
Generic XMI-Based UML Model Transformations

Jernej Kovse, Theo Härder

Department of Computer Science
University of Kaiserslautern

P.O. Box 3049, D-67653 Kaiserslautern, Germany
{kovse, haerder}@informatik.uni-kl.de

Abstract. XML-based Metadata Interchange (XMI) is an interchange format
for metadata defined in terms of the MOF standard. In addition to supporting
the exchange of complete models, XMI supports the exchange of models in dif-
ferential form. Our paper builds on this feature to examine the possibility of
XMI-based generic transformations of UML models. A generic transformation
can be configured to generate (via XSLT) a specialized transformation that will
be used to transform a UML model. The approach promotes model reuse,
speeds up the modeling process and can be used to assure that only predefined
semantics (as specialized by an agent) is included in the transformed model.

1 Motivation

The XML-based Metadata Interchange (XMI) [11] is an interchange format for meta-
data that is defined in terms of the Meta Object Facility (MOF) [8] standard. Since the
adopted UML specification [10] defines the UML meta-model as a MOF meta-model,
XMI can be used as a model interchange format for UML. This allows UML model-
ing tools or repositories from different vendors to use XMI to exchange UML models.
In addition to supporting the export or import of complete models or model frag-
ments, XMI allows the exchange of models in differential form, i.e. in case a model-
ing tool is used to extend a UML model m1 with new model constructs to produce
model m2, XMI supports the exchange of differences between the two models. An
important consequence of this feature is that XMI can be used to describe model
transformations.

This paper1 builds on this feature of XMI to examine an infrastructure needed for
semi-automatic transformations of UML models in a UML repository. A general us-
age scenario for such transformations looks like this: A UML model mi is given and
stored in a UML repository. A human or a software agent wants to transform mi, i.e.
add, remove, or modify model elements to obtain a model mi+1 which expresses the
new (extended, deprived or modified) semantics. However, suppose completely man-
ual model transformation by an agent is unacceptable - we would like to assure that
the semantics contained in mi+1 is understood by a UML model-driven compiler (e.g.
a model-based software generator [2]) or interpreter (e.g. a workflow engine based on

1 The research is part of Sonderforschungsbereich (SFB) 501, funded by the Deutsche For-

schungsgemeinschaft (DFG).

UML activity graphs [4]). As a solution to this problem, we half-fabricate a model
part (the difference between mi+1 and mi) and represent it as a generic transformation.
Generic transformations are stored in a database that allows the agent to query them
and select the one matching its design requirements. By configuring a generic trans-
formation, the agent produces an XMI document describing the transformation that
has to be applied to obtain the model mi+1. The process of selecting different generic
transformations, configuring them and transforming the model can be iterated to meet
different requirements that have to be present in the final model. Generic transforma-
tions promote model reuse, speed up the modeling process and assure that only prede-
fined semantics (as specialized by the agent) is integrated in the final UML model.

Section 2 of this paper focuses on the required infrastructure supporting the appli-
cation of XMI-based generic transformations in detail. Section 3 gives a brief over-
view of related work. In Section 4, we make a conclusion and present some ideas for
the future work related to the approach.

2 An Infrastructure for Generic XMI-Based Transformations

2.1 XMI-Supported Model Transformations

XMI defines four elements (we refer to them as differential elements) used to support
differential description of UML models: XMI.difference is the parent element
used to describe differences from the base (initial) model; it may contain zero or more
differences, expressed through the elements XMI.difference, XMI.delete,
XMI.add and XMI.replace. XMI.delete represents a deletion from the base
model, XMI.add represents an addition to the base model and XMI.replace
represents a replacement of a model construct with another model construct in a base
model.

2.2 Generic Transformations

Suppose a set of transformations {Tk; k∈[1,n]}, which may all be derived (special-
ized) from a common transformation blueprint. We call such a blueprint a generic
transformation T. T gives a generic view on a modular part of a UML model whereas
each Tk represents a full specialization of this part and allows its integration with an
existing base model mi. Tk can be generated from T by configuring T’s parameter val-
ues. To allow a direct application of Tk to mi, Tk is expressed as a series of XMI’s dif-
ferential elements. The configuration parameters (specified by an agent) define how a
transformation generator generates Tk from T using the following three mechanisms
(Fig. 1 illustrates an example of two specialized transformations generated from the
same generic transformation where Z is the class added in each transformation):

• Static parameterization: Parameters of T are used to generate concrete properties
of differential elements used in Tk, e.g. class names, association names, role names,
multiplicities, visibility kinds, definitions of OCL constraints, etc. The designer of

T defines places (templates) in T that are used as placeholders for parameter val-
ues. For example, an invariant limits the values of i to two different ranges in Figs.
1a and 1b.

• Iteration: Parameters of T allow the agent to influence how many times a segment
of T will be used in Tk. For example, in Fig. 1a, Z acts as a container for A whereas
in Fig. 1b, it acts as a container for classes B and C meaning that two aggregation
associations had to be created.

• Conditional include: Parameters of T allow the agent to decide whether a segment
of T will be used in Tk. For example, in Fig. 1b, we have omitted the method m1
from class Z.

It is the responsibility of the designer of T to carefully consider how to combine
the above mechanisms so that Tk could be generated and applied in a meaningful
(consistent) form. To achieve this, the designer always has to specify parameter
guidelines (described in Section 2.3) used to limit the set of specialized transforma-
tions that can be derived from the same generic transformation T.

Tk is generated as an XMI document (referred to as Tk.xml) using two sources: A
definition of T (provided by the designer of T) and a list of parameter values for T
(provided by the agent). We suggest that both sources should be provided as XML
documents, referred to as T.xml and parameters.xml, respectively. In this case,
XSLT (Extensible Stylesheet Language Transformations) [14] can be used by the
transformation generator to process T.xml and parameters.xml to generate
Tk.xml. XSLT is a language for transforming XML documents (source trees) into
other XML documents (result trees). An XSLT transformation, expressed as an XSLT
stylesheet (referred to as generate.xslt), specifies rules used by the transforma-
tion generator to generate Tk.xml from T.xml and parameters.xml. gener-
ate.xslt is used to support the identified three mechanisms in XSLT.

• Static parameterization is supported using XSLT template rules (element
xsl:template) [14].

• Iteration (see example in Fig. 2) can be supported either by XSLT template rules or
XSLT repetition (element xsl:for-each) [14].

• Conditional include is supported using XSLT conditional processing (xsl:if
and xsl:choose) [14].

Z

i : Integer

m1()
m2()
m3()

A

Z

i : Integer

m2()
m3()

B

Z

i : Integer

m2()
m3()

C

context Z inv:
self.i < 5 context Z inv:

self.i < 20

Model part added through
transformation

Model part added through
transformation

Fig. 1. A pair of specialized transformations

2.3 Constraints

We cannot always rely on the agent to make the appropriate judgment on whether Tk
can be consistently applied to mi. For this reason, the designer of T defines two sets of
constraints for each generic transformation: parameter guidelines define valid con-
figurations of parameter values in parameters.xml and are thereby used to limit
the set of transformations that can be derived from T. Transformation preconditions
define constraints that apply to mi and assure that the constructs it contains allow a
consistent application of Tk. Since they apply to a UML model, transformation pre-
conditions are expressed as OCL constraints [10].

2.4 Applying Transformations

As Tk.xml is generated, the model transformer attempts to apply it to the model mi.
The infrastructure includes a UML repository [6] that stores UML models. A reposi-
tory [1] offers several benefits for the process of applying transformations. Since it
supports version control, the models obtained by applying consecutive transforma-
tions can be represented as versions. This allows an agent to revert to a previous ver-
sion of the model even after a transformation has committed. Since a repository sup-
ports configuration control, it allows multiple model segments that have been
transformed independently to be combined into configurations. Notification services
allow UML-model driven compilers or interpreters (see Section 1) to be notified
whenever a model change (that they have as listeners registered to) occurs.

The UML repository offers the access to stored UML models via a programming
model [1], which is a mapping of the UML metamodel [10] to enterprise components.
The components expose the core Create-Read-Update-Delete (CRUD) methods for
the UML model elements. A programming model based on enterprise components de-
livers persistence, scalability (to leverage the performance of complex model trans-
formations) and programming level transactions. The model transformer is imple-
mented as a session component that performs a transformation Tk in the following

...
<XMI.difference>

<StateChainTemplate>
<XMI.add>

<UML:SimpleState ... />
</XMI.add>

</StateChainTemplate>
...

</XMI.difference>
...

...
<States>

<State name=“A1“/>
<State name=“A2“/>
<State name=“A3“/>

</States>
...

...
<XMI.difference>

<XMI.add>
<UML:SimpleState name=“A1“ ... />

</XMI.add>
<XMI.add>

<UML:SimpleState name=“A2“ ... />
</XMI.add>
<XMI.add>

<UML:SimpleState name=“A3“ ... />
</XMI.add>

</XMI.difference>
...

T.xml

parameters.xml

Tk.xml

Fig. 2. Iteration (supported via XSLT template rules or repetition)

order: (i) it initiates a transformation transaction, (ii) checks mi for transformation
preconditions, (iii) parses Tk.xml to translate the occurences of differential XMI
elements to the invocations of CRUD methods of components of the repository’s pro-
gramming model, (iv) commits the transformation transaction.

3 Related Work

St-Denis et al. [12] compare various model interchange formats, e.g. RSF, XIF, XMI,
and discuss the implementation details of an XMI-based model interchange engine.
They identify the XMI’s support for differential model exchange as vital for the scal-
ability, which is one of the requirements they use to assess the formats.

Keienburg and Rausch [5] present an infrastructure for model evolution, schema
migration and data instance migration, which is based on UML models. Successive
differences on the evolution path are represented using the XMI’s differential ele-
ments.

Yoda [15] presents an approach to developing applications using parameterized
frameworks. The approach applies to the OMG’s Model Driven Architecture
(MDA) [9]. He recognizes model transformations as a way to customize predefined
and parameterized frameworks. The parameterized UML diagrams he presents can be
compared to the mechanism of static parameterization we identified in Section 2.2.
Yoda classifies the parameterized frameworks as attribute- or operation-centric.

Demuth et al. [3] outline XMI-based scenarios in the forward and reverse engineer-
ing of different applications. As an example, they show how XSLT can be used to
generate a SQL schema from a UML model.

Schema transformations are extensively discussed by McBrien and Poulovas-
silis [7]. In case an evolving UML model has to be consecutively mapped to an (ob-
ject-)relational database schema, issues related to schema evolution, discussed by
Türker [13], become highly relevant to the proposed approach.

4 Conclusion and Future Work

This paper presented our work on generic XMI-based transformations of UML mod-
els. The proposed infrastructure allows agents that want to transform UML models to
select a predefined generic XMI-based transformation and configure it via parameter
values. A specialized XMI transformation is generated by using XSLT as a mecha-
nism for transforming XML documents. The generated transformation is applied in a
UML repository that allows versioning of successively transformed models and for-
mation of model configurations from independently transformed model parts.

The target applications of the proposed approach are UML model-driven compilers
and interpreters that can understand the UML-specified semantics only in predefined
ways. Thus, agents using them can apply generic transformations to build UML mod-
els that conform to their requirements. The approach also promotes model reuse,
speeds up the modeling process and assures that only predefined semantics is in-
cluded in the final models.

As future work, we intend to examine whether automatic identification of generic
XMI-based transformations is feasible: Given a base UML model mi and a set of
transformed UML models, {nj, j∈[1,l]}, what are the possibilities to automatically ex-
tract a generic transformation that would allow any model from the set to be gener-
ated from mi.

Second, we are interested in the extension of the proposed infrastructure that would
support model-based generative software development. This paper has handled semi-
automatic transformations of UML models. In our future work, we will try to identify
how the current concepts of generative programming, e.g. feature modeling, template
metaprogramming, aspect-oriented programming [2] fit into the proposed infrastruc-
ture that would support semi-automatized implementation of software parts from the
UML models that have been successively enhanced using generic XMI-based trans-
formations.

References

[1] Bernstein, P.A.: Repositories and Object Oriented Databases, Proc. Conf. BTW’97, Ulm,
March 1997, Springer-Verlag, pp. 34-46.

[2] Czarnecki, K., Eisenecker, U.W.: Generative Programming: Methods, Tools and Applica-
tions, Addison-Wesley, 2000.

[3] Demuth, B., Hussmann, H., Obermaier, S.: Experiments with XMI-based Transformations
of Software Models, in: Online Proc. WTUML: Workshop on Transformations in UML
(ETAPS 2001 Satellite Event), Genova, Apr. 2001, http://ase.arc.nasa.gov/wtuml01/

[4] Dumas, M., ter Hofstede, A.H.M.: UML Activity Diagrams as a Workflow Specification
Language, in: Proc. Int. Conf. UML 2001, Toronto, Oct. 2001, Springer-Verlag, pp.
76-90.

[5] Keienburg, F., Rausch, A.: Using XML/XMI for Tool Supported Evolution of UML Mod-
els, in: Proc. Int. Conf. HICSS’01, Maui, Jan. 2001, IEEE, 2001.

[6] Mahnke, W., Ritter, N., Steiert, H.-P.: Towards Generating Object-Relational Software
Engineering Repositories, in: Proc. BTW’99, Freiburg, March 1999, Springer-Verlag, pp.
251-270.

[7] McBrien, P., Poulovassilis, A. : A Formal Framework for ER Schema Transformation, in:
Proc. ER’1997, Los Angeles, Nov. 1997, Springer-Verlag, pp. 408-421.

[8] OMG: Meta Object Facility Specification, version 1.3.1, OMG document 01-11-02.
[9] OMG: Model Driven Architecture - A Technical Perspective (Draft), OMG document

01-07-01.
[10] OMG: Unified Modeling Language Specification, version 1.4, OMG document 01-09-67.
[11] OMG: XML Metadata Interchange Specification, version 1.2, OMG document 02-01-01.
[12] Saint-Denis, G., Schauer, R., Keller, R.K.: Selecting a Model Interchange Format. The

SPOOL Case Study, in: Proc. Int. Conf. HICSS’00, Maui, Jan. 2000, IEEE, 2000.
[13] Türker, C.: Schema Evolution in SQL-99 and Commercial (Object-)Relational DBMS, in:

Proc. 9th Int. Workshop on Foundations of Models and Languages for Data and Objects
(FoMLaDO 2000), Dagstuhl, Sep. 2000, Springer-Verlag, pp. 1-32.

[14] W3C, XSL Transformations (XSLT), version 2.0 (Working draft),
http://www.w3.org/TR/xslt20/

[15] Yoda, T.: Creating Applications Using Parameterized Frameworks: Quickly developed
and highly customized, presentation at OMG’s 2nd Workshop: UML for Enterprise Ap-
plications: Model Driven Solutions for the Enterprise, Burlingame, Dec. 2001.

