
1

Model-Driven Development of Versioning Systems: 

An Evaluation of Different Approaches

JERNEJ KOVSE

THEO HÄRDER

Dept. of Computer Science, University of Kaiserslautern, P.O. Box 3049,
D-67653 Kaiserslautern, Germany

E-mail: kovse@relacija.com, haerder@informatik.uni-kl.de
Telephone: +386-2-803-6140
Fax: +386-2-803-6141

Abstract. This paper analyzes the domain of versioning systems and compares three

approaches to generating such systems from models. In the first approach, we define a domain-

specific modeling language as a lightweight extension of UML and use templates to generate a

middleware-based versioning system. In the second approach, we define a domain-specific

data definition and manipulation language that can be embedded in versioning system applica-

tions and map this language to SQL. In the third approach, we assemble the specification of a

versioning system in Executable UML using model transformations. The presented approaches

are evaluated from the perspective of developer productivity and performance of generated

systems.

Keywords: Model-driven Development, Versioning Systems, Code Generation, Model Trans-
formations

1 Motivation

Model-driven software development (MDSD) is a special kind of generative software

development [9] with the following characteristics.

• System specifications that serve as generation input are referred to as models and can be

preferably visualized by CASE tools.

• There is at least some organization-wide agreement on (i) metamodels for the models or

(ii) meta-metamodels used to define custom metamodels. Agreement on metamodels

allows an existing set of tools, e.g., CASE tools, metrics tools, and generators, to be used in

application engineering. Agreement on meta-metamodels allows an automated generation

of such tools, which is usually referred to as method engineering [7].

• Optionally, not only the generation phase, but also the specification phase is automated

through model transformations.



2

MDSD recently gained a lot of research and industry attention, as evident from the follow-

ing work.

• Specifications and standardization proposals, e.g., MDA [23], QVT [28], or SysML [36].

• New generation of tools for modeling, metamodeling, and method engineering [7,32].

• Work on model transformations, e.g., GReAT [1] or BOTL [19].

• Work on generating code from models, e.g., Jamda [5] or code generation by VTL [35].

• Processes for efficient use of models in development, e.g., agile modeling [2].

In this work, we adopt the classification proposed by Frankel [12] who identifies four

approaches to model-driven development.

• Approach 1—a standardized metamodel. In this approach, a standardized and well

accepted metamodel such as the UML Metamodel is used when developing models. A

drawback of this approach is that standardized metamodels are usually general-purpose

rather than domain-specific. This requires a great number of model elements to express the

same idea and thus implies long modeling cycles, unless the process is supported by model

transformations. The resulting models are large and difficult to communicate between the

developers.

• Approach 2—custom metamodel. In this approach, a developer uses a predefined meta-

metamodel to define a custom metamodel. The benefit of this approach is that the custom

metamodel is usually domain-specific and thus contains a small set of powerful elements

that can be used to describe the systems from the observed domain in a compact way.

• Approach 3—heavyweight metamodel extensions. In this approach, a custom metamodel is

obtained as an extension of an existing metamodel. Custom modeling elements are added

to the existing metamodel and connected to its elements by generalizations and associa-

tions.

• Approach 4—lightweight metamodel extensions. In this approach, the metamodel is

extended virtually, i.e., within the model itself and without physically changing the meta-

model. This is possible only when the extension capability is predicted by the metamodel.

UML profiles, supported by the UML Metamodel's package Extension Mechanisms, are a

well-known example of this approach.

1.1 The Topic of This Work

In this work, we treat versioning systems as a software product line and show that this particu-

lar type of systems can be generated from models. Versioning systems are an interesting do-

main for MDSD and generative development in general because of the following factors.



3

• There is no default support for versioned data in many DBMSs, thus the generated code

represents an important added value. At the same time, the generated versioning code

(defined as operations on an object class which supports versioning) can easily be further

refined with class-specific operations.

• A manual implementation of versioning functionality on top of a DBMS is a long-lasting

and tedious task with lots of redundant code.

• There is a range of different versioning semantics supported in many commercial version-

ing systems and research prototypes. A large domain covering a variety of different seman-

tics would allow an engineer to describe his own semantics (as a model) and afterwards

generate the matching versioning system.

As we show in this paper, the generation process also allows an easy integration of certain

performance optimizations in a generated versioning system. These optimizations are typically

not available with versioning systems implemented in a generic way.

The paper will outline and compare three different MDSD approaches to generating ver-

sioning systems. These approaches differ (i) in the specification style, i.e., the language and the

process used to configure a versioning system, (ii) in the generation style, i.e., the mapping of

the specification on the implementation, and (iii) in the target platform for the generated code.

1.2 Overview

Sect. 2 will describe the particular type of versioning systems that we deal with in this paper.

The feature diagrams for the domain are presented by Sect. 3. Sect. 4 describes the first MDSD

approach, which generates a middleware-based versioning system out of a specification based

on a UML profile (this is an example of Approach 4—the use of lightweight metamodel exten-

sions—described above). Sect. 5 describes the second approach, which allows the mapping of

a custom domain-specific data definition and manipulation language to SQL. In our concrete

example, the custom language is used to define the database schema for a versioning system in

a domain-specific way (data definition) and afterwards query versioned data (data manipula-

tion). Because the definition of the language is facilitated through a custom metamodel, this is

an example of Approach 2 described above. The third approach, described in Sect. 6, allows a

fast assembly of models based on a general-purpose metamodel by guiding the user through a

series of configuration steps and applying model transformations according to the user’s con-

figuration choices. It is an example of Approach 1 described above. An overview of related

work is given by Sect. 7. Finally, the conclusion (Sect. 8) gives a comparison of the three

approaches and outlines a set of benefits of MDSD based on our experience.



4

2 Versioning Systems

Versioning is essential for any kind of domain that requires a representation of past states of

data and the possibility to revert to these states. Furthermore, we often want to combine ver-

sions into configurations, which represent semantically correct compositions of versioned

data. In this paper, we deal with object-oriented versioning systems, i.e., systems which repre-

sent versioned data as objects and relationships. The properties of objects and relationships are

defined by object and relationship types. The definition of object and relationship types is

called an information model. An example information model from the domain of content man-

agement that we also use in Sect. 4 is given by Fig. 1.

A programming model is based on a programming language and sometimes also a compo-

nent model that is used to access the versioning system by client applications. Sects. 4 and 5

will illustrate two different examples of programming models, a J2EE-based programming

model and an programming model based on domain-specific statements embedded in applica-

tion code. An interface of a programming model can depend on the information model (in this

case, it is called a generated interface) or be independent of the information model (in this

case, it is called a generic interface). The following sections describe a selection of features

important for understanding the code that we generate in the approaches presented in this

paper.

2.1 Objects and Versions

As soon as versioning is supported, there is no difference between the terms version and object

(or instance) from the programmer’s point of view. A versioned-object type (a type which sup-

ports versioning) will support both versioning operations, e.g., createSuccessor, freeze, getSuc-

cessors, and getAncestor, as well as type-specific operations for object behavior. Three kinds

Fig. 1. A sample information model



5

of integer-based identifiers are used to distinguish between versions in a versioning system.

The object identifier (objId) is a system-wide identifier of a design object. All versions that

belong to the same object graph carry the same objId. The version identifier (verId) identifies a

particular version and is unique within a version graph. The global identifier (globId) is used to

refer to versions directly and is a combination of objId and verId.

2.2 Versioned Relationships

Versioning complicates the traversal of relationships among objects. Starting from some origin

version, the user navigates towards the target design object. Note that the number of expected

objects depends on the multiplicity assigned to the target relationship end. However, because

the target objects can be versioned, the following two options should be considered.

• Unfiltered navigation. All target versions (they can belong to distinct design objects) that

are connected to the origin version are returned to the user as result of navigation.

• Filtered navigation. For every subset of target versions that are connected to the origin ver-

sion and belong to the same design object, exactly one target version is returned. Because

all connected target versions represent potential candidates for the selections, the subsets

are called candidate version collections (CVCs). An example of filtered navigation is illus-

trated by Fig. 2.

In the illustrated example, the CVC 1 is used when navigating from v2 of article a towards

teaser t. Note that v2 of teaser t is not included in the CVC 1. The presence of versions in CVCs

is reflexive—in case vi of a is included in some CVC of vj of b, vj of b is present in some CVC

of vi of a. In filtered navigation, only one version is to be returned from every connected CVC.

One of the versions in a CVC can be marked as the pinned version [4]. In case a pinned version

exists, the system will return this version for the CVC. In case a pinned version does not exist,

the version to be returned is selected by a rule specified by the user. A very common rule is to

return the latest version from the CVC. Suppose that in the example illustrated in Fig. 2, v3 of t

Fig. 2. Example of filtered navigation

Teaser t, v1
Teaser t, v2
Teaser t, v3
Teaser t, v4

Teaser u, v1
Teaser u, v2
Teaser u, v3
Teaser u, v4

Article a, v1
Article a, v2
Article a, v3

Direction of navigation

CVC 1

CVC 2



6

is the pinned version for CVC 1. There is no pinned version for CVC 2 and the rule that selects

the latest version is used. Filtered navigation from v2 of a towards teasers will thus return v3 of

t and v3 of u.

CVCs offer great flexibility for dealing with configurations of versions but slow down rela-

tionship traversal. For this purpose, the developer can choose whether a relationship end in an

information model supports CVCs. Such a relationship end is called floating. A relationship

with a non-floating end can be traversed using only unfiltered navigation in the direction of

this end.

2.3 Workspaces

A workspace (also called a configuration) is a special case of object that attaches versions of

other objects. Attaching versions to a workspace usually reflects their semantic compatibility.

However, at most one version of a given object can be attached to a workspace at a time. This

restriction allows a workspace to act as a version-free view to objects stored in a versioning

system. As a user selects a workspace, the pin setting and the specified rule for selecting ver-

sions from a CVC are ignored in filtered navigation and the version attached to the selected

workspace is returned for every CVC.

Workspaces are also used as scopes for long-lived (design) transactions. The checkout

operation puts a persistent lock on a version and the checkin operation releases this lock. The

lock needs to be associated with one of the workspaces the version is attached to. When the

lock is set, the version can be modified only when the workspace was selected by the client.

2.4 Operation Propagation

As noted by Rumbaugh [30], relationships are useful for propagating operations between

objects. We use this idea in a versioning system to propagate the operations create, delete,

attach, detach, copy, freeze, createSuccessor, checkout, and checkin across a relationship. An

operation will be propagated whenever its propagation setting is defined on a relationship end

in the information model. Some of the propagation settings also have an impact on the creation

and deletion of relationships, as described below.

• Propagations of create, copy, and createSuccessor. In these propagations, relationships

between the origin version and the target version will be created.

• Propagations of attach and detach. Attachment relationships between the target version

and the workspace will be created.



7

3 Feature Diagrams

Based on our description of the functionality of versioning systems presented in Sect. 2, this

section gives an excerpt of the feature diagrams used to hierarchically organize the features

during domain analysis (for an introduction to domain analysis and feature diagrams see [9]

and [16]). The diagrams served as a basis for defining model-based configuration languages in

the generation approaches presented in Sects. 4 and 5. The most important diagrams describe

versioned-object types, versioning operations, and relationship ends and are explained in this

section.

The feature diagram for a versioned-object type is illustrated by Fig. 3. Every versioned-

object type includes versioning operations (represented in the subdiagram in Fig. 4). A version

must include the verId, but may include version name, description, creation date, and last

change date. To limit the breadth of the version graph, the maximum allowed number of suc-

cessors to any version is defined. The storage of versions can proceed either in full copies or in

differences, using forward or backward deltas. If desired, the checkout operation can automati-

cally create a successor for parallel development. Already checked out denotes that the succes-

sor will be created only if the version has already been checked out at the time checkout is

invoked. Automatic merge denotes that the branches will be reunited upon checkin. A work-

space type is a special kind of a versioned-object type. We may want to disallow the simulta-

neous attachment of a version to multiple workspaces (Exclusive attachment). In its lifecycle,

an object moves through different states. The frozen state is always available, but there may be

other custom states that are defined by the user.

Versioning operations, illustrated in Fig. 4, include the general version graph traversal

operations, as well as version manipulation operations createSuccessor, freeze, deleteVersion,

Fig. 3. Feature diagram for a versioned-object type



8

and merge. By default, the values of user-defined attributes are copied from the ancestor to the

successor, unless custom semantics for createSuccessor is defined. Optionally, when invoked

within a selected workspace, createSuccessor can replace a version in the workspace. On cre-

ateSuccessor, the system can request that the ancestor is to be frozen by the user (Explicit

freeze), freeze the ancestor itself (Implicit freeze), or require no freeze action. Optionally,

invoking deleteVersion can be prevented for versions that already have successors (Prevent

ancestor deletion). The merge operation can be automated using a simple Primary/secondary

algorithm. This algorithm is described by [22] and requires the user to mark one of the ver-

sions as primary and the other as secondary to decide on the priorities of their attribute values.

A custom merge semantics can also be defined.

Most of the interesting semantics is implied by the settings associated with relationship

ends (see the feature diagram in Fig. 5). Every relationship end has a role name. An end may

Fig. 4. Subdiagram for versioning operations

Fig. 5. Feature diagram for relationship end



9

be navigable, i.e., it is possible to traverse the relationship in the direction of the end. An end

has a multiplicity value that can be either one or many. It can reference either a versioned-

object type or an unversioned-object type. In a client-managed CVC the client application

chooses the candidate versions to be added to the CVC. In a system-managed CVC the appli-

cation chooses only the first version to add. Each subsequent version is automatically added to

the CVC. Finally, operation propagation is defined in terms of settings for a relationship end.

4 A Generator for Middleware-Based Versioning Systems

In this section we describe our experience with developing a generator for middleware-based

versioning systems. First, to give an insight of what needs to be generated, Sect. 4.1 describes

the architecture of such systems. We use the UML profile described in Sect. 4.2 to configure a

versioning system. The implementation of the generator is discussed in Sect. 4.3. Apart from

the productivity benefits achieved through the generation process, we claim that there is a

range of performance features that are difficult to support in a generic implementation, i.e., by

a framework for versioning systems. We implemented such a framework and compared the

performance of a generated versioning system towards a generic system. Our results are pre-

sented in Sect. 4.5. Finally, the lessons we learned from this approach are summarized by

Sect. 4.6.

4.1 Middleware-Based Versioning Systems

Every middleware-based versioning system that we generate consists of a persistence layer, an

entity layer, an access layer, and a services layer, as described in the following paragraphs.

Persistence Layer. This layer consists of relational tables which store versioned data. Every

object type and workspace type defined in the information model is mapped to a separate table,

called object-type table. An object-type table consists of a globId, an objId, and additional

user-defined attributes. In case the object type is versioned, the versioning information is inte-

grated directly in the object-type table. Depending on whether a relationship end is floating

and the multiplicity of the end, the generator tries to append the information about the relation-

ship participation directly in the object-type table to minimize the number of joins required for

traversals. In case this is not possible, a separate relationship-type table is created.

Entity Layer. This layer gives an object-oriented view to data stored in the persistence layer.

Every object type is represented by a separate entity component that requires the generation of

a component’s class, local home and component interfaces, remote home and component inter-

faces, a value-object class, and a set of definitions for the deployment descriptor. The value-



10

object class is a serializable representation of an object type used to exchange object data with

a remote client. The definitions for the deployment descriptor describe system-defined (globId,

objId, etc.) and user-defined attributes of the type as well as its relations to other entity compo-

nents.

Access Layer. This layer is made of stateful session components and is the first layer visible to

the client. As in the entity layer, a separate session component for every object type exists in

the session layer. The layer acts as a facade for diverse attribute updates, unfiltered or filtered

relationship traversal, and operation propagation. The methods offered by the access layer are

both integer-based and value-based. Integer-based methods return a single integer value or a

set of values to the client, depending on the expected cardinality of the result set. Value-based

methods return a single value object or a set of value objects to the client.

Services Layer. The services layer consists of proxy classes that allow the invocation of meth-

ods in the access layer using SOAP messages.

Content Browser. Instead of developing clients that use the access and services layer to mod-

ify data in the system, a user can explore the data interactively and manually invoke versioning

operations. This is supported by a special Web application called content browser.

Test Client. Finally, we also generate a test client for the versioning system, which uses the

services layer to systematically invoke a predefined set of operations for every object type and

compare the returned values with the expected values. This client was important to test the

code produced by the generator during its development. However, even in the productive use

of the generator, it can serve as an example for developing clients.

4.2 Configuration

To support model-based configuration of versioning systems, a special UML profile, illus-

trated by Fig. 6, has been developed. The profile supports a subset of features described in

Sect. 3. The configuration is obtained by representing the information model as a class dia-

gram and afterwards applying the elements of the profile. A sample configuration that we will

use in the evaluations presented in this section is illustrated by Fig. 7.

4.3 Generator

We adopted a template-based generation approach in this project. Nearly all such approaches

work in a very similar way. First, we develop a set of templates that consist of static parts,

placeholders for user-defined values, and control flow statements that guide the evaluation of

the template. The placeholders and the control flow statements are also referred to as meta-



11

code, to separate them from the actual code segments in the template’s static parts. Afterwards,

we develop a generation program that prepares a context and merges the context with a tem-

plate to obtain the target file. A context is a set of values, implemented as a hash table, that will

replace the placeholders and be used in evaluating control flow expressions. The 25 templates

used by our generator are listed by Table 1.

Before merging the templates with the context, the generator first reads the UML model

into an in-memory UML repository and creates a directory structure for the generated files.

Merging is guided by a set of generation targets. Every target tells the generator for which

Fig. 6. UML profile used for configuration

Fig. 7. An example configuration of a middleware-based versioning system



12

model elements, e.g., every class, a given template is to be applied and how to name the output

file. Information required by the template’s metacode is often dispersed across many model

elements. Sturm et al. [35] propose a solution to this problem by aggregating information from

many model elements into the so-called prepared elements. This solution was also adopted in

our implementation. Table 2 shows the prepared elements that we use and the corresponding

aggregated elements from the UML Metamodel.

Number Template name Used to generate...

1 VSObjBean a class implementation for components in the entity layer.

2 VSObjLocal local component and home interfaces for components in the entity layer.

3 VSObjLocalHome

4 VSObjRemote remote component and home interfaces for components in the entity layer.

5 VSObjRemoteHome

6 VSObjValue value-object class.

7 VSObjAccBean a class implementation for components in the access layer.

8 VSObjAccLocal local component and home interfaces for components in the access layer.

9 VSObjAccLocalHome

10 VSObjAccRemote remote component and home interfaces for components in the access layer.

11 VSObjAccRemoteHome

12 ControllerServlet a controller servlet for the content browser.

13 ShowInstance a JSP page that displays information on an object.

14 ShowTypeInfo a JSP page that displays type information (metadata, i.e., attributes and relationship 
types) for an object type.

15 ShowList a JSP page that displays the matching object as a result of a finder method or a navi-
gation operation.

16 ShowIndex an HTML page that displays the navigation bar in the content browser.

17 Web-xml a deployment descriptor for Web components.

18 EJB-jar-xml a deployment descriptor for business components.

19 Application-xml a deployment descriptor for the entire multi-tiered application.

20 AS-Application-xml an application server specific deployment descriptor.

21 Deploy-wsdd a Web services deployment descriptor.

22 Undeploy-wsdd a file to undeploy previously deployed Web services.

23 VSObjService proxy classes for the services layer.

24 TestClient a test client.

25 Build-xml a build script to compile and deploy the entire application.

Table 1. Templates used in the generation process

Prepared elements Aggregated elements from the UML Metamodel

PreparedAssociationData Association, Stereotype, TagDefinition, TaggedValue

PreparedAssociationEndData AssociationEnd, Multiplicity, MultiplicityRange, Association, Stereotype, TagDefinition, 
TaggedValue

PreparedAttributeData Attribute, Classifier, Namespace, Stereotype, TagDefinition, TaggedValue

PreparedClassData Class, Generalization, Stereotype, TagDefinition, TaggedValue

PreparedMethodData Method, Operation, Parameter, Classifier, Namespace, Stereotype, TagDefinition, Tagged-
Value

PreparedModelElementData ModelElement, Stereotype, TagDefiniton, TaggedValue

PreparedPackageData Package, Stereotype, TagDefinition, TaggedValue

Table 2. Prepared elements



13

4.4 Properties of the Templates

We investigated the 25 templates from Table 1 using the following measures: file size, LOC,

number of references to values in the context, if-statements, loops, statement count, cyclomatic

complexity [20], and Halstead effort [13]. Most tools that support the automatic application of

the above measures can only deal with statements in general-purpose programming languages.

For this reason, we used the following guidelines to transform every template to comply with

this requirement.

• Every context value reference was transformed to an atomic print statement.

• Every static code output was transformed to an atomic print statement. A context value ref-

erence delimits static code outputs.

• Every #if/#else metacode statement is treated as an if/else statement and every #foreach

metacode statement is treated as a while statement in a general-purpose language.

Altogether, 288 KB of template files contain 3,013 references to prepared classes, 542 if-

statements, 128 loops, and 6,670 statements. A comparison of cyclomatic complexity values

for the templates is given by Fig. 8. Major differences in the complexity between the templates

can be explained with a diverse amount (and complexity) of metacode they contain. The tem-

plate VSObjAccBean, which generates the class implementation of a component in the access

layer reaches an especially high complexity value (237). This template also reaches the highest

Halstead effort value (approx. 22.2 million). Comparing cyclomatic complexity to the LOC

values of the templates shows a linear relationship (Fig. 9). A similar trend can be observed for

the Halstead effort if a logarithmic scale is used for both axes. This suggests that even though

the templates generate files used for very different purposes (interfaces, class implementations,

JSPs, or deployment descriptors) complexity and effort are evenly distributed across the lines

23
7

69 60

41 41 38 25 25 25 19 18 18 12 11 9 6 4 4 4 2 1 1 0 0 00

50

100

150

200

250

V
S

O
bj

A
cc

B
ea

n

C
on

tr
ol

le
rS

er
vl

et

Te
st

C
lie

nt

S
ho

w
In

st
an

ce

V
S

O
bj

B
ea

n

E
JB

-ja
r-

xm
l

V
S

O
bj

S
er

vi
ce

V
S

O
bj

A
cc

Lo
ca

l

V
S

O
bj

A
cc

R
em

ot
e

S
ho

w
Ty

pe
In

fo

W
eb

-x
m

l

V
S

O
bj

Lo
ca

l

V
S

O
bj

V
al

ue

S
ho

w
Li

st

S
ho

w
In

de
x

V
S

O
bj

R
em

ot
e

V
S

O
bj

R
em

ot
eH

om
e

V
S

O
bj

Lo
ca

lH
om

e

D
ep

lo
y-

w
sd

d

B
ui

ld
-x

m
l

A
pp

lic
at

io
n-

xm
l

U
nd

ep
lo

y-
w

sd
d

V
S

O
bj

A
cc

es
sR

em
ot

eH
om

e

V
S

O
bj

A
cc

es
sL

oc
al

H
om

e

A
S

-A
pp

lic
at

io
n-

xm
l

C
yc

lo
m

at
ic

 c
om

pl
ex

ity

Fig. 8. A comparison of cyclomatic complexity values for the templates



14

of code. The specially marked outliner denotes the template Build-xml that generates the build

script to compile and deploy the generated system. In comparison to its static parts, this tem-

plate contains only a small portion of metacode.

For the example configuration illustrated in Fig. 7, 6,423 LOC of templates generate

17,514 LOC of source files. This proves that even for a very small information model a reuse

factor of 2.73 in terms of LOC is achieved by the approach.

4.5 How Fast are Generated Versioning Systems?

Apart from reducing development time and eliminating possible errors due to manual develop-

ment, is there a performance benefit in generating versioning systems? To observe this, we

implemented a framework for versioning systems. We tried to shift most of the versioning

functionality into the framework’s generic parts and implement it so that it could be used with

any information model. Differences between a framework-based system and a generated sys-

tem are summarized by Table 3. Fig. 10 illustrates framework instantiation for the example

configuration from Fig. 7.

As a result of using many generic parts, a versioning system obtained by framework instan-

tiation uses a database schema that is far simpler than the schema of a generated system, but at

the same time also shows some performance drawbacks. For example, the possibility of reduc-

ing the number of joins between the object-type tables for the case when the multiplicity of a

relationship end is one is not considered. In a framework-based system, generic tables, e.g.,

tables for storing versioning information, attachments, or pin settings, are used for objects and

relationships of every possible type (in contrast to the generated system, where this informa-

tion is stored in type-specific tables). Such generic tables grow very fast and thus require high

table-scan times. Finally, framework instantiation through hot spots causes an increased use of

0
20
40
60
80

100
120
140
160
180
200
220
240

0 500 1000 1500 2000 2500

LOC

C
y

cl
o

m
at

ic
 c

o
m

pl
ex

it
y

Build-xml
1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

1 10 100 1000 10000

LOC

H
al

s
te

ad
 e

ff
or

t

Build-xml

Fig. 9. Correlation of cyclomatic complexity and Halstead effort to LOC



15

subtype polymorphism and reflection which slow down the invocation of methods in the entity

and access layers. To observe performance differences between a framework-based and a gen-

erated versioning system, we developed a benchmark client for the example configuration

from Fig. 7. The client carried out 192,148 operations in three consecutive runs of a typical

content management scenario. For every operation category, tfw and tgen denote the average

time required to execute the operation in this category for the framework-based and the gener-

ated system, respectively. The speed-up of a generated system is defined as (tfw-tgen)/tfw.

Fig. 11 gives an overview of speed-ups for observed operation categories. This overview con-

firms our hypothesis that the optimization decisions used in generated systems indeed have an

impact on performance. At the same time, the separate representation of versioning informa-

tion by the entity Version causes the operations for navigating version histories (getAlterna-

tives, getRoot, getAncestor, and getSuccessors) as well as the operation deleteVersion to

perform better in a framework-based system.

Concept / feature Generator Framework

Unversioned-object 
types

Supported. Not supported—every access component for a 
type extends a generic component VSObjectAc-
cess that defines the methods for versioning 
behavior.

Versioning information 
(ancestor to a given 
version, information on 
whether a version is 
frozen)

Integrated directly in the entity component for 
the versioned-object type and the object-type 
table. The ancestor-successor relationships are 
supported as a reflexive one-to-many relation 
on the entity component.

Stored by a separate entity component called 
Version. The ancestor-successor relationships 
are supported by a reflexive one-to-many rela-
tion on this component.

Merging information 
(what versions have 
been merged with other 
versions)

Supported by a reflexive many-to-many relation 
on the entity component for the object type.

Supported by a reflexive many-to-many relation 
on the entity component Version.

Relationship types Every relationship type is represented as a sep-
arate relation between entity components.

Supported by a common entity component called 
Relationship. The component is used for rela-
tionships of any possible relationship type.

Non-floating relation-
ship ends

Supported. Not supported—due to the representation of 
relationships using the component Relationship, 
all ends are floating.

Pin settings A separate relation between the two entity com-
ponents is used with every floating end.

Supported by a common entity component called 
PinSetting. The component is used for relation-
ships of any possible relationship type.

Latest version selection Materialized and represented as a relation 
between the two entities for every floating end.

Not materialized. Versions in a CVC need to be 
scanned to determine the latest version.

Attachment relation-
ships and checkout 
locks

Two separate relations between entity compo-
nents that represent the workspace type and 
the object type are used with every attachment-
relationship type. 

Supported by two entity components called 
Attachment and Checkout. The components are 
used for attachment relationships of any possible 
type.

Operation propagation 
settings

Hardwired directly in the access components. Stored in a special database table that is queried 
as an operation that might propagate is carried 
out.

Maximum number of 
successors

Hardwired directly in the access components 
(methods createSuccessor and merge).

Stored in a special database table that is queried 
as methods createSuccessor and merge are car-
ried out.

Table 3. Differences between generated and framework-based versioning system



16

4.6 Lessons Learned

The entire development activities for the generator took 12 man-months, the development of

the templates taking approx. 75% of this time. The development of the framework began after

the majority of template development was completed and took only six man-months, mostly

Attachment
(Entity component)

Checkout
(Entity component)

PinSetting
(Entity component)

OpPropagation
(Entity component)

Relationship
(Entity component)

MaxSuccessors
(Entity component)

VSObject
(Entity component)

Version
(Entity component)

VSWorkspaceAccess
(Session component)

VSWorkspace
(Entity component)

VSObjectAccess
(Session component)

User-invisible framework parts

EditorialDepartment
EditorialDepartment-

Access

Menu

Teaser

Article

Image

MenuAccess

TeaserAccess

ArticleAccess

ImageAccess

User-visible framework parts

Fig. 10. Framework instantiation for the example configuration

getSuccessors
getAncestors

getRoot
deleteVersion

getAlternatives
setCurrentWorkspace

isFrozen
getAttribute

unsetCurrentWorkspace
createSuccessor

createObject
attachToWorkspace

merge
deleteObject

addRelationshipObject
setValueObject

pinRelationshipObject
setAttribute

getValueObject
getAttachedObject

freeze
copyObject

checkinFromWorkspace
checkoutToWorkspace
getRelationshipObject

-150% -125% -100% -75% -50% -25% 0% 25% 50% 75% 100%

85%
74%

68%
57%

51%
50%

47%
42%
42%

35%
34%

23%
22%
21%

15%
8%
7%

5%
3%
2%

-6%
-6%
-16%
-43%
-132%

Fig. 11. Speed-up of a generated towards a framework-based system



17

due to our experience with the domain and the simplifications explained in Table 3. What are

the most important lessons we learned from this project?

Return-on-Investment (ROI). Our measurements fail to answer the most important question:

How many systems (with what features) do we need to sell (at what price) in order for the

implementation of the templates and the generator to pay off? This question cannot be

answered until a measure for estimating the total cost for template development is proposed

and verified on a large set of product lines. The measure should reasonably combine the efforts

related to developing the template’s static parts and the metacode. In terms of LOC, our tem-

plates generate 2.73 times more code that their size even for a very small example configura-

tion from Fig. 7. This result is to be treated with care due to its uniform treatment of a line of

code in a template and a line of code in the generated implementation.

High Complexity and Effort Values for Some Templates. Templates with a large portion of

application logic prove more difficult to develop and test. To classify cyclomatic complexity

values, van Doren [37] proposes a risk evaluation scale, illustrated by Table 4. According to

this classification, three of our templates are classified as untestable with very high risk, six

templates are classified as complex with high risk. The other 16 templates have acceptable

complexity values (20 or less). A possible remedy for a template with high complexity is to

divide it into smaller parts which are then included in a superordinated template. The template

language we use (VTL [3]), supports this kind of inclusion by #include and #parse directives.

However, in our case, this action has the mere outcome of having many parts with lower com-

plexities. We could not find the case where we could reuse one part across two or more tem-

plates.

Example-Based Template Development. We never developed a template by immediately

implementing static code mixed with metacode. Instead, a series of examples for the generated

code that covered diverse configurations was developed. Afterwards, we generalized these

examples to obtain the template. In our opinion, this generalization can be automated by tools

that compare the examples and automatically derive the template.

MCC Risk evaluation

1–10 A simple method without much risk

11–20 More complex method, moderate risk

21–50 Complex, high risk method

Greater than 50 Untestable method (very high risk)

Table 4. Risk evaluation scale (based on van Doren [37])



18

Relating Domain Analysis to Domain Implementation. A careful analysis of features for the

product line (see Sect. 3) is a labor-intensive process. However, the results of this analysis are

mostly neglected during domain implementation due to insufficient tool support. Our experi-

ence shows that features are often added to domain implementation gradually as the domain

evolves. In this case, domain analysis and implementation need to be enhanced in many small

iterations. To allow the tracking of changes and dependencies across the phases, tools should

be available to relate parts of template implementation to corresponding features.

Is performance the only reason for implementing a generator? No—our experience shows

that manual framework instantiation is still a labor-intensive task. For the example configura-

tion, 45 derived classes require 3,822 LOC and a Halstead effort of 12,490. The developers

need to get familiar with the way the configuration-specific parts interact with the generic parts

(mostly through the components VSObject and VSObjectAccess, see Fig. 10). Naming conven-

tions used to invoke methods by reflection are a common cause of errors. For this reason, we

claim that even for the framework solution, a simple generator is necessary.

5 Domain-Specific Languages for SQL

In this project, we took a different approach than in generating middleware-based versioning

systems. First, we changed the programming model for the systems, i.e., the systems generated

in this section are configured and accessed through a domain-specific language (DSL) that is

mapped to SQL. Statements in this language can be embedded into versioning system applica-

tions. The mapping to SQL is performed either by a domain-specific database driver or a pre-

compiler. Second, the mapping is performed by object-oriented code in special translation

routines which differ substantially from the templates presented in Sect. 4. Instead of imple-

menting only the domain-specific language for versioning systems, we implemented a trans-

formation system that allows easy definition of data definition and manipulation languages.

From this definition, a metagenerator produces a modeling environment, a precompiler, and a

domain-specific driver. This idea can thus be thought of as an extension of an increasingly

popular field of method engineering. First, in Sect. 5.1, we give a brief introduction to method

engineering. Sect. 5.2 outlines DSLs. Several examples for using DSLs for database applica-

tions are given in Sect. 5.3. Our system is described in detail in Sect. 5.4. Sect. 5.5 describes

concrete use of domain-specific statements for versioning. The evaluation setup and results for

this approach are presented by Sects. 5.6 and 5.7. Finally, in Sect. 5.8, we summarize the les-

sons we learned from this approach.



19

5.1 Method Engineering

According to Rumbaugh [31], a method is a combination of guidelines and rules that include

modeling concepts, views and notations, a step-by-step iterative development process, as well

as hints and rules-of-thumb for performing development. A method is also often seen as a com-

bination of a product model (definition of modeling concepts) and a process model that defines

the development activities. Popular methods include Rational Unified Process (RUP) [14],

Dynamic System Development Method (DSDM) [34], and Catalysis [11].

Brinkkemper [7] defines method engineering as a discipline for exploring techniques to

build project-specific methods. The term computer-aided method engineering (CAME) [32]

emphasizes the use of software tools for building methods. CAME tools generally produce a

CASE tool that supports a project-specific method. The CAME tool introduced in this section

falls into the category of ad hoc method engineering [29] due to the fact that no reusable

method pieces are available to the user as he starts building the method and the process of

building is not limited in any way (except by a meta-metamodel).

5.2 Domain-Specific Languages

DSLs are specialized problem-oriented languages. Because they contain abstractions meaning-

ful only within an observed domain, programs in DSL are easier to understand and communi-

cate. According to Czarnecki and Eisenecker [9], DSLs can be implemented using

preprocessors, reflective languages, or special modularly extensible programming environ-

ments (see the Intentional Programming system [33] as an example for such environment). A

DSL is usually executed either by implementing a virtual machine or by translating programs

to a lower-level language in a process called synthesis [38].

5.3 DSLs for Database Applications

Why use DSLs for database applications? Common database schemas in commercial applica-

tions span more than 10,000 predefined tables and contain 100+ lines of code for a single

query. This kind of application design is difficult to communicate and very error-prone. Trig-

gers, constraints, or denormalization decisions in database schemas are usually left undocu-

mented and therefore difficult to understand whenever reverse engineering, reengineering, or

information integration is necessary. Finally, by combining triggers, constraints, and database

stored procedures with the host language code, numerous ways to achieve the same effect in

the database are available. By using a DSL, execution decisions are postponed to translation

time, leaving the application code unmodified. In this way, an additional level of independence



20

is achieved. Examples of existing DSLs to be used with database applications include Prefer-

ence SQL [18] (a language for easy expression of customer preferences in e-commerce appli-

cations), OrientSQL [40] (a language for enhanced treatment of relationship types in database

schemas), and Visual SQL [15] (a graphical query language based on the ER modeling para-

digm).

5.4 A System to Define Custom DSLs

In this project we developed a system called DSL-DA (domain-specific languages for database

applications) which allows the definition of a custom DSL that can be translated to SQL. An

overview of the system is given by Fig. 12.

The definition of a DSL consists of two large parts, (i) the definition of a domain-specific

metamodel and (ii) the definition of translations, visualizations, and editing functionality.

Based on this two parts, DSL-DA generates a CASE tool as well as a domain-specific database

driver and a precompiler for the DSL. The CASE tool consists of two layers, the domain-spe-

cific layer and the SQL layer. On the domain-specific layer, the user assembles data definition

(DDDS) and data manipulation (DMDS) models using domain-specific modeling elements. The

DDDS model is used for schema definition while the DMDS model is used for updating and

querying data. These models can be visualized using diverse textual notations that allow us to

work with different views on the same model. Textual notations can be edited, which results in

the corresponding updates of both models. Translations are responsible for translating the

SQL layer

DDDS model
Different
textual
visualizations

Visualization

Editing

DMDS model
Different
textual
visualizations

Visualization

Editing

DDSQL model
Different
textual
visualizations

Visualization

Editing

DMSQL model
Different
textual
visualizations

Visualization

Editing

Domain-specific layer

T
ra

n
sl

at
io

n

Generated CASE tool

Domain-specific
metamodel

Definition of
- Translations
- Visualizations
- Editing

SQL metamodel

Based on

Based on

Based on

Based on

DSL-DA

Specified by the
user:

C
A

S
E

 t
o

l
g

en
er

at
io

n

Fig. 12. Overview of the DSL-DA system



21

models onto the DDSQL model (responsible for data definition in terms of SQL modeling ele-

ments) and the DMSQL model (responsible for data manipulation). The metamodel for DDSQL

and DMSQL models is the SQL metamodel, which is an extension of CWM [24]. Because

CWM provides only the modeling elements for data definition, an extension is necessary to

represent data manipulations.

The meta-metamodel for domain-specific metamodels defines a set of very general ele-

ments for object-oriented metamodeling. Fig. 13 illustrates the data-definition part of the

domain-specific metamodel for versioning systems. Fig. 14 illustrates an example DDDS

model that is based on the domain-specific metamodel. The user interface of the generated

CASE tool for manipulating the model (segment A) and its possible visualizations (segment B)

is illustrated in Fig. 15.

5.5 Domain-Specific Statements

DDDS and DMDS models are good for an abstract representation of the schema of a versioning

system and various data manipulations, but cannot be directly embedded into the host language

code. For this purpose, developers use the surface syntax of the DSL (which corresponds to a

possible visualization of the models) to embed the statements in the code. Four examples of

Fig. 13. Part of the domain-specific metamodel used for versioning systems



22

such statements along with their explanations are given by Table 5 (the statements use the

DDDS model from Fig. 14).

We differentiate between the following two kinds of statements that appear in the host lan-

guage code.

Fig. 14. Example DDDS model

Fig. 15. Domain-specific layer of the generated CASE tool



23

• Built-in statements. These statements are known in advanced as the programmer develops

the application code.

• Dynamic statements. These statements are assembled at run time depending on the user’s

actions.

A built-in statement can be handled both by a precompiler and a domain-specific driver

(installed before the native database driver) while a dynamic statement always needs to be han-

dled by a domain-specific driver. The driver solution also allows us to modify the translation

definitions for an already compiled code (by changing only the driver). A drawback of the

driver solution is the excess time spent in the translation process at run time. For our evalua-

tions, presented in Sects. 5.6 and 5.7, we assumed the worst-case scenario, where all state-

ments in our benchmark were executed using a domain-specific driver.

5.6 Evaluation Setup

The goal of our evaluations was two-fold. First, we wanted to estimate the effort needed for

developing the translation routines for the DSL used for versioning systems. This estimate was

performed by counting the statements in the routines as well as by determining the cyclomatic

complexity and Halstead effort. Second, we were interested in performance characteristics of

domain-specific statements.

The time required to execute a domain-specific statement tds is defined as a summary

,

where tpar is the time used for parsing the statement to build a DMDS model, ttr the time

needed for translating this model to a DMSQL model, tvis the time needed for the visualization,

Statement Explanation

create new object Offer
(customer, description, validUntil) values
(’DBIS Group’, ’Development of DSLs’, ’2004-03-01’)

Creates a new offer with the specified attribute values. Due to operation 
propagation settings, a new task will be created and connected to the 
offer.

create successor of object Task
where objId = 875
use workspace Project

where globId = 934521

Creates a successor to the task selected using the specified project work-
space. The operation will propagate to the connected costs.

get successors of Task
where objId = 875
use workspace Project

where globId = 934521

Returns successors of the task version selected using the specified 
project workspace.

select Costs.materialExpenses
from Offer--tasks-->Task--ratedCosts-->Costs
where Task.startDate > ’2004-01-01’
use workspace Project

where globId = 846833
and Offer where objId = 295

Selects the material expenses of all costs that can be reached from an 
offer with the specified objId using filtered navigation across the relation-
ships of type R5 and R6. Only the tasks started later than Jan. 1, 2004 are 
considered. The navigation is performed within a project workspace with a 
globId 846833.

Table 5. Example DMDS statements

tds tpar ttr tvis tSQL+ + +=



24

and tSQL the time needed to execute the domain-specific statements. Thus the overhead due to

the use of domain-specific statements (the time spent in the domain-specific database driver) is

the sum

.

To observe tdr relative to tds, we define the overhead ratio ods as

.

The aim of the evaluations is to validate the following two hypotheses.

• Hypothesis 1. In general, different translations are possible for a domain-specific language.

Translations that take certain optimizations into account are more complex to develop and

also imply higher ttr values.

• Hypothesis 2. ods is very small even for complex translations, indicating that the costs of

translation at run time are acceptable.

In order to validate the two hypotheses, we need a sufficient set of different translation

variants for our domain-specific language. The following four variants, which differ in their

treatment of relationships, were used in our evaluations.

• Variant 1. Store all relationships, regardless of relationship type, in a single generic table.

• Variant 2. Use a separate table for every relationship type.

• Variant 3. Improve Variant 2 by a special treatment of maximal multiplicity one on non-

floating ends.

• Variant 4. Improve Variant 3 by a special treatment of maximal multiplicity one on floating

ends.

5.7 Evaluation Results

The implementation characteristics for the translation routines used for the four variants are

illustrated by Fig. 16. Five of six measures (exception is the number of loops) confirm an

increasing effort across the four variants.

Our next observation was that the translation code is distributed across the routines in a

modular way, allowing easy maintainability and modification. Out of 32 translation routines

implemented in Variant 1, only seven required an update to obtain Variant 2. Again, only

seven routines from Variant 2 required an update to obtain Variant 3. Finally, Variant 4 was

obtain by modifying seven routines and adding two routines to Variant 3.

tdr tpar ttr tvis+ +=

ods

tdr

tds

------=



25

In the rest of this section we focus on performance of the four variants. The evaluation of

performance was supported by a benchmark consisting of 115,775 domain-specific data

manipulation statements. For every variant, the same benchmark was executed against the

database schema obtained in the translation, logging tpar, ttr, tvis, and tSQL. Every variant

required a separate domain-specific database driver. Our first observation was that the parsing

time tpar is minimal (between 15 and 127 microseconds). Since domain-specific statements do

not change, tpar remains the same across all four variants. Fig. 17 illustrates the performance of

the four variants for the category of create relationship statements. The first observation is that

ttr and tvis are very small in absolute terms and take up only a small portion of tds. The values

for ttr gradually increase due to an increasingly complex treatment of relationships. A separate

storage of information on the pinned and latest version comes into effect in Variant 4, thus

Variant 2 proves most efficient both in terms in tSQL and tds. Fig. 18 illustrates the performance

1,
84

7

1,
94

1

2,
16

3

2,
40

9

0
500

1,000
1,500

2,000
2,500

3,000

1 2 3 4
Variant

E
xp

re
ss

io
ns

38 38 39 38

0

10

20

30

40

50

1 2 3 4
Variant

Lo
op

s

737 816
939

1,024

0

200

400
600

800

1,000

1,200

1 2 3 4
Variant

S
ta

te
m

en
ts

0.
73

3

0.
85

0 1.
13

6

1.
30

2

0.000
0.200
0.400
0.600
0.800
1.000
1.200
1.400

1 2 3 4
Variant

H
al

st
ea

d 
ef

fo
rt

 (/
10

6 )

161
180

206 225

0

50

100

150

200

250

1 2 3 4
Variant

If-
st

at
em

en
ts

4.03
4.63

5.44 5.62

0

1

2
3

4

5

6

1 2 3 4
Variant

C
yc

lo
m

at
ic

 c
om

pl
ex

ity

Fig. 16. Properties of translation routines

SQL

96
,6

31

17
,5

88

17
,7

04

25
,1

01

0
20,000
40,000
60,000
80,000

100,000
120,000

1 2 3 4
Variant

Visualization

63

43 44

79

0

20

40

60

80

100

1 2 3 4
Variant

Translation

160
180 180

211

0

50

100

150

200

250

1 2 3 4
Variant

Overall

96
,8

95

17
,8

55

17
,9

71

25
,4

35

0
20,000
40,000
60,000
80,000

100,000
120,000

1 2 3 4
Variant

Fig. 17. Execution of create relationship statements



26

of the four variants for the category of select statements with four navigation steps carried out

outside workspaces, respectively. In this category, ttr decreases with an increased variant com-

plexity. This implies that Hypothesis 1 cannot be completely accepted: It is possible for trans-

lations that are more difficult to develop to also execute faster. Despite a large amount of

decision-making code, once the driver discovers the correct translation for the relationship

type, the production of the equivalent SQL statements can occur faster than for a more generic

variant. For this category, Variant 4 proves most efficient both in terms of tSQL and tds, as

expected.

The average overhead ratio ods over all statement categories takes values between 2.43%

(Variant 1) and 2.82% (Variant 3). The low values confirm Hypothesis 2, predicting that the

costs of executing the translation at run time are minimal.

5.8 Lessons Learned

What are the most important lessons that we learn from DSL-DA? A situation similar to the

one encountered when developing the templates used in generating middleware-based version-

ing systems occurred. In DSL-DA, we rarely implemented a translation routine immediately.

Instead, a number of example translations for statements in a certain category were imple-

mented. By observing these examples and their outcomes (in terms of the SQL statements) we

implemented the translation routines. For complex translations, a visualization technique that

allows the tracing of the invoked translation routines also proves convenient.

The following ideas could be considered to make translation even faster.

• Stored procedures. Using a parameterized stored procedure that can answer many syntactic

and DDDS variations of a statement can make the execution of the obtained SQL state-

ments even faster, in case the DBMS precompiles and optimizes the procedure’s code.

Using a procedure, we also avoid multiple trips through the native database driver.

SQL

14
5,

31
1

4
8,

0
35

4
7,

4
52

1
8,

34
4

0

50,000

100,000

150,000

200,000

1 2 3 4
Variant

Visualization

224
257

371

27

0

100

200

300

400

1 2 3 4
Variant

Translation

232

142 146

73

0

50

100

150

200

250

1 2 3 4
Variant

Overall

14
5,

81
2

4
8,

4
76

4
8,

0
20

18
,4

92

0

50,000

100,000

150,000

200,000

1 2 3 4
Variant

Fig. 18. Execution of select statements with four navigation steps outside workspaces



27

• Parallel execution. In certain cases, some of the SQL statements can be executed in paral-

lel.

• Object pools. The creation of objects used for a DMDS model can be made more efficient

by using object pools.

• Integrating visualization into translation. Translation and visualization need not necessar-

ily be treated as two separate processes. In case explicit DMSQL models are not required,

translation routines that assemble SQL statements as character strings are possible.

6 Workflow-Supported Model Transformations

In certain cases, a general-purpose modeling language may be desired by the developers to

present solutions in a particular domain. The main reason for this may be previous investments

in modeling tools (editors, compilers, metrics tools) that support this language. In this section,

we present a solution which allows us to use a general-purpose language but speeds up the

development of models by applying a series of domain-specific system configuration steps.

The configuration steps are organized in a workflow model. The general idea is described by

Sect. 6.1. Sect. 6.2 discusses model transformations which are used by the approach to assem-

ble models. Similar to DSL-DA, the proposed system is generic and can handle different prod-

uct lines. Sect. 6.3 describes its application for the product line for versioning systems. A

metamodel for workflow models is discussed by Sect. 6.4. We evaluate the approach in

Sect. 6.5. Finally, a summary of lessons learned is presented in Sect. 6.6.

6.1 Using Workflows to Assemble Large Models

The system implemented in this approach allows the configuration of large models using a set

of transformation templates and a workflow model (see Fig. 19). Transformation templates

m0 m1 m2 mn...

...

Transformation
template

Concrete configuration
choices

Concrete
transformation

What choices
need to be made?

Data flow

Control flow

Workflow model

Transformed models

Fig. 19. Workflow-supported model transformations



28

produce concrete transformations that add elements to the current model, remove elements, or

change properties of an existing element. The workflow model is an organization of steps in

which a user enters his choices that represent the configuration of the final system. Every step

is related to a transformation template. At the end of a step, a concrete transformation based on

the choices is produced from the template and applied to the model. The workflow model also

defines data and control flows between the steps. Data flows carry data to succeeding steps

where this data is used for calculating default values or deciding on valid values for the

choices. Control flows are used to decide whether a transition to a succeeding step is allowed.

The main purpose of the system is to eliminate the need for manual modeling in a general-pur-

pose modeling language and to assure the completeness and correctness of the final model.

6.2 Concrete Transformations and Transformation Templates

What is the appropriate notation for concrete transformations and transformation templates?

OMG XML Metadata Interchange (XMI) [25] allows a representation of complete models and

model differences in an XML-based format. Model differences are supported by the elements

XML.difference, XML.delete, XML.add, and XML.replace. We choose to represent a concrete

transformation as a model difference expressed in XMI, which is merged with the current

model to obtain the updated model. Transformation templates are represented as a combination

of static XMI code, placeholders for user-defined values, and control flow statements. Note

that template evaluation is technically equivalent to the one applied in Sect. 4, where we use it

for model-to-code transformations. Here, we use it to generate concrete model-to-model trans-

formations.

6.3 Example

The example product line can be supported by four workflow steps (and thus four transforma-

tion templates) illustrated in Fig. 20. For the example product line we use Executable

UML [21] as the general-purpose language used to express the transformed models. Execut-

able UML requires an interconnected representation of system structure (defined in terms of

Step A
Define an object

type

Step B
Make an object
type versionable

Step C
Define a relationship

type

Step D
Define a workspace

type

Fig. 20. Configuration steps for the example product line



29

classes, associations and attributes) and system behavior (defined in terms of operations on

classes). The operations are defined in terms of actions, expressed in the Object Action Lan-

guage (OAL) [27]. Even though an XMI representation of actions is possible through the mod-

eling elements defined by the package Actions of the UML metamodel, this approach is very

fine-grained. For example, a simple if statement with elif requires 32 model elements and 35

links (see [26] for more examples). This proves unacceptable for manual development of trans-

formation templates, where such XMI code will be even mixed with template metacode. For

this reason, we simply choose to introduce a separate XMI element for every OAL action,

which contains the action’s syntax as a character string. The following paragraphs describe the

semantics of the four steps for the example product line.

Step A—Define an Object Type. In this step, the user makes the configuration choices about

the name of the object type, the names of the attributes, and the primitive types for the

attributes. The produced concrete transformation represents the object type as a class in the

model and adds the globId and objId identifiers along with the user-defined attributes to the

class. Afterwards, it adds the operations (implemented in OAL) createObject, findByGlobId,

and copy to the class. The step can be repeated many times to define further object types.

Step B—Make an Object Type Versionable. In this step, the user chooses an object type that

needs to support versioning operations. The maximum number of successors is defined for the

type. In addition, the user specifies whether versions will include version name and version

creation date. The produced concrete transformation adds the attributes verId, frozen (denoting

whether a version is frozen), and successorCount (denoting the current number of successors)

to the class representing the object type. If this was desired by the developer, it also adds the

attributes versionName and versionDate. Afterwards, the transformation includes the ancestor-

successor relationship type as an association in the model. Finally, version management opera-

tions (implemented in OAL) createSuccessor, freeze, merge, getAncestor, getSuccessors, get-

PathToRoot, and getVersions are added to the class. The step can be repeated many times to

make different object types versionable.

Step C—Define a Relationship Type. In this step, the user defines a relationship type

between two object types. For this purpose, the object types to relate need to be chosen and a

name for the relationship type needs to be specified. The user decides on the multiplicities of

both relationship ends, the floating property, and operation propagation settings. The produced

concrete transformation adds a class for every CVC (only for floating ends), operations for cre-

ating and deleting relationships, and operations for manipulating pin settings (only for floating

ends). The existing operations (added in previous transformations), e.g., createSuccessor, are



30

modified to support operation propagation, if required. The step can be repeated many times to

define further relationship types.

Step D—Define a Workspace Type. In this step, the user defines a workspace type by choos-

ing a name for the type and selecting the contained object types with their multiplicities. The

produced concrete transformation represents the workspace type as a class in the model and the

attachment-relationship types as associations. Afterwards, it adds attach and detach opera-

tions, operations for navigating to attached objects, and operations for selecting and unselect-

ing the workspace. The existing operations for filtered navigation are modified to support

filtered navigation within a selected workspace. The step can be repeated many times to define

further workspace types.

6.4 A Metamodel for Workflows Models

The definition of workflow models and execution of the configuration process is supported by

a separate metamodel which is organized in three packages, described in the following para-

graphs.

Core Elements. This package is a backbone for the other two packages. It includes the abstract

element ModelElement (the root superclass for every other element in the workflow model),

and concrete elements for representing a workflow model, configuration steps, data containers,

templates, and transitions.

User Choices. This package includes elements for representing user choices presented to the

user in the graphic interface and hierarchically organizing the choices into groups.

Evaluations. This package contains elements for representing variables in data containers,

types of these variables, and different functions. The functions are used for evaluating default

values for user choices, transition conditions, and values in the context which are used by the

transformation template.

6.5 Evaluations

We evaluated the approach of workflow-supported model transformations from different per-

spectives. First, we used the approach to automatically assemble a model of a versioning sys-

tem that allows versioning of simple UML models, i.e., we used the Core package of the UML

Metamodel as the information model. Every UML Metamodel element has been represented

by a separate object type. Five workspaces, backbone elements, relationship elements, depen-

dencies elements, classifier elements, and auxiliary elements, have been defined for semanti-

cally related elements within the Core package (see the UML specification [26] for a detailed



31

overview of elements that belong to each of these categories). For such a versioning system,

we observed the number of XMI elements added in each step (see Fig. 21, not all element cat-

egories are included in the diagram). This comparison revealed that the steps are very diverse

based on the type of the elements added to the model.

Comparing the number of elements added in every configuration step to the number of user

choices required in a configuration step reveals that Step D is most productive with 70 ele-

ments per user choice while Step C is least productive with 12 elements per user choice.

In our further evaluation, we observed the properties of transformation templates. As illus-

trated in Fig. 22, the template used for Step C proves most complex in terms of cyclomatic

complexity, followed by the templates used for Steps D, B, and A. The correlation diagram

confirms a linear relationship between the cyclomatic complexity and a LOC-value of a tem-

plate, indicating that despite the different semantics added to the model in every configuration

step, the complexity remains evenly distributed across the templates.

As illustrated in Fig. 23, the templates contain between 416 and 65 XMI elements in their

static parts (note that more complex templates also have larger static parts). However, for the

0

200

400

600

800

1000

1200

1400

1600

O
A

L:
A

ss
ig

nm
en

t

O
A

L:
S

e
le

ct

O
A

L
:If

U
M

L
:P

ar
am

et
e

r

U
M

L:
O

pe
ra

tio
n

O
A

L:
M

e
th

o
d

O
A

L:
R

el
at

e

O
A

L:
F

or

O
A

L:
R

et
u

rn

U
M

L:
A

ss
oc

ia
tio

nE
n

d

U
M

L:
M

u
lti

pl
ic

ity

O
A

L:
C

re
at

e

O
A

L:
U

nr
el

at
e

U
M

L
:A

tt
ri

b
ut

e

U
M

L
:A

s
so

ci
at

io
n

O
A

L:
E

ls
e

O
A

L:
B

re
ak

O
A

L:
D

el
et

e

U
M

L:
C

la
ss

O
A

L:
W

hi
le

O
A

L
:E

lIf

X
M

I e
le

m
en

ts Step A

Step B

Step C

Step D

Fig. 21. XMI elements added in the configuration steps (UML Metamodel)

57

36

24

13

0

10

20

30

40

50

60

S
te

p
 C

S
te

p
 D

S
te

p
 B

S
te

p
 A

C
yc

lo
m

at
ic

 c
o

m
p

le
xi

ty

0

10

20

30

40

50

60

0 500 1000 1500

LOC

C
yc

lo
m

at
ic

 c
o

m
p

le
xi

ty

Step A

Step B

Step D

Step C

Fig. 22. Cyclomatic complexity of the templates



32

versioning system used to version UML models, we found that the size of the static part is in

no relationship to the average number of elements produced in a step (element production fac-

tor).

6.6 Lessons Learned

What are the most important lessons that we learn from workflow-supported model transfor-

mations? When comparing the productivity of the steps (the number of elements added in

every step compared to the number of user choices), a major drawback is the uniform treat-

ment of different XMI elements and choices. We agree that not all elements are the same and

would thus require different effort to be included in the model in a manual modeling process. A

possible solution would be to assign empirically-determined weights for the modeling ele-

ments. Likewise, the number of user choices in a configuration step should not be considered a

direct criterion for configuration effort in the step, i.e., some configuration choices are more

difficult to make than others. A linear growth trend of cyclomatic complexity with the LOC

value can be observed for the templates. For the versioning system based on package Core of

the UML Metamodel, the templates were capable of producing between 41 and 31 times as

many XMI elements as contained in their static parts.

Many of the problems related to the use of templates that were recognized in generating

middleware-based versioning systems also appear for workflow-supported model transforma-

tions. These include an advanced environment support for easily separating code from meta-

code in template development and running the template engine from within this environment

for arbitrary context values. It should be possible to track configuration choices and templates

parts back to the feature model. Finally, even in this project, we developed most of the meta-

code by first examining and comparing several examples of manually developed concrete

transformations.

416

234 213

65

0
50

100
150
200
250
300
350
400
450

S
te

p 
C

S
te

p 
D

S
te

p 
B

S
te

p 
A

X
M

I e
le

m
e

nt
s

38.0

32.4 30.6

40.7

0
5

10
15
20
25
30
35
40
45

S
te

p 
B

S
te

p 
C

S
te

p 
A

S
te

p 
D

E
le

m
e

nt
 p

ro
du

ct
io

n
 f

ac
to

r

Fig. 23. XMI elements in the template’s static parts and element production factor



33

7 Related Work

We have limited our discussion on versioning systems only to the functionality needed to

understand the type of systems we deal with in Sects. 4–6. For surveys on versioning systems,

we refer to the following work. Katz [17] discusses a variety of existing terminologies and

mechanisms for representing versioned data, primarily from the CAD domain, and proposes a

unification of presented version models. Conradi and Westfechtel [8] examine different ver-

sion models in commercial systems and research prototypes and discuss fundamental concepts

used in versioning such as revisions, variants, configurations, and changes. Finally, Whitehead

and Gordon [39] use containment data models (a specialized form of ER models) to represent

the version models of 11 different versioning systems.

An extensive overview of different model-to-model and model-to-code transformation

approaches is given by Czarnecki and Helsen [10]. The authors identify the template language

we use in Sects. 4 and 6 as a template-based model-to-code approach. They note that, in gen-

eral, the structure of a template closely resembles the code to be generated. On the other hand,

the patterns contained by a template can be syntactically or semantically incorrect, which

makes it difficult to assure the correctness of generated code during template development.

Braga and Masiero [6] propose a system for controlled framework instantiation. The

authors claim that instantiation is a complex process which requires an in-depth knowledge of

the framework’s hot spots. For this purpose, they support the developer in the instantiation pro-

cess by a set of mandatory and optional patterns which are applied by following predefined

paths. The paths are defined using a formal model. This idea of system configuration is very

similar to our workflow-supported model transformations which allow a controlled assembly

of a model that describes the desired system.

8 Conclusion

We summarize the ideas presented in this paper by giving a comparison of presented

approaches (Sect. 8.1), outlining the benefits of MDSD based on our experience (Sect. 8.2),

and finally giving an outlook for this research domain (Sect. 8.3).

8.1 Comparison of Presented Approaches

The approaches described in this paper all deal with MDSD, but still differ in (i) the extent to

which they support different product lines, (ii) specification and generation method, and



34

(iii) the target platforms for generated systems. The differences between the presented ideas

are given by Table 6.

8.2 Benefits of Model-Driven Approaches

We divide the benefits of model-driven approaches into productivity and performance benefits.

Productivity Benefits. Both in Sects. 4 and 5, we obtained a complete implementation of a

versioning system with substantially less effort than would normally be required for a manual

development process. A generative approach is useful even when considering the development

of a single system, because many templates are applied more than once in a specific configura-

tion. In both cases the specification is easy to understand even for non-experts and easy to

communicate. Domain-specific data manipulation statements in Sect. 5 as opposed to a combi-

nation of many SQL statements make the application code easier to understand and reengineer

and less error-prone. In workflow-supported model transformations, a semantically correct

specification of a versioning system in a general-purpose modeling language is assembled with

substantially less effort than would otherwise be required for a manual assembly.

Characteristic A generator for middleware-
based versioning systems 
(Sect. 4)

Domain-specific languages 
for database applications 
(Sect. 5)

Workflow-supported model 
transformations (Sect. 6)

System used for... generating middleware-based 
versioning systems

defining DSLs that map to SQL automated assembly of specifi-
cations in a general-purpose 
modeling language

Product line support Only the product line for version-
ing systems

Generic system, the product line 
for versioning systems is used 
as an example. Every product 
line requires a separate domain-
specific metamodel and a set of 
translation, visualization, and 
editing routines.

Generic system, the product line 
for versioning systems is used 
as an example. Every product 
line requires a separate work-
flow model and a set of transfor-
mation templates.

Specification lan-
guage

UML static structure models with 
a profile for the product line for 
versioning systems. The profile 
essentially represents a DSL.

Defined as a metamodel using a 
built-in meta-metamodel. The 
metamodel is essentially a DSL. 
A DSL for versioning systems is 
used as an example.

Any language with a MOF-
based metamodel. Executable 
UML used as an example.

Target platform for 
generated systems

middleware and RDBMS RDBMS depends on the generator for 
the language used

Specification tool any UML modeling tool generated CASE tool a workflow engine that guides 
the application of model trans-
formations

Specification sup-
ported by...

no special support, except for 
the features of the UML model-
ing tool

visualization and editing rou-
tines specified in Java

model transformations imple-
mented using templates

Generator / map-
ping tool

template-based generator generated CASE tool, precom-
piler, or a domain-specific driver

any generator that understands 
the language used

Generation sup-
ported by...

code templates translation routines specified in 
Java

depends on the generator for 
the language used

Table 6. Characteristics of MDSD approaches described in this paper



35

Performance Benefits. As illustrated in Sects. 4 and 5, complex optimization decisions can be

implemented in the generator (the metacode) and made transparent for the user. The perfor-

mance benefits were illustrated by the comparison of a generated towards a framework-based

versioning system in Sect. 4 and the comparison of four translation variants in Sect. 5.

8.3 Outlook

Due to the fact that MDSD is a relatively new field, no verified measures exist that could pre-

cisely evaluate the return-on-investment. The fact that a piece of metacode can be reused even

when generating a single system can be misleading because metacode development can prove

far more demanding than the development of manual implementation, even in the case of

many systems with similar properties. For this reason, we claim that a set of measures that

would allow us a concise evaluation of a given MDSD approach is needed. The measures

should be empirically defined on a large set of implemented product lines and cover distinct

phases of domain engineering.

Acknowledgments

This work would not be possible without the support of Wolfgang Mahnke and Hans-Peter

Steiert. Our students Christian Gebauer, Martin Husemann, Christian Weber, Amine Chatti,

and Benedikt Eger invested great efforts in implementing and evaluating the approaches

described in this paper.

References

1. Agrawal, A.: Graph Rewriting and Transformation (GReAT): A Solution for the Model Integrated Computing (MIC)
Bottleneck, in: Proc. ASE'03, Montreal, Oct. 2003, pp. 364–368

2. Ambler, S.W.: Agile Modeling, John Wiley & Sons, 2002

3. The Apache Jakarta Project: Velocity User’s Guide, available from: http://jakarta.apache.org/velocity/

4. Bernstein, P.A., Bergstraesser, T., Carlson, J, Pal, S., Sanders, P., Shutt, D.: Microsoft Repository Version 2 and the Open
Information Model. In: Information Systems 22:2, 1999, pp. 71–98

5. Boocock, P.: Jamda Model Compiler Framework, available from: http://jamda.sourceforge.net/

6. Braga, R.T.V., Masiero, P.C.: Building a Wizard for Framework Instantiation, in: Proc. OOIS’03, Geneva, Sept. 2003,
pp. 95–106

7. Brinkkemper, S.: Method Engineering: Engineering of Information Systems Development Methods and Tools, in: Infor-
mation and Software Technology 38:4, 1996, pp. 275–280

8. Conradi, R., Westfechtel, B.: Version Models for Software Configuration Management, in: ACM Computing Surveys
30:2, 1998, pp. 232–282

9. Czarnecki, K., Eisenecker, U.: Generative Programming: Methods, Tools, and Applications. Addison-Wesley, 2000

10. Czarnecki, K., Helsen, S.: Classification of Model Transformation Approaches, in: Proc. OOPSLA’03 Workshop on
Generative Techniques in the Context of Model Driven Architecture, Anaheim, Oct. 2003

11. D’Souza, D.F., Wills, A.C.: Objects, Components, and Frameworks With UML: The Catalysis Approach, Addison-Wes-
ley, 1998

12. Frankel, D.: Model Driven Architecture: Applying MDA to Enterprise Computing, Wiley Publishing, 2003

13. Halstead, M.H.: Elements of Software Science, Elsevier, 1977



36

14. IBM Corp. Rational Unified Process for System Engineering, RUP SE 1.1, IBM Rational White Paper TP 165A, Feb.
2002

15. Jaakkola, H., Thalheim, B. Visual SQL—High-Quality ER-Based Query Treatment, in: Workshop Proc. ER’03, Chi-
cago, Oct. 2003, pp. 129–139

16. Kang, K., Cohen, S., Hess, J., Nowak, W., Peterson, S.: Feature-Oriented Domain Analysis (FODA) Feasibility Study,
Technical Report CMU/SEI-90-TR-21, SEI, Carnegie Mellon University, Nov. 1990

17. Katz, R.H.: Toward a Unified Framework for Version Modeling in Engineering Databases, in: ACM Computing Surveys
22:4, 1990, pp. 375–408

18. Kießling, W., Köstler, G.: Preference SQL - Design, Implementation, Experiences, in: Proc. VLDB’02, Hong Kong,
Aug. 2002, pp. 990–1001

19. Marschall, F., Braun, P.: Model Transformations for the MDA with BOTL, in: Proc. MDAFA 2003, Enschede, May
2003

20. McCabe, T.J.: A Complexity Measure, in: IEEE Transactions on Software Engineering 2:4, 1976, pp. 308–320

21. Mellor, S.J., Balcer, M.: Executable UML: A Foundation for Model-Driven Architecture, Addison-Wesley, 2002

22. Microsoft Corp.: Microsoft Developer Network: Programming Meta Data Services Applications, available from:
http://msdn.microsoft.com/library/default.asp

23. OMG: Model Driven Architecture (MDA), OMG document ormsc/2001-07-01, July 2001

24. OMG: Common Warehouse Metamodel (CWM) Specification, Version 1.0, Vol. 1, Oct. 2001

25. OMG: XML Metadata Interchange (XMI) Specification, Version 1.2, Jan. 2002

26. OMG: Unified Modeling Language (UML) Specification, Version 1.5, March 2003

27. Project Technology, Inc.: OAL Manual, Version 1.4, available from http://www.projtech.com/pubs/

28. QVT-Partners: MOF 2.0 Query / Views / Transformations RFP, Revised Submission, Version 1.1, Aug. 2003

29. Ralyté, J., Rolland, C., Deneckère, R: Towards a Meta-tool for Change-Centric Method Engineering: A Typology of
Generic Operators, in: Proc. CAiSE’04, Riga, June 2004, pp. 202–218

30. Rumbaugh, J.E.: Controlling Propagation of Operations Using Attributes on Relations, in: Proc. OOPSLA’88, San
Diego, Nov. 1988, pp. 285–296

31. Rumbaugh, J.E.: What is a Method? in: JOOP 8:6, 1995, pp. 10–16

32. Saeki, M.: Toward Automated Method Engineering: Supporting Method Assembly in CAME, presentation at EMSI-
SE'03, Geneva, Sept. 2003

33. Simonyi, C. The Death of Computer Languages, the Birth of Intentional Programming, Tech. Report MSR-TR-95-52,
Microsoft Research, Sept. 1995

34. Stapleton, J.: DSDM: Business Focused Development, Addison-Wesley, 2003

35. Sturm, T., v. Voss, J., Boger, M.: Generating Code from UML with Velocity Templates, in: Proc. UML 2002, Dresden,
Oct. 2002

36. SysML Partners: Systems Modeling Language (SysML) Specification, Ver. 0.9 Draft, Jan. 2005

37. v. Doren, E.: Cyclomatic Complexity (Software Technology Roadmap). SEI, Carnegie Mellon University, July 2000,
available from: http://www.sei.cmu.edu/

38. Visser, E.: A Survey of Rewriting Strategies in Program Transformation Systems, in: Electronic Notes in Theoretical
Computer Science 57, 2001

39. Whitehead, E.J., Jr., Gordon, D.: Uniform Comparison of Configuration Management Data Models, in: Proc. SCM-11,
Portland, May 2003, pp. 70–85

40. Zhang, N.: Enriched Relationship Processing in Object-Relational Database Management Systems, in. Proc.
CODAS’01, Beijing, April 2001, pp. 53–62


