
Kovse, J., Härder, T., Ritter, N.  Supporting Mass Customization... 

1 / 10 

Supporting Mass Customization by Generating Adjusted 
Repositories for Product Configuration Knowledge 

 
Jernej Kovse, Theo Härder, Norbert Ritter 

Department of Computer Science 
University of Kaiserslautern 

P.O. Box 3049, D-67653 Kaiserslautern, Germany 
e-mail: {kovse, haerder, ritter}@informatik.uni-kl.de 

 
 

Abstract 
 
The process of defining a customized product is usually supported by product configurator systems. These 
systems use product configuration models that formally express the knowledge related to the product’s 
configuration possibilities. In computer-based environments supporting cooperation in the activities 
related to defining configuration models, a repository may be used to implement information-sharing 
facilities. However, cooperating engineers as well as tools and methodologies used in the environment 
may pose diverse requirements related to the usage of repository services. In this paper, we describe our 
approach to defining the desired form of the services using a UML-based specification and hence 
generating repository managers with adjusted services on the basis of this specification. 
 
Keywords: Product Configuration, Repositories, Cooperation, Version Management. 
 

1 Introduction 

Over the last couple of years, mass customization [11] has become an important trend forcing the 
companies to transform their business processes. The previously established trend of mass production 
allowed the companies to market a limited set of predefined products. When buying such a product, the 
customer had to adapt his individual needs to the product’s features as defined by a company. In contrast 
to this, mass customization allows the customers to individually customize the product to be purchased 
with respect to their own needs. For example, a car manufacturer having introduced mass customization 
to its business processes offers its customers the possibility to individually define a car to be purchased on 
the basis of a set of available engine types, transmission mechanism types, security device types, sunroofs 
of adjustable dimensions, seat types with a set of different seating surfaces materials in various colors, 
and others. Similarly, a mobile telephone manufacturer aware of mass customization potential allows the 
customers to define their own shape of the telephone and the materials to be used for its production, 
adjust the shape and size of the keys, select the color of display illumination and choose optional 
telephone functionality, such as voice dialing. 

In order for the customers to be able to define and buy individually configured products, large 
knowledge bases containing the information related to the product’s configuration potential are needed. In 
Section 2 of this paper, we claim that special computer-based environments can be used to enable the 
engineers to cooperatively define this kind of information. We further focus on repositories as an 
implementation strategy for information-sharing facilities that enable the cooperating engineers to 
efficiently manage and share the information related to the configuration possibilities of a product. We 
claim that the tools, methodologies, and human factors present in the cooperation environments may pose 
extremely varying demands related to the usage of a repository in such environments. Section 3 of the 
paper introduces our approach to meeting such varying demands by formally specifying the desired form 
of the functionality to be offered by the repository. A repository meeting the demands present in the 
environment is then generated on the basis of the specification. To illustrate an application of the 
approach in practice, Section 4 illustrates an example of adjusting the repository’s version and 
configuration control services. In Section 5, we draw certain conclusions and describe the ideas for the 
future work related to the approach. 



Kovse, J., Härder, T., Ritter, N.  Supporting Mass Customization... 

2 / 10 

2 Defining Product Configuration Knowledge 

The customer’s requirements that relate to the purchase of a customized product can be met by applying 
the process of product configuration (Fig. 1). In this process, the knowledge related to the product’s 
configuration potential is used. The knowledge can be expressed in the form of generic product structures, 
also commonly called configuration models [8], which are used to describe a specific product family. A 
product family is a set of possible product individuals that allow to be instantiated generically on the basis 
of a given configuration model. According to Tiihonen et al. [14], configuration models involve a set of 
predefined product components, rules related to correctly combining these components, and rules related 
to meeting the customer’s requirements. Product configurators [13] are knowledge-based systems (KBS) 
used to support the configuration process. They use configuration models to derive a configuration of a 
product individual that conforms to the generic product family description provided by the model and at 
the same time fulfills the requirements posed by the customer. 

In order to be able to support the configuration process, product configuration aspects have to be 
considered and defined in the course of product development. For example, when developing a specific 
product component, the engineers should consider the following: 

• May the physical properties or the functionality of product parts represented by a component be 
adjusted in any way? In case this is true, what are the parameters supporting the adjustment? 
What is the range of possible values for the parameters? For example, it may be possible to 
adjust the dimensions of the sunroof, but only within certain limits. 

• Is the presence of a component in the final configuration of the product individual mandatory or 
optional? For example, it is mandatory to include an engine in every configuration of a car. 
However, it is optional to include a security device. 

• How does the presence of a component and values of its parameters affect the presence of other 
components and their parameter values? For example, choosing a certain car engine may require 
the choice of an automatic transmission mechanism. 

2.1 Introducing Cooperation in the Knowledge Definition Process 

The definition of configuration knowledge for a configurable product is a complex process. The 
knowledge is provided by product engineers familiar with the possibilities of configuring the product. The 
complexity of the process and the time required to accomplish it increase with respect to the product’s 
configuration potential. A possible way to reduce the complexity and decrease the amount of time 

Predefined product
components

Rules related to
combining the
components

Rules related to
meeting customer
requirements

Customer requirements

Configuration model

Product
configurator

Configuration of
a product individual

Predefined product
components

Rules related to
combining the
components

Rules related to
meeting customer
requirements

Customer requirements

Configuration model

Product
configurator

Configuration of
a product individual

 
Fig. 1: Product configuration process. 



Kovse, J., Härder, T., Ritter, N.  Supporting Mass Customization... 

3 / 10 

required is the introduction of cooperation among product engineers taking part in the process. 
Cooperation allows the engineers to work together by sharing information related to the process and 
communicating the knowledge required to produce the relevant results. 

Advances in information technology support computer-based formation of large-scale open 
cooperative environments used for the purpose of defining product configuration knowledge. Computer 
systems facilitating the formation of such environments specialize the general ideas and concepts of 
cooperation present in computer supported cooperative work (CSCW) [3, 12]. Therefore, such systems 
may be identified as a specialized subset of CSCW systems. 

In the course of cooperatively carrying out the process of defining configuration knowledge, 
cooperating engineers have to be offered the possibility of sharing data directly related to defining 
product configuration options as well as additional data used to describe the process itself. For this 
purpose, special information-sharing facilities prove to be central to successful implementations of 
computer-based cooperative environments. By enabling the storage, retrieval and modification of shared 
configuration knowledge in a coordinated way, information-sharing facilities support collaboration and 
cooperative decision making within the process. 

2.2 Using a Repository 

As a supporting technology for the implementation of information-sharing facilities, the deployment of a 
repository offers significant advantages over other solutions that may be based purely on the usage of a 
database management system (DBMS) or a file system. Bernstein and Dayal [1] define a repository as a 
shared database of information on engineering artifacts. A common repository allows the tools integrated 
by a cooperative work environment to share information so that the individuals using the tools can work 
together. A repository manager [1] is a database application that provides services for modeling, 
retrieving and managing objects in a repository. It incorporates standard amenities of a DBMS (a data 
model, queries, views, integrity control, access control and transactions) as well as additional value-added 
services: checkout/checkin, version control, configuration control, notification, context management and 
workflow control. 

Repository manager services introduce significant advantages in the process of cooperatively defining 
product configuration knowledge. Checkout/checkin services allow the cooperating product engineers to 
transfer a set of objects related to product configuration knowledge from the repository to their own 
workspace, perform the desired modifications and then transfer the modified objects back to the 
repository. Inconsistencies that may occur because of simultaneous changes committed to the same 
repository objects are prevented by a special concurrency control protocol. Version control services 
support the management of semantically meaningful snapshots of repository objects, called versions [6]. 
Configuration control services allow the creation of versions of composite objects by combining selected 
versions of their components. Notification services support the execution of specific actions related to 
repository objects on the basis of events occurred and conditions satisfied [1]. Context management 
services facilitate the definition of views to repository objects that may be used in different tasks of the 
engineers’ work [1]. Workflow control services allow the engineers to track a repository object’s state on 
the basis of a given workflow control model [1]. 

The requirements related to the usage of repository manager services in the process of cooperatively 
defining product configuration knowledge may differ according to tools and methodologies used in the 
process. Moreover, personal decisions of product engineers may influence the desired form of activities in 
the cooperation environment and thereby also the related form of repository manager services. For 
example, cooperating individuals may decide to prevent disjoint versioning of semantically 
complementary segments of product configuration knowledge and hence force simultaneous versioning of 
such segments. This decision directly affects the requirements related to version control services of the 
repository manager used. In the same fashion, a decision to use a specific concurrency control protocol 
preventing the actions that may lead to inconsistent states of stored data directly affects the repository 
manager’s checkout/checkin services. Since repository managers used to implement information-sharing 
facilities usually provide a set of predefined services, it often proves impossible to entirely meet the 
diverse requirements posed by cooperating engineers as well as tools and methodologies used in a 
cooperative environment. Therefore, these requirements usually have to be adjusted so that the predefined 
form of the services can be used, which often degrades the configuration knowledge definition process. 
The advantages of cooperation might be exploited to a much greater extent if we could instead adjust the 



Kovse, J., Härder, T., Ritter, N.  Supporting Mass Customization... 

4 / 10 

repository manager services so that the requirements posed by cooperating engineers as well as tools and 
methodologies used would entirely be met. 

We think that the diverse requirements related to the usage of repository manager services in the 
environments supporting the process of cooperatively defining product configuration knowledge can be 
met by generating repository managers with adjusted services. This approach is thoroughly investigated 
in our SERUM (Software Engineering Repositories using UML) [4, 7] project presented in this paper. 
The approach eliminates the need for using repository managers with predefined services. Instead, it 
proposes a way for cooperating engineers to formally specify the desired form of the services to be used 
in the cooperation process and afterwards automatically generate a repository manager with adjusted 
services on the basis of this specification provided. Since its services used by cooperating engineers are 
adjusted, the generated repository manager significantly improves the overall efficiency of the process of 
cooperatively defining product configuration knowledge. 

3 The SERUM Approach 

The approach investigated in our SERUM project aims at the generation of repository managers with 
adjusted services. The project is part of a long-term research effort1 dealing with the development of large 
systems using generic methods. In this section, we provide an overview of the SERUM approach (Fig. 2). 

In order to apply the SERUM approach to generate a repository manager with adjusted services, a 
formal specification of the services is required. The specification involves various concepts that declare 
the adjusted form of repository manager services as desired by the cooperating engineers, and is supplied 
using the Unified Modeling Language (UML) [10]. We decided to use the UML because it, as we think, 
will play an important role as a standard language used for specification, visualization and documentation 
of the structural parts of different kinds of software and non-software systems, as well as for business 
modeling [10]. UML offers an extensive support for object orientation which proves useful when 
specifying the semantics of the adjusted services of the repository manager to be generated. Using the 
UML, dynamic and state-oriented aspects of repository manager services may be formally specified. The 
visual rendering of model elements allows the specification of repository manager services to be 
graphically represented. In addition, UML comes with a formal Object Constraint Language (OCL) [10] 
used for specifying the constraints that may exist for a given model. 
                                                        
1 Sonderforschungsbereich (SFB) 501, funded by the Deutsche Forschungsgemeinschaft (DFG). 

Framework

Framework
database

Framework
guidelines

Design
templates

Technology
templates

Repository
database
schema

Repository server

Programmatic access foundations

Repository manager

extend choose
configuration

Initial
specification

(UML)

Enhanced
specification

(UML)

applyimposecheck

(a)

(b) (c)

(d)

(e)

(f)

SERUM model
enhancer

SERUM
repository
generator

Configuration model
management tools

Framework

Framework
database

Framework
guidelines

Design
templates

Technology
templates

Repository
database
schema

Repository server

Programmatic access foundations

Repository manager

extend choose
configuration

Initial
specification

(UML)

Enhanced
specification

(UML)

applyimposecheck

(a)

(b) (c)

(d)

(e)

(f)

SERUM model
enhancer

SERUM
repository
generator

Configuration model
management tools

Fig. 2: Overview of the SERUM approach. 



Kovse, J., Härder, T., Ritter, N.  Supporting Mass Customization... 

5 / 10 

3.1 Initial Specification of Repository Manager Services 

Configuration knowledge is expressed through a set of related objects describing configuration 
possibilities of a product. In order for the generated repository manager to be able to manage these 
objects, a definition of object types and possible relationships among them is required. This definition 
forms a special constructs model since the object types and their relationships define the constructs that 
may be used to express configuration knowledge for a specific product family. The constructs model is 
specified in the form of a UML class diagram. By defining the model, cooperating engineers capture a 
combination of concepts that most efficiently meets the requirements of a specific product configuration 
domain. The model represents an initial part of the specification of repository manager services (Fig. 2a). 

3.2 Applying SERUM Frameworks 

The SERUM approach to generating repository managers with adjusted services is based on a set of half-
fabricated components called frameworks. Johnson [5] defines a framework as a reusable design of all or 
a part of a system that is represented by a set of abstract classes and the way their instances interact. A 
framework is supplied for each aspect in which the services of a repository manager may be adjusted, 
such as version control and configuration control, for example. The purpose of the framework is to 
support the definition and integration of the demands related to the adjusted services in the UML-based 
specification of the services and, at the same time, provide the technology foundations needed to generate 
a repository manager on the basis of this specification. A SERUM framework consists of framework 
guidelines, design templates and technology templates (Fig. 2). 

SERUM Framework Guidelines 

SERUM framework guidelines incorporate a set of preconditions that have to be fulfilled by the initial 
specification of repository manager services in order to be able to consistently apply the framework. A 
special SERUM tool, called the SERUM model enhancer (SME), verifies the conformance of the initial 
specification to these preconditions (Fig. 2b). For example, since the framework supporting the 
adjustment of the repository manager’s version and configuration control services is not able to deal with 
the concept of multiple inheritance, a specific rule of this framework’s guidelines checks for the presence 
of this concept in the initial specification. 

SERUM Design Templates 

SERUM design templates are used to semi-automatically refine the UML-based specification of 
repository manager services so that the refined specification involves the requirements posed by 
cooperating engineers. To support the refinement process, design templates offer extensible technology-
independent definitions of the concepts present in the services of the repository manager. The templates 
may be extended using their set of generic parameters and extension guidelines. By extending the 
template the cooperating engineers adjust the definition of the concept defined by the template and 
thereby influence the form of the repository manager service the concept relates to. In order to assure the 
presence of the adjusted concept in the services of the generated repository manager, the extended design 
template has to be integrated with the existing UML-based specification of repository manager services. 
The SME performs the integration step by imposing the extended design templates on the selected 
specification parts (Fig. 2c). As a result of this step, the specification of repository manager services is 
enhanced (Fig. 2d). 

SERUM Technology Templates 

A repository manager with adjusted services may be generated on the basis of different technology 
foundations (e.g. relational or object-relational data models, different object-oriented programming 
languages, etc.). For example, various DBMS products may be used to implement the underlying storage 
mechanism for repository objects. The services of the repository manager may be exposed using different 
programmatic access foundations. These can be based on the application programming interfaces (APIs) 



Kovse, J., Härder, T., Ritter, N.  Supporting Mass Customization... 

6 / 10 

generated for a specific programming language, such as Java or C++, or software components conforming 
to a specific component model. 

SERUM technology templates support the presence of different technologies in the generated 
repository manager and enable the semi-automatic generation of repository managers with adjusted 
services. For example, a specific technology template may support the generation of a Java API used to 
programmatically access the repository manager services. Technology templates may consist of code 
generation rules, source code templates, and configurable ready-to-use software components used in the 
generation process. The usage of conflicting technologies in the generated repository manager is 
prevented by combining the templates into valid configurations. A special SERUM tool, called the 
SERUM repository generator (SRG) performs the generation process (Fig. 2e) by applying the chosen 
template configuration to the enhanced specification of repository manager services. Additional 
application-related functions of the repository manager services that cannot be generated automatically 
can be delivered by the cooperating engineers. Fig. 2f illustrates the main components produced in the 
generation process. A repository database schema enables the storage of repository objects using the 
underlying DBMS. The repository server enables distributed access to the services of the repository 
manager exposed to cooperating individuals using the programmatic access foundations. 

4 Applying the SERUM Version and Configuration Control Framework 

Katz [6] defines a version as a semantically meaningful snapshot of an object at a point in time. 
Configuration is defined as a binding between a version of a composite object and a version of each of its 
components [6]. Since the operations of version control and configuration control services prove to be 
complementary, SERUM unifies the possibilities of their adjustment in a single framework. The aim of 
this section is to give an example of using this framework. 

As an initial part of the specification of repository manager services, a constructs model is required. 
Fig. 3 illustrates an intentionally very simple example of a constructs model that will be used throughout 
our discussion. 

The illustrated model combines the following concepts chosen by cooperating engineers to express 
product configuration knowledge: 

• A component type represents a distinguishable entity in a product [14]. An engine is an example 
of a component type present in configuration knowledge used for car products. 

• Component types may be organized in a classification hierarchy allowing the specialization of 
component subtypes from their supertypes. For example, a 1.4L gasoline engine component type 
specializes the gasoline engine component type. The concept is supported by the introduction of 
a IsA relationship between the component types, which denotes the specialization. 

• Component types may be described by properties. Properties may define the units used to 
express their values. For example, a component type 1.4L gasoline engine defines a property 
displacement having the value of 1390 cubic centimeters. Component subtypes in the 
classification hierarchy inherit the properties of their supertypes. 

• Component types may define a set of parameters used to adjust the characteristics of an instance 
of the component type. A parameter has to define a range of valid values as well as units used to 
express the values. For example, a component type sunroof defines a parameter length that can 
take values between 40 and 50 centimeters. As with properties, component subtypes in the 
classification hierarchy inherit the parameters of their supertypes. 

Property

Parameter

PartDefinition ComponentType 0..n1 0..n1

hasProperty

0..n1 0..n1

hasParameter

0..n 10..n 1

definesPart

0..n 0..n0..n 0..nallowedTypes

0..n 0..10..n

generalization

0..1

 
Fig. 3: A sample constructs model. 



Kovse, J., Härder, T., Ritter, N.  Supporting Mass Customization... 

7 / 10 

• A structured component type may involve a number of different parts, which are also represented 
by selected component types. A component type expresses the roles the parts may take in its 
structure by specifying part definitions [14]. A part definition includes a part name, a set of 
component types allowed for the part and the corresponding cardinality related to the number of 
component instances that may occur as parts in the structure. For example, a component type car 
specifies part roles for component types engine and transmission mechanism. 

If necessary, various types of documents used to describe an instance of a component type, such as 
specification documents, design plans and testing results can be defined and associated with a component 
type. This approach extends configuration knowledge with a detailed overview of how a specific 
component has been developed and tested. 

Additional concepts used to express limitations related to the formation of a correct product individual 
are often present in configuration knowledge. These concepts can involve the usage of constraints, such 
as compatibility or incompatibility constraints [8], or rules defined in a formal rule language. A product 
configurator has to be capable of properly interpreting the limitations expressed by the concepts while 
searching for a correct product individual that meets the requirements of the customer. Due to clarity, 
these concepts have not been included in the constructs model illustrated in Fig. 3. 

4.1 Defining Versionable Units 

In the course of cooperatively defining configuration knowledge, multiple versions of objects 
representing the knowledge may evolve. For the context of versioning, certain concepts defined by the 
constructs model prove to be semantically complementary. For example, cooperating engineers may not 
find it essential to version properties and parameters of a component type separately and then attach the 
versions to an appropriate version of a component type to form a valid configuration. Instead, they want 
to version a component type object simultaneously with its properties and parameters. 

The SERUM version and configuration control framework introduces the concept of a versionable unit 
to define a set of complementary concepts in the context of versioning. Associated objects instantiated on 
the basis of concepts enclosed in the same versionable unit are versioned simultaneously. Versionable 
units are defined using a special version definition language (VDL) which is included in the framework. 
The set of defined versionable units establishes the version management infrastructure (VMI). Fig. 4 
illustrates an example of imposing versionable units on the sample model. The versionable unit 
V_PartDefinition allows versioning of part definition objects. The versionable unit V_ComponentType 
allows versioning of component types together with their attributes and parameters. Versions formed on 
the basis of the versionable unit definitions may be combined to form configurations. There are two 
aspects of configuration involved in the VMI defined by the versionable units in Fig. 4. Configurations 
may be formed: 

• by combining versions of part definitions with appropriate versions of component types and 
• by combining versions of component subtypes with appropriate versions of component 

supertypes. 

In order to include the definitions expressed by the VMI in the UML-based specification of repository 
manager services, the VMI has to be integrated with the constructs model. The integration step is 
performed by the SME, which executes the VDL statements defining the versionable units. During this 
step, the SME imposes the relevant SERUM design templates defining core version and configuration 
control concepts on the relevant parts of the model. As a result, an enhanced constructs model illustrated 

Property

Parameter

PartDefinition ComponentType 0..n1 0..n1

hasProperty

0..n1 0..n1

hasParameter

0..n 10..n 1

definesPart

0..n 0..n0..n 0..nallowedTypes

0..n 0..10..n

generalization

0..1

V_ComponentTypeV_PartDefinition

 
Fig. 4: Defining versionable units. 



Kovse, J., Härder, T., Ritter, N.  Supporting Mass Customization... 

8 / 10 

in Fig. 5 is produced. The types and associations generated in the process of design pattern imposition are 
used to support the operations related to version and configuration control services of the repository 
manager. Certain extensions to the model such as additional abstract classes as well as class attribute and 
operation definitions have been omitted from Fig. 5 to improve clarity of the illustrated model. 

4.2 Generating a Repository Manager with Adjusted Services 

The generation process is supported by SERUM technology templates which enable the presence of 
different technologies in the generated repository manager. In the generation process, the components 
illustrated in Fig. 6 are produced by the SRG on the basis of a UML-based enhanced specification of 
repository manager services and a selected configuration of technology templates. 

DefinesPart

V_DefinesPart

1

0..1

AllowedTypes

V_AllowedTypes

1

0..1

PartDefinition

V_PartDefinition

1

0..1

ComponentType

0..n

1

0..n

1

definesPart
0..n 0..n0..n 0..n

allowedTypes

0..1

0..n

0..1

generalization
0..n

HasParameter

Parameter
0..n

1
0..n

1
hasParameter

HasProperty

Property
0..n

1

0..n

1

hasProperty

V_ComponentType0..n 0..nv_definesPart

0..n 0..n

v_allowedTypes

1

0..1

componentType
0..n

0..1

hasParameter

0..n

0..1

parameter

0..n

0..1

hasProperty

0..n

0..1

property

0..n

0..n

0..n

v_generalization

0..n

Generalization

V_Generalization

1

0..1

1

0..1

0..n

0..1

0..n

0..1

0..n

0..1

0..n

0..1

0..n 0..n

generalization

1

0..1

0..n 0..n

1

0..1

partDefinition allowedTypes definesPart

1

0..1

1

0..1

Fig. 5: Enhanced constructs model. 

ORDBMS

Configuration
model

Repository DB schema
UDTs
UDFs

Custom client

Repository server
API

Components

Custom client Custom client…

Gathering, organizing and storing
configuration knowledgeImplementation

foundations

 
Fig. 6: Usage of the generated components. 



Kovse, J., Härder, T., Ritter, N.  Supporting Mass Customization... 

9 / 10 

Repository Database Schema 

SERUM encourages the usage of object-relational database management systems (ORDBMS) to support 
the storage of repository objects. The standard DBMS amenities such as data storage and recovery 
capabilities are offered by the ORDBMS used. ORDBMS features enable a mapping of object types 
defined by the enhanced constructs model to user-defined types (UDTs). Database tables used to store 
repository objects are created on the basis of UDT definitions. Object-relational features of the DBMS 
allow the mapping of important concepts of object models, such as class hierarchy, to the repository 
schema. Fig. 7 illustrates a part of the generated repository schema definition. The usage of an ORDBMS 
also enables the definition of user-defined functions (UDFs), which can be used to implement the basic 
CRUD (Create, Read, Update, Delete) operations used for manipulation of repository objects as well as 
additional operations related to the usage of adjusted repository manager services. 

 

Repository Server and Programmatic Access Foundations 

A generated repository server allows access to the operations related to repository manager services to 
different kinds of clients used by the engineers in the process of cooperatively defining the configuration 
knowledge. Programmatic access foundations are used to expose the operations in the form of an API for 
a specific programming language. In case where the application-specific operations cannot be generated 
automatically, cooperating engineers have to deliver the required code segments. The foundations may as 
well involve the possibility of accessing the operations using software components that conform to a 
specific component model, such as CORBA [9] or COM [2]. Clients used by cooperating engineers to 
gather, organize, and transfer configuration knowledge to the repository are implemented on the basis of 
these foundations. The foundations can be used as an implementation framework for product configurator 

ComponentType

Parameter

Property

V_ComponentType

CREATE TYPE V_COMPONENTTYPE_TY (…);
CREATE TYPE COMPONENTTYPE_TY (…);
CREATE TYPE PROPERTY_TY (…);
CREATE TYPE PARAMETER_TY (…);
CREATE TABLE V_COMPONENTTYPE_TA

OF TYPE V_COMPONENTTYPE_TY (…);
CREATE TABLE COMPONENTTYPE_TA

OF TYPE COMPONENTTYPE_TY (…);
CREATE TABLE PROPERTY_TA

OF TYPE PROPERTY_TY (…);
CREATE TABLE PARAMETER_TA

OF TYPE PARAMETER_TY (…);
 

Fig. 7: ORDBMS schema generation. 

ComponentType

Parameter

Property

V_ComponentType

public class V_ComponentType {…}
public class ComponentType {…}
public class Property {…}
public class Parameter {…}

 
Fig. 8: Java API generation. 



Kovse, J., Härder, T., Ritter, N.  Supporting Mass Customization... 

10 / 10 

systems that use the knowledge stored in the repository when searching for a product configuration that 
meets the customer requirements. The technologies present in the foundations are determined by the 
choice of SERUM technology templates used in the generation process. Fig. 8 illustrates a part of the 
generated API in the Java programming language. 

5 Conclusion 

This paper described our SERUM approach to generating repository managers with adjusted services. 
The repository managers may be used in the process of cooperatively defining product configuration 
knowledge to implement information-sharing facilities required by computer-based cooperative 
environments. On the basis of presented results, it is possible to make the following conclusions: 

• SERUM design templates can be used to provide technology-independent definitions of concepts 
present in the services of a repository manager. By extending the design templates it is possible 
to express the adjusted form of services that meets the requirements of cooperating engineers. 

• SERUM technology templates can be used to support the presence of different technologies in 
the generated repository manager. 

• Since the services of a repository manager are adjusted to the requirements posed by cooperating 
engineers as well as tools and methodologies used in the process, they contribute to the efficiency 
of the configuration knowledge definition process. 

However, certain aspects of using repository managers with adjusted services are still not explored in 
detail. Therefore, in our future work related to the approach, we intend to: 

• further explore the possibilities of using the UML for the purpose of providing a detailed 
specification of adjusted services of repository managers, 

• develop graphical tools supporting the usage of SERUM frameworks in order to make the 
process of adjusting the services easier for cooperating engineers, 

• evaluate the overall SERUM approach on a large set of different cooperative environments 
supporting the definition of configuration knowledge for products present in various market 
domains. 

References 

[1] Bernstein, P.A., Dayal, U.: An Overview of Repository Technology, in: Proc. of the 20th Int. Conf. on Very Large Data 
Bases (VLDB’94), Bocca, J.B., Jarke, M., Zaniolo, C. (Eds.), Santiago de Chile, Sept. 1994, Morgan Kaufmann, pp. 705-
713. 

[2] Box, D.: Essential COM, Addison-Wesley, 1998. 
[3] Ellis, C.A., Gibbs, S.A., Rein, G.L.: Groupware: Some Issues and Experiences, in: Communications of the ACM 34:1, 1991, 

pp. 38-58. 
[4] Härder, T., Mahnke, W., Ritter, N., Steiert, H.-P.: Generating Versioning Facilities for a Design Data Repository Supporting 

Cooperative Applications, in: Int. Journal of Intelligent & Cooperative Information Systems 9:1-2, 2000, pp. 117-146. 
[5] Johnson, R.E.: Frameworks = Components + Patterns, in: Communications of the ACM 40:10, 1997, pp. 39-42. 
[6] Katz, R.H.: Towards a Unified Framework for Version Modeling in Engineering Databases, in: ACM Computing Surveys 

22:4, 1990, pp. 375-408. 
[7] Mahnke, W., Ritter, N., Steiert, H.-P.: Towards Generating Object-Relational Software Engineering Repositories, in: 

Tagungsband der GI-Fachtagung ‘Datenbanksysteme in Büro, Technik und Wissenschaft‘ (BTW‘1999), A. Buchmann (Ed.), 
Informatik aktuell, Freiburg, March 1999, Springer-Verlag, pp. 251-270. 

[8] Männistö, T., Peltonen, H., Sulonen, R.: View to Product Configuration Knowledge Modelling and Evolution, in: 
Configuration - Papers from the 1996 AAAI Fall Symposium, AAAI Press, 1996, pp. 111-118. 

[9] OMG, The Common Object Request Broker: Architecture and Specification, Revision 2.4.2, OMG Document ad/01-02-01, 
February 2001. 

[10] OMG, Unified Modeling Language Specification, Version 1.3, OMG Document ad/00-03-01, March 2000. 
[11] Pine, B.J.: Mass Customization: The New Frontier in Business Competition, Harvard Business School Press, 1993. 
[12] Rodden, T.: A Survey of CSCW Systems, in: Interacting with Computers, 3:3, 1991, pp. 319-354. 
[13] Soininen, T., Niemelä, I., Tiihonen, J., Sulonen, R.: Representing Configuration Knowledge With Weight Constraint Rules, 

in: Proc. of the AAAI Spring 2001 Symposium on Answer Set Programming: Towards Efficient and Scalable Knowledge, 
Stanford, March 2001, pp. 195-201. 

[14] Tiihonen, J., Lehtonen, T., Soininen, T., Pulkkinen, A., Sulonen, R., Riitahuhta, A.: Modeling Configurable Product 
Families, in: Proc. of the 4th WDK Workshop on Product Structuring, Delft, Oct. 1998. 

 


