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Abstract. Specification of systems in a software product line (product-line mem-
bers) is often supported by domain-specific languages (DSLs) that provide pow-
erful language abstractions for selecting the features of the desired system. In this
paper, we show that efficient composition of system specifications (which, in our
case, are expressed as models) is also possible using (i) a domain-specific work-
flow model that guides the composition and (ii) a set of domain-specific tem-
plates for model transformations. We illustrate the entire approach on a product
line for versioning systems, define a metamodel for workflow models and postu-
late a measure for estimating the benefits of the proposed approach.

1 Problem Formulation

Generative software development approaches, extensively outlined by Czarnecki and
Eisenecker [6], represent a key enabling technology for software product lines, which
have recently gained tremendous attention both from research and industry. According
to Clements and Northrop [4], a software product line is a set of software-intensive sys-
tems sharing a common, managed set of features that satisfy the needs of a particular
market segment. However, each member from this set will still possess an amount of
unique functionality. A common example is to have a software product line for systems
that control the performance of truck engines. Such a product line is supported by Cum-
mins Engine Inc. [4,5], the world’s largest manufacturer of commercial diesel engines
above 50 horsepower. Engine types manufactured by the company come with different
characteristics: engines may range from 50 to more than 3500 horsepower, have 4 to 18
cylinders, and operate with a variety of fuel systems, air-handling systems, and sensors.
The software (with typical size of 130 KSLOC) that controls the engine’s performance
to produce an optimum mix of power, fuel consumption and emissions, has to be fully
optimized for the characteristics of the engine. In cases like this one, companies will try
to take advantage of the commonalities among the products in the product line to avoid
developing the software for each product from scratch. A possible way to achieve this
is to employ a generator that, once desired properties of the product are described, takes
advantage of a shared code framework and generation templates to automatically pro-
duce the software that corresponds to this product.



Customers that want to buy a software system embraced in a product line have to be
given a possibility to clearly describe the system they want. This process is also called
ordering, since a formal specification (order) that describes the configuration of fea-
tures to be included in the system has to be devised. Ideally, this order will serve as an
input to a generator that will automatically assemble the system. In the context of prod-
uct line engineering, a lot of research has been done on domain-specific languages
(DSLs), which can be used to support the ordering process - a program in a DSL is con-
sidered a formal specification for the system embraced in the product line. As men-
tioned by Czarnecki and Eisenecker [6], DSLs are highly specialized, problem-oriented
languages as they restrain from using language elements (abstractions) that are irrele-
vant for the domain of the product line.

As a main advantage of DSLs we recognize small specification size: Since the ab-
stractions they support are highly specialized for the domain of the product line, the de-
sired system can be specified very briefly and the formal specification (the DSL pro-
gram) can easily be analyzed and discussed among developers. However, DSLs also
come with many drawbacks. First, a separate DSL with the associated parser for DSL
programs has to be developed for each product line. In case a DSL is graphical, it will
require a specialized editor for devising DSL programs (specifications). Finally, each
DSL requires a dedicated generator that understands the semantics of DSL abstractions
to map them onto the implementation. Approaches like Intentional Programming
(IP) [23] employ metaprogramming techniques to support accelerated development of
environments for editing, compiling (generating), and debugging domain-specific pro-
grams.

In this paper, we claim that, although widely recognized, DSLs are not the only con-
venient way for ordering products from a software product line. Our MT-Flow (Model
Transformation workFLOWs) approach proposes that, instead of devising a product or-
der in form of a DSL program, such an order can as well be expressed in a general-pur-
pose specification language, such as Executable UML [12]. MT-Flow uses a workflow
model to guide the user through a series of system configuration steps. On each of these
steps, the user selects the features of the system he wants to order. The process is similar
to configuring mass-customized products (e.g. cars, kitchen settings, or computers) in
the case of non-software product lines.

At the end of each configuration step, MT-Flow transforms the current state of the
model, so that the decisions the user has made can be immediately observed in a mod-
eling tool. The user selects system features within a graphic interface, which is substan-
tially different from DSL programming, where the user first has to learn the syntax and
semantics of the DSL. Another common problem when using DSLs is assuring that a
DSL program represents a semantically correct specification. This is difficult until the
program is completed, since there may be parts of the program the user yet attempts to
write, but at some intermediate programming stage the absence of these parts appears
as a correctness violation. This is not possible in our approach, because the workflow
model required by MT-Flow determines the paths in which the specification is allowed
to evolve: The flow of control among the steps prevents an incompatible selection of
features and thereby assures that the choices made in the individual steps will always
lead to a semantically correct specification. MT-Flow is a generic approach, meaning



that its application is not limited to a single product line: The workflow model is defined
externally and merely interpreted by MT-Flow (MT-Flow acts as a workflow engine).
This means that various software product lines described using a general purpose mod-
eling language based on the MOF Model [15] can be supported by simply exchanging
the workflow model.

The rest of this paper is organized as follows. Sect. 2 will put the problem in the con-
text of the OMG’s Model Driven Architecture (MDA). A motivating example that il-
lustrates the application of MT-Flow is given in Sect. 3. Sect. 4 defines a metamodel for
MT-Flow’s workflow models and illustrates the use of transformation templates. In
Sect. 5, we define a measure to estimate the benefits of our approach. Sect. 6 gives an
overview of related work. Finally, our results are summarized in Sect. 7, which also out-
lines some ideas for the future work.

2 Relation of the Problem to OMG MDA

OMG’s Model Driven Architecture (MDA) [14] is an exciting approach to developing
software systems: First, the specification of a system is expressed in form of a model in
a selected modeling language. Afterwards, a generator maps this model to the imple-
mentation of the system on a particular execution platform.

As identified by Frankel [7], developers have four different options when choosing
the modeling language for the specification. These options are best illustrated in terms
of the OMG’s four layer metadata architecture (Fig. 1).
• Approach 1: Using unadorned (standardized) modeling languages. In this case, the

modeling language is an existing standardized OMG modeling language, such as
UML or CWM.

• Approach 2: Using lightweight language extensions. Some modeling languages al-
low developers to define new language constructs using the language itself. The
most prominent example of this approach are UML profiles, which are a built-in
extensibility mechanism of the UML language. A UML profile will typically de-
fine many stereotypes, which are used by developers to brand elements in their
models. In this way, an element attains supplementary semantics in addition to the
semantics defined by its type in the UML Metamodel.

The MOF
Model

User data / objects

Metamodels for
UML, CWM

Models in
UML, CWM

Approach 4:
Define a custom
metamodel using MOF.
Use this metamodel to
develop models.

Approach 3:
Extend an existing
metamodel (e.g. the
UML Metamodel).
Use the extended
metamodel to develop
models.

Approach 2:
Virtually extend a
metamodel within
the model (e.g. with
UML Profiles). Use
virtual extensions
to develop models.

Approach 1:
Use a standardized
metamodel (e.g. UML, CWM)
to develop models.

Fig. 1. Choosing the modeling language for the specification



• Approach 3: Using heavyweight language extensions. As an alternative to Ap-
proach 2, new language constructs can also be introduced by extending the meta-
model of the modeling language. For example, the UML Metamodel can be en-
riched with additional types that we connect to the standardized metamodel types
by means of generalization and associations.

• Approach 4: Creating new modeling languages. When applying Approaches 2 and
3, developers will sometimes feel burdened with the types defined by the metamod-
el of the language (e.g., the UML Metamodel), because the types may not be sig-
nificant for their problem domain. The problem with Approaches 2 and 3 is that in
both cases, the extensions of the modeling language occur in an additive fashion
only – the existing language constructs, i.e. types from the metamodel, cannot be
modified or deleted. For such problem domains, developers can choose to define
an entirely new modeling language from scratch. The metamodel for the new lan-
guage will be defined in terms of the MOF Model, which is an OMG-standardized
meta-metamodel used for defining different metamodels.

It is our observation that the new constructs defined in Approaches 2, 3, and 4 actu-
ally represent the use of a domain-specific modeling language. Recent approaches like
DSL-DIA [11] aim at easy development of custom generators that understand new
modeling languages defined using Approach 4. Except for Approach 2, where the use
of a UML profile is largely supported by UML modeling tools, Approaches 3 and 4 re-
quire a special modeling environment. Many Computer-Aided Method Engineering
(CAME) approaches [22], like MetaEdit+ [13], involve automatic production of prob-
lem-oriented modeling environments to be used for new modeling languages.

By MT-Flow, we show that problem-oriented modeling (which is supported by do-
main-specific modeling constructs in Approaches 2, 3, and 4) is equally possible in Ap-
proach 1, provided there exists a set of domain-specific model transformation templates
(used to produce concrete transformations) and an associated domain-specific work-
flow model that guides their application. Since the specification is expressed using a
widely accepted (standardized) general-purpose modeling language, such as UML, the
problem of finding an appropriate model-based generator that will map the model to the
implementation or a model-based virtual machine capable of executing the model is
eliminated. For example, MC-2020 and MC-3020 [19] are available compilers capable
of mapping Executable UML models to C++ and C code, while the design and imple-
mentation of a virtual machine for UML is discussed by Riehle et al. [20].

Concrete transformations produced by MT-Flow from transformation templates to
transform the model can clearly be categorized as PIM-to-PIM transformations men-
tioned by the MDA specification document [14]. These transformations enhance or fil-
ter a model without needing any platform-dependent information. The design of a PIM-
to-PIM transformation does not prove very economical in case a transformation will be
used in the design of a single system only. Instead (and this is the goal of MT-Flow’s
transformation templates) we want to capture recurring model enhancement or filtering
patterns that can be reused when modeling many systems. General design patterns (that
do not introduce new semantics to the modeled system, but improve its architecture),
such as those proposed by Gamma et al. [8] can be found even for very dislike systems.
However, specialized patterns (these are the ones we are interested in) that sequentially



introduce new semantics to the model can be defined only for systems with a controlled
set of common and variable features, i.e., when the systems constitute a product line.

In MT-Flow we choose differential model exchange supported by OMG XMI [16]
for expressing concrete transformations. In this approach, also referred to by the speci-
fication document [16] as model merging, a difference between two models is seen as
a transformation that takes the old model to the new model. The transformation is de-
scribed by four tags used for expressing differences: XMI.difference (the parent
element), XMI.delete, XMI.add, and XMI.replace. MT-Flow is not bound on
using the UML as the modeling language, since differential model exchange is support-
ed for any MOF-based metamodel [16].

3 Motivating Example: A Product Line for Versioning Systems

We choose a product line for versioning systems as a motivating example for MT-Flow.
Why do we treat versioning systems as a product line? Each versioning system possess-
es a unique information model [2], i.e., type definitions for objects and relationships to
be stored and versioned (e.g., as evident from the following example, an information
model used for a project management application defines object types like Task, Pro-
jectOffer, and Employee).

Next, we may want to refine the information model with the following definitions.
• Which object types support versioning? An object type that supports versioning

provides a method createSuccessor (for deriving a successor to an object version)
and a method freeze (for freezing an object version).

• Which relationship type ends are floating? Floating relationship ends implement
the behavior needed for versioned relationships. In case a given project offer, p,
possesses a reference to a task, t, and t is versioned, a floating relationship end at t
contains a user-managed subset of all versions of t. This subset is called a candidate
version collection and may have a pinned version, which is the default version to
be returned in case the client does not want to select a version from the collection
manually. Maintaining floating relationship ends implies performance impedance
so the user may choose to omit this feature for some relationship types.

• How do object and version management operations like new, copy, createSucces-
sor, freeze, checkout/checkin propagate across the relationships? A detailed cover-
age of operation propagation is given by Rumbaugh [21].

• What are the workspace types and how do these relate to regular object types? A
workspace acts as a container for regular objects. However, only one version of an
object may be attached to a workspace at a time. For this reason, a workspace acts
as a single-version view to objects stored in the versioning system.

Many commercial versioning systems are implemented generically – this means that
a large part of their implementation does not need to change for each user-defined in-
formation model. For example, a generic system can define a single database table for
storing relationships (of every possible relationship type) and a single table for storing
versioning information (like information on a predecessor version for a given version).
Both tables are present for every installed information model, while tables for object



types are specific for a given information model. A fully generative approach (like the
one supported by MT-Flow), on the other hand, allows the user a fine-grained specifi-
cation of desired features in an information model that will also contain user decisions
on floating relationship ends, operation propagation, workspace type definitions, etc. In
this case, each information model (i.e., the specification) can be mapped to a distinct,
completely generated and thus optimized implementation of a versioning system. The
following sections will illustrate how MT-Flow supports the development of an infor-
mation model in Executable UML for a simple versioning system.

3.1 Step A: Define an Object Type

In this step, the user defines an object type. This includes the definition of a name for
the object type and the attributes with the corresponding primitive data types. The in-
terface shown by MT-Flow for this purpose is illustrated in Fig. 2. We use this interface
to define the object type Task. MT-Flow will fill an existing transformation template
with these definitions. As a result, a concrete transformation is expressed using XMI
differential tags. The transformation adds a new UML class Task (see Fig. 2) with its
attributes to the current model (we assume we begin with an empty model in each spec-
ification). In addition, an objId that identifies an object within the versioning system and
a globalId that identifies a particular object version within the versioning system are
added. Step A can be repeated many times to add additional object types. We repeat the
step to add object types ProjectOffer and Employee. The final model obtained in this
way is illustrated in Fig. 2.

3.2 Step B: Define which Objects are Versioned

In this step, the user specifies which object types support versioning. As an additional
feature, he may choose to limit the allowed number of successors to a version. We carry
out Step B twice to make Task and ProjectOffer versionable. Concrete transformations
will add a verID (a unique identifier of a version within a version tree) to the classes, a
reflexive association for linking a version to its successors, a createSuccessor opera-
tion, and a freeze operation. The semantics of these operations is expressed using the
model elements of the UML Action Semantics package, which can have many possible

Fig. 2. Adding a new object type

Tas k

globalId :  int
objId : int
nam e :  S tring
des c ript ion : S tring
s tartDate :  Date
endDate :  Date
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objId : int
c us tom er :  S tr ing
des c ript ion : String
pric e  : float
va lidUntil :  Dat e

E m ploy ee

globalId :  in t
objId : int
nam e : S tring
addres s  : St ring
dateOfB irth :  Date
em ploy edS ince  :  Date
s alary : float



syntax renderings in so-called action languages. For this reason, actions appear as text
in diagrams. In the model, however, they are represented as instances of modeling con-
structs defined by the Action Semantics package, and can therefore be manipulated us-
ing XMI’s differential elements. In Fig. 3, showing the result of making the class Task
versionable, we use the Object Action Language (OAL), proposed by Mellor and

Fig. 3. Making an object type versionable

Task

globalId : int
objId : int
name : String
description : String
startDate : Date
endDate : Date
verId : int
frozen : boolean
successorCount : int

0..n

0..1

0..n

0..1+predecessor

R1

+successors

Task::createSuccessor
entry//
// check whether version is frozen
if (self.frozen == false) and (self.successorCount < 4)

// create new instance of Task, set the ids, copy user-defined attributes
create object instance newTask of Task;
newTask.objId = self.objId; // should have the same objId
newTask.verId = VerIdCounter.getNextVerId(self.objId); // get a new verId
newTask.globalId = newTask.objId*10000 + newTask.verId;
newTask.name = self.name;
newTask.description = self.description;
newTask.startDate = self.startDate;
newTask.endDate = self.endDate;
newTask.frozen = false;
newTask.successorCount = 0; // Does not have any successors yet
// relate the successor version to its predecessor
relate newTask to self across R1.’successors’;
// increase the number of own successors
self.successorCount = self.successorCount + 1;

else
// generate error

end if;

Fig. 4. Defining a relationship type

ProjectOffer::getTasks
entry//
// create a collection to be filled with connected tasks
create object instance connectedTasks of ReturnCollection;
// get all candidate version collections related to project offer
select many taskCVCs related by self->TaskCVC[R6.’tasks’];
for each cvc in taskCVCs

// try to get a pinned version, if there is one
select one pinnedTask related by cvc->Task[R4.’pinned version’];
if not empty pinnedTask

relate connectedTasks to pinnedTask across R8.’collection’;
else

// there is no pinned version, get the latest version from the CVC
select one latestVer related by cvc->Task[R5.’latest version’]
relate connectedTasks to latestVer across R8.’collection’;

end if;
end for;
return connectedTasks;
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Balcer [12] for specifying the createSuccessor operation. Class definitions made in Step
A are carried as data flows into Step B: This makes it impossible to define a non-existing
object type as versionable. The specified constraint that limits the number of successor
versions gets integrated into the procedure’s actions.

3.3 Step C: Define Relationship Types

In Step C, we define relationship types. This includes the definition of role names, mul-
tiplicities, indication of floating relationship ends and operation propagation proper-
ties. In the example in Fig. 4, we define a relationship type ProjectOffer-Task with a
floating relationship end for tasks. Creating a successor to a project offer version creates
successors to related pinned task versions and freezing a project offer version freezes
the pinned task versions (this behavior requires a refinement of createSuccessor and
freeze operations that have been added to the model in Step B.) Partial results of the con-
crete transformation are illustrated in Fig. 4, which shows the class TaskCVC used for
maintaining candidate version collections for tasks and the procedure getTasks that re-
trieves tasks connected to a project offer.

ProjectOffer::getTasks(wspGlobalId : int)
entry//
// create a collection to be filled with connected tasks
create object instance connectedTasks of ReturnCollection;
// get all candidate version collections related to project offer
select many taskCVCs related by self->TaskCVC[R6.’tasks’];
for each cvc in taskCVCs

// find version related to the workspace
select many candVersions related by cvc->Task[R3.’candidate versions’]
for each version in candVersions

select any workspace related by version->ProjectManagement
[R9.’project management’] where selected.globalId = wspGlobalId;

if not empty workspace
relate connectedTasks to version across R8.’collection’;
break;

end if;
end for;

end for;
return connectedTasks;

Fig. 5. Defining a workspace type
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3.4 Step D: Define Workspace Types

In this step, the user defines workspace types. Each workspace type may be connected
to regular object types using attachment relationship types. Traversal of a relationship
is sensitive to the globalId of the workspace submitted to the navigation operation - only
objects that are attached to this workspace can be reached across the relationship. Fig. 5
illustrates a definition of a workspace type project management that can attach one
project offer and many tasks (but always only one version of each of them). The con-
crete transformation adds a class for the workspace type, the attachment relationship
types and an operation for workspace-sensitive relationship traversal.

4 MT-Flow Templates and Workflow Models

Template-based approaches have become popular for dynamic generation of docu-
ments (like source code, tests, or documentation) that exhibit a common generic struc-
ture, but need to be instantiated many times with user-defined input values (a familiar
example are JavaServer Pages that act as templates for HTML). Nearly all template-
based approaches work in the same way. First, a template with integrated control flow
statements that can repeat (or omit) some parts of the template is written. Second, a tem-
plate engine replaces placeholders in a template with user-defined values (stored in a
context) while executing the control flow. The template engine used in MT-Flow to
generate concrete transformations expressed in XMI is Velocity [1]. An excerpt from
the template used for Step A is illustrated in Fig. 6 (the ’$’-signs represent references to
values in the context).

MT-Flow’s workflow models are acyclic directed graphs in which a node (called con-
figuration step) represent (i) a specification of user-defined values, (ii) a production of
concrete transformations from transformation templates, and (iii) an application of con-
crete transformations to the current model. The edges represent the flow of control and
data among the steps. The flow of control defines the order in which configuration steps

...
<XMI.difference>

<XMI.add href=”currentModel.xmi|p1”>
<UML:Class xmi.id = '$Class.mId' name = '$Class.name' visibility = 'public'

isSpecification = 'false' isRoot = 'false' isLeaf = 'false' isAbstract = 'false' isActive = 'false'>
<UML:Classifier.feature>
#foreach( $item in $ClassAttributes )

<UML:Attribute xmi.id = '$item.mId' name = '$item.name' visibility = 'private'
 isSpecification = 'false' ownerScope = 'instance'>
<UML:StructuralFeature.type>

<UML:DataType xmi.idref = '$item.typeMId'/>
</UML:StructuralFeature.type>

</UML:Attribute>
#end
</UML:Classifier.feature>

</UML:Class>
</XMI.add>

</XMI.difference>
...

Fig. 6. Transformation template for Step A



are executed. The flow of data allows the exchange of configuration values among the
steps. A metamodel for MT-Flow’s workflow models is shown in Fig. 7.

A workflow model consist of many configuration steps, where one of the steps is
marked as entry, denoting the beginning of execution. Each step defines a root config-
uration category, which may be subdivided into many sub-categories. A category may
contain configuration variables, which take user values that will be used for producing
a concrete transformation. These values are always of primitive types. Examples of cat-
egories and variables are illustrated throughout Figs. 2-5 (e.g., in Fig. 2, Object type is
a category and Name is a variable). Categories and variables are indexed, which pre-
scribes their ordering in the user interface. A configuration variable may be bound on
one data flow received from the preceding configuration step (many data flows can be
carried by a single transition). Such a data flow is then a set of values that are allowed
to be selected for the variable (i.e., it defines the variable’s domain). MT-Flow does not
treat variables as scalars, but rather as value wrappers. A value wrapper consists of two
components: a value (which is user-defined), and an element identifier associated with
this value. Model elements need to provide unique identities so that succeeding model
transformations can manipulate elements introduced by preceding model transforma-
tions. These identities can be created by MT-Flow automatically (using the setting Con-
fVariable.getsNewMId) or automatically adopted from a value wrapper in the value do-
main carried by a data flow (using the setting ConfVariable.getsMIdFromDomain).

There is a set of functions that can be associated with each step in a workflow model.
These functions do not have side-effects and thus never change the state of value wrap-

Fig. 7. Metamodel for MT-Flow’s workflow models
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pers. They are specified in MT-Flow’s own language that supports easy scrolling
through configuration categories and evaluation of arithmetic and string manipulation
expressions. There is no global “memory“ context for the workflow model, i.e., a func-
tion is allowed to access only (i) configuration variables, (ii) other functions defined in
the same step and (iii) incoming data flows. There are four scenarios in which MT-
flow’s functions are used:
• Evaluating a display value for a configuration category (association R4 in Fig. 7).

A category can automatically display a value obtained as a function result, e.g., the
category Workspace type in Fig. 5 automatically displays the value of its variable
name in square brackets.

• Evaluating value wrappers for a data flow (association R10 in Fig. 7). Each data
flow is associated with a function that returns a collection of value wrappers to be
carried by the data flow. These functions prepare values for domains used in the
succeeding step.

• Evaluating transition conditions (association R11 in Fig. 7). Each control connec-
tor is associated with exactly one function that returns a boolean value. An outgo-
ing transition will be allowed only when all control connectors for the transition
evaluate to true for the current configuration step. These functions imply the al-
lowed paths in the workflow model that will be followed depending on the values
of configuration variables. In this way, transition conditions implement composi-
tion rules (also known as hard constraints) for feature interdependencies [6], i.e.,
what features imply other features in the configuration. For example, in Fig. 4, only
versionable object types can be selected for floating relationship ends in Step C. In
case this constraint is violated, the transition to Step D will be prevented.

• Evaluating values for a template (association R15 in Fig. 7). These functions ab-
stract computation and string manipulation from the templates. The values they re-
turn can be accessed as variables in the template engine’s context (see [1] for more
information on the context) and are thus easily accessible from the templates.

5 Evaluation

We associate MT-Flow with a measure to estimate the benefits of automated model
transformations. We postulate this measure as useful based on our experience with the
product line for versioning systems, but have not observed its performance on a large
set of various product lines yet.

The measure XEPRS(i) (XMI Element Production Rate for a given system i) is de-
fined as

where x(i) is the number of XMI elements present in the final model and v(i) is the num-
ber of configuration value definitions and selections made by the user when configuring
the system.

v(i)

x(i)
iXEPR S =)( (1)



According to Czarnecki and Eisenecker [6], the structure of product-line members
should not be treated as a configurability aspect of the product line. In other words, we
should separate concept instantiations (e.g., definition of a new object type, relationship
type, or workspace type) from concept configurations (e.g., definition of whether a re-
lationship end is floating). If this was not the case, for example, one could define a ver-
sioning system with a large number of object types in Step A and easily arrive at a large
XEPRS(i) value. Therefore, we define XEPRSN(i) as a normalization of the XEPRS(i)
value using the count of concept instantiations c(i) (for our product line for the version-
ing systems, this is the count of object types, attributes, relationship types, and work-
space types defined for the system):

The XEPR value for the product line (XEPRPL) is the average XEPRSN(i) value for
n representative systems embraced in the product line.

The XEPRPL value for our example product line for versioning systems is 41,2.
Remark: XEPRPL is a productivity measure, since it compares the size of the final

model with the user’s effort for configuring the system. Its pitfall is that it assumes that
in a manual modeling process, a manual insertion of every model element is associated
with roughly the same effort. In our observation, this is not the case: Especially state-
ments in action languages usually introduce a very large number of model elements (see
examples in [15]) in proportion to the actual effort for defining a statement. A simple
solution to this problem would be to assign weights to diverse model elements (based
on practical experience with modeling efforts) and compute x(i) in XEPRS(i) as a
weighted sum.

6 Related Work

Peltier et al. [18] present MTRANS, which is an XSLT-based framework for model
transformations. A special rule-based language is supported for describing the effect of
transformations. Programs in this language get compiled into an XSLT transformation,
which is used to map an input model expressed in XMI to an output model (also ex-
pressed in XMI). The idea is not described in the context of software product lines. De-
pendencies among sequentially applied transformations cannot be controlled.

There is a clear distinction among specification refinement approaches like evolving
algebras (later renamed to abstract state machines) [9] or especs [17] and MT-Flow.
Refinement approaches start with an abstract specification of a system which already
includes key definitions of what the system does, but leaves out how it does this. For
example, the initial specification may state that sorting is required, but the definite sort-
ing algorithm is chosen in the succeeding refinements. SPECWARE [24] is an example
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of a system supporting such specification morphisms. In MT-Flow, on the other hand,
new structural and behavioral semantics can appear in the existing specification in each
step. For this reason, the specification is not considered complete (even not on some ab-
stract level) until the last configuration step has been performed. In this aspect, MT-
Flow resembles approaches that support consecutive application of predefined patterns
to automatically assemble the final application. An example of such an approach is
GREN, described by Braga and Masiero [3]. The authors observe that when instantiat-
ing software frameworks to build concrete systems, the knowledge about flexible (vari-
able) framework parts (also called the hot spots) is required. This problem is tightly re-
lated to software product lines, because most system families can be implemented using
frameworks [6]. The authors propose a solution that relies on the sequential application
of patterns, which is guided by a wizard and is allowed to follow only predefined paths.
The allowed paths are described by associating different patterns in a formal model (the
authors define a metamodel for such model). Concrete user-defined values for a select-
ed pattern are not observed in a transition to the next pattern, as it is the case in MT-
Flow. A direct relation to software product lines is not given, although the authors ob-
serve that in order for the approach to be successful, patterns have to be domain-specif-
ic.

7 Conclusion and Future Work

This paper presented MT-Flow, our approach for automatic construction of system
specifications (expressed as models) within a software product line. The construction
takes place by producing concrete model transformations from transformation tem-
plates and sequentially applying them to the current specification. The process is guided
by MT-Flow’s workflow model. In this way, we prove that defining a set of domain-
specific model transformation templates and a domain-specific workflow model for
modeling concrete systems from the product line represents a viable alternative to do-
main-specific languages for system configuration. We illustrated our approach on a
product line for versioning systems. Based on our experience with this product line, we
postulated a measure for estimating the benefits of MT-Flow for system configuration.

Our future work will be focused on the following areas.
• Performance of the postulated measure. We want to observe the performance of

the measure postulated in Sect. 5 on a large set of software product lines. Our pri-
mary goal is to compare the obtained XEPRPL values to the effort of developing
models manually (i.e. without MT-Flow).

• Mining MT-Flow’s transformation templates and workflow models. Many compa-
nies sell a set of systems that actually belong to a software product line, without
having a proper support for consistently specifying and afterwards generating indi-
vidual systems on a basis of common architecture. We will try to prove that, with
some human assistance, existing models of these systems (which have usually been
developed from scratch) can be mined to obtain MT-Flow’s transformation tem-
plates and the workflow model. In this way, MT-Flow can be used for developing
further systems from the product line.



• Relation to domain analysis. At the moment, MT-Flow provides no direct relation
to domain analysis approaches, like FODA (feature-oriented domain
analysis) [10], which seem to be very important for analysis and understanding of
variability within a product line. We will try to explore this relation and support it
in the implementation of MT-Flow.
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