
DSL-DIA - An Environment for Domain-Specific
Languages for Database-Intensive Applications

Jernej Kovse and Theo Härder

Department of Computer Science
University of Kaiserslautern

P.O. Box 3049, D-67653 Kaiserslautern, Germany
{kovse,haerder}@informatik.uni-kl.de

Abstract. This paper presents DSL-DIA, an environment that lets a system-
family vendor define a metamodel for a custom domain-specific language used
by customers for specifying properties of family members. Once the metamodel
is imported in the environment, the environment allows the customer a flexible
way to program in the domain-specific language and translates obtained pro-
grams to implementations of family members. In our case, family members are
always database-intensive applications with application logic executed in the
database server.

1 Introduction

The most important features of the new generation of object-relational database sys-
tems depicted by the recent SQL:1999 [1] standard and its upcoming successor
SQL:2003 are the possibility of executing application logic in the database server and
using object-relational extensions with the relational data model. In particular, user-
defined routines (UDRs) enable the manipulation of data in the database in a language
native to the database system. Complex user-defined types (UDTs) can be used to
structure multiple data fields and afterwards be used as column or table types. Triggers
define SQL statements that get executed when a trigger event takes place. Finally,
semantic integrity of data can be enforced by constraints and assertions. By using
these concepts, engineering of self-contained applications that run completely in the
database server is made possible.

Recently, the area of software product lines [4] has gained a lot of research atten-
tion. The term refers to a group of software systems sharing a common set of features
that satisfy the needs of a particular market. It is cost-effective if the product line is
implemented as a system family, meaning that the systems in the product line (family
members) can be built from a common set of implementation assets. Domain engi-
neering is the key enabling approach for designing and implementing system families.

When provided with a system family, the user has to somehow specify the concrete
functionality of a family member he or she wishes to obtain. In an ideal case, by using
a common set of reusable assets (e.g., components, classes, or code templates), the
member can be automatically generated from this specification. A possible way to

write a specification is to use a domain-specific language (DSL) that contains abstrac-
tions capable of describing the member within the domain of its family. Our DSL-DIA
(Domain-Specific Languages for Database Intensive Applications) environment, pre-
sented in this paper, allows system-family vendors easy definition of DSLs for their
system families. Once a DSL is defined, the environment supports highly intuitive pro-
gramming in this DSL. The environment translates a DSL program to a primitive set of
SQL:1999 constructs, normally used in database-intensive applications, e.g. UDTs,
table definitions, UDRs, triggers and constraints.

Sect. 2 of this paper will describe the DSL-DIA environment in detail. Sect. 3 illus-
trates the use of the environment on a practical example, while Sect. 4 gives an over-
view of related work. In Sect. 5, we make a conclusion and discuss some ideas for the
future work related to the approach.

2 Using the DSL-DIA Environment

The DSL-DIA environment is used as illustrated in Fig. 1. First, the product-line ven-
dor defines a DSL metamodel, which is a MOF-based [9] metamodel, to describe the
constructs that can appear in DSL programs. There are two ways the product line cus-
tomer can enter a DSL program: The customer can instantiate DSL metamodel con-
structs to obtain a DSL model, which is represented in a tree-like form, called the DSL
tree. Alternatively, the user may enter a DSL program in textual form using a DSL edi-
tor. There is a one-to-one mapping between the DSL model and the DSL program, so
the changes to the model made in the DSL tree affect the DSL program displayed in
the editor and vice versa. To enable this mapping, the vendor has to specify DSL ren-
dering rules, which define how an instance in the DSL model will be represented in
the DSL program.

DSL programs themselves are not executable and have to be translated to a set of
primitive constructs to obtain a corresponding SQL schema with a set of UDTs, table
definitions, or UDRs for the database-intensive application. In the same manner as
DSL programs have their model equivalents in DSL models, we want to have SQL
schemas also represented as models in order to be able to define the translation on the

Fig. 1. Using the DSL-DIA environment

DSL
metamodel

DSL
model

DSL
program

CWM
metamodel

CWM
model

DB schema
(UDTs, tables, UDRs, …)

DSL
rendering

rules

CWM
rendering

rules

DSL templates

Provides
constructs for

Provides
constructs for

Defined by the product line vendor

Created by the customer

Refined by the customerDefined by OMG Hardwired into DSL-DIA

model-to-model basis. OMG’s Common Warehouse Metamodel (CWM) [10] is a
metamodel dedicated to easy interchange of business intelligence metadata between
warehouse tools, warehouse platforms, and warehouse metadata repositories. CWM’s
package Relational defines modeling constructs that appear in database schemas of
object-relational databases. For this reason, we choose to represent the schema of the
obtained database-intensive application - the product family member whose properties
were described in the DSL model - as a CWM model.

To support the translation, DSL templates that map the DSL model to the CWM
model are defined by the product line vendor. Similar to DSL rendering rules, there are
CWM rendering rules which render the obtained CWM model (represented as the
CWM tree) to textual representation of the database schema in SQL (displayed in the
SQL editor). If desired, the customer can enhance the obtained schema with custom
functionality that could not be expressed in the DSL. This may be done either by
manipulating the CWM tree or modifying the schema in the SQL editor. This process
corresponds to Frankel’s [5] description of partial round-trip engineering in model-
driven development, where it is allowed to enhance the generated artifacts with
implemetation parts that could not be sufficiently described at the specification level.

3 Case Study: A DSL for Version Management

Repository systems [2] are generally used for managing data in team-oriented engi-
neering activities. Version management provided by a repository system will encom-
pass functions for representing versions of engineered artifacts and combining these
versions into configurations. Since the ACID transaction model proves inappropriate
for longlife (design) transactions, version management supports locking of versions in
a configuration via checkout and checkin operations [3]. In an object-oriented reposi-
tory, versioned and unversioned artifacts are represented as repository objects. Each
repository object has a repository object type. Repository object types can be associ-
ated by relationship types (which, in our example, are always binary). A repository
relationship is an instance of a relationship type and denotes a semantic connection
among two repository objects. Repository object types and repository relationship
types are defined by a repository information model. A repository system implemented
as a database-intensive application will attempt to provide its operations as UDRs and
structure its data as UDTs.

Version management is highly variable! This leads us (the vendor) to the idea to
provide a product line for repository systems, where customers will have the possibil-
ity to customize versioning semantics for their repositories. In a very simplified sce-
nario, starting from some initial information model (defined by the customer), the
customer has the following customization options.

• A given repository object type may or may not support versioning.
• If versioning is supported, the customer wants to specify the permitted number of

successor versions to a given object version.
• The customer wants to have the possibility to define own configuration types and

choose the types of repository objects these configuration types may contain. A

configuration is a special type of a repository object, since only one version of a
given repository objects may be present in a configuration at a time.

• For a given relationship type, the customer wants to decide whether or not the
attach operation (which attaches an object to a configuration) will propagate across
the relationships of this type.

• For a given relationship type, the customer wants to decide whether or not the oper-
ations createSuccessor (which creates a successor version to a given version),
freeze (which makes a version immutable), checkout, checkin, copy and new
(which creates a new object instance) propagate across the relationships of this
type.

In accordance with the above domain analysis, the product line vendor will con-
struct the DSL metamodel illustrated in Fig. 2. As this DSL metamodel is imported in
the DSL-DIA environment, users can create DSL models that conform to the meta-
model. The environment displays these models as trees, where instances of metamodel
classes are represented as tree nodes. Generally, DSL models can contain cycles,
which are impossible to represent in tree-like structures where each node has exactly
one parent. To overcome this problem, certain nodes are equipped with hyperlink-like
pointers that enable the user to navigate within the model graph without the origin and
source node of the navigation being directly connected in the DSL tree.

Suppose a customer requires a repository system used for an OO development envi-
ronment that stores implementations of classes. Since the developed system stores per-
sistent data in the database, some classes access database tables (a class can access
zero or many tables and a table can be accessed by zero or many classes). We expect
that the development path for the system will be mirrored by successive versions of
classes and tables. Because of semantic dependencies, we require that at the event of
freezing a table version, all related class versions are frozen as well. In terms of the

Fig. 2. DSL metamodel for version management

UnversionedRepObjectTypeVersionedRepObjectType

maxSuccessors : Integer

DSLMetamodelElement

name : String

RepAttribute

type : String
RepType

0..n1 0..n1

containsInformationModel
0..n1 0..n1

defines

RepRelationshipType

RepConfigurationType

RepRelationshipEnd

minMultiplicity : String
maxMultiplicity : String
propAttachDetach : Boolean
propCreateSuccessor : Boolean
propFreeze : Boolean
propCheckoutCheckin : Boolean
propCopy : Boolean
propNew : Boolean

2

1

2

1

connects

RepObjectType1..n

0..n

1..n

0..n

attaches

0..n

1

0..n

1 participates in

DSL metamodel, there will be a RepRelationshipType ClassAccessesTable whose
RepRelationshipEnd attached to Class will propagate the freeze operation. Portions
from the DSL tree and DSL program are illustrated in Fig. 3.

In the translation phase, a CWM model is generated from the DSL model. This pro-
cess requires reusable CWM model parts that are generic, meaning that such a part acts
as a blueprint capable of producing different CWM models for different DSL models
but at the same time captures the commonalities among CWM models that exist within
the domain of the system family. A feasible way to implement such generic parts is by
using templates. The outcome of the application of a DSL template should be a CWM
model, which we choose to express using XML Metadata Interchange (XMI) [11].
Thus, within a DSL template, commonalities can be expressed using standard CWM
XMI tags. However, to support variation among CWM models that can be generated
from the template, the template has to support placeholders (for filling places in the
template with user-defined values), repetition and conditional statements. We have
defined X-CWM DTD by extending the CWM XMI DTD with tags used to express
these concepts. A template is then expressed as a X-CWM document that gets pro-
cessed by an XSLT template to produce a CWM model expressed in XMI. This
approach is a variation of generic model-to-model transformations described in [8].

For example, for the case of the version management DSL, a template will generate
repository database tables from repository object type definitions. These tables retain
fields for the attributes specified for the type in the DSL metamodel and acquire addi-
tional fields used for version management, e.g. objId primary key for storing reposi-
tory object’s identity, objPredecessor foreign key for enabling relationships to a
predecessor version, frozen field of type boolean to denote whether a version is fro-
zen, chOut foreign key for enabling relationships to the configuration the version is
currently checked out to, and others. Tables generated from repository object type def-
initions are called repository object tables (ROTs). Additional tables, e.g. those gener-
ated from relationship types of multiplicity many-to-many are called supplementary
tables (STs). A portion from the CWM tree and the obtained stored procedure for
freezing table versions, which propagates the freeze operation across the table’s rela-
tionship to classes is illustrated in Fig. 4.

Fig. 3. A sample DSL tree and DSL program

create repository object type Class {
name varchar(40),
description varchar(40),
isAbstract boolean,
implementation CLOB,
... // additional attributes

}
create repository object type Table {
name varchar(40),
description varchar(40),
DDLDeclaration CLOB,
... // additional attributes

}
create repository relationship type
ClassAccessesTable {
connects Class (0 to many) and Table (0 to many),
... // optional definition of relationship

// type’s attributes
propagates freeze towards Class,
propagates createSuccessor towards Class,
... // other properties of the relationship type

}

…

4 Related Work

The use of domain-specific languages for formally specifying a member of a system
family is outlined by Czarnecki and Eisenecker [4]. The authors call such a DSL a con-
figuration DSL and note that the language can be derived from the feature model [7]
constructed in the domain analysis phase. As in our case, the authors emphasize the
need for a translator, which translates a program in a configuration DSL into a concrete
configuration of implementation components. In our case, the translator performs a
model-to-model mapping, since both the initial specification (the DSL program) and
the implementation of the family member are represented as models.

The notion of extensible programming environments, where programmers can
define and use custom high-level abstractions, which get translated to a program in a
general-purpose programming language, such as C, is materialized in Simonyi’s work
on Intentional Programming (IP) [12]. The IP environment allows the programmer to
define rendering methods (which determine how new abstractions will be displayed),
editing methods (which determine how abstractions will be entered), reduction meth-
ods (which determine how programs using abstractions will be translated to a general-
purpose programming language), and others.

Automatic generation of program code artifacts from models is the goal of OMG’s
Model Driven Architecture (MDA) [11]. Although formal UML models, expressed
using Executable UML [6], often prove appropriate as MDA’s platform-independent
models (PIMs), a major drawback of this approach is that these models are too ver-
bose, since Executable UML is kept as general as possible so that it can be used for a
wide variety of different domains. A possible solution to this problem is to use a UML
profile as a lightweight extension of the UML metamodel and define domain-specific
abstractions via stereotypes and tagged values. Thus, in the context of MDA, it is pos-
sible to consider our DSL metamodels as UML domain profiles, which are equipped
with DSL rendering rules (to display DSL programs) and DSL templates that assure a
domain-specific mapping to the implementation via the CWM metamodel.

Fig. 4. A sample CWM tree and generated user-defined procedure

CREATE PROCEDURE freezeTable(tableIdArg INT8)
DEFINE checkedOut INT8;
DEFINE isFrozen BOOLEAN;
DEFINE currentClass INT8;
FOREACH tableCursor FOR SELECT frozen, chOut

INTO isFrozen, checkedOut
FROM TableROT WHERE objId = tableIdArg

IF chOut IS NOT NULL THEN
RAISE EXCEPTION 9999, 0,
'Can not freeze a checked out repository object.';

ELIF isFrozen = 'f' THEN
UPDATE TableROT SET frozen = 't' WHERE CURRENT OF tableCursor;
FOREACH SELECT classId INTO currentClass

FROM ClassAccessesTableST WHERE tableId = tableIdArg
EXECUTE PROCEDURE freezeClass(currentClass);

END FOREACH;
END IF;

END FOREACH;
END PROCEDURE;

…

…

5 Conclusion and Future Work

DSL-DIA provides customers within a given software system domain with an intuitive
way to specify the properties of system-family members using a set of orthogonal lan-
guage abstractions provided via a metamodel. Using a set of high-level abstractions for
system specification alleviates the design of generated database-intensive applications,
since the properties of the desired system are expressed in a brief and straightforward
form, shielding the customer from implementation level details that arrive in the
implementation via template-based model translation.

In our future work, we attempt to focus on the following topics.
• Maintenance of DSL templates: As the complexity of the domain increases, prod-

uct-line vendors are faced with large DSL templates that are difficult to implement
and maintain. In our opinion, a special technique alleviating DSL template devel-
opment should supplement DSL-DIA.

• Integrated development environments (IDEs) for product line vendors: DSL-DIA
requires representing an appropriate set of high-level abstractions via a metamodel,
defining DSL rendering rules, DSL templates and testing the DSL prior to releas-
ing it into customer use. We will explore the implementation of a dedicated IDE for
product-line vendors with support for feature-oriented domain analysis, a DSL
metamodel repository, and automated testing facilities.

References

1. ANSI/ISO/IEC 9075-2:1999. Information Technology - Database Languages - SQL - Part
2: Foundation (SQL/Foundation), 1999.

2. Bernstein, P.A.: Repositories and Object-Oriented Databases, in: ACM SIGMOD Record
27:1, 1998, pp. 34-46.

3. Bernstein, P.A.: Design Transactions and Serializability, in: Proc. 7th Int. Workshop on
High Performance Transaction Systems (HPTS 1997), Pacific Grove, Sept. 1997.

4. Czarnecki, K., Eisenecker, U.W.: Generative Programming: Methods, Tools, and Applica-
tions, Addison-Wesley, 2000.

5. Frankel, D.S.: Model Driven Architecture: Applying MDA to Enterprise Computing,
Wiley Publishing, 2003.

6. Mellor, S.J., Balcer, M.: Executable UML, Addison-Wesley, 2002.
7. Kang, K., Cohen, S., Hess, J., Nowak, W., Peterson, S.: Feature-Oriented Domain Analy-

sis (FODA) Feasibility Study, Technical Report CMU/SEI-90-TR-21, Software Engineer-
ing Institute, Carnegie Mellon University, Nov. 1990.

8. Kovse, J., Härder, T.: Generic XMI-Based UML Model Transformations, in: Proc. OOIS
2002, Montpellier, Sept. 2002, pp. 192-197.

9. OMG: Meta Object Facility (MOF) Specification, Vers. 1.4, April 2002.
10. OMG: Common Warehouse Metamodel (CWM) Specification, Vol. 1, Vers. 1.0,

Oct. 2001.
11. OMG: Model Driven Architecture (MDA), Draft Document, July 2001.
12. Simonyi, C.: The Death of Computer Languages, the Birth of Intentional Programming,

Tech. Report MSR-TR-95-52, Microsoft Research, Sept. 1995.

