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Abstract: A large variety of emerging Computational Grid applications require
versioning services to support effective management of constantly changing
datasets and implementations of data processing transformations. This paper pre-
sents V-Grid, a framework for generating Grid Data Services with versioning sup-
port from UML models that contain structural description for the datasets and
schema tuning information. The generated systems can be integrated using active
rules to support dynamic composition of versioning services and large federated
workspaces consisting of objects that reside in the individual systems.

1 Introduction

A Computational Grid is a hardware and software infrastructure providing dependable,
consistent, pervasive, and inexpensive access to high-end computational
capabilities [FC98]. In scientific applications, its usage roughly follows four
steps [EUD03]: (i) The user initiates a request for a computational job to the Grid and
provides input data, (ii) the Grid allocates the required computational and storage
resources, (iii) the Grid monitors request processing, and (iv) the user is notified by the
Grid as the results of the job become available. Typical Grid applications include process-
ing large volumes of experimental data from high-energy and nuclear physics
experiments [PPD03], genomics, proteomics and molecular biology [IBM03], and earth
observations (e.g. for tracking large-scale climate changes) [UNE03].

In our opinion, the current state of Grid-related research lacks a concise study of how the
Grid can benefit from versioning services. Therefore, the main objective of this paper is
to determine what kind of entities in the Grid require versioning services and how these
services may be provided. We try to build on the existing standarization efforts including
the Open Grid Services Architecture (OGSA) [GGF03], Open Grid Services Infrastruc-
ture (OGSI) [GGF03a], and Database Access and Integration Services
(DAIS) [GGF03b].

This paper is structured as follows. In Sect. 2, we discuss the general concepts related to
the so-called Grid services with particular focus on services used for data management.
The section also provides an overview of work that substantiates the need for versioning
for Grid applications. Sect. 3 introduces V-Grid, which is our framework for model-



driven development of Grid data services that support versioning. Finally, Sect. 4 pre-
sents our conclusions and outlines some ideas for the future work.

2 Definition of Terms and Related Work

In this section, we define the terms needed throughout the rest of the paper and give an
overview of related work.

2.1 Grid Services

The goal of the Grid is the efficient integration of distributed computational resources
through virtualization, i.e. a transparent access to these resources. Each resource is repre-
sented as a Grid service, which is a service specified using OGSI [GGF03a] extensions to
WSDL. Thus, a Grid service is a Web Service conforming to a special set of conventions
(i.e., interfaces) that the clients in the Grid can rely on. OGSI defines these conventions
by specifying WSDL portTypes and describing the required behavior of Grid services
implementing these portTypes (see [GGF03a] for a detailed overview of operations
defined by the portTypes). An implementation of such a service runs on a server called
hosting environment to serve the requests posed by other services (clients). OGSI defines
mechanisms for creating, managing, and exchanging information among Grid services.
In the following list, we give a brief overview of the concepts covered by OGSI.
- Grid service lifecycle. A client can request the creation of a Grid service instance

through a factory, which itself is a Grid service. An instance can be terminated in two
ways: In the case of explicit destruction, the destroy operation is invoked on the
instance. In the soft-state approach, the client expresses interest in the instance for a
given period of time. As this time expires (it can, however, be extended by the client),
the instance will be automatically destoyed.

- Naming. A Grid service instance is named globally by one or more Grid Service Han-
dles (GSH) in the form of a URI. In order to communicate with the instance, the client
has to resolve (either by itself or by using a handle resolver service) a GSH to a Grid
Service Reference (GSR), which includes the information required for accessing the
service instance over one or more protocol communication bindings (e.g. RMI/IIOP or
SOAP).

- Notification. The OGSA notification framework allows asynchronous delivery of noti-
fications, i.e. messages interesting for services cooperating in a given domain. Grid
services that act as message senders are called notification sources, while services that
wish to accept messages are called notification sinks.

2.2 Grid Data Services

Grid services that process large data volumes obtain this data from Grid services that pro-
vide data access and management capabilities, the so-called Grid data services (GDSs).



The general requirements for facilitating data management for Grid applications by a
GDS are discussed by [GGF03b], [Wa02], and [RNC+02]. These requirements, determin-
ing the core properties of a GDS, can be summarized as follows.
- Heterogeneity transparency: Accessing the data is independent of the implementation

of the data source, e.g. a DBMS or a file system.
- Location and name transparency: A client is shielded from the actual location of data

it accesses.
- Distribution transparency: A GDS integrates distributed data and allows the client to

access it in a unified fashion.
- Replication transparency: A GDS may cache and replicate data to improve perfor-

mance and availability.
- Ownership and costing transparency: Clients are spared from separately negotiating

access authorization and costs.

A GDS should provide substantial metadata on the underlying data management system
(e.g. supported query languages). However, metadata describing the structure (for exam-
ple, relational schema or XML schema) of data stored by the GDS is no less important
since it allows metadata-driven tools to discover schema information at runtime. Typi-
cally, diverse query languages (e.g., SQL, XPath) will be supported by a GDS. A GDS
also supports high-performance bulk loading, streaming of query results to an external
node for further processing, and a function that estimates query execution costs without
actually running the query. In accordance with the OGSA notification framework
described in Sect. 2.1, a GDS can act as a notification source for insert, update, deletion,
query, and schema modification events. Finally, some clients will desire to access large
datasets connected by relationships much like objects in an OO database. Thus, if this is a
requirement, a GDS should provide object-at-a-time navigational access to its data.

2.3 Why Versioning Services are Required?

Processing of large amounts of data in scientific experiments requires versioning capabil-
ities. For example, Jurisica et al. [JRG+01] describe Max, a prototype used to speed up
the process of crystal growth for proteins to enable the determination of protein structure
using single crystal X-ray diffraction. A robotic setup prepares and evaluates over 40
thousand crystalization experiments a day. Digital images of the crystalization are pro-
cessed using the two-dimensional Fourier transform to perform automated classification
of the experiment outcome. According to the authors, since the image-feature extraction
algorithm is in gradual improvement to increase classification accuracy and the imaging
settings may change as well, versioning of images and the processing code is required.

Holtman [Ho01] provides an overview and requirements of the data grid system used for
the Compact Muon Solenoid (CMS) experiment. The prime goal of the experiment is to
confirm the existence of the Higgs boson particle, which is the origin of mass. The author
notes that the analysis of (pre-filtered) data from events (collisions of particles in the
CMS detector) in the system is an iterative, collaborative process. Subsequent versions of
event feature extraction and event selection functions have to be refined until their effects



are well understood. A typical job issued by a physicist will be to run the next version of
the algorithm he developed to locate the Higgs events and later on, based on the output
data, examine the properties of the version.

To summarize, in experimentation environments, data to be analyzed can originate from
diverse sources with changing observation conditions. These conditions relate both to
equipment – cameras, radiometers, spectrometers, chromatographs, which can be cali-
brated for various degrees of precision – as well as the observation environment, e.g. tem-
perature, humidity, air pressure, illumination (these factors can as well be simulated). In
such cases, versioning of input data is required. We expect that there will be a Grid ser-
vice that processes this data to obtain some output data. However, different versions of
the implementation of this Grid service can be available (e.g., as mentioned by [RJS01],
there may be a fast version that produces only approximate results and a slow version that
produces more precise results). Some of the implementation versions can be marked as
stable and some can be early releases of implementations still under development. Addi-
tionally, versioning can be applied to distinguish among service implementations that per-
form the same data transformation but require different hosting environments. In this
manner, we view implementations themselves as versioned data that is stored by Grid
data services and can be deployed on demand. Often, transformations are chained mean-
ing that the output data produced by one service will be used as input data for another ser-
vice. Typical examples of this are data preprocessing services well known from data
mining applications [HK01]: data cleaning (automatic dealing with missing values, e.g.
by inserting global constants or calculated attribute means; dealing with noisy data, e.g.
by regression), data pre-transformations (aggregation, generalization, normalization, or
feature construction), or data reduction (dimensionality reduction, data compression,
numerosity reduction, discretization). Thus, the main purpose of versioning services for
the Grid is to allow the tracking of what version of what input data has been processed by
a chain of particular versions of some Grid services to produce a version of some output
data. Additionally, if transformation services are parameterized, we want to know what
input parameters have been submitted to them to configure the transformation. Such
tracking records in the Grid are called provenance (lineage) [ADG+03] and are very
important for consistently repeating experiments used to derive some input data and later
processing of this data, as well as discovering reliable data sources and useful calibrations
of instruments. For example, if a smaller sample produces interesting results, we may
choose to repeat the experiment and invest more processing resources to run the transfor-
mation on a larger dataset.

Raman et al. [RNC+02] also mention the need for special collaboration services in data-
intensive Grid applications, which will facilitate sharing of data between users at different
sites. These services encompass checkout/checkin functionality and annotation of objects
in Grid data sources with versioning information.

Sometimes it is easier for Grid users and applications to view their data in a version-free
manner, although data is versioned. This makes interactive manipulation of data easier
and implementations of algorithms that manipulate the data less verbose. The first
approach to this problem is to support a version of data in the GDS to be marked as the
default version meaning that it will be returned in case we do not exactly specify what



version we want. Bernstein et al. [BBC+99] refer to this behavior as pinning. Another
solution is to return the version determined by a rule that chooses the version from the
version graph according to some properties (the most common rule is to return the latest
version from the graph). Another well-accepted solution is to support workspaces (con-
figurations), where each workspace is allowed to attach no more than a single version of
data. Thus, once a client chooses a workspace to work with, it can manipulate the objects
within the workspace without explicitly referring to versions.

Versioning can affect replication policies in the Grid. Some versions can be marked as
read only meaning that they can be replicated without having to assure change propaga-
tion back to the master copy. This will always be the case with versions we have frozen
(made immutable) to prevent further changes to the data. As mentioned by Guy et
al. [GKL+02], special policies are needed to determine how a GDS with an installed rep-
lica behaves on changes committed either to the master or to other replicas. For example,
creating a successor version to the master may automatically replace the existing replicas
with the new version. An alternative is to install new versions upon request.

3 V-Grid

The purpose of our V-Grid framework is two-fold:
- First, V-Grid acts as a generation platform. A user that requires a GDS with versioning

support has to provide a model for the datasets and define versioning semantics that
should be used for the data (e.g. what types of datasets are versioned, how do opera-
tions on this datasets like createSuccessor, copy, or freeze propagate among datasets).
The V-Grid generator takes the model and generates a complete GDS implementation,
which we call V-GDS (a GDS with versioning support). The generated V-GDS is a
complete, running J2EE application with a corresponding database schema, middle-
ware enterprise components and its operations exposed as Web services so that the V-
GDS can be accessed by other entities in the Grid. A V-GDS can be deployed automat-
ically on a selected remote application server from a server pool.

- Second, V-Grid acts as an integration platform for generated V-GDS systems. This
integration platform allows an integration of generated V-GDS systems by applying
rule-based service composition. Such an integration platform is needed since the
requirements for storing data in complex Grid applications will rarely remain static:
Often, additional datasets and transformation implementations that require storage and
versioning services will emerge. This implicates the need for large federated work-
spaces with datasets stored in diverse participating V-GDS systems. Active rules are
used to dynamically compose versioning services across these systems and assure ref-
erential integrity for the federated workspaces.

3.1 V-Grid Generation Platform

The purpose of the V-Grid generation platform is to support the generation of V-GDS sys-
tems on a basis of formal system specifications provided in the UML language. In this



sense, the platform is motivated by the OMG’s Model Driven Architecture
(MDA) [OMG01]. MDA is an approach to software system development that separates a
formal specification of a system from the implementation of the system on a particular
platform. It is desired that formal specifications that capture both static and dynamic
(behavioral) properties of a system are provided using existing OMG’s modeling lan-
guages (i.e., UML and CWM). Given a formal specification in form of a model, a gener-
ator will be used to map the model to the system implementation that executes on a
particular platform.

The V-Grid generation platform can be seen as a product line [CN02] for V-GDS sys-
tems. The product line is implemented as a system family, where different V-GDS systems
that can be generated using the generation platform are seen as members of this family.
All V-GDS systems share a certain amount of base functionality: They all support storing
datasets in a relational database, provide versioning and workspace management services
for these datasets, and enable set-oriented and navigational access. However, each mem-
ber is still a unique system, since it posesses a unique relational schema for its datasets
and may have the semantics of its versioning services optimized for its clients. Thus, the
member is specified in two consecutive steps, type definition and schema tuning.

Type definition. V-Grid adopts the object-oriented approach described by
Bernstein [Be98] to representing versioned data. Classifications of data stored by a V-
GDS are represented as object types and modeled as UML classes using a UML class dia-
gram. Properties of datasets are represented as attributes of Java data types. A mapping of
these types to the type model of the target DBMS (e.g. DB2, Oracle) can be defined to
customize the output DBMS schema, where large data sequences are typically repre-
sented as byte arrays in Java and BLOBs in the DBMS. Within a V-GDS, semantic rela-
tionships among data (objects) may exist. For example, a relationship may be used to
connect the source code of a transformation algorithm (represented as the first object) to
the corresponding executable (represented as the second object); similarly, a relationship
may connect the calibration parameters of an instrument (first object) to the dataset
delivered in the experiment (second object); finally, each applied transformation will typ-
ically result in a relationship among the input dataset (first object) and the output dataset
(second object). Each relationship is an instance of a relationship type that exists among
two UML classes and is defined as a UML association. UML class diagrams for this step
can be developed using any existing UML modeling tool, such as Rational Rose or Gen-
tleware Poseidon.

Schema tuning. Type definitions defined in the previous step can support versioning in a
variety of ways. For this reason, we allow the schema represented as the UML class dia-
gram to be fine-tuned (optimized for convenient use as well as performance). This is pos-
sible by branding UML classes and associations by stereotypes and choosing tag values
for tag definitions provided by these stereotypes. Stereotypes, constraints, tag definitions
and tag values constitute a built-in extension mechanism of the UML language and are
defined in form of UML profiles. Again, since the majority of UML modeling tools sup-
port profiles, the schema tuning step can be fully accomplished using these tools. Brand-
ing a UML class or associations with a stereotype and choosing tag values implicates that
the corresponding object or relationship type in the V-GDS will possess special proper-



ties. Stereotypes and tag values are used to drive the V-Grid generator to consistently
include these properties in the implementation of the V-GDS. The properties that can be
defined are classified as follows.
- Variability in object management. As noted by Rumbaugh [Ru88] and Zhang et

al. [ZRH01], relationships are a convenient spot for capturing propagation behavior of
operations on objects. In V-Grid, tag values on each end of a relationship type define
whether basic object management operations on datasets (objects), namely create and
initialize, copy, and delete are executed in a propagated or isolated fashion. For exam-
ple, copying an existing input dataset may cause the output dataset associated with it to
be copied as well.

- Variability in relationship management. These properties allow the users to define
whether a relationship can be created in case one or both objects it connects do not yet
exist. Similarly, it is possible to specify whether manual deletion of relationships,
which will delete a relationship but not the objects the relationship associates, is per-
mitted. Finally, connecting or disconnecting a relationship end to a dataset version that
has already been frozen can be allowed or prevented.

- Variability in version management. It is not a requirement that all dataset types defined
in the schema support versioning. Versioning of some types may be prevented, both for
simplicity of use and storage optimizations. As a consequence, these types will always
support merely a single version of its instances and will not define the createSuccessor
operation and operations used to traverse the version graph (getRoot, getSuccessors,
getPredecessors, and getAlternatives) that are normally supported by types that sup-
port versioning. Similarly as it is the case with object management operations, create-
Successor and freeze operations can be executed in a propagated or isolated fashion
across relationships. For example, freezing a given dataset can also freeze the associ-
ated datasets. Another versioning feature that can be selected or omitted for relation-
ship ends that connect to versioned datasets are floating relationship ends, which are
used in the following way: In case a dataset A is versioned, it sometimes does not suf-
fice for a dataset B that is related to A to merely identify A when navigating across the
relationship. This is the fact since B does not necessarily connect to all versions of A,
but rather to a user-managed subset of versions of A, which we call a candidate ver-
sion collection. In case a floating relationship end is chosen for a given relationship
type, the V-GDS will provide operations for manipulating candidate version collec-
tions, pinning and unpinning a certain version in the collection (in case the client does
not want to review all versions in the collection, the pinned version will be returned by
the V-GDS automatically), or selecting a version on the basis of some predefined rule,
the most common case being to return the latest version from the collection. Again, for
simplicity of use as well as performance and storage optimizations, the use of a float-
ing relationship end can be omitted.

- Variability in workspace management. These properties allow the user to define
whether the attach operation on an object that makes this object a component in a
given workspace is propagated across existing relationships from this object. In a sim-
ilar fashion, the detach operation can also be propagated across relationships of a
given type. Additionally, users can define whether objects of a given type should be
exclusively owned by workspaces of a specific type. Alternatively, objects may be



shared among workspaces. Finally, the invocation of the createSuccessor operation on
an object within a workspace may replace the existing version in the workspace, or
create a new version of the entire workspace.

- Variability in checkout/checkin. The checkout and checkin operations, which are used
for setting and releasing long-term locks on repository objects, can be propagated
across relationships of a given type or executed in an isolated fashion.

Fig. 1 illustrates a simplified version of our UML profile for V-GDS type definition and
schema tuning that supports the described variation points.

3.2 V-Grid Generator

As the schema tuning step is completed, the UML class diagram is exported from the
modeling tool as an XMI document. This document serves as an input to the V-Grid gen-
erator, which will examine the type definitions and user decisions on variable features.
The main advantage of the V-Grid’s generative approach is that these decisions become
directly hardwired into the implementation of the V-GDS. For example, it would equally
be possible to provide generic database tables (i.e., tables that would be present in every
single database schema for a V-GDS, irrespective of type definitions) for maintaining
information on candidate version collections and currently pinned versions. However,
this solution requires separate access to the generic tables each time the versions in the
collection are accessed by the application. In our approach, the generator will normalize
the schema to support direct joins in the queries that access candidate version collections.
In a similar way, it would equally be possible to define operation propagation rules that

Fig. 1: UML profile for V-GDS type definition and schema tuning
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would determine how operations are propagated across relationship types using a sepa-
rate base of ECA rules (see [BD94] for a detailed description of this notification
approach in the context of repository systems). However, this requires the V-GDS to act
as a rule interpreter, decreasing its performance. In our case, all operation propagation
rules can be automatically derived from the tag values selected in the schema tuning step.
For this reason, the generator can integrate them directly in the implementation of the V-
GDS, eliminating the need for run-time interpretation.

The V-Grid generator adopts a template-based code generation approach proposed by
Sturm et al. [SVB02]. As mentioned by the authors, similar template-based approaches
have become popular for the dynamic creation of HTML pages. In the proposed
approach, templates act as skeletons for generated code artifacts and are filled with infor-
mation extracted from the UML model in the generation process.

Following the idea presented by [SVB02], V-Grid templates have been implemented
using the open source project Velocity [Ap03], which comes with a language for defining
templates, called the Velocity Template Language (VTL) and a Java-based template
engine. The purpose of the engine is to merge a template written in the VTL with a con-
text. As described by [Ap03], the context is basically a hash table (a set of key-value
pairs) that makes Java objects of various types (values) accessible from within a template
using keys. As most template languages, including XSLT, VTL supports looping through
a list of objects (which is very convenient in case a certain code segment in the generated
code is sequentially repeated for each of the objects in the list) and conditional state-
ments. In our case, we fill the Java objects that act as context values with information
obtained by parsing the XMI document that corresponds to the UML model containing
type and relationship definitions for the V-GDS as well as schema tuning decisions. A
large set of VTL templates is used in the V-Grid generation approach, where each of the
templates typically accesses only a part of the information from the UML model. This
information is fetched from the UML model using the so-called prepared elements intro-
duced by [SVB02]. For example, a single prepared element provides information (as
strings) on the name of the class that represents an object type in the UML model, stereo-
type the class has been branded with, attribute names, names of relationships the class
participates in, corresponding multiplicities, etc. Without a prepared element, this infor-
mation would have to be gathered by the VTL template from many fine-grained objects
that correspond to UML model elements, which would make the template excessively
verbose. Fig. 2 illustrates a part of a VTL template used to generate the createSuccessor
method for a versionable object type. The #foreach directive is used for looping, while
the $ characters denotes references to Java objects (values) in the context. An example for
a prepared element for easy access (methods for returning values for visibility, stereotype,
etc.) to UML model elements that represent classes is given in Fig. 3.

3.3 Generated Artifacts

In the current state of our project, the VTL templates used by the generator produce Java
code for the J2EE platform. However, a similar generation approach (with modified tem-



plates) can be applied to produce code for other execution platforms. Our generated V-
GDS systems follow the idea of thick middle-tier applications with most of the applica-
tion logic (versioning operations with hardwired operation propagation rules, e.g., create-
Successor, freeze, and others, as well as retrieval of objects within a workspace) executed
in the application server. The major advantages of this approach with respect to Grid
applications are the following.
- Caching. As mentioned by [RNC+02], caching functionality is important in Grid

applications for replicating an entire dataset or its subset for fast access by the clients
and maintaining its state synchronized with the original in the information tier (i.e., the
Grid data source). Once a dataset is derived in some experiment and written to the V-
GDS, it will typically have many read-only accesses by the clients to be used as input
in the transformations. Since read-only accesses do not invalidate the contents of the
cache, there is no need for synchronization, which brings significant performance
advantages. In general, J2EE application servers implicitly support data caching at the
persistence layer using Entity EJBs.

- Scalability. Multithreading, data source connection pooling, and instance pooling at
the persistence layer increase scalability within a single instance of an application

public abstract class $class.getName()Bean implements javax.ejb.EntityBean {
...
// creates a new version of the current object
public $class.getName()Local createSuccessor() throws Exception {
  if (!getFrozen())
    throw(new javax.ejb.EJBException("object is not frozen!"));
  $class.getName()Local newCopy = null;
  try {
    newCopy = get$class.getName()Home().create(getObjId());
    newCopy.setParent(($class.getName()Local)myEntityCtx.getEJBLocalObject());
#foreach( $attribute in $class.getAttributes() )
    newCopy.set$attribute.getNameUpperCase()(get$attribute.getNameUpperCase()());
#end
  }
  catch (Exception ex) { // shouldn't happen
    throw(new javax.ejb.EJBException("couldn't create copy"));
  }
  return newCopy;
}
...
}

Fig. 2: Excerpt from a VTL template for generating Java code for versionable objects

public class PreparedClassData {
...
public String getVisibility() {
  return mModelClass.getVisibility().toString();
}
public String getStereotype() {
  Collection stereotypes = mModelClass.getStereotype();
  if (stereotypes.size() > 0) {
    MStereotype stereotype = (MStereotype)stereotypes.iterator().next();
    return stereotype.getName();
  } else return "";
}
...
}

Fig. 3: Excerpt from a prepared element for accessing Class UML model elements



server. Certain implementations of application servers (e.g. WebSphere Application
Server) increasingly support techniques such as vertical and horizontal server instance
cloning combined with centralized workload management [IBM00].

- Remote deployment. Remote deployment of a generated V-GDS to a server from a
server pool is made possible by the so-called deployment managers that are part of the
application server and can occur without human intervention.

- Set-oriented access. Although the persistence layer presents the clients with an object-
oriented view to the datasets (which directly supports object-at-a-time navigational
access we mention in Sect. 2.2), this does not necessarily exclude the set-oriented
access. Select methods of Entity EJBs can be specified using special EJB QL query
language [Sun02] for set oriented access over the abstract schema for the datasets.

The following sections provide a detailed overview of artifacts produced by the V-Grid
generator.

Database schema. Each object type from the UML model is mapped to an own database
table with columns that correspond to the type’s attributes. However, the VTL templates
assure that additional constructs are added to the tables depending on how the schema has
been tuned. For example, in the case of a versionable object type, a table will obtain an
objId column, which represents the identity for the object, a verId column, used to
identify diverse versions of an object, and a globId column, which stores V-GDS-wide
unique identifiers comprised of objIds and verIds. Moreover, we need a predeces-
sorId, which is used for linking a version to its predecessor version to allow traversal of
the version graph, a frozen column to denote whether a version has already been frozen
as well as a checkout column referencing the workspace the version has currently been
checked out to. Foreign keys are added to diverse tables depending on where floating
relationship ends are applied.

Persistence layer. Entity EJBs in the persistence layer are used to abstract the control
layer from fine-grained SQL access to the V-GDS data source by automatic synchroniza-
tion of updates to the data source and data caching. V-Grid generates an Entity EJB for
each object type definition from the UML model that mirrors both user-defined attributes
for the database tables as well as attributes added due to schema tuning.

Control layer. Session EJBs in the control layer act as a business facade [ACM01] for the
persistence layer. They provide the users with a coarse-grained interface to versioning
operations and assure that versioning operations are carried out as required in the schema
tuning step. For example, operations like createSuccessor and freeze propagate across the
relationships, where desired; specified version selection rules (e.g. selection of the latest
version) are applied when the version is to be automatically selected from a candidate
version collection. Each client communicates with the control layer by first retrieving a V-
GDS session, which is a stateful representative of the client on the side of the V-GDS and
is typically used to hold the identities of the currently selected workspace and the cur-
rently running ACID transaction. This makes the communication with the client less ver-
bose, since these state values do not have to be passed in each client call. Since fine-
grained remote access to objects results in high communication costs between the client
and the V-GDS, disjoint schema partitions of coarse-grained Java value objects can be



specified in the schema tuning step. These value objects hold data from multiple entities,
assure that only user-defined attributes (but not the V-GDS managed attributes like verId,
frozen, or references among entities) are updatable, and provide the client with an object-
at-a-time navigational access to a part of the entire object graph. The control layer assem-
bles value objects on demand at each client call and disassembles them (in the case of
updates made by the client) to map the modified data back to the persistence layer.

Web services layer. Since the V-GDS does not make any assumptions about the execution
platform of the client, V-Grid generates Web services endpoints that support SOAP mes-
saging between the client ant the generated V-GDS. The endpoints implement the port-
Types required by the GDS specification document [GGF03b] as well as provide
additional operations specific to the data types specified in the UML model and the tuned
schema. Additionally, a WSDL document is generated for each V-GDS.

3.4 Accessing Generated V-GDS Systems

There are three main styles of how the generated V-GDS can be used by the client.
- Direct access and scripting. In this approach, clients that rely on the generated Web

services interfaces are developed to communicate with the V-GDS using these inter-
faces. For this reason, the client calls are dependent on the object types defined by the
UML model. Such a client will typically fetch a version of an object, perform a dedi-
cated transformation and store transformation results to the same or another V-GDS.

- Generic (meta-data driven) access. Developing clients that are bound to operation sig-
natures of a generated V-GDS is not efficient, since a client cannot be reused for per-
forming a similar task on a V-GDS with a different information model. The solution is
to make the running client access a V-GDS generically, i.e., in two steps: First, the cli-
ent retrieves the entire UML model including the schema tuning information. Based on
this model, the client itself at runtime assembles the names of operations it wants to
invoke.

- Interactive access. Sometimes, V-GDS users will want to explore and possibly update
the contents of a V-GDS in an interactive way, i.e. without using a special client. For
this purpose, the V-Grid generator produces and deploys JSP pages that allow interac-
tive browsing of V-GDS contents and invocation of version management operations
provided by the V-GDS.

3.5 V-Grid Integration Platform

There is a wide variety of approaches that successfully address the execution of distrib-
uted workflows using rules. For example, the WfMS in the WIDE project [CGS97] uses
ECA rules to support exceptions and asynchronous behavior during the execution of a
distributed workflow instance. The V-Grid integration platform adopts the rule-based
approach to service composition proposed by the DYflow framework [ZBL+03]. DYflow

supports three different types of service composition rules (see [ZBL+03] for a detailed
syntax for rule definitions).



- Backward-chain rules. These rules define preconditions (i.e., data and flow con-
straints) for executing a task. For example, we may want to require that each dataset in
a workspace is frozen before the entire workspace is replicated to another V-GDS.

- Forward-chain rules. These rules are defined as ECA rules and specify tasks (i.e.,
actions) that need to be carried out as a consequence of executing a given task. The
execution of an action may depend on the condition part of the rule. For example, we
may want to create a successor to a version in some V-GDS as soon as a successor to a
related version in another V-GDS has been created.

- Data-flow rules. These rules specify data flows among tasks. For example, they can be
used to automate transformation tasks for new versions: As soon as a new version of a
dataset appears, it will automatically serve as an input for a Grid service that performs
a selected transformation.

Unlike rules within a single generated V-GDS, which are hardwired by the V-Grid gener-
ator into the implementation code to increase performance, the composition rules can be
added to the V-Grid integration platform dynamically as new V-GDS systems appear. We
alleviate the definition of these rules to the users by parsing the WSDL definitions of each
generated V-GDS to automatically identify signatures of operations used afterwards in
the definitions of rules. Transactional execution of rules that involve many V-GDS sys-
tems is enabled by the two-phase-commit protocol supported by each participating sys-
tem.

However, the V-Grid integration platform does not serve merely as a rule processing
framework. Federation of multiple V-GDS causes the need to support large federated
workspaces that span across objects from different V-GDS systems. Unlike local work-
spaces in each generated V-GDS that use highly specialized (generated) schemas, the data
required for the integration (i.e. logical references between the workspace and the objects
it contains) is stored by the integration platform using a generic schema that does not
have to be altered as new workspaces are defined. For this reason, the access to the feder-
ated workspace is always generic (meta-data driven). A federated workspace itself can
participate in the defined service composition rules. For example, we may define a rule
that the createSuccessor operation on an object that is part of a federated workspace
should create a successor to the entire federated workspace. Rules also apply for assuring
global integrity constraints. For example, deletion of an object that is part of a federated
workspace should delete a logical reference to this object from the workspace.

4 Conclusion and Future Work

This paper presented our V-Grid framework, which is used for generating Grid Data Ser-
vices with tunable versioning support from UML models. Using a dedicated UML
domain profile and a template-based generation approach, we are capable of generating
complete application code for the J2EE platform with operations exposed as Web ser-
vices. The V-GDS systems obtained in this way can be automatically deployed on appli-
cation servers from a server pool and integrated using active rules. The integration



approach supports the dynamic composition of versioning services and use of federated
workspaces that contain objects from diverse V-GDS systems.

In the course of our future work, we attempt to:
- Explore the possibility of supporting the merge operation, used for reuniting branches

in the versioning graph. The semantics of merge is more complex than that of other
versioning operations, since it requires detailed knowledge of the structure of each
object attribute to decide on the priority of one version over another. It is our assump-
tion that reconciliation among versions can be specified by using a dedicated set of
constructs at the UML level, which would allow the operation to be fully generated.

- At this moment, the generation process is initiated by the user through an interactive
interface to the V-Grid generator that accepts the UML model in the XMI format. Nev-
ertheless, in accordance with the core idea of the Grid, we also expose the generator
itself as a Grid service. We will try to explore to what extent a full programmatic invo-
cation of the generation process and deployment of a generated V-GDS system may be
interesting to Grid applications.
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