
VS-Gen: A Case Study of a Product Line for
Versioning Systems

Jernej Kovse1 and Christian Gebauer2

Department of Computer Science
Kaiserslautern University of Technology

P.O. Box 3049, D-67653 Kaiserslautern, Germany
1kovse@informatik.uni-kl.de, 2gebauer@gmx.com

Abstract. This paper describes our experience with developing a product line
for middleware-based versioning systems. We perform a detailed domain analy-
sis and define a DSL for configuring individual systems. Afterwards, we present
a template-based approach for generating versioning systems from UML mod-
els. The presented approach is evaluated from two perspectives. We first use
diverse measures to determine the properties of code templates used by the gen-
erator. Afterwards, we compare the performance of a generated versioning sys-
tem to a system that has been developed by means of a framework and thus has
to rely on a set of generic implementation components.

1 Introduction

Versioning systems are generally used to manage data objects that change frequently
over time. Their main function is to represent intermediate stages in the object’s evolu-
tion path as versions and allow users to revert to these stages afterwards. Versioning is
useful in a variety of different applications: In a software project, developers will want
to version their specifications, data and process models, database schemas, program
code, build scripts, binaries, server configurations, and test cases. In an editorial
department of a magazine, authors will want to version the text of their articles,
images, tables, teasers, and headlines before submitting the final version of their con-
tribution.

This paper summarizes the practical experience gathered with our VS-Gen (Version-
ing Systems Generator) project. The goal of the project is to support a product line of
versioning systems. A specific system from the product line is specified by describing
its data model in UML and afterwards selecting the features desired for the system on
the basis of this model. Feature selection is supported by a UML profile. The resulting
UML model is analyzed by a template-driven generator that delivers a complete mid-
dleware-based implementation of the versioning system.

The rest of the paper is organized as follows. The features of versioning systems
will be presented in Sect. 2 which provides a detailed domain analysis for the product
line. Sect. 3 will first examine the implementation components of versioning systems

to illustrate what has to be generated automatically and then outline the generation
approach. We evaluate our product line from two perspectives: First, in Sect. 4, we use
diverse measures to examine both the properties of generated code for an exemplary
system from the domain as well as the properties of code templates used by the gener-
ator. Afterwards, in Sect. 5, we examine the performance of a sample versioning sys-
tem generated with VS-Gen in comparison to a system developed using a framework
that relies on a number of generic implementation components. This framework can be
considered as an alternative implementation of the product line. Finally, Sect. 6 gives
an overview of related work while Sect. 7 summarizes the presented results and gives
some ideas for the future work related to VS-Gen.

2 Domain Analysis

A versioning system stores objects and relationships between these objects. Each
object and each relationship is an instance of some object or relationship type. Object
and relationship types are defined by the versioning system’s information model [3].
For example, the OMG’s MOF Model can be used as an information model in case the
users want to store and version MOF-based metamodels, or the UML Metamodel can
be used as an information model for storing and versioning UML models. Fig. 1 illus-
trates a very simple information model from the domain of content management,
which will be used as an example for VS-Gen throughout this paper.

Obviously, it would be possible to come up with a generic implementation of a ver-
sioning system capable of dealing with any information model without needing any
change in the implementation. In such an extreme case, even attribute values could be
stored in a single relational table as name-value pairs. Even though such generic solu-
tions represent performance drawbacks, certain variants prove useful due to their sim-
plicity (we compare the performance of one selected variant to a system generated by
VS-Gen in Sect. 5).

Image

description : String
image : byte[]
width : int
height : int
copyright : boolean

Article

title : String
text : String
author : String
date : Date

0..n

0..n

+image 0..n

+article 0..n

R4

Teaser

title : String
summary : String 0..10..n

+article

0..1

+teaser

0..n R3

Menu

name : String
description : String 0..n0..n

+content

0..n

+category

0..n R2

0..1 0..n+superCategory 0..1

R1

+subCategory0..n

Fig. 1. A simple information model

In VS-Gen, the information model represents a basis for configuring the desired
versioning system. This is done by selecting features related to the model elements, as
described in the following sections.

2.1 Object Types

An object type may or may not support versioning. For every object type, the versioning
system provides only the basic operations create, copy, delete and the so-called finders.
In case an object type supports versioning, each object (instance) of this type is also a
version that belongs to some version graph. A corresponding feature diagram for ver-
sioned object types is illustrated in Fig. 2. A versioned type provides an identifying at-
tribute versionId for referencing a version within the graph. Each graph is equipped
with an objectId. A version can also be referenced directly using a globalId that com-
prises both identifiers. For a type that supports versioning, the user may require addi-
tional attributes for storing version name, description, last change date and creation
date. Using the feature # of successors, it is possible to limit the number of direct suc-
cessors for a version in the version graph. The storage of versions may proceed in copies
that duplicate even the unmodified attribute values for fast access or using the so-called
forward or backward deltas (storing only the differences from the predecessor to the
successor version or vice versa). The checkout/checkin operations are used to lock/un-
lock the version for the exclusive use mode. It may be required that the system always
creates a separate successor version upon checkout and leaves the original version un-
adorned (create successor). In this case, it may also be useful to automatically merge
this version with the original upon checkin.

Each versioned object type provides the following operations (not depicted in Fig. 2)
for managing versions and traversing the version graph: createSuccessor, deleteVer-
sion, merge, getAncestor, getSuccessors, getAlternatives, and getRoot. Some of these
carry further subfeatures, e.g., prevent deletion of ancestors is an optional subfeature of
deleteVersion that we also use in the UML profile in Sect. 2.4. It marks whether a ver-
sion can be deleted in case it already has some successors in the version graph.

Fig. 2. Feature diagram for versioned object types

2.2 Workspace Types

Workspace types (also see Fig. 2) are versioned object types with special properties.
Workspaces (instances of workspace types) contain many objects (of diverse types).
However, only one version of a particular object may be present in a workspace at a
time – in this way, a workspace acts as a version-free view to the contents of a version-
ing system, allowing the user to navigate among the contained objects without explic-
itly referring to versions. A version arrives in a workspace using the attach operation.
A workspace can possess an exclusive ownership for the attached versions, meaning
that they cannot be attached to another workspace at the same time.

2.3 Relationship Types

The majority of interesting behavior in a versioning system is captured by properties of
relationship types. Each type consists of two relationship ends that connect to object
types. The features for an end are illustrated by the feature diagram in Fig. 3. An end is
primarily characterized by the defined role name, whether it is navigable, and its mul-
tiplicity. More interestingly, in case an end connects to a versioned object type, the user
can define the end as floating. A floating end contains a subset of versions that can be
reached when navigating to this object. This subset is called a candidate version collec-
tion (CVC) and can be either system- or user-managed. In a system-managed CVC, the
CVC is initialized by a version specified by the user; afterwards, the system adds every
successor of this version (obtained either by invoking createSuccessor or by merging)
to the CVC. In a user-managed CVC, the user explicitly adds versions from the version
graph to the CVC.

There are two possible ways of using a CVC when navigating between objects. In
unfiltered navigation, the user requests all versions from the CVC when navigating
from some origin object (note that if the multiplicity of the end is many, there will be
many CVCs, one for each connected object). In filtered navigation, the system automat-

Fig. 3. Feature diagram for relationship ends

ically selects a version for the user. In case filtered navigation is carried out within a
workspace, a version from the CVC that is attached to the workspace will be returned.
Outside a workspace, the system first checks whether there is a pinned version in the
CVC (this is the version the user has explicitly marked as default using the pin opera-
tion). Otherwise, the system selects the latest (newest) version from the CVC. Floating
relationship ends prove useful for managing configurations of versions, but also repre-
sent a large performance overhead due to special properties. For this reason, we consid-
er them optional, so the user can define the relationship end that connects to a versioned
object type as non-floating and use it to connect to versions as if they were regular ob-
jects.

To illustrate the concepts of floating relationship ends, consider the following exam-
ple based on Fig. 1. Suppose that the relationship end content which belongs to the re-
lationship type R2 and connects to the object type Teaser is floating. The multiplicity
of the end is many. This means that a given version of a menu m connects to many
CVCs for the teasers. Each of these teaser-CVCs is bound to a version graph for some
teaser and contains a subset of versions from this version graph. Within each teaser-
CVC, there is a latest version and there can be a pinned version. The following situa-
tions can arise where navigating from m across the relationship R2 towards Teaser.
• Filtered navigation outside a workspace. For every teaser-CVC related to m, a

pinned version is returned, in case it exists. Otherwise, the latest version is re-
turned.

• Filtered navigation within a workspace w. For every teaser-CVC related to m, we
check whether there is a teaser version attached to w and return this version. Note
that a CVC that connects to m does not have to contain a version attached to w. For
such a CVC, no version is returned.

• Unfiltered navigation. All versions from all teaser-CVCs related to m are returned.
It is up to the client application to decide which versions to use.

As illustrated in Fig. 3, relationship ends can also be used to propagate operations
from the object the operation got invoked on towards its connected objects. When prop-
agating createSuccessor, the user can choose to invoke copy on a connected object, thus
initiating a new version graph. When propagating delete, the user can define that the
connected object is to be deleted only if it does not connect to any other objects.

2.4 A Configuration DSL for Versioning Systems

In VS-Gen, a domain-specific language (DSL) is used for configuring a desired ver-
sioning system. The DSL takes form of a UML profile, illustrated in Fig. 4, and current-
ly supports a subset of features presented in Sect. 2.1-2.3. In the configuration process,
object types and relationship types are first described in a UML model. Afterwards,
model elements are branded with stereotypes and tagged values are selected for tag def-
initions. An example of applying the profile to our sample information model from
Fig. 1 is illustrated in Fig. 5. We also added a workspace type EditorialDepartment that
can attach objects of type Menu, Teaser, and Article.

3 Generated Components

This section outlines the implementation components of a versioning system and the
template-based approach used to generate these components. The target platform for
generated systems is J2EE [20] with a RDBMS as a persistent storage for objects and
relationships.

<<stereotype>>
WorkspaceType

<<stereotype>>
RelationshipType AttachmentType

<<stereotype>>

Package
<<metaclass>> <<metaclass>>

Class

<<stereotype>> <<stereotype>>

<<stereotype>>
InformationModel

Tags

<<stereotype>>
VersionedObjectType

Tags

preventAncestorDeletion: Boolean [0.1]
deleteVersionOperation: Boolean [0.1]
mergeOperation: Boolean [0..1]
maxSuccessors: Integer [0..1] versionName: Boolean [0..1]

versionDescription: Boolean [0..1]
versionCreationDate: Boolean [0..1]
versionChangeDate: Boolean[0..1]

<<stereotype>><<stereotype>>

Association
<<metaclass>>

<<metaclass>>
AssociationEnd

<<stereotype>>

<<stereotype>>
RelationshipEndType

propDelete: Boolean [0..1]
propAttachDetach: Boolean [0..1]
propCopy: Boolean [0..1]
propFreeze: Boolean [0..1]

propCreate: Boolean [0..1]

propCreateSuccessor: Boolean [0..1]
propCheckoutCheckin: Boolean [0..1]

Tags
floating: Boolean [0..1]

Fig. 4. A UML Profile for information models in VS-Gen

Fig. 5. A sample information model branded with stereotypes and tagged values

3.1 Persistence and Entity Layers

The persistence layer is composed of relational tables used for storing versioned ob-
jects. Every object type and workspace type gets mapped to a separate object type table
using the globalId as the primary key. Versioning information (attributes frozen, ver-
sionName, versionCreationDate, versionChangeDate, and the one-to-many association
for linking a predecessor version to its direct successors) gets integrated directly into
the table. If possible, we avoid a separate relationship type table to minimize the num-
ber of joins required when navigating between objects. This can be done for non-float-
ing relationship ends with multiplicity one. For floating relationship ends, references to
the pinned version and the latest version are materialized as additional foreign key val-
ues to assure the fastest access possible. In this way, we avoid running through all target
version keys in a CVC seeking for a flag that would mark the pinned version or looking
for the latest version. In case the multiplicity of a floating relationship end is one, the
two values are stored as columns in the object type table for the source of the navigation.
Materializing the latest version setting represents an overhead for operations that
change the state of the CVC, i.e., operations for creating or deleting the relationships.
However, the materialization speeds up the operations for filtered navigation outside
workspaces, which are invoked more frequently in typical usage scenarios.

The entity layer mirrors tuples from database tables to the so-called entity objects
(implemented as CMP entity beans [19]) to present the access layer with a navigational
access to data stored by the persistence layer. The navigational access is supported
through the use of CMR [19]. The generated code for the entity layer relies on container
services of the application server that assure persistence, entity caching, instance pool-
ing, and context-based prefetch for navigational access.

3.2 Access Layer

The access layer is comprised of stateful session components (stateful session
beans [19]) that carry out versioning operations by accessing and modifying the state of
entity objects. Technically, the session components can be accessed by a native EJB cli-
ent or, since we provide an additional layer for converting SOAP calls to operation in-
vocations on session instances, by a Web Services client. This additional layer is imple-
mented using the Axis framework [2].

For every workspace and object type, a separate session component will be provided
in the access layer. The core object management operations provided by every compo-
nent include createObject, copyObject, deleteObject, findAll and findByObjectId and
the get/set operations for the defined attributes. Session components for versioned ob-
ject types provide operations createSuccessor, deleteVersion, merge, getRoot, get-
Ancestors, getSuccessors, and getAlternatives. Since an instance of a session compo-
nent is never bound to a particular object, operations that perform work on an existing
object require the object’s globalId as parameter, e.g., given a session component in-
stance menuAccess for the object type Menu from Fig. 5, menuAccess.createSucces-
sor(393218) will create a successor to the menu with the globalId 393218 and return the
globalId of the successor version to the client. In this way, a single session component

instance can answer diverse operation calls for different objects of the same type thus
saving server-side resources. Operations also come in variants that provide value-based
return, e.g., createSuccessor_Value, returning a serializable representation of an object
to the client.

Session components in the access layer also provide operations for managing and tra-
versing relationships. For example, invoking operations addCategory or removeCate-
gory on a session component instance teaserAccess for the object type Teaser creates
or deletes a relationship among a teaser and a menu (note that Menu is referred to from
the Teaser using the role name category). Both operations maintain CVCs on the cor-
responding relationship ends. The operation getCategory performs a filtered navigation
from the teaser to the menu, returning either the pinned version from each connected
CVC on the side of the menu or the latest version, in case the pinned version does not
exist. For a session component instance a current workspace can be set (this is the rea-
son for session components being stateful) in case an attachment relationship type has
been defined among a corresponding object type and the workspace type. For example,
the operation setCurrentEditorialDepartment can be invoked on teaserAccess. With a
current workspace set, the operation getCategory will return only the connected ver-
sions of the menu that are attached to this workspace. The operations getCatego-
ryPinned, pinCategory, and unpinCategory are used for explicitly navigating to the
pinned menu versions and manipulating the pin settings. Unfiltered navigation is sup-
ported using the operation getCategoryUnfiltered.

Taking advantage of the specified operation propagation properties, the generator
hardwires the application logic for propagation directly in the implementation of ses-
sion components in the access layer. For the example in Fig. 5, creating a copy of an
article automatically creates copies of associated teasers and images and connects these
copies with relationships.

3.3 Content Browser

In addition to the programmatic access described in the previous section, the version-
ing system can also be accessed using a content browser. This access is convenient for
manually invoking the operations of a versioning system. The browser is a Web appli-
cation based on the JSP Model 2 Architecture [17]. It consists of generated JSPs,
which contain no Java scriptlet code and serve only as views to the requested informa-
tion. In addition, for each object type, we generate a servlet that takes the role of a Web
controller. These servlets invoke operations on the access layer and dispatch the
returned information to the JSPs.

3.4 Example

To illustrate the concepts described by Sect. 3.1-3.3, we take a look at an example sce-
nario for the system generated from the information model illustrated in Fig. 5. Suppose
that in the content browser, the user gets an overview of a specific article version. From
this overview, the createSuccessor operation is invoked on this version. The invocation

is accepted by the Web controller servlet for the Article object type. The servlet calls
the method createSuccessor_Value on the stateful session bean object in the access lay-
er that is responsible for the Article object type. As mentioned in Sect. 3.2, this method
returns a serializable representation of the newly created version. The method relies on
the method createSuccessor_Local, which actually creates the successor version. This
method is illustrated by Fig. 6. newCopy (line 5) is a reference to an entity bean for the
newly created version. Lines 7–10 copy the attribute values to this version. Lines 11–
22 implement the propagation of the createSuccessor operation from an article version
towards connected teaser versions. A hash map recursionMap is used to keep track of
already visited versions to prevent cycles in operation propagation.

3.5 Generation Process

The generation process in VS-Gen is based on a set of code templates. Nearly all exist-
ing template-based code generation approaches work in the same way. First, a template
that consists of static parts, placeholders for user-defined values, and control flow state-
ments that drive the evaluation of the output of the template is prepared. Afterwards, in
a process called merging, a context of values that will replace placeholders is prepared
and the control flow of the template is executed by a template engine. To separate it
from the static code parts in the template, we refer to context references and control
flow as metacode. The template engine used in VS-Gen is Velocity [1]. No generated
code is produced by means other than templates. Table 1 gives an overview of the 25
code templates used in VS-Gen and the implementation parts they generate.

Code generation from UML models often requires flexible access to model informa-
tion that is dispersed across many model elements due to fine-grained nature of the
UML Metamodel. Following the idea described by Sturm et al. [18], this problem is
solved by implementing the so-called prepared classes that aggregate model informa-
tion from diverse model parts. VS-Gen uses XMI to import an information model from

Fig. 6. createSuccessor_Local operation for the Article object type

1: public ArticleLocal createSuccessor_Local(ArticleLocal object, HashMap recursionMap) throws Exception {
2: if (!object.getFrozen()) { // ... Exception throwing code }
3: if (getSuccessors_Local(object).size() >= 10) { // ... Exception throwing code }
4: ArticleLocal newCopy = null;
5: newCopy = mHomeInterface.create(object.getObjectId());
6: object.getSuccessors().add(newCopy);
7: newCopy.setTitle(object.getTitle());
8: newCopy.setText(object.getText());
9: newCopy.setAuthor(object.getAuthor());
10: newCopy.setDate(object.getDate());
11: recursionMap.put(object.getGlobalId(), newCopy);
12: TeaserAccessLocal teaserAccessBean = getTeaserAccessBean();
13: for (Iterator it=getTeaser_Local(object).iterator(); it.hasNext();) {
14: TeaserLocal linked = (TeaserLocal)it.next();
15: if (linked.getFrozen()) {
16: TeaserLocal newLinked = null;
17: if (!recursionMap.containsKey(linked.getGlobalId()))
18: newLinked = teaserAccessBean.createSuccessor_Local(linked, recursionMap);
19: else newLinked = (TeaserLocal)recursionMap.get(linked.getGlobalId());
20: addTeaser_Local(newCopy, newLinked);
21: }
22: }
23: return newCopy;
24: }

a UML tool to the NSUML [16] in-memory UML repository. Before invoking the tem-
plate engine, the model is analyzed in this repository to instantiate the prepared classes
and fill the instances with model information. Afterwards, the instances are put in the
Velocity context.

As an example, Fig. 7 illustrates a part of the template VSObjAccBean that has been
used to generate the implementation of the createSuccessor_Local method from Fig. 6.
Velocity statements begin with the # character. The $ character is used to retrieve a val-
ue from the context. The reference class (see, for example, lines 1 and 8) represents an
instance of a prepared class that aggregates information from the UML Metamodel
classes Class, Generalization, Stereotype, TagDefinition, and TaggedValue. Since the
multiplicity of the relationship end teaser that belongs to the relationship R3 in Fig. 5 is
many, the statements in lines 23–34 are used in the generated example from Fig. 6.

4 Evaluation

It is difficult to come up with a realistic estimate of how large individual features of ver-
sioning systems are just by examining the feature models and the UML profile from
Sect. 2. For this purpose, in Sect. 4.1, we first examine the properties of the example
versioning system generated for the information model from Fig. 5. Note that this ex-
amination does not apply to how the system is generated, although we used the gener-
ator to gradually add new features and examine the differences in the generated code.
The results give an orientation of how labor-intensive a manual implementation of the

Temp-Id Template name Used to generate...
1 VSObjAccBean a class implementation for components in the access layer
2 VSObjAccLocal local component and home interfaces for components in the access layer
3 VSObjAccLocalHome
4 VSObjAccRemote remote component and home interfaces for components in the access layer
5 VSObjAccRemoteHome
6 VSObjBean a class implementation for components in the entity layer
7 VSObjLocal local component and home interfaces for components in the entity layer
8 VSObjLocalHome
9 VSObjRemote remote component and home interfaces for components in the entity layer
10 VSObjRemoteHome
11 VSObjValue serializable representations of object types
12 ControllerServlet request dispatcher servlets (Web controllers) for the content browser
13 ShowInstance a JSP page that displays information on a stored object
14 ShowTypeInfo a JSP page that displays type information (metadata, i.e., attributes and

relationship types) for an object type
15 ShowList a JSP page that displays the matching objects as a result of a finder method

or a navigation operation
16 ShowIndex a JSP page that displays the navigation bar in the content browser
17 Web-xml a Web deployment descriptor
18 EJB-jar-xml an EJB deployment descriptor
19 Application-xml a deployment descriptor for the entire enterprise application
20 AS-application-xml an application server specific deployment descriptor for the application
21 Deploy-wsdd a Web services deployment descriptor
22 Undeploy-wsdd a file to undeploy previously deployed Web services
23 VSObjService proxy classes for redirecting Web services calls to the access layer
24 TestClient a Web services based test client
25 Build-xml a script to compile and deploy the generated implementation

Table 1: Velocity templates used by VS-Gen

features would be. To evaluate the generation approach itself, Sect. 4.2 examines the
properties of the templates presented by Table 1.

4.1 Properties of the Example Versioning System

We analyzed the code generated with VS-Gen for the sample information model from
Fig. 5 by trying to trace different code parts back to the corresponding configuration
concepts from the UML profile (see Table 2). In terms of the lines-of-code (LOC) mea-

Fig. 7. Part of the template VSObjAccBean used for generating createSuccessor_Local method

1: public ${class.name}Local createSuccessor_Local(${class.name}Local object, HashMap recursionMap)
2: throws Exception {
3: if (!object.getFrozen()) { // ... Exception throwing code }
4: #if ($package.getIntegerTaggedValue("maxSuccessors", -1) > 0)
5: if (getSuccessors_Local(object).size() >=
6: ${package.getIntTaggedVal("maxSuccessors", -1)}) { // ... Exception throwing code }
7: #end
8: ${class.name}Local newCopy = null;
9: newCopy = mHomeInterface.create(object.getObjectId());
10: object.getSuccessors().add(newCopy);
11: #foreach($attribute in $class.attributes)
12: newCopy.set${attribute.nameUpperCase}(object.get${attribute.nameUpperCase}());
13: #end
14: recursionMap.put(object.getGlobalId(), newCopy);
15: #foreach($associationEnd in $class.associationEnds)
16: #if ($associationEnd.association.hasStereotype("RelationshipType") &&
17: ($associationEnd.oppositeEnd.getTaggedVal("propCreateSuccessor") == "true") &&
18: ($associationEnd.oppositeEnd.participant.hasStereotype("VersionedObjectType") ||
19: $associationEnd.oppositeEnd.participant.hasStereotype("WorkspaceType")))
20: ${associationEnd.oppositeEnd.participant.name}AccessLocal ${associationEnd.oppositeEnd.name}AccessBean =
21: get${associationEnd.oppositeEnd.participant.name}AccessBean();
22: #if ($associationEnd.oppositeEnd.isMultiValued())
23: for (Iterator it=get${associationEnd.oppositeEnd.nameUpperCase}_Local(object).iterator(); it.hasNext();) {
24: ${associationEnd.oppositeEnd.participant.name}Local linked =
25: (${associationEnd.oppositeEnd.participant.name}Local)it.next();
26: if (linked.getFrozen()) {
27: ${associationEnd.oppositeEnd.participant.name}Local newLinked = null;
28: if (!recursionMap.containsKey(linked.getGlobalId())) newLinked =
29: ${associationEnd.oppositeEnd.name}AccessBean.createSuccessor_Local(linked, recursionMap);
30: else newLinked =
31: (${associationEnd.oppositeEnd.participant.name}Local)recursionMap.get(linked.getGlobalId());
32: add${associationEnd.oppositeEnd.nameUpperCase}_Local(newCopy, newLinked);
33: }
34: }
35: #else
36: ${associationEnd.oppositeEnd.participant.name}Local
37: linked${associationEnd.oppositeEnd.participant.nameUpperCase} =
38: get${associationEnd.oppositeEnd.nameUpperCase}_Local(object);
39: if (linked${associationEnd.oppositeEnd.participant.nameUpperCase}.getFrozen()) {
40: ${associationEnd.oppositeEnd.participant.name}Local
41: new${associationEnd.oppositeEnd.participant.nameUpperCase} = null;
42: if (!recursionMap.containsKey(
43: linked${associationEnd.oppositeEnd.participant.nameUpperCase}.getGlobalId()))
44: new${associationEnd.oppositeEnd.participant.nameUpperCase} =
45: ${associationEnd.oppositeEnd.name}AccessBean.createSuccessor_Local(
46: linked${associationEnd.oppositeEnd.participant.nameUpperCase}, recursionMap);
47: else
48: new${associationEnd.oppositeEnd.participant.nameUpperCase} =
49: (${associationEnd.oppositeEnd.participant.name}Local)recursionMap.get(
50: linked${associationEnd.oppositeEnd.participant.nameUpperCase}.getGlobalId());
51: add${associationEnd.oppositeEnd.nameUpperCase}_Local(newCopy,
52: new${associationEnd.oppositeEnd.participant.nameUpperCase});
53: }
54: #end ## End of #if ($associationEnd.oppositeEnd.isMultiValued())
55: #end ## End of #if ($associationEnd.association.hasStereotype("RelationshipType") && ...
56: #end ## End of #foreach($associationEnd in $class.associationEnds)
57: return newCopy;
58: }

sure, the largest part of the generated code (62.47%) belongs to the object and work-
space types. As evident from Table 2, an unversioned object type (Image) requires sub-
stantially less code than versioned types and workspaces. A unidirectional relationship
type R4 (between Article and Image) with no floating ends is far easier to support than
other relationship types. Also note that the three attachment relationship types that con-
nect the workspace type EditorialDepartment to object types Menu, Teaser, and Article
are less demanding than regular relationships types. The remaining percentage of code
(4.21%) represents the counters for managing objectIds and versionIds and can not be
directly ascribed to any configuration concept.

We were also interested in the values for McCabe’s cyclomatic complexity [13] and
Halstead effort [8] that can be attributed to individual concepts and features. The results
of this analysis are illustrated by Fig. 8. The two values (complexity and effort) for an
empty information model were obtained by generating a versioning system from a mod-
el with no object, relationship, and workspace types. Afterwards, we added an unver-

Implementation part %LOC

Object and workspace types 62.47%
- Article 14.35%
- EditorialDepartment 13.30%
- Image 8.88%
- Menu 13.04%
- Teaser 12.90%

Relationship types 21.93%
- R1 (Menu-Menu) 6.44%
- R2 (Menu-Teaser) 7.11%
- R3 (Teaser-Article) 6.61%
- R4 (Article-Image) 1.77%

Table 2: Parts of the generated implementation

Implementation part %LOC

Attachment rel. types 11.40%
- R5 (EditorialDep-Menu) 3.68%
- R6 (EditorialDep-Teaser) 3.78%
- R7 (EditorialDep-Article) 3.93%

Remaining parts 4.21%

V
er

s.
 o

b
j.

ty
p

e
w

. m
er

g
e,

 d
el

et
eV

er
si

o
n

W
o

rk
sp

ac
e

ty
p

e

V
er

s.
 o

b
j.

ty
p

e

A
tt

ac
h

m
en

t
re

l.
ty

p
e

F
lo

at
in

g
 r

el
. e

n
d

M
-t

o
-N

 r
el

. t
yp

e

1-
to

-1
 r

el
. t

yp
e

U
n

ve
rs

. o
b

j.
ty

p
e

E
m

p
ty

 in
fo

rm
at

io
n

 m
o

d
el

P
ro

p
ag

at
in

g
 d

el
et

e

P
ro

p
ag

at
in

g
 c

re
at

e

A
tt

ri
b

u
te

0

10

20

30

40

50

60

C
yc

lo
m

at
ic

 c
o

m
p

le
xi

ty

V
er

s.
 o

b
j.

ty
p

e
w

. m
er

g
e,

 d
el

et
eV

er
si

o
n

W
o

rk
sp

ac
e

ty
p

e

V
er

s.
 o

b
j.

ty
p

e

A
tt

ac
h

m
en

t
re

l.
ty

p
e

M
-t

o
-N

 r
el

. t
yp

e

F
lo

at
in

g
 r

el
. e

n
d

1-
to

-1
 r

el
. t

yp
e

U
n

ve
rs

. o
b

j.
ty

p
e

A
tt

ri
b

u
te

E
m

p
ty

 in
fo

rm
at

io
n

 m
o

d
el

P
ro

p
ag

at
in

g
 c

re
at

e

P
ro

p
ag

at
in

g
 d

el
et

e

0

20.000

40.000

60.000

80.000

100.000

120.000

140.000

160.000
H

al
st

ea
d

 e
ff

o
rt

Fig. 8. Cyclomatic complexity and Halstead effort for individual concepts / features

sioned object type, versioned object type (separately with merge and deleteVersion op-
erations), and a workspace type and observed the differences in comparison with the
values obtained for an empty model. Starting from an object type and a workspace type,
we added an attribute, an attachment relationship type, a regular one-to-one relationship
type, and a regular many-to-many relationship type to the model and observed the dif-
ferences. Afterwards, we made both ends of the many-to-many relationship type float-
ing and halved the obtained complexity and effort differences to obtain the values that
can be ascribed to a single floating relationship end. Finally, for an existing relationship,
we additionally chose delete propagation and create propagation. As evident from
Fig. 8, the largest complexity and effort values are obtained for versioned object types
and workspace types (in contrast to this, an unversioned object type is less demanding
than a one-to-one relationship type). A floating relationship end alone adds more com-
plexity and a bit less effort than originally required for a many-to-many relationship
type. The values for operation propagation are extremely low.

4.2 Properties of the Templates

We investigated the templates from Table 1 using the following measures: references
to prepared classes in the context, if-statements, for-loops, statements, McCabe’s cyclo-
matic complexity, Halstead effort, and LOC. Since we were interested in the properties
of the metacode contained in the templates, we counted every static output within a tem-
plate as a single “atomic” metacode statement. In this way, for example, only if-state-
ments of the metacode are counted, but not the if-statements in the Java code wrapped
by the metacode. The statement count was obtained as the sum of references, if-state-
ments, for-loops, and atomic outputs of static code. Altogether, 288 kB of template files
contain 3013 references to prepared classes, 542 if-statements, 128 for-loops, and 6670
statements. The chart in Fig. 9 illustrates the distribution of the cyclomatic complexity
within the templates. Not surprisingly, the template used to generate the session com-
ponents in the access layer (which contain most application code and are very prone to
feature selections) proves as the most complex one.

0

20
40

60
80

100
120

140

160
180

200
220

240

V
S

O
b

jA
cc

B
ea

n

C
o

n
tr

o
lle

rS
er

vl
et

T
es

tC
lie

n
t

S
h

o
w

In
st

an
ce

V
S

O
b

jB
ea

n

E
JB

-j
ar

-x
m

l

V
S

O
b

jS
er

vi
ce

V
S

O
b

jA
cc

L
o

ca
l

V
S

O
b

jA
cc

R
em

o
te

S
h

o
w

T
yp

eI
n

fo

W
eb

-x
m

l

V
S

O
b

jL
o

ca
l

V
S

O
b

jV
al

u
e

S
h

o
w

L
is

t

S
h

o
w

In
d

ex

V
S

O
b

jR
em

o
te

V
S

O
b

jR
em

o
te

H
o

m
e

V
S

O
b

jL
o

ca
lH

o
m

e

D
ep

lo
y-

w
sd

d

B
u

ild
-x

m
l

A
p

p
lic

at
io

n
-x

m
l

U
n

d
ep

lo
y-

w
sd

d

V
S

O
b

jA
cc

R
em

o
te

H
o

m
e

V
S

O
b

jA
cc

L
o

ca
lH

o
m

e

A
S

-a
p

p
lic

at
io

n
-x

m
l

C
yc

lo
m

at
ic

 c
o

m
p

le
xi

ty

Fig. 9. Cyclomatic complexity of the templates

We were also interested whether there is a correlation between the LOC-value and
the cyclomatic complexity and the Halstead effort of the metacode. As illustrated by
Fig. 10, the cyclomatic complexity grows in a linear proportion to the LOC-value of a
template. A steady growth trend can be observed for the Halstead effort if we use log-
arithmic scales for both axes. The specially marked outlier is the template Build-xml.
This template (for generating the compile and build script for a versioning system) con-
tains only a minor part of metacode in proportion to its static parts.

5 How Fast are Generated Versioning Systems?

There are two ways of integrating a versioning system with clients. Development envi-
ronments usually contain a set of existing clients (tools), each with a private storage
manager with a logical data model not necessary corresponding to that of the versioning
system. In this case, translators [4] (also called data exchange switches) that convert
the data between the versioning system and the storage managers need to be developed.
In the second case, the versioning system is used interactively by the tools. In this case,
users will develop new tools using the generated API or wrap this API so that it can be
used with the existing tools. Long-lasting accesses to the versioning system in both cas-
es, where a large number of stored objects is traversed, are disturbing for developers. A
fast versioning system assures short modification, build, and test cycles in any kind of
development process that uses versioned data.

Do generated versioning systems provide better performance that generic ones? To
answer this question, we developed an alternative implementation of the product line in
form of a framework. In the framework approach, the user implements a desired ver-
sioning system by extending the framework superclasses with classes specific to the in-
formation model and providing call-back methods that will be invoked by the frame-
work through reflection. What are the differences between the systems obtained in two
different ways, i.e., generated by VS-Gen or obtained by instantiating the framework?
As described in Sect. 3, template metacode assures a wide range of optimizations, e.g.,

0
20
40
60
80

100
120
140
160
180
200
220
240

0 500 1000 1500 2000 2500

LOC

C
yc

lo
m

at
ic

 c
om

pl
ex

ity

Build-xml
1

10

100

1.000

10.000

100.000

1.000.000

10.000.000

100.000.000

1 10 100 1000 10000

LOC

H
al

st
ea

d
ef

fo
rt

Build-xml

Fig. 10. Correlation between the cyclomatic complexity / Halstead effort and LOC

materializing the pinned version in a CVC or hardwiring operation propagation settings
in the implementation of the access layer. Unfortunately, these optimizations raise the
complexity of the database schema and the generated code. This does not prove a prob-
lem as long as the system is accessed by the client only through the generated API and
as long as no adaptation of the generated code is required. However, if a user wanted to
query the database of the versioning system directly using SQL, this would require a
complete understanding of optimizations performed by the template metacode (also see
our conclusion in Sect. 7 for an alternative way of dealing with this problem). In addi-
tion, due to hardwiring propagation settings in the implementation of the access layer,
the settings are difficult to trace down and modify. For this reason, when implementing
the framework, we tried to factor out a great deal of versioning functionality to generic
parts and implement them so that they can be used with any information model, increas-
ing the simplicity of the obtained system (especially the database schema) without loos-
ing too much on performance. The differences between systems generated by VS-Gen
and systems developed by extending the framework are summarized in Table 3.

We took advantage of the fact that all API calls supported by a generated system are
also supported by a framework-based system (in fact, a framework-based system will
usually provide a somewhat more elaborate API for an information model because, for
example, all object types are versioned). This means that clients that run against a gen-
erated system run with no modifications against a framework-based system. In our per-
formance comparison, we used the information model from Fig. 5 for a generated and

Concept / feature VS-Gen Framework
Versioning information
(predecessor to a given
version, information
whether a version is frozen)

The information is directly integrated in
the entity components that represent
object types.

Stored by a special table used by all object
types. The versioning information is repre-
sented as an additional entity component.

Merging information (what
versions have been
merged with other ver-
sions)

Implemented as a separate reflexive
many-to-many relationship on an entity
component for a particular object type.

Implemented as a reflexive relationship on
the entity component that represents ver-
sions.

Unversioned object types Supported. Not supported - all object types are ver-
sioned.

Non-floating relationship
ends

Supported. Not supported - all ends are floating.

Relationship types Implemented separately for every rela-
tionship type. Represented as relation-
ships among the entities that represent
object types, allowing context-based
prefetch.

All relationships are stored by a special
table. A relationship is represented as an
additional entity component.

Latest version of a CVC Materialized as a separate relationship
between entities and thus immediately
available in filtered navigation. If the
multiplicity of the floating end is one,
only one join will be required.

The candidate versions, determined within
the relationship table, have to be scanned
to determine the latest version.

Pinned versions Implemented separately for every float-
ing relationship end. Represented as
relationships between the entities.

All pin settings are stored by a special
table. A pin setting is represented as an
additional entity component.

Attachment relationship
types

Implemented separately for every
attachment relationship type defined in
the information model.

Stored by a special table. Attachments are
represented as additional entity compo-
nent.

Checkout locks Available as a one-to-many relationship
between the workspace type and the
object type.

Stored by a special table. Checkout locks
are represented as an additional entity
component.

Operation propagation set-
tings

Hardwired directly in the session com-
ponents in the access layer.

Stored in a special table that can be modi-
fied for a running versioning system. The
table needs to be queried for every invoca-
tion of an operation that might propagate.

Table 3: Differences between generated and framework-based versioning systems

framework-based versioning system. A benchmark client that was used to simulate a
typical content-management scenario for this information model carried out 192,148
operations. A detailed comparison of execution times (we subtracted the communica-
tion times between the client and server) for diverse operations is given by Fig. 11.

The speed-ups illustrated in Fig. 11 were calculated as the ratio (tfw-tgen)/tfw, where
tfw represents the time required by the framework-based implementation and tgen the
time required by the generated implementation. The entire run of the benchmark took
505.30 seconds for the framework-based implementation and 370.86 seconds for the
generated implementation, yielding a 26.61% overall speed-up of the generated imple-
mentation. Note that execution times in Fig. 11 have been categorized, e.g., pinRela-
tionshipObject represents all pinning operations carried out for objects and relation-
ships of diverse types defined by the information model in Fig. 5. The times used for tfw
and tgen were then obtained as median execution times within a category (median times
are used instead of average times to reduce the effect of outliers.) As evident from
Fig. 11, version graph navigation operations (getAlternatives, getRoot, getAncestors,
and getDifferences) and the deleteVersion operation prove more efficient for a frame-
work-based system due to differences in representing versioning information as de-
scribed in Table 3.

Is improved performance the only reason for implementing a generator? Our experi-
ence shows that instantiating the framework by writing derived classes is a very labor-
intensive task. It requires the developer to get familiar with the framework and is also
very error-prone, e.g., due to naming conventions the call-back methods need to follow.
For the information model from Fig. 5, 45 derived classes with a total 3822 LOC and a
Halstead effort of 12,490 were required. So even for the framework-based approach
used in a commercial setting, we claim that a simple generator for framework instanti-

getSuccessors

getAncestors
getRoot

deleteVersion

getAlternatives
setCurrentW orkspace

isFrozen

getAttribute
unsetCurrentW orkspace

createSuccessor

createObject
attachToW orkspace

merge

deleteObject
addRelationshipObject

setValueObject

pinRelationshipObject
setAttribute

getValueObject

getAttachedObject
freeze

copyObject

checkinFromW orkspace
checkoutToW orkspace

getRelationshipObject

-150% -125% -100% -75% -50% -25% 0% 25% 50% 75% 100%
% Speed-up

Fig. 11. Speed-up of a generated towards a framework-based versioning system

ation would be necessary. This increases the actual cost of developing the framework
when considering the fixed costs associated with both generators. These costs are inde-
pendent of the complexity of generated code. For example, the facility for analyzing in-
formation models needs to be developed in both cases.

6 Related Work

A good analysis of diverse existing systems with versioning support is a prerequisite for
implementing a generator for such systems. As a result, our goal was to come up with
the following results.
• A common terminology (a domain dictionary) for our domain model.
• Case studies of how different features are implemented in existing generic systems.
• A strategy to making different features compatible in a single domain implementa-

tion, e.g., in our case, using a template-based generation approach.
Most of the existing work deals with the first two points. For example, an extensive

overview of version and configuration management is provided by Katz [11], who pro-
poses a unified framework for version modeling in engineering databases. The author
analyzes a variety of existing terminologies and mechanisms for representing versioned
data. A lot of recent applications to versioning are used for versioning hypermedia con-
tent. Whitehead [22] analyzes this domain and gives an overview of existing systems.

Some examples of versioning systems include CVS/RCS [7], Microsoft Meta Data
Services [15], Unisys UREP [21], IBM Rational ClearCase [10], and IBM XML
Registry [9]. While early systems like CVS/RCS use a file system for storage, most re-
cent systems, like VS-Gen, rely on a database to allow the structuring of information
models either as relational or OODBMS schemas, queries, and transactions. Conradi
and Westfechtel [6] examine a variety of version models in both commercial and re-
search systems and discuss fundamental concepts of the domain, such as versions, re-
visions, variants, configurations, and changes. Whitehead and Gordon [23] use con-
tainment data models (a specialized form of the ER model) to analyze 11 configuration
management systems (including CVS and ClearCase). A comparison of these surveys
to VS-Gen reveals that, at the moment, our domain model covers merely a portion of
existing version models. Following the results from this work, we plan to gradually im-
prove the VS-Gen’s UML profile and domain implementation to support new features.

Versioning of metadata (relational and XML schemas, interface definitions for oper-
ations, etc.) has become significant for data and application integration approaches. In
this cases, metadata (which is subject to change over time and thus needs to be ver-
sioned) is needed for analyzing and dealing with syntactic and semantic heterogeneity
of diverse data sources that need to be integrated (see [12]). In case a versioning system
supports a fine-grained navigational access among stored objects for the clients, much
like the systems generated by VS-Gen, another common term for such a system is re-
pository (see Bernstein [4] for the description of additional functionality that is usually
provided by repositories, e.g., workflow management for tracing the lifecycle of stored
objects). Although the majority of existing approaches support the generation of imple-
mentation parts that are specific for the user-defined information model, they restrain

from treating versioning functionality in terms of features that could be selected by the
user. This usually leads to framework-based solutions similar to the one we presented
in Sect. 5, with a decreased performance and only minor possibilities to customize the
versioning semantics.

In our current implementation, the merge operation merely connects two branches in
the version tree, relying on the user to resolve the semantic conflicts between the ver-
sions. However, the topic of automatic merging has already been considered by some
authors. For example, Melnik et al. [14] discuss the definition of a reintegrate operator
that can be used for model merging. The operator relies on automatic discovery of struc-
tural and semantic model correspondences. We plan to explore the relevance of these
results to VS-Gen in our future work.

7 Conclusion and Future Work

This paper presented VS-Gen which is our approach to template-based generation of
versioning systems from information models branded with system features selected by
the user. In comparison to the framework-based solution that relies on a series of
generic implementation components, a generated versioning system demonstrated an
improved performance of 27% measured by our benchmark. The time spent on the
VS-Gen project can be summarized as follows. A development team of two with a
background in version management spent four months analyzing and comparing dif-
ferent versioning systems to come up with the domain model. The development of the
UML profile, model analysis facility, prepared classes and the templates was carried
out in an iterative fashion by adding a specific feature to these parts, adjusting the
implementation of existing features, and carrying out the tests. These iterations took
six months, the development of the templates taking the effective portion of approx.
75% of this time. The effective time for getting familiar with different technologies we
use in VS-Gen (NSUML, Velocity, and Axis) is estimated to one month. Both develop-
ers had a strong background in J2EE, UML profiles, and XMI. Due to our existing
experience with the implementation of versioning systems we generate and simpler
optimization requirements, the development of the framework (developed after the
generator part was completed) took less than three months.

The following are the lessons we learned from VS-Gen.
• Current IDEs lack sufficient support for developing templates. The minimal re-

quirement would include syntax highlighting to easily separate code from meta-
code. Velocity templates 13–16 from Table 1 were especially difficult to develop
since they generate JSP pages, which themselves act as templates for HTML out-
put. Further requirements would include a quick examination of generated code by
filling in the context values directly in the IDE with no need to start the entire gen-
eration process. Adding new features to our domain often required a reimplemen-
tation of existing templates. A good IDE for template-based development should
support a clear overview of what parts of a template are related to a specific feature.

• Many templates were developed by first considering examples of what needs to be
generated for a selection of features and afterwards generalizing these examples to

a template. The most complex case for this were different examples for the combi-
nation of floating/non-floating relationship ends with their multiplicities. These
combinations affect different parts of access components that deal with relation-
ship traversal, creation, and deletion of a relationship. We assume that this kind of
example-based development could be automated to some extent by tools that com-
pare different examples and identify varying pieces of code.

• Templates for generating code with a great deal of application logic are especially
difficult to develop and test. Using the cyclomatic complexity scale proposed
by [5], the templates for generating access components, the controller servlet, and
the test client would fall into the category of programs with very high risk that are
practically untestable. A solution would be to break down the template into many
parts that can be used in a superordinated template. In case a part is used more than
once, this allows reuse of code and metacode. Velocity supports the described reuse
by include, parse, and macro directives [1]. However, in VS-Gen, no repeating
parts of metacode occur in the first place, making metacode refactoring impossible.
Thus the only solution is to refactor the code that needs to be generated to many
parts (classes) and implement many small templates for these parts.

Our benchmark results are to be treated with care. The overall speed-up of a gener-
ated versioning system towards a framework-based system depends on the concrete
selection of features and proportions among the categories of operations carried out by
the benchmark. This means that the categories illustrated in Fig. 11 are more relevant
for discussing the benefits of generated systems than the overall speed-up of 27%. To
our knowledge, no well-accepted benchmarks for versioning systems exist, probably
due to a large variety of existing versioning models. As mentioned by [4], in the most
simple case, OODB benchmarks can be used for measuring the performance of navi-
gational access operations in a versioning system. However, this excludes versioning
operations and the effects of operation propagation that are also interesting to us.

Our work fails to answer the most important question: How many versioning sys-
tems implemented manually justify the effort required for developing the templates for
the generative approach? In answering this question, it proves unavoidable to come up
with a measure that reasonably combines the properties of the metacode and static
code in a template. Having not solved this problem, we simply state that even for the
case of a small information model, such as the one in Fig. 5, the LOC-value for the
generated versioning system is 2.7-times greater than the LOC-value of the templates,
although this result is to be treated with utmost care. Our future work will focus on a
detailed examination of template metacode to determine a set of appropriate measures
that can be used for evaluating the metacode’s properties.

Presenting developers with a generated middleware API for accessing the data in
the versioning system is not the only possible way of tackling the problem. For this
reason, in a related project, we are developing a domain-specific SQL-like language
for dealing with versioned data. Data definition statements in this language, which
describe the information model and the selection of features are translated to SQL-
DDL statements. Query and update statements are translated to SQL-DML statements.
The translation takes place in a special database driver that wraps the native driver.

Company mergers often require not only integration of enterprise data but also inte-
gration of engineering data for the products, which is usually versioned. Understand-
ing variability in different versioning models is a key prerequisite for such integration.
In our future work in this area, we want to extend VS-Gen with a support for genera-
tive development of wrappers to utilize the integration of legacy versioning systems.

References

1. The Apache Jakarta Project: Velocity, available as: http://jakarta.apache.org/velocity/
2. The Apache Web Services Project - Axis, available as: http://ws.apache.org/axis/
3. Bernstein, P.A.: Repositories and Object-Oriented Databases, in: SIGMOD Record 27:11

(1998), pp. 34-46
4. Bernstein, P.A., Dayal, U.: An Overview of Repository Technology, in: Proc. VLDB 1994,

Santiago, Sept. 1994, pp. 707-713
5. Carnegie Mellon University, Software Engineering Institute: Software Technology Road-

map - Cyclomatic Complexity, available as:
http://www.sei.cmu.edu/str/descriptions/cyclomatic_body.html

6. Conradi, R., Westfechtel, B.: Version Models of Software Configuration Management, in:
ACM Computing Surveys, 30:2 (1998), pp. 232-282

7. CVS - Concurrent Versions Systems - The Open Standard for Version Control, available
as: http://www.cvshome.org/

8. Halstead, M.H.: Elements of Software Science, Elsevier, 1977
9. IBM Corp., IBM alphaWorks: XML Registry, available as:

http://www.alphaworks.ibm.com/tech/xrr
10. IBM Corp.: IBM Rational ClearCase, available as:

http://www.ibm.com/software/awdtools/clearcase/
11. Katz, R.H.: Toward a Unified Framework for Version Modeling in Engineering Databases,

in: ACM Computing Surveys 22:4 (1990), pp 375-409
12. Madhavan, J., Bernstein, P.A., Rahm, E.: Generic Schema Matching with Cupid, in: Proc.

VLDB 2001, Rome, Sept. 2001, pp. 49-58
13. McCabe, T.J.: A Complexity Measure, in: IEEE Transactions on Software Engineering 2:4

(1976), pp. 308-320
14. Melnik, S., Rahm, E., Bernstein P.A.: Developing Metadata-Intensive Applications with

Rondo, in: Journal of Web Semantics, 1:1 (2003)
15. Microsoft Corp., Microsoft Developer Network: Meta Data Services Architecture, avail-

able as: http://msdn.microsoft.com/
16. Novosoft Inc.: NSUML – Novosoft Metadata Framework and UML Library, available

from: http://nsuml.sourceforge.net/
17. Seshadri, G.: Understanding JavaServer Pages Model 2 Architecture: Exploring the MVC

Design Pattern, JavaWorld, Dec. 1999, available from: http://www.javaworld.com/
18. Sturm, T., von Voss, J., Boger, M.: Generating Code from UML with Velocity Templates,

in: Proc. UML 2002, Dresden, Oct. 2002, 150-161
19. Sun Microsystems, Inc.: Enterprise JavaBeans Specification, v2.1, Nov. 2003
20. Sun Microsystems, Inc.: Java 2 Platform Enterprise Edition Specification, v1.4, Apr. 2003
21. Unisys Universal Repository: Tool Builder’s Guide, Unisys Corp., 1999.
22. Whitehead, J.E.: An Analysis of the Hypertext Versioning Domain, Ph.D. dissertation,

Univ. of California, Irvine, Sept. 2000
23. Whitehead, J.E., Gordon, D.: Uniform Comparison of Configuration Data Models, in:

Proc. SCM-11, Portland, May 2003, pp. 70-85

