-called ac-
cess module (incorporating the query
evaluation plan (QEP)), the operations of
which can be directly invoked at the L4
interface (see Fig. 1). Missing (suitable)
indexes on Books and Authors would en-
force table (segment) scans on them in
our example. Therefore, let us assume
that indexes IAuthors(Name) and
IBooks(Subject) exist and that, in turn, the
optimizer plans a sort/merge join for the
query evaluation. When using I-scans on
the given indexes (with start and stop
conditions) for the selection operations,
the required sort orders on AuthId do not
come for free. Hence, sorted objects have
to be created explicitly in L4, before the
join can be processed. In turn, the I-scans,
which deliver the records to be sorted,
fetch them via physical access paths and
storage structures managed by L34. The
resulting access module is illustrated in
Fig. 1. This module directly returns the
result set of Q1. Normally, L3 offers a va-
riety of storage structures which physi-
cally embody the indexes or other types
of access paths. The most prominent ones

4. For example, a list prefetch operator is provid-
ed by DB2 to optimize such situations.
Datenbank-Spektrum 1
are, of course, the »ubiquitous« B-trees
or B*-trees [Comer 1979] which grant
rapid direct and, equally important, sort-
ed sequential access to the indexed data.
Because they are search trees, they can
support range queries or may give the in-
dex sort order to the subsequent QEP op-
erator for free.

The functionality provided by L3
needs to refer to the physical data of the
DB. For this reason, the DB buffer (as
part of L2) acts as the memory interface
to the DB on external devices and pro-
vides access to pages based on explicit re-
quest and release (so-called logical page
references). Its prime objective is to ex-
ploit the (space and time) locality of
DBMS processing (inter- and intra-trans-
action locality of page references) to min-
imize the number of physical page refer-
ences (usually disk accesses). Because
DB buffer space as well as DB volumes
roughly grow at the same pace, the size
ratio buffer/DB (memory/storage ratio)
remains constant over time—often a ratio
of 1:1000 is a good estimate. Hence, ran-
dom access to DB pages and random
page replacement in the buffer would re-
sult in a hit ratio of 0.1%. Fortunately, the
locality of reference and replacement al-
gorithms tailored to the workload charac-
teristics reduce the number of physical
page references that hit ratios of 95% and
higher can normally be expected in the
buffer. Nevertheless, large sequential
scans or other »peculiar« access patterns
may produce miss ratios close to 100%
(in rare cases). Despite the query optimi-
zation in L5, the following extreme cases
may occur for the evaluation example of
Q1: All index pages and all referenced
data pages are located in the DB buffer
and enough memory space can be provid-
ed for the sorts. In the other extreme, each
logical page reference requires a physical
page reference. For large intermediate
record sets, even external sort/merge op-
erations may be anticipated.

Because modified pages have to be
propagated back to external storage, the
output of a modified page may precede
each physical page reference to make
room for the requested page in the buffer.
Special L2 functionality may be dedicat-
ed to recovery provisions from failures
[Härder & Reuter 1983a]. In contrast, L1
encapsulates number, type and location
of external devices. It may be implement-
ed directly above the raw disk interface
or, more frequently, perform its task in
cooperation with the OS file manage-
ment. Even in the L1 layer, dedicated de-
vices, tailored file clustering or decluster-
ing measures (depending on disk access
frequencies or set-oriented and parallel
access interfaces [Weikum et al. 1987])
or block mapping techniques regarding
special workload characteristics [Tafve-
lin 1974] have a major impact on query
processing.

2.3 Number of Layers Reconsidered

Ideal layers strictly enforcing the Parnas’
use relation behave like abstract ma-
chines where the abstract machine of lay-
er i+1 is implemented by using the ab-
stract machine of layer i. Hence, in the
worst case, six formal interfaces have to
be crossed before data stored on disk is
reached to evaluate a DB request. This
performance-critical observation
prompts us to reconsider the number of
system layers. On the one hand, a grow-
ing number of layers reduces the com-
plexity of the individual layers which, in
turn, facilitates system evolution. On the
other hand, a growing number of interfac-
3

Layered DBMS Architecture
es to be crossed for the DB request execu-
tion increases the run-time overhead and
generally reduces the DBMS optimiza-
tion potential. Due to the ideal layer en-
capsulation, each service invocation im-
plies parameter checking, additional data
transport, and more difficult handling of
non-local errors. For example, the re-
quested data has to be copied—in its lay-
er-specific format—from layer to layer
up to the requestor. In the same way, data
modified has to be propagated—again in
its layer-specific format—eventually
down to the disk. Hence, the number of
layers seems to have a major influence on
the overall system performance5. Above
all, data copying and update propagation
should be minimized across the system
layers. However, our proposed architec-
tural DBMS model is already a compro-
mise between layer complexity/system
evolution potential and request optimiza-
tion/run-time overhead, as far as ade-
quate data mapping is concerned.

Our discussion in section 2.2 already
revealed the way to reduce the perfor-
mance penalty introduced by the layered
structure of our model. Based on these
observations, we propose run-time opti-
mizations to our static five-layer model
leading to two or three effective layers in
the dynamic case. As illustrated in Fig. 2,
L5 is replaced by the access module
whose operations directly refer to the L4
interface. At the other side, the use of a
large DB buffer effectively reduces disk
accesses such that almost all logical page
references can be located by L2 in mem-
ory.

There are precompilation approaches
conceivable where the access module di-
rectly maps the SQL requests to the L3

5. For DBMSs, it is especially true: »Perform-
ance is not everything, but without perform-
ance everything is worth nothing.«

Fig. 2: DBMS model at run time

L4

L3

L2

DB request

large
DB buffer

.
4

interface to further save the crossing of
the L4 interface. Hence, query prepara-
tion is pushed as far as possible. Even ad-
hoc queries may be prepared in this way,
because it turned out that generated ac-
cess code is more effective than query in-
terpretation. In this way, the extra cost of
preparation (which extends the query re-
sponse time in this case) is quickly amor-
tized especially when large sets of
records have to be accessed [Chamberlin
et al. 1981a]. On the other hand, some
systems pass on query preparation (at
program compile time) and use—at the
cost of extending the query response
time—interpreters which can be under-
stood as replacements of L5 at run time.
An interpreter is a general program
which, in this case, accepts any SQL
statement as input and immediately pro-
duces its query result thereby referring to
the L4 interface. Mixed approaches use a
preparation phase at compile time, but do
not go to the extreme—the access mod-
ule. They prepare intermediate query ar-
tifacts such as query graphs or execution
plans in varying details, and use specific
interpreters that »execute« these artifacts
at run time by invoking L4 operations
(and, in turn, lower-layer operations).

2.4 Binding and Information
Channels

Compilation and early binding are good
ideas. Of course, important aspects have
to be observed when dealing with the
compilation/optimization problem. Lack
of run-time parameter values introduces
imprecise selectivity estimates at compile
time even for up-to-date statistical data.
Full compile-time preparation unburdens
query response time as far as possible,
that is, it creates access modules for each
query, if possible. Less ambitious prepa-
ration methods only provide access plans
or operator graphs for the queries and
postpone the completion of query compi-
lation to run time or even use full inter-
pretation which represents the latest pos-
sible binding. However, all preparation
approaches necessarily bind their gener-
ated artifacts to the meta-data valid at
preparation time, that is, compilation
time in general. Later changes to the
meta-data (table definition alterations,
new or dropped index definitions, etc.)
cannot be taken into account; hence,
binding makes the artifacts data depen-
dent and requires an automated compen-
sation mechanism for invalidation/re-
preparation. Ideally, this concept of early
binding enhanced with such a compensa-
tion should combine the query evaluation
efficiency of full compile-time prepara-
tion with the convenience and data inde-
pendence of late binding, i.e., that of a
full interpreter.

So far, we have avoided to introduce
control measures (dependency relation-
ships) across the system layers, typically
necessary to increase query performance/
throughput or to guarantee specific sys-
tem properties, e.g., dependencies to real-
ize some functionality for load control or
ACID protection. Hence, a real DBMS
implementation will soften the claims of
our explanation model strictly adhered to
the information hiding and hierarchical
layer principles. Normally, a few careful-
ly selected dependencies or mechanisms
have to be provided for control and opti-
mization measures across system layers,
that is, we need a few »vertical« informa-
tion channels. For example, when the hot
set model [Sacco & Schkolnick 1982] is
used to make frame reservations support-
ing specific QEPs in the DB buffer, query
optimization in L1 has to communicate
some hints to L4. On the other hand,
thrashing behavior in the DB buffer or
extreme situations for lock contention
(occurring in lower layers) need an infor-
mation channel to the load control and
transaction entry queue allocated in L1.

2.5 Extensions and Optimizations

While the explanation model concerning
the DBMS architecture is still valid, an
enormous evolution/progress has been
made during the last two decades con-
cerning functionality, performance, and
scalability. The fact that all these en-
hancements and changes could be adopt-
ed by the proposed architecture, is a
strong indication that we refer to a salient
DBMS model. We cannot elaborate on
all extensions, let alone to discuss them in
detail, but we want to sketch some major
improvements/changes.

20 years ago, SQL—not standardized
at that time—and the underlying relation-
al model were simple. Nevertheless,
some query optimizers were »stupid« in
the sense that they produced incredibly
bad QEPs. Users had to react by reformu-
lating the queries (fooling the optimizer).
Although the situation has greatly im-
proved up-to-date and bread-and-butter
cases are perfectly optimized, there exists
quite a number of contributions of the
Datenbank-Spektrum 1

Layered DBMS Architecture
kind »Optimizing the XXX Optimizer«
which explain tricks how the »convince«
a particular optimizer to select the best
possible QEP for a given application.

For other reasons, query optimization
is still an open problem. Today, we have
to refer to SQL:1999 or SQL:2003 and an
object-relational model which are com-
plex and not well understood in all parts.
Many of the new aspects and functions—
such as user-defined types, type and table
hierarchies, recursion, constraints, trig-
gers—have to be adjusted in L5. While
initially query translation and optimiza-
tion started with solid foundations [Sel-
inger et a. 1979, Jarke & Koch 1984], en-
abled the integration of new mechanisms,
and could be successfully improved
[Mitschang 1995], in particular, by using
refined statistics (in particular, histo-
grams [Ioannidis 2003]), some of the new
language concepts turn out to be very
hard for the optimization. For example,
SQL’s new landmark concept of user-de-
fined types—despite some proposals
such as enhanced abstract data types [Se-
shadri 1998]—is not solved at all. Rule-
based optimizers are here foredoomed
because sufficiently general rules cannot
be provided for them. In contrast, user-
defined types have to carry their own cost
model to be integrated by cost-based op-
timizers, which is no general proceeding:
first, the type writers have to deliver the
complex cost models and, second, many
of the models’ parameters are hard to de-
termine at run time.

Work on building effective optimiz-
ers for dynamic QEPs to address the
problem of changes in resource availabil-
ity [Graefe 2000] or to »reduce the brak-
ing distance« of the query engine [Carey
& Kossmann 1998] is in progress, but far
away from the point where practical tech-
niques are ready for their use in products.
Proposals typically leave resource avail-
ability to the individual algorithms, rather
than to arrange for dynamic plans with al-
ternative algorithms or alternative plan
shapes. Available adaptive techniques (in
L4) are not only related to the internal be-
havior of single algorithms (operators),
but also among operators within a single
query and among multiple concurrent
queries. Furthermore, new dynamic opti-
mization opportunities come up, for ex-
ample, for special query types where the
result set is characterized by »N tuples
only« or »top/bottom N tuples«. The
challenge for the optimizer is to provide
dynamic QEPs that try to stop the evalu-
Datenbank-Spektrum 1
ation when the size N is reached. New
partition-based techniques or even a kind
of »gambling« help to reduce the wasted
sorting and/or joining effort.

DB research delivered new algo-
rithms to improve and extend the func-
tionality in L4 for SQL’s standard opera-
tions required. Hash joins are a success
[Shapiro 1986] and complement each
sufficiently broad and efficient DBMS
implementation. Furthermore, function-
ality for »arbitrary« join predicates, reuse
of intermediate query evaluation results,
sorting (internally usually optimized for
relatively small sets of variable length
records in memory as well as external
sort/merge), etc. was improved and much
better integrated. In particular, space-
adaptable algorithms contribute to great
improvements and support load balanc-
ing and optimized throughput, even for
high multi-programming levels [Graefe
1993]. For example, the replacement se-
lection sort, which can react to presorted-
ness, dynamically adjusts its memory re-
quirements to save merge runs [Graefe
2003]. Other adaptive techniques for op-
erators include setting or adjusting the
degree of parallelism depending on the
current workload, reordering and merg-
ing ranges to optimize repeated probes
into an index, sharing scans among mul-
tiple queries, etc. [Graefe 2000]. On the
other hand, the language extensions men-
tioned above enforced entirely new func-
tionality to be provided by L4. Support
for some of them, close enough to the
original concepts of the relational model,
is successfully made available and ex-
tends the spectrum of algorithms towards
enabling (originally called) non-standard
applications [Härder & Reuter 1983c].
Examples include spatial joins
[Brinkhoff et al. 1993, Günther 1993] or
operations supporting functionality for
OLAP or data warehouses [Lehner
2002]. However, it seems to be inade-
quate or even impossible to integrate ad-
justed operators for the »exploding« set
of new types, e.g., video, image, text, au-
dio (referenced by the acronym VITA)
and others.

All these operations have to be made
efficient by providing appropriate access
paths and storage structures in L3. A
»firestorm« of research in the last two de-
cades tried to respond to this challenge—
partly because the search problems to be
solved could be described in isolation and
empirical results could be produced by
various kinds of simulation, that is, with-
out the need to embed the structures into
an existing DBMS. A survey article on
multidimensional access methods [Gaede
& Günther 1998] compared a large set of
structures and their genealogy (with
about 200 references published until
1998). Besides the ubiquitous B-tree and
maybe some variants of the R-tree and
the UB-tree [Bayer 1997], why did these
structures not make their way into L3? Of
course, a few of them are successfully in-
tegrated into specialized data handling
system (Grid, Hashing). However, the li-
on’s share of the proposed access paths
fails to pass the DBMS acid test for vari-
ous reasons. A suitable method should
not be data dependent (on the value set or
UID sequence) and should not require
static reorganization. Moreover, it should
not rely on special data preparation and
its optimal use should not require the
knowledge on system internals or expert
experience. Furthermore, over-special-
ized use and tailoring to narrow applica-
tions do not promise practical success in
DBMSs6. Finally, many of these methods
(often Ph.D. proposals) disregard the
DBMS environment, where dependen-
cies to locking and recovery issues, inte-
gration into optimizer decisions, support
of mixed and unexpected workload char-
acteristics have to be regarded. Indeed,
the most dramatic performance enhance-
ments in this area are due to fine-granular
locking methods, in particular, applied to
index structures, that is, to B*-trees [Mo-
han 1990].

The most drastic improvements oc-
curred at the L2 level—without much en-
deavor of the DB researchers. Moore’s
Law did the job, because the available
memory is now increased by a factor of
104. Therefore, DB buffer sizes may now
range in the area of up to 1–10 million
frames while, in the same period, the in-
dividual frame size has grown from 2K to
8K–32K bytes. The classical demand-
driven replacement algorithms were en-
hanced by ideas combining LRU together
with reference density, e.g., in the form of
LRU-K [O’Neil et al. 1993]. Further-
more, they were complemented by vari-
ous prefetching algorithms and pipelined
double buffering which together can au-
tomatically detect and optimize scan-
based operations. Buffer allocation algo-

6. Optimal support of point queries in high-di-
mensional spaces (say k in the range of 10–20)
and nothing else is not a broad requirement.
5

Layered DBMS Architecture

tracks, cylinders

tables, views, ...

records, fields, ...

pages, ...

API consistency

transaction consistency

action consistency

file consistency

consistency of
elementary actions

Read Page / Write Page

Update IAuthors(Name) Using Codd

Insert 4711 Into Page 0815

Update Pers Set ... Where Q

TAP salary increase

pages, ...

device consistency

Fig. 4: System layers and consistency

DML op1 DML opn. . .

Fig. 3: Atomicity of actions, DML operations
and transactions

AA1

AA2

AA3

transaction
rithms, on the other hand, were proposed
to exploit knowledge of declarative, set-
oriented DB languages and may be used
in the form of the hot set model. Finally,
the huge DB buffer capacity facilitated
the provision of buffer partitions where
each partition can individually be tailored
to the anticipated locality behavior of a
specific workload. For example, current-
ly some DBMSs provide the optional
configuration of up to 80 buffers each
with individual size, locality-of-reference
support and management algorithms
[IBM DB2]. Nevertheless, buffering de-
mands of VITA applications cannot be
integrated in any reasonable way into L2,
let alone the transfer of the huge data vol-
umes through the layered architecture up
to the application.

While the separation of segments/
pages (L2) and files/blocks (L1) opens
opportunities for sophisticated data map-
pings and update propagations, nothing
has really happened in this part of the ar-
chitecture. The old and elegant concepts
of shadow pages and differential files,
which allow for Atomic update propaga-
tion and, depending on the selected
checkpoint mechanism, for materialized
DB states of guaranteed consistency after
crashes, were considered too expensive
in the normal DB processing mode. Be-
cause failures are very rare events, nor-
mal update propagation uses update-in-
place (NonAtomic) and is performed in
some optimistic way—with logging as
the only failure precaution –, and more
burden is shifted to the recovery and re-
start phases.

To conclude our pass through the
DBMS layers, L1 was not a focus of in-
terest for DB researchers. OS people pro-
6

posed various improvements in file sys-
tems where only some were helpful for
DB management, e.g., distribution trans-
parency. Log-structured files [Rosen-
blum & Ousterhout 1992], for example,
turned out to be totally unsuitable. Fur-
thermore, there is still no transaction sup-
port available at this layer of abstraction.
However, standard file mapping was con-
siderably refined - now supporting long
fields or large objects (Blob, Clob,
DClob) up to 2G bytes. A lot of new stor-
age technology was invented during the
last two decades—disks of varying ca-
pacity, form and geometry, DVDs,
WORM storage, electronic disks, etc.
Their integration into our architectural
model could be transparently performed
in L1 as far as the standard file interfaces
were concerned. New opportunity ar-
rived with the disk arrays [Patterson et al.
1988] supporting different clustering and
declustering strategies at the file level
[Weikum & Zabback 1993]. To enable
parallel access, file interfaces had to be
extended at the L1 interface. Their use,
possibly exploiting set-oriented and par-
allel I/O requests, has led to new algo-
rithms to be allocated in L2.

3 Layered Model and
Transactional Properties

So far, we have discussed an explanation
model for the data abstraction hierarchy
in a DBMS. In particular, we have
sketched the state of the art reached after
20 or more years of research and develop-
ment. However, we have excluded all
considerations of the failure case and the
interplay of the transactional properties
with the operations at the different ab-
straction levels. As far as ACID is con-
cerned, the layered model again helps to
describe the concepts and to derive ap-
propriate solutions. All transactional
properties are no »natural« properties of
computer systems.

3.1 Atomicity

Atomicity of transactions, the A in ACID,
is an abstraction which has to be achieved
by appropriate mechanisms. In the pres-
ence of failures we even cannot guarantee
atomic execution of instructions or I/O
operations. Hence, these properties have
to be accomplished by complex software
mappings. Early attempts to provide ato-
micity were based on the recovery blocks
[Randell et al. 1978]. However, they were
impractical already for atomic actions in
a single layer, let alone for DML opera-
tions executed across several layers or
even a set of separate DML operations
bracketed into a transaction. This situa-
tion is illustrated in Fig. 3; even if atomic
actions (AA) would be protected by cor-
responding recovery blocks (RB), they
would be released upon exit. Hence, the
calling hierarchy AA1–>AA2–>AA3
shown in Fig. 3 would release RB3 and
then RB2. A subsequent error in AA1
would leave behind in lower system lay-
ers unprotected marks caused by the al-
ready finished AA3 and AA2. It is obvi-
ous that recovery blocks for DML opera-
tions—if they could be accomplished in
some way—would be of no help, because
an error in DML op2 would leave the un-
protected effects of DML op1 behind.
Hence, in-line solutions for atomicity are
impossible. Furthermore, selected atom-
icity mechanisms are not enough, al-
though we can implement some them in a
Datenbank-Spektrum 1

Layered DBMS Architecture

tables, views, ...

pages, ...

records, fields,...

S S D

U I R

r1(x) w2(y) w1(y)

Select * From Pers Where P
Delete From Pers Where Q

Update t1 From Pers
Insert 4711 into IPers(Pnr)

Read Page 0815
Write Page 0101

Fig. 5: Layer model and synchronization
DBMS—for example, atomic propaga-
tion of modified blocks/pages can be met
by particular update propagation schemes
[Gray & Reuter 1993]. Statement atomic-
ity and transaction atomicity must be
achieved by combined use of concurren-
cy control and logging/recovery mea-
sures where a two-phase commit (2PC)
protocol decides upon success of a trans-
action when a failure occurs at commit.

3.2 Consistency

The C in ACID guarantees DB schema
consistency which is preserved by every
successful transaction. To develop a
framework for transaction implementa-
tion, we will refine our notion of consis-
tency. For this purpose, it is helpful to in-
troduce a hierarchy of operations—I/O
operations, elementary actions, actions,
DML operations, transactions—which
corresponds to our layered model, a sim-
plified version of which is sufficient for
the refined consideration of transactional
aspects. An obvious, but nevertheless im-
portant observation is that a data granule
to which an operation has to be applied
must be consistent w.r.t. this operation
(operation consistency, layer-specific
consistency). After successful execution
it is again operation consistent. In this
sense, a transaction can be explained as a
hierarchy of nested atomic actions.
Hence, object consistency needs layer-
specific consistency of all layers below.
At each level in Fig. 4 up to the transac-
tion program (TAP), we give an example
for an operation that requires the given
type of consistency and which preserves
it after successful (atomic) completion.

To reduce the complexity of discus-
sion, Fig. 4 simplifies our five-layer mod-
el to the well-known three-layer model
and we will refer to it when appropriate.
The lowest layer, called storage system,
comprises L1 and L2. For our ACID con-
siderations, the separation of blocks and
pages would not capture new aspects. On
the other hand, in L3, called access sys-
tem, we distinguish between elementary
action consistency (EAC) and action con-
sistency. A single action (at L3) may
cause updates of several pages, for exam-
ple, when a B-tree insertion causes page
splits, whereas an elementary action is al-
ways confined to a single page.

Again, a separate consideration of L4
and L5 would not reveal new insights for
ACID, because their operations affect
multiple pages in general. L4 roughly
Datenbank-Spektrum 1
corresponds to a navigational one-record-
at-a-time DBMS interface (e.g., for the
network or (simple) object-oriented data
models), whereas L5 characterizes de-
clarative set-oriented DBMS interfaces
(e.g., SQL). As indicated by the upper
layer in Fig. 4, called data system, single
DML operations require and guarantee
(DBMS) API consistency. This relation-
ship is emphasized by the golden rule7 in
[Date 1995] and explains why integrity
constraints attached to atomic DML op-
erations (statement atomicity in SQL)
have to be satisfied at end of operation
(e.g., a complex case of it are referential
actions). In turn, only »higher« DB sche-
ma constraints can be declared deferra-
ble, to be satisfied later and checked at
the latest in the commit phase to fully
guarantee transaction consistency.

3.3 Isolated execution

By passing the I in ACID, we only re-
mark that the operation hierarchy in Fig.
5 is appropriate to explain the various
conflict serializability models in the con-
text of a DBMS. The schedules/histories
of the page model could be derived by a
history writer observing the interface be-
tween access system and storage system,
whereas other models would choose the
interfaces of the operations considered.
In Fig. 5, the lowest layer characterizes
the page model, whereas the intermediate
layer and the topmost layer indicate sam-
ple requests for concurrency control

7. »No update operation must ever be allowed to
leave any relation or view in a state that vio-
lates its own predicate. Likewise no update
transaction must ever be allowed to leave the
database in a state that violates its own predi-
cate.«
which had to be handled by a kind of
record locking and predicate locking, re-
specively. Because only the specification
of conflict relations among concurrent
operations—but not their specific seman-
tics—is needed for conflict serializabili-
ty, appropriate protocols achieving trans-
action isolation can be provided at any
abstraction level. For a comprehensive
discussion see the textbook of [Weikum
& Vossen 2002].

20 years ago, multi-granularity lock-
ing was the method of choice for multi-
user synchronization in DBMSs and, sur-
prisingly, it still is—extended by a larger
set of specialized lock modes. While ear-
ly DBMSs used the page granule as the
smallest lockable unit, today records or
even smaller units are a must to cope with
resource contention in an acceptable
manner [Mohan 1999]. Of course, practi-
cal progress has been made on efficiently
synchronizing operations on special
structures (indexes, trees, hot spots) and
for specific sequences of access requests
[Mohan 1990, Mohan et al 1992]. Fur-
thermore, multi-version methods current-
ly seem to gain more importance, be-
cause plenty of memory allows keeping
multiple versions per object to increase
the effective level of transaction parallel-
ism. However, considering the myriads
of conflict-serializable synchronization
protocols proposed [Thomasian 1998], it
is humbling how few of these ideas have
entered the DBMS world.

3.4 Durability

Recording of redundancy during normal
processing—to be prepared for the event
of failures—and an application of recov-
ery algorithms in case of a failure remain
the standard measures to achieve durabil-
7

Layered DBMS Architecture

layer hierarchy + DB operation hierarchy

tables, views, ...

records, fields, ...

pages, ...

DML operation

action

page

API consistency

destroyed devicearchive file/
archive log

transaction program transaction consistency transaction program

DML op1

act. n

DML opm

action consistency

file/device

act.1 . . .

. . .

w2

.

log granularity
DB consistency after crash

elementary

w1

el. act.action
EAC

consistency

parameters

Fig. 6: DB consistency at restart and logging
ity. Recovery from failures always aims
at the most recent transaction-consistent
state of the DB. Because the level-specif-
ic operations preserve layer-specific con-
sistency for their data, they can be ex-
ploited to extract logging information.
Hence, logging can be performed at each
level, as illustrated in Fig. 6.

Logging

Log data is collected during normal pro-
cessing and applied by the recovery algo-
rithms in case of a failure. While transac-
tion recovery can refer to the current state
of the DB and use context information,
recovery from a crash or a media failure
must use the materialized DB or the ar-
chive DB, respectively. Hence, in these
cases the DB has to satisfy the corre-
sponding layer-specific consistency re-
quired for the successful application of
the log information to redo or undo the
transaction effects at the chosen abstrac-
tion level. Therefore, we establish a
strong and performance-critical relation-
ship, in particular, for the crash recovery
if we select a specific logging method.
Furthermore, logging has to observe a
number of rules such that transaction-ori-
ented recovery is possible at any rate
[Härder & Reuter 1983a].

Physical logging is sufficient when
device or file consistency can be expect-
ed at the time of crash recovery (restart).
In turn, EAC enables physiological log-
ging and LSNs [Gray & Reuter 1993]
which leads to the practically most im-
portant logging/recovery method. Be-
cause the effects of an elementary action
are always confined to a page, non-atom-
ic propagation of pages to disk is suffi-
cient to enable the corresponding Redo
and Undo operations in history sequence.
Hence, physiological logging8—physical
to a page, logical within a page thereby
tolerating displacements and rearrange-
ments of data within a page—can be ap-
plied. Furthermore, the use of log se-
quence numbers (LSNs) allows a simple
check at restart of whether or not the
modifications of an elementary action
have reached the materialized DB. In
contrast, logical logging implies the
atomic propagation of all pages modified
by the corresponding operation to suc-

8. Its implementation could be shifted to the
buffer manager (fix page, ..., write log), be-
cause only objects in individual pages are in-
volved [Haustein 2005].
8

cessfully perform Redo or Undo recovery
for such operations (actions and opera-
tions at higher levels).
The question is which kind of consisten-
cy for the materialized DB can be guaran-
teed at restart, i.e., after a crash has oc-
curred? Table 2 summarizes the required
logging methods for a given consistency
level.

The converse conclusion is, however,
not compelling. For example, if we use
DML operation logging, we do not auto-
matically assure the API consistency for
the materialized DB. Therefore, extra
precautions are needed during normal
processing. Usually, the higher the con-
sistency level guaranteed, the more ex-
pensive are the mapping and propagation
algorithms (e.g., shadow pages, check-
points) to establish the respective level. If
we can rely on a consistency level at re-
start, it is possible to choose logging
methods corresponding to a lower consis-
tency level. However, this idea is not
cost-effective, because logging costs typ-
ically decrease with increasing consisten-
cy levels.

How do we establish a consistency
level of the materialized DB? If a device
is destroyed, we cannot provide the min-
imum consistency for the logging meth-
ods discussed. Therefore, we must usual-
ly9 perform recovery algorithms tailored
to device failures, the so-called media re-
covery with archive DB and archive log.
In the following, we assume file consis-
tency as a minimum consistency level.

Non-atomic Update Propagation

If we use non-atomic propagation meth-
ods, the DB is only file consistent when a
crash occurs; all individual blocks are
readable, but they are nicknamed as cha-
os consistent, because the DB contains
actual, outdated, and invalid blocks. But
the correctness of non-atomic propaga-
tion methods does not rely on specific re-
quirements of page I/O, because the cor-
responding recovery methods based on
logging of pages or elementary actions
can be correctly applied to individual
pages only.

If all before- and after-images of the
modified pages are logged, which is ex-
tremely expensive and log-space con-
suming, entire pages can be exchanged
and transaction-oriented recovery is pos-
sible. Another significant cost factor is
given by the minimum lock granule10 im-
plied by page locking. Physiological log-
ging brings a substantial improvement,
because an Undo and a Redo of modifica-
tions in elementary-action-consistent
pages can be performed based on a space-

9. In special cases of destroyed blocks, page log-
ging may work if the entire block can be re-
placed.

10.The lock granule must be larger or equal to the
log granule used [Härder & Reuter 1983a], see
also appendix.
Datenbank-Spektrum 1

Layered DBMS Architecture

Table 2: Consistency and logging

consistency level at restart adjusted log information

file consistency pages (before- and after-images)

elementary action consistency physiological logging

action consistency actions (entries)

API consistency DML operations

transaction consistency transaction program invocations with params
saving logging method. Using LSNs, the
recovery manager can efficiently decide
whether an Undo or a Redo operation has
to be applied to a page addressed, even
for lock granules smaller than a page.

Atomic Update Propagation

Because operations in higher system lay-
ers may affect multiple pages, the corre-
sponding recovery operations based on
the resp. logging methods imply the ex-
istence of the entire data granule. For this
reason, the set of resp. pages must be
completely or not at all in the material-
ized DB, a property which can only be
obtained by checkpointing and atomic
propagation methods [Härder & Reuter
1983a]. Referring to Fig. 6, action consis-
tency for pages to be recovered is accom-
plished when the set of pages involved in
an update action is either completely in
the materialized DB or not at all; this is
obtained by action-consistent check-
points. Then all effects of the actions
starting from this checkpoint can be re-
peated or undone on this DB state. The
same is true for DML operations with
API-consistent checkpoints or transac-
tions with transaction-consistent check-
points. Because only entire pages can be
written to disk, checkpointing has to be
synchronized with concurrency control;
otherwise, large lock granules (at least
page locks) have to be applied which en-
force serial operations in pages.
It is interesting to note that higher-level
operation-consistent DB states can be re-
constructed (Redo) based on physiologi-
cal logging and LSNs. As a consequence,
Undo operations are possible using oper-
ation-consistent logical logging methods
[Haustein 2005]. As a prerequisite, only
pages with operation-complete modifica-
tions must reach the disk which can be
achieved by fixing all pages involved in
an update until the end of the specific op-
eration (which is trivially satisfied for el-
Datenbank-Spektrum 1
ementary actions). However, this idea be-
comes quickly impractical with growing
operation granules. At the level of DML
operations, this would, for example, re-
quire a long-term buffer fixing of all pag-
es involved in a set-oriented update re-
quest.

The Winner Solution

In early DBMSs, logging/recovery
schemes were rather simple, exhibiting
little or no optimization. They were often
dominated by non-atomic propagation
and page logging which implied page
locking as a minimal granularity (see ap-
pendix). Therefore, they were neither ef-
ficient nor elegant. An exception was
System R which implemented an atomic
recovery scheme [Blasgen et al. 1981]
whose atomicity mechanism was based
on shadow pages [Lorie 1977]. Empirical
studies [Chamberlin et al. 1981b] certi-
fied its high overhead during normal pro-
cessing. Furthermore, the presence of
rapidly growing DB buffers made direct
checkpoints infeasible for interactive DB
processing. As a consequence, no effec-
tive solution exists for atomic propaga-
tion schemes eliminating, in practice, all
recovery methods which require higher
DB consistency levels at restart (logging
granularity: transaction, DML operation,
action). It is safe to say that all clean and
elegant crash recovery solutions do not
pay off (e.g., Atomic, NoSteal, Force
[Härder & Reuter 1983a]). Hence, they
disappeared from the DBMS world.
Nowadays, non-atomic propagation, also
compatible with indirect checkpointing
techniques, is the clear winner in this ar-
ea. Hence, the best performing recovery
schemes, which effectively cope with
huge buffers and unburden normal pro-
cessing with logging-related I/O over-
head, are characterized by NonAtomic,
Steal, NoForce supported by Fuzzy
checkpoints and some more I/O-saving
tricks [Mohan et al. 1992].

4 Architectural Variants

Up to now, we have intensively discussed
the questions of data mapping and trans-
actional support in a centralized DBMS
architecture. In the last two decades,
however, a variety of new data manage-
ment scenarios emerged in the DBMS ar-
ea. How can these be linked to the core is-
sues of our architectural discussion so
far?
A key observation is that the invariants in
database management determine the
mapping steps of the supporting architec-
ture. In our case, we started with the pri-
mary requirement of navigational or set-
oriented processing of record-like data
which led to the layered architecture
sketched in Fig. 2 and 6. In many of the
new data management scenarios, the ba-
sic invariants still hold true: page-orient-
ed mapping to external storage, manage-
ment of record-oriented data, set-oriented
database processing. Hence, we should
be able to identify the resp. layers/com-
ponents in the evolved architectures and
to explain the similarity in database pro-
cessing using their architectural models.

4.1 Horizontal Distribution of DB
Processing

A variety of DB processing scenarios can
be characterized as the horizontal distri-
bution of the entire DB functionality and
of partitioned/replicated data to process-
ing nodes connected by a network. As a
consequence, the core requirements re-
main, leading to an architectural model
sketched in Fig. 7, which consists of iden-
tical layered models for every node to-
gether with a connection layer responsi-
ble for communication, adaptation, or
mediation services. In an implementa-
tion, this layer could be integrated with
one of the existing layers or attached to
the node architecture to encapsulate it for
the remaining system.

Shared-nothing DBMSs partition
their data and need some functionality to
decompose DB requests, forward them to
the corresponding node, and assemble the
answers to the query result thereby pro-
viding a local and homogeneous view of
the entire DBMS to the user (single sys-
tem view). While the functionality of the
individual nodes essentially remains un-
changed, some new cross-node tasks are
9

Layered DBMS Architecture

access system

data system

storage system

access system

data system

storage system

communication / adaptation / mediation

. . .

Fig. 7: Horizontal DBMS distribution

DBDB

access system

page buffer

communication

Page Server Object Server Query Server

storage system storage system storage system

application

object manager

object manager

query manager
transfer buffer

page manager access system access system

data system

DB

application

object manager
object buffer

communication

application

query manager
query result buffer

communication

Fig. 8: Architectural variants of client/server DBMSs
needed for optimal DBMS processing,
e.g., load balancing, global query optimi-
zation in addition to the local one, dead-
lock detection, 2PC protocol, global re-
covery precautions, etc. [Lindsay 1987].
For shared-disk DBMSs, the adjustment
and coordination aspects are primarily in
the area of buffer management and once
more in the failure recovery from individ-
ual node crashes [Rahm 1994]. In con-
trast, parallel DBMSs provide services to
run identical operations on partitioned
data in parallel (data parallelism) or to ap-
ply intra-operation parallelism to the
same data. Hence, the major challenge is
to decompose a problem for a large num-
ber of processors and to coordinate them
such that a linear scale-up or speed-up is
achieved [DeWitt & Gray 1992].

When heterogeneity of the data mod-
els or autonomy of database systems
comes into play, the primary tasks of the
connection layer are concerned with ad-
aptation and mediation. Federated
DBMSs represent the entire spectrum of
possible data integration scenarios and
usually need an adjustment of the DB re-
quests at the level of the data model
[Rahm 1994] or a compensation of func-
tionality not generally available. As op-
posed to the distributed homogeneous
DBMSs, some users (transactions) may
only refer to a local view thereby abstain-
ing from federated services, while, at the
same time, other users exploit the full ser-
vices of the data federation. The other ex-
treme case amang the federation scenari-
os is represented by Multi-DBMSs, for
which the connection layer primarily
takes over the role of a global transaction
manager passing unmodified DB re-
quests to the participating DB servers
[Schek & Weikum 1991].

4.2 Vertical Distribution of DBMS
Processing

The typical (most important) representa-
tives of this class of DBMS architectures
belong to the so-called client/server
DBMSs. Their major concern is to make
DBMS processing capacity available
close to the application in the client (com-
puter). Usually, client/server DBMSs are
used in applications relying on long-run-
ning transactions with a checkout/check-
in mechanism for (versioned) data.
Hence, the underlying data management
scenarios are tailored to engineering ap-
plications [Härder et al. 1988]. As indi-
cated in Fig. 8, various forms of this ar-
10
chitectural variant exist [Härder & Rahm
2001]. They are characterized by DBMS-
controlled data or object buffers at the cli-
ent side to exploit data reference locality
as the major mechanism to enhance per-
formance. The most sophisticated one is
the query server, in its functionality com-
parable to DBMS kernel architectures
[Schek et al. 1990]. Its real challenge is
declarative, set-oriented query process-
ing thereby using the current content of
the query result buffer [Deßloch et al.
1998].

Until recently, query processing in
such buffers was typically limited to que-
ries with predicates on single tables (or
equivalent object types). Now, a major
enhancement is pursued in scenarios
called database caching. Here, full-
fledged DBMSs, used as DB frontends
close to application servers in the Web,
take over the role of cache managers for a
backend DB. As a special kind of vertical
distribution, their performance-enhanc-
ing objective is to evaluate more complex
queries in the cache which, for example,
span several tables organized as cache
groups by equi-joins [Härder & Büh-
mann 2004]. While the locality preserva-
tion of the query result buffer in query
servers can take advantage of application
hints [Deßloch et al. 1998], adaptivity of
database caching is a major challenge for
future research [Altinel et al. 2003]. Fur-
thermore, precise specification of relaxed
currency and consistency of data is an
important future task to better control the
widespread and growing use of distant
caches and asynchronous copies [Guo et
al. 2004].
Datenbank-Spektrum 1

Layered DBMS Architecture
5 Conclusions

In the tradition of [Blaser 1995], we
looked at the progress of database re-
search and development which happened
in the 20 years of history of the BTW—
the German conference »Database Sys-
tems in Business, Technology, and the
Web«. Because of the growing breadth
and depth of the database area, this paper
primarily focused on the developments
concerning the DBMS architecture for
the declarative and set-oriented (relation-
al) processing paradigm of record-like
structures. We showed that the five-layer
hierarchical model proposed more than
20 years ago was able to accommodate all
the extensions and optimizations for the
originally established paradigm. Even
new data management scenarios incorpo-
rating the processing invariants of our
five-layer model could be well embraced
by architectural variants of it.

Acknowledgements. Discussions with
Stefan Deßloch, Jernej Kovse, Bernhard
Mitschang, and Joachim Thomas who
also carefully read a preliminary version
helped to shape the paper and to improve
its final version.

Appendix:
The Ten Commandments11

General Rules

I. Recovery based on logical logging
relies on a matching operation-con-
sistent state of the materialized DB at
the time of recovery.

II. The lock granule must be at least as
large as the log granule.

III. Crash recovery under non-atomic
propagation schemes requires Redo
Winners resp. Redo All (repeatable
history) before Undo Losers, whereas
the order of Undo and Redo is irrele-
vant under atomic schemes.

11.Härder, T., Reuter, A.: A Systematic Frame-
work for the Description of Transaction-Ori-
ented Logging and Recovery Schemes,
Internal Report DVI 79-4, TH Darmstadt, Dec.
1979. Commandments I and V are valid for
logical and physical transition logging. The
latter based on EXOR differences does not
seem to be used anymore in DBMSs [Härder
& Rahm 2001].
Datenbank-Spektrum 1
Rules for Undo Recovery

IV. State logging requires a WAL proto-
col (if pages are propagated before
Commit).

V. Non-atomic propagation combined
with logical logging is generally not
applicable (for Redo and Undo recov-
ery).

VI. If the log granularity is smaller than
the transfer unit of the system (block
size), a system crash may cause me-
dia recovery.

VII .Partial rollback within a transaction
potentially violates the 2PL protocol
(programming discipline necessary).

Rules for Redo Recovery

VIII.Log information for Redo must be
collected independently of measures
for Undo.

IX. Log information for Redo must be
written at the latest in phase 1 of
Commit.

X. To guarantee repeatability of results
of all transactions using Redo recov-
ery based on logical logging, their DB
updates must be reproduced on a
transaction basis (in single-user
mode) in the original Commit se-
quence.

References

[Altinel et al. 2003] Altinel, M.; Bornhövd, C.;
Krishnamurthy, S.; Mohan, C.; Pirahesh, H.;
Reinwald, B.: Cache Tables: Paving the Way
for an Adaptive Database Cache. VLDB
2003: 718-729

[Bayer 1997] Bayer, R.: The Universal B-Tree for
Multidimensional Indexing: General Con-
cepts. WWCA 1997: 198-209

[Blaser 1995] Blaser, A.: Die BTW im Wandel
der Datenbank-Zeiten. BTW 1995: 48-50

[Blasgen et al. 1981] Blasgen, M. W.; Astrahan,
M. M.; Chamberlin, D. D.; Gray, J. et al.:
System R: An Architectural Overview. IBM
Systems Journal 20(1): 41-62 (1981)

[Brinkhoff et al. 1993] Brinkhoff, T.; Kriegel, H.-
P.; Seeger, B.: Efficient Processing of Spatial
Joins Using R-Trees. SIGMOD Conference
1993: 237-246

[Carey & Kossmann 1998] Carey, M. J.; Koss-
mann, D.: Reducing the Braking Distance of
an SQL Query Engine. VLDB 1998: 158-169

[Chamberlin at al. 1981a] Chamberlin, D.D.; As-
trahan, M. M.; King, F. W. II; Lorie, R. A. et
al.: Support for Repetitive Transactions and
Ad Hoc Queries in System R. ACM Trans.
Database Syst. 6(1): 70-94 (1981)

[Chamberlin et al. 1981b] Chamberlin, D. D.;
Astrahan, M. M.; Blasgen, M. W., Gray, J. et
al.: A History and Evaluation of System R.
Commun. ACM 24(10): 632-646 (1981)
[Commer 1979] Comer, D.: The Ubiquitous B-
Tree. ACM Comput. Surv. 11(2): 121-137
(1979)

[Date 1995] Date, C. J.: An Introduction to Data-
base Systems, 6th edition, Addison-Wesley
1995

[Deßloch et al. 1998] Deßloch, S.; Härder, T.;
Mattos, N. M.; Mitschang, B.; Thomas, J.:
Advanced Data Processing in KRISYS: Mod-
eling Concepts, Implementation Techniques,
and Client/Server Issues. VLDB J. 7(2): 79-
95 (1998)

[DeWitt & Gray 1992] DeWitt, D. J.; Gray, J.:
Parallel Database Systems: The Future of
High Performance Database Systems. Com-
mun. ACM 35(6): 85-98 (1992)

[Dijkstra 1968] Dijkstra, E. W.: Letters to the ed-
itor: The Goto Statement Considered Harm-
ful. Commun. ACM 11(3): 147-148 (1968)

[Gaede & Günther 1998] Gaede, V.; Günther, O.:
Multidimensional Access Methods. ACM
Comput. Surv. 30(2): 170-231 (1998)

[Graefe 1993] Graefe, G.: Query Evaluation
Techniques for Large Databases. ACM Com-
put. Surv. 25(2): 73-170 (1993)

[Graefe 2000] Graefe, G.: Dynamic Query Eval-
uation Plans: Some Course Corrections?
IEEE Data Eng. Bull. 23(2): 3-6 (2000)

[Graefe 2003] Graefe, G: Implementation of
Sorting in Database Systems, submitted
2003.

[Gray & Reuter 1993] Gray, J.; Reuter, A.: Trans-
action Processing: Concepts and Techniques.
Morgan Kaufmann 1993

[Günther 1993] Günther, O.: Efficient Computa-
tion of Spatial Joins. ICDE 1993: 50-59

[Guo et al. 2004] Guo, H.; Larson, P.-A.; Ra-
makrishnan, R.; Goldstein, J.: Relaxed Cur-
rency and Consistency: How to Say "Good
Enough" in SQL. SIGMOD Conference
2004: 815-826

[Härder 2005] Härder, T.: DBMS Architecture—
Still an Open Problem. BTW, LNI P-65,
Springer, 2-28, 2005

[Härder et al. 1988] Härder, T.; Hübel, C.; Mey-
er-Wegener, K.; Mitschang, B.: Processing
and Transaction Concepts for Cooperation of
Engineering Workstations and a Database
Server. Data Knowl. Eng. 3: 87-107 (1988)

[Härder & Reuter 1983a] Härder, T.; Reuter, A.:
Principles of Transaction-Oriented Database
Recovery. ACM Comput. Surv. 15(4): 287-
317 (1983)

[Härder & Reuter 1983b] Härder, T.; Reuter, A.:
Concepts for Implementing a Centralized Da-
tabase Management System. Proc. Int. Com-
puting Symp. on Application Systems Devel-
opment, 1983, Nürnberg, B.G. Teubner-
Verlag, 28-60

[Härder & Reuter 1983c] Härder, T.; Reuter, A.:
Database Systems for Non-Standard Applica-
tions. Proc. Int. Computing Symp. on Appli-
cation Systems Development, 1983, Nürn-
berg, B.G. Teubner-Verlag, 452-466

[Härder & Reuter 1985] Härder, T.; Reuter, A.:
Architektur von Datenbanksystemen für
Non-Standard-Anwendungen. BTW 1985:
253-286

[Härder & Rahm 2001] Härder, T.; Rahm, E.:
Datenbanksysteme: Konzepte und Techniken
11

Layered DBMS Architecture
der Implementierung, 2nd edition, Springer
2001

[Härder & Bühmann 2004] Härder, T.; Bühmann,
A.: Query Processing in Constraint-Based
Database Caches. Data Engineering Bulletin
27:2 (2004) 3-10

[Haustein 2005] Haustein, M.: Eine XML-Pro-
grammierschnittstelle zur transaktionsge-
schützten Kombination von DOM, SAX und
XQuery, BTW, LNI P-65, Springer, 265-284,
2005

[IBM DB2] IBM DB2 Universal Database
(V 8.2). http://www.ibm.com/software/data/
db2/

[Jarke & Koch 1984] Jarke, M.; Koch, J.: Query
Optimization in Database Systems. ACM
Comput. Surv. 16(2): 111-152 (1984)

[Ioannidis 2003] Ioannidis, Y. E.: The History of
Histograms (abridged). VLDB 2003: 19-30

[Lehner 2002] Lehner, W.: Datenbanktechnolo-
gie für Data-Warehouse-Systeme. dpunkt
2002

[Lindsay 1987] Lindsay, B. G.: A Retrospective
of R*: A Distributed Database Management
System. Proceedings of the IEEE 75(5): 668-
673 (1987)

[Lorie 1977] Lorie, R. A.: Physical Integrity in a
Large Segmented Database. ACM Trans. Da-
tabase Syst. 2(1): 91-104 (1977)

[Mitschang 1995] Mitschang, B.: Anfrageverar-
beitung in Datenbanksystemen – Entwurfs-
und Implementierungskonzepte. Vieweg
1995

[Mohan 1990] Mohan, C.: ARIES/KVL: A Key-
Value Locking Method for Concurrency Con-
trol of Multiaction Transactions Operating on
B-Tree Indexes. VLDB 1990: 392-405

[Mohan et al. 1992] Mohan, C.; Haderle, D. J.;
Lindsay, B. G.; Pirahesh, H.; Schwarz, P. M.:
ARIES: A Transaction Recovery Method
Supporting Fine-Granularity Locking and
Partial Rollbacks Using Write-Ahead Log-
ging. ACM Trans. Database Syst. 17(1): 94-
162 (1992)

[Mohan 1999] Mohan, C.: Repeating History Be-
yond ARIES. VLDB 1999: 1-17

[O’Neil et al. 1993] O'Neil, E. J.; O'Neil, P. E.;
Weikum, G.: The LRU-K Page Replacement
Algorithm for Database Disk Buffering. SIG-
MOD Conference 1993: 297-306

[Parnas 1972] Parnas, D. L.: On the Criteria to be
Used in Decomposing Systems into Modules.
Commun. ACM 15(12): 1053-1058 (1972)

[Parnas & Siewiorek 1975] Parnas, D. L.;
Siewiorek, D. P.: Use of the Concept of Trans-
parency in the Design of Hierarchically
Structured Systems. Commun. ACM 18(7):
401-408 (1975)

[Patterson et al. 1988] Patterson, D.A.; Gibson,
G.A.; Katz, R.H.: A Case for Redundant Ar-
rays of Inexpensive Disks (RAID). SIGMOD
Conference 1988: 109-116

[Rahm 1994] Rahm, E.: Mehrrechner-Daten-
banksysteme - Grundlagen der verteilten und
parallelen Datenbankverarbeitung. Addison-
Wesley 1994

[Randell et al. 1978] Randell, B.; Lee, P. A.; Tre-
leaven, P. C.: Reliability Issues in Computing
System Design. ACM Comput. Surv. 10(2):
123-165 (1978)
12
[Rosenblum & Ousterhout 1992] Rosenblum, M.;
Ousterhout, J. K.: The Design and Implemen-
tation of a Log-Structured File System. ACM
Trans. Comput. Syst. 10(1): 26-52 (1992)

[Sacco & Schkolnick 1982] Sacco, G.. M.; Sch-
kolnick, M.: A Mechanism for Managing the
Buffer Pool in a Relational Database System
Using the Hot Set Model. VLDB 1982: 257-
262

[Schek et al. 1990] Schek, H.-J.; Paul, H.-B.;
Scholl, M. H.; Weikum, G.: The DASDBS
Project: Objectives, Experiences, and Future
Prospects. IEEE Trans. Knowl. Data Eng.
2(1): 25-43 (1990)

[Schek & Weikum 1991] Schek, H.-J.; Weikum,
G.: Erweiterbarkeit, Kooperation, Föderation
von Datenbanksystemen. BTW 1991: 38-71

[Selinger et al. 1979] Selinger, P. G.; Astrahan,
M. M.; Chamberlin, D. D.; Lorie, R. A.;
Price, T. G.: Access Path Selection in a Rela-
tional Database Management System. SIG-
MOD Conference 1979: 23-34

[Senko et al. 1973] Senko, M. E.; Altman, E. B.;
Astrahan, M. M.; Fehder, P. L.: Data Struc-
tures and Accessing in Data Base Systems.
IBM Systems Journal 12(1): 30-93 (1973)

[Seshadri 1998] Seshadri, P.: Enhanced Abstract
Data Types in Object-Relational Databases.
VLDB J. 7(3): 130-140 (1998)

[Shapiro 1986] Shapiro, L. D.: Join Processing in
Database Systems with Large Main Memo-
ries. ACM Trans. Database Syst. 11(3): 239-
264 (1986)

[Tafvelin 1974] Tafvelin, S.: Sequential Files on
Cycling Storage. IFIP Congress 1974: 983-
987

[Thomasian 1998] Thomasian, A.: Concurrency
Control: Methods, Performance, and Analy-
sis. ACM Comput. Surv. 30(1): 70-119
(1998)

[Weikum et al. 1987] Weikum, G.; Neumann, B.;
Paul, H.-B.: Konzeption und Realisierung
einer mengenorientierten Seitenschnittstelle
zum effizienten Zugriff auf Komplexe Ob-
jekte. BTW 1987: 212-230

[Weikum & Zabback 1993] Weikum, G.; Zab-
back, P.: I/O-Parallelität und Fehlertoleranz
in Disk-Arrays – Teil 1: I/O-Parallelität. In-
formatik Spektrum 16(3): 133-142 (1993)
und Teil 2: Fehlertoleranz. Informatik Spek-
trum 16(4): 206-214 (1993)

[Weikum & Vossen 2002] Weikum, G.; Vossen,
G.: Transactional Information Systems—
Theory, Algorithms, and the Practice of Con-
currency Control and Recovery, Morgan
Kaufmann 200212

12.All references are copied from http://www.in-
formatik.uni-trier.de/~ley/db/index.html. This
support of Michael Ley is greatly appreciated.
Theo Härder ob-
tained his Ph.D.
degree in Comput-
er Science from
the TU Darmstadt
in 1975. In 1976,
he spent a post-
doctoral year at the
IBM research Lab
in San Jose and
joined the project

System R. In 1978, he was associate professor for
Computer Science at the TU Darmstadt. As a full
professor, he is leading the research group DBIS
at the TU Kaiserslautern since 1980. He is the re-
cipient of the Konrad Zuse Medal (2001) and the
Alwin Walther Medal (2004) and obtained the
Honorary Doctoral Degree from the Computer
Science Dept. of the University of Oldenburg in
2002.
Theo Härder's research interests are in all areas of
database and information systems - in particular,
DBMS architecture, transaction systems, infor-
mation integration, and Web information sys-
tems. He is author/coauthor of 7 textbooks and of
more than 200 scientific contributions with >100
peer-reviewed conference papers and >50 journal
publications. His professional services include
numerous positions as chairman of the GI-Fach-
bereich »Databases and Information Systems«,
conference/program chairs and program commit-
tee member, editor-in-chief of Informatik – Fors-
chung und Entwicklung (Springer), associate ed-
itor of Information Systems (Elsevier), World
Wide Web (Kluver), and Transactions on Data-
base Systems (ACM). He serves as a DFG expert
and is the Chairman of the Selection Committee
for Computer Science of the Bavarian Network
of Excellence (Elitenetzwerk Bayern). He was
chairman of the Center for Computed-based En-
gineering Systems at the University of Kaiser-
slautern, member of two DFG SFBs (124, 501),
and co-coordinator of the National DFG Re-
search Program »Object Bases for Experts«.

Prof. Dr.-Ing. Dr. h.c. Theo Härder
Technische Universität Kaiserslautern
Fachbereich Informatik
Postfach 3049
67653 Kaiserslautern
haerder@informatik.uni-kl.de
http://www.haerder.de
Datenbank-Spektrum 1

	1 Motivation
	2 Hierarchical DBMS Architecture
	2.1 Static Engine Architecture
	2.2 Dynamics of Query Execution
	2.3 Number of Layers Reconsidered
	2.4 Binding and Information Channels
	2.5 Extensions and Optimizations
	3 Layered Model and Transactional Properties
	3.1 Atomicity
	3.2 Consistency
	3.3 Isolated execution
	3.4 Durability
	Logging
	Non-atomic Update Propagation
	Atomic Update Propagation
	The Winner Solution
	4 Architectural Variants
	4.1 Horizontal Distribution of DB Processing
	4.2 Vertical Distribution of DBMS Processing
	5 Conclusions
	References

