
is
g

i-
ed

ail.
f
f
of

-
y
n-
s
rts
rk
ge
e
lo-
cy

t
of
s
d

Supporting Collaborative Authoring of Web Content
by Customizable Resource Repositories

Jernej Kovse, Theo Härder, Norbert Ritter, Hans-Peter Steiert, Wolfgang Mahnke
Department of Computer Science

University of Kaiserslautern
P.O. Box 3049, 67653 Kaiserslautern, Germany

e-mail: {kovse, haerder, ritter, steiert, mahnke}@informatik.uni-kl.de

in: Proc. Int. Workshop "Web Databases", Wien, Sept. 2001
Abstract

The process of collaborative authoring of Web content
may be supported by resource repositories which provide
storage facilities as well as certain value-added services.
However, since specific demands posed by the authoring
process may vary according to special characteristics of
such a process, resource repositories with predefined
services usually address these demands only to a limited
extent. To overcome this problem, we propose a way of
generating customized repositories for collaborative
authoring of Web content. Our approach involves a set of
frameworks that can be adapted and applied to the spec-
ification of repository services in order to generate cus-
tomized repositories with services tailored to the
requirements of the authoring process.

Keywords: Repositories, Collaborative Authoring,
Web Application Modeling, Versioning, ORDBMS

1. Introduction

Over the last couple of years, the World Wide Web
(Web) has significantly evolved in various aspects prima-
rily concerning information content available to the user.
As a first factor, the user demand for information has
caused the number of web pages to grow, increasing the
quantity of resources providing information. Second,
information content provided by such resources has
improved in quality. Once relatively poor content is
increasingly being replaced by semantically richer con-
tent, which makes the goal of the Web to become a seri-
ous medium for information exchange closer to reality.

However, today the Web is still primarily being used
for information retrieval. Accessing a resource in order

to retrieve and use the provided information content
far more common than publishing a content and makin
it available to other users. This way, the potential of bid
rectional information exchange on the Web is neglect
and the majority of information flow from the user is
supported by other technologies, such as electronic m
Ideally, the Web could be used for both, the retrieval o
existing information content as well as publishing o
content authored by human as well as certain types
software agents.

Information content publishing may also be per
formed collaboratively, where multiple geographicall
dispersed authors contribute to the publishing of sema
tically related pieces of information (Fig. 1). The author
bring together expert knowledge needed to provide pa
of the content. Collaboration enables the authors to wo
together on the authoring tasks by sharing the knowled
needed in the process of producing content. Th
approach poses various demands to tools and techno
gies supporting such cooperation, such as concurren
control (multiple authors trying to modify a certain par
of the content at the same time) or version control
parts of published content, for example. Variou
approaches, such as the WebDAV (Web Distribute

Figure 1: Users retrieving and publishing
Web content.

Web

User

User

User
retrieve

publish
retrieve

publish

Content



nds
es
s
e
5,

for

to
he
s-

nt
ri-
t
rs

g

s
ly
e
be
g
ts,
to
n-
ell
-
er-
to

nt
re
be
-

es
a-
n

to
o-
ry
ro-
ng

a
i-

r.
Authoring and Versioning [10]) protocol, have emerged
to address these demands.

The process of collaboratively authoring Web content
should not be concerned merely with the authoring of the
static parts of the content, such as static Web pages or
graphics, but should also consider the possibilities of col-
laboratively authoring the functional parts needed to pro-
duce the content dynamically. This kind of parts may be
provided using approaches that involve the established
mechanisms addressing the dynamic content generating,
such as scripts or servlets. Fig. 2 illustrates the variety of
collaboratively authored items that relate either directly
to the static Web content or the functionality needed to
generate the content dynamically.

An important aspect of collaborative authoring is the
mechanism of storing published content as well as the
items related to the functionality needed to produce the
content dynamically. A storage mechanism is used as a
supporting technology for providing a common informa-
tion space, which enables the authors to collaborate and
to cooperatively make decisions. The simplest solutions
typically exploit services of a file system to implement
this kind of storage. We think that specialresource repos-
itories fulfil the demands related to the storage mecha-
nism to a much greater extent and also address other
special requirements posed by collaborative authoring.
Using a repository, it is possible to upgrade the storage
mechanism with certain value-added services, which
results in the overall improvement of the authoring pro-
cess.

In this paper, Section 2 draws a connection between
repository services and computer system support for col-
laborative authoring of Web content. We claim that
resource repositories with sets of fixed (predefined)
value-added services offer only limited functionality
needed to address the requirements of collaborative
authoring. Therefore, in Section 3, we propose a way of

generating customized repositories to meet the dema
of the authoring process in its entirety. Section 4 focus
on an example of customizing version control facilitie
provided by a repository to show an application of th
approach described in Section 3 in practice. In Section
we draw certain conclusions and describe our ideas
future work related to the approach.

2. Repository services and collaborative
authoring support

Advances in information technology may be used
implement specialized computer systems supporting t
process of collaborative authoring for the Web. Such sy
tems may involve:
• a set of authoring tools used to produce the conte

in the authors’ own workspaces; because of the va
ety of possible content types, ranging from plain tex
parts of Web pages to graphics and scripts, use
might find it necessary to use different authorin
tools;

• a set of modeling tools used to model variou
aspects of the Web content to be collaborative
authored; models may involve static parts of th
content, such as text or graphics, but may also
used to specify parts of Web applications providin
the content dynamically, such as scripts or servle
for example. Therefore, models may be used
define and document semantic entities of the co
tent, the associations between these entities as w
as behavior of Web applications providing the con
tent and hence help designers and authors und
stand static and dynamic aspects of Web content
be produced;

• a set of mechanisms used to transfer the conte
from and to the authors’ workspaces as well as sto
and organize parts of authored content in order to
able to access it for retrieval and further modifica
tions;

• a set of mechanisms used to support the activiti
that directly relate to cooperation, such as coordin
tion of authoring tasks, communication betwee
authors and reviews of authored content.

Tools and mechanisms mentioned are combined
form an integrated open environment supporting collab
rative authoring. In such an environment, a reposito
may be used to support storage facilities, as well as p
vide support to other services related to the authori
process. Bernstein et al. [1, 2] define a repository as
shared database of information about engineering art
facts. A common repository allows (design) tools to
share information so that they can work togethe

Figure 2: Collaboratively authored items.

Static
text

Figure Table

Static
text

Script
Script

Authored items



g
s-
g
nd
.

s
-
f

on

-
f

il.

as
f
p,

i-
s
he
is

k,
ed
f
-
es
nt
ry
g
em
nt

the
e

-
ult-
e

of
of
A repository manager [1] is a database application that
provides services for modeling, retrieving and managing
objects in the repository. For that purpose, a repository
manager has to provide standard amenities of a DBMS
(data model, queries, views, integrity control, access
control and transactions) as well as some value-added
services [1, 2]: checkout/checkin, version control, con-
figuration control, notification, context management, and
workflow control. Types of stored and handled objects
are primarily defined using adata modelmade known to
the repository. Repository managers used to support the
process of collaborative authoring should meet the needs
of both managingcontent data, which relates directly to
the content being authored as well asprocess data, which
relates to the authoring process [5].

Since general principles of cooperative work of multi-
ple geographically distributed users are also involved in
computer systems supporting collaborative authoring,
these systems may be defined as a specialized subset of
computer supported cooperative work (CSCW) systems.
Therefore, when designing a collaborative authoring
environment, several important aspects of CSCW [9]
have to be considered. A non-exhaustive list of these
includes:
• group awarenessmeaning that an author is aware of

presence and actions of other authors;
• internal coordinationenables the actions resulting in

content formation to be coordinated;
• communication mechanismsenable authors to share

ideas and work together with a common goal of pro-
ducing content;

• concurrency controlprevents actions that may lead
to inconsistent states of authored content;

• common information spaceenables sharing of data
related to the content as well as data related to the
authoring process.

However, groups may pose varying requirements
related to these aspects of collaboration. These may
affect the properties of value-added repository manager
services, such as version, configuration, and concurrency
control and cause them to differ according to the specific
characteristics of the authoring process. For example, the
way a cooperating group of authors accesses and shares
the information space directly affects the form of concur-
rency control services provided by the repository man-
ager. Moreover, the variety of tools used to support the
process might also lead to contradictory demands [5].
Therefore, it is extremely difficult to fulfil various
requirements with a set of fixed (predefined) repository
manager services. To overcome this problem, we pro-
pose a way of generating customized repository manag-
ers and hence establishing tailored repository services

which fulfil specific requirements posed by the authorin
process. This provides groups with the possibility to cu
tomize computer support for collaborative authorin
environments in various aspects of cooperation a
improve the overall efficiency of the authoring process

3. The SERUM approach

Our SERUM (Software Engineering Repositorie
using UML) project is part of the Sonderforschungsbe
reich (SFB) 501, which deals with the development o
large systems with generic methods. SERUM focuses
generating customizable repositories using a specialset
of methods, tools, techniques, and half-fabricated com
ponents[5, 7]. In this section, we describe the process o
generating a customizable repository manager in deta

3.1. Defining repository manager services

First, therepository designer(the person specifying
application-specific semantics required by SERUM) h
to provide a new or modify an existing definition o
repository manager services (Fig. 3, Step a). In this ste
a specialresource data model(RDM) is provided by the
repository designer. The RDM is specified using the Un
fied Modeling Language (UML) [8] and describes type
of objects to be handled by the repository manager. T
UML-based definition of repository manager services
stored in a special UML-based repository.

We decided to use the UML, because it, as we thin
will play an important role as a standard language us
for specification, visualization and documentation o
software artifacts [8]. UML provides extensive object
oriented support for detailed modeling of class structur
and relationships, which proves to be a very importa
feature needed to support the specification of reposito
services. UML also provides elements for modelin
dynamic and state-oriented aspects of a software syst
and allows the usage of the formal object constrai
language (OCL) [8]. The visual presentation of UML
constructs enables the repository designer to use
graphical modeling tools in the process of providing th
specification of repository manager services.

3.2. Applying SERUM frameworks

SERUM comes with a set of “half-fabricated” compo
nents that can be extended in such a way that the res
ing repository manager fulfils specific requirements. W
call such a half-fabricated componenta framework.
Johnson [6] defines a framework as a reusable design
all or a part of a system that is represented by a set



he

the
e

h
nd

li-
th
r-

r
a
of
n.
e
an

s
of

ol-
to

ion
ls
rs’
of
an-
abstract classes and the way their instances interact.
SERUM provides a framework for each aspect (such as
version, configuration and workflow control) in which
the repository manager can be customized. Customiza-
tion is achieved byadapting the framework properties
according to specific user requirements. The application
of such an adapted framework results in the generation of
a customized repository manager.

A SERUM framework consists of three parts (Fig. 3):
framework guidelines, technology-independentdesign
patterns, and technology-dependenttemplates.

SERUM framework guidelines

Framework guidelines define a set of preconditions
that have to be observed by the specification of reposi-
tory manager services in order to be able to consistently
apply the framework. For example, since the version
control framework is not able to deal with multiple inher-
itance, one rule of this framework’s guidelines checks for
the presence of multiple inheritance in the RDM. A spe-
cial SERUM tool called theSERUM model enhancer
(SME) checks the guidelines (Fig. 3, Step b).

SERUM patterns

SERUM patterns enable the repository designer to
influence technology-independent aspects of services of
the repository manager to be generated. Gamma et al. [4]
define a design pattern as descriptions of communicating
objects and classes that are customized to solve a general
design problem in a particular context. A SERUM pat-
tern is applied to the specification of repository manager

services by the SME (Fig. 3, Step c) and consists of t
following elements:
• extension guidelinesand generic parametersare

used to customize the pattern so that it addresses
customization of repository services according to th
requirements;

• constraints are used to verify the preconditions
needed for successful pattern application;

• default structuresrepresent the base structures (suc
as abstract base classes with default attributes a
behavior) used by the pattern. During pattern app
cation the SME integrates the default structures wi
the existing specification of repository manager se
vices;

• model evolution operationsare used to integrate use
specifications of repository manager services with
predefined technology-independent infrastructure
a specific framework that is specified by a patter
The execution of model evolution operations by th
SME alters the specifications and hence results in
enhanced RDM (ERDM).

SERUM templates

In contrast to SERUM patterns, SERUM template
are used to address technology-dependent aspects
repository manager services. These may include techn
ogy-specific requirements, such as demands related
the usage of programming languages and communicat
architecture (for example, special underlying protoco
used to transfer parts of authored content from autho
workspaces to the repository). Templates provide sets
components needed to generate the new repository m

Figure 3: Overview of the SERUM approach.

Repository
manager

specification
(UML)

Repository
designer

Framework
database

Framework

Framework
guidelines

Patterns TemplatesEnhanced
repository
manager

specification
(UML)

Repository manager
- repository database schema
- repository servers
- adapter components
- PL bindings

check apply apply

SERUM model
enhancer

SERUM
repository
generator

(a)

(b) (c) (d)



e-
on-
]
e
al-
c-

y
b,
le
mit-

n

by

s
d

y
d

d
as
as
he
or
re
ch
uc-
g

if-
ted
a-
ager. Components are combined into valid configurations
to prevent the usage of conflicting technologies in the
generation process. Possible types of components
includecode generation rules, source code templatesand
ready-to-use components. A special tool called the
SERUM repository generator(SRG) takes the specifica-
tion of repository manager services that has been
extended using SERUM patterns and applies the chosen
templates to generate a customized repository manager
to support collaborative authoring (Fig. 3, Step d). The
following components (described in detail in Section 4.3)
may be produced in the generation process:
• repository database schemaenables the storage of

repository objects defined by an ERDM;
• repository serversenable repository access of differ-

ent clients, such as browsers as well as tools used by
authors in the process of collaborative authoring;

• authoring tool adapter componentsneeded to bridge
the gap between existing authoring tools (clients)
unaware of repository functionality and the reposi-
tory;

• server adapter componentsneeded to bridge the gap
between existing servers unaware of repository
functionality and the repository;

• programming language bindingsthat enable pro-
grammatic access to repository manager functional-
ity.

4. Using the SERUM versioning framework

In order to give an example of using the SERUM
approach in practice, this section will describe the usage
of the SERUM versioning framework that is used to cus-
tomize version control facilities provided by a repository
manager.

4.1. Providing a resource data model

The repository designer has to provide an initial
UML-based specification of repository manager ser-
vices. This step involves defining an RDM in the form of

a UML class diagram. The RDM defines the content el
ments, such as Web pages, hyperlinks, and dynamic c
tent to be collaboratively authored. Conallen [3
discusses the possibilities of using UML along with th
extension mechanism involving stereotypes, tagged v
ues, and constraints to model Web application archite
tures.

In Fig. 4, an intentionally very simple example of an
RDM that relates to the process of collaborativel
authoring an electronic book to be published on the We
is given. Due to clarity, certain association names, ro
names, and additional stereotype usages have been o
ted. An electronicbookconsists ofchapterswhich con-
sist of paragraphs. Paragraphsmay containfigures as
well astables. By using a special web page containing a
order form (BookOrderForm), it is possible to order a
printed version of the book. The order is processed
special scripted content (ProcessOrder).

The RDM includes a variety of different object type
included in the RDM: Beside static hypertext-base
objects (such asParagraph), the generated repository
will also manage graphical objects (Figure) as well as
scripted content (ProcessOrder). However, the reposi-
tory might not only be used for storing objects directl
related to the content provided, but also for so-calle
meta objects (MetaProcessOrder, for example). These
contain additional information about content-relate
objects, such as information about the author that h
stored the object in the repository and the tool that h
been used to create or modify the object. Of course, t
description of possible object types is not extensive. F
example, actual Web applications might contain far mo
complex object types that prove to be essential in su
applications, such as servlets that are capable of prod
ing Web content dynamically and object types providin
additional business logic exploited by the servlets.

The usage of stereotypes enables the modeling of d
ferent semantic intents for content elements presen
with the same type of UML construct. Since the associ
tion connectingBookOrderFormwith ProcessOrderand
the association connectingBookandChapterpresent two

Figure 4: A sample RDM.

Figure

Table

Paragraph

0..n
1..1

0..n
1..1

includes

0..n1..1 0..n1..1
includes

MetaProcessOrderProcessOrder 1..11..1 1..11..1
<<describes>>

Chapter

1..n1..1 1..n1..1

includes

BookOrderForm 1..11..1 1..11..1

<<processed by>>

Book

1..n1..1 1..n1..1

<<links to>>

1..1

1..1

1..1

1..1
<<links to>>



k

e
in
rk
d
A

a
d-

e
p-
he

s,

w
in

-
r-
f
ay
ti-
ns

es
se
semantically different contexts of connecting content ele-
ments, the associations are denoted using different ste-
reotypes.

For certain types of content elements, such as static
hypertext-based content and scripted content, it is possi-
ble to perform content analysis to determine the internal
structure of the element. In this case, the RDM may be
used not only to define the basic content elements, but
also to describe their structure in form of class attributes
and operations. In the example illustrated in Fig. 4, oper-
ations contained by theProcessOrderscripted content
may be defined. After the content is authored using an
existing authoring tool, the authoring tool adapter com-
ponent is applied to analyze it in order to extract (Fig. 5a)
the contents of the defined operations and enable their
storage in the repository. Since the repository representa-
tion of the content does not directly map to the represen-
tation used by the existing authoring tool, additional
meta information related to the extraction procedure has
to be produced and stored to allow later recombination of
content parts (Fig. 5b).

An important advantage of describing internal struc-
ture of content elements in the RDM is the possibility of
accessing and performing modifications to the structural
parts of the content using the generated programming
language bindings.

The support for content analysis in the authoring tool
adapted components proves to be technology-dependent.
For example, various scripting languages may be used in
the process of authoring scripted content. Therefore, the
presence of content analysis functionality in the gener-
ated repository manager has to be supported by using
specific SERUM templates addressing the technology
requirements related to the functionality.

4.2 Applying the SERUM versioning
framework

The application of the SERUM versioning framewor
consists of two steps:
1. Adapting the basic versioning framework

Initially, the so-called basic versioning framework
(BVF) is available to the repository designer. Th
BVF may be adapted by the repository designer
order to obtain an adapted versioning framewo
(AVF), which involves special requirements relate
to customized repository manager services.
detailed description of the BVF is provided in [7].

2. Applying the adapted versioning framework
The resulting AVF is applied to the UML specifica-
tion of repository manager services. As a result,
customized repository manager with the correspon
ing components is generated.

Version control provided by the BVF is based on th
three-layer model shown in Fig. 6. The lowest layer re
resents collaboratively authored resource data. In t
example given in Section 4.1, this involvesspecific
instances(represented as ovals) of paragraphs, figure
tables, and process-order scripts, as well asinstances of
connections(represented as lines) between them. A vie
to this resource data, as shown by the grey excerpt
Fig. 6, is called aversion. Types of instances are defined
by the middle layer, which corresponds to the RDM pro
vided by the repository designer. However, it is impo
tant to support not only versioning of single units o
resource data, but also semantic units, which m
involve several for the purpose of versioning seman
cally related types. Such units and the connectio
between them are defined using a specialversion man-
agement infrastructure(VMI) shown in the upper layer
in Fig. 6 (the rectangles represent the units and the lin
represent the connections between them). We call the
units of versioningversionable structures (VS).

Figure 5: (a) Extraction of repository objects and
(b) content recombination.

Existing
authoring
tool

Authoring
tool adapter
component

Repository objects

Content
extraction

Existing
authoring
tool

Authoring
tool adapter
component

Repository objects

Content
recombination

(a)

(b)

Figure 6: Basic model of versioning.

Resource
data

Resource
data
model

Version
management
infrastructure



o
lid

d

r

n
n

of

. 8
h-
ed

set
s
n-
Note that the RDM itself is independent of various
versioning aspects defined by the VMI. Therefore, in the
process of defining the RDM, the versioning aspects do
not have to be considered. The VMI, however, directly
exploits the types defined by the RDM.

As an example of a VMI definition, we use parts of
the sample RDM given in Section 4.1. Since the types
Paragraph, Figure andTableare semantically coupled, it
should not be possible to version instances of these three
types individually. Therefore, we enclose the three types
in a single versionable structure (VS_Paragraph), as
illustrated in Fig. 7.Chaptersare enclosed in their own
versionable structure (VS_Chapter). This makes it possi-
ble to version a chapter along with its properties, such as
its title and summary, independently of paragraphs the
chapter contains. Since instances of chapters may contain
several instances of paragraphs, this containment associ-
ation should also be defined at the VMI level. We call
such an association redefinition at the VMI level alink

refinement. Instances of link refinements are used t
combine instances of versionable structures into va
states, calledconfigurations. For example, instances of
thevs_inclchparlink refinement exactly specify the ver-
sions of various paragraphs (along with figures an
tables) to be combined with versions of chapters.

A special language, called theversion definition lan-
guage(VDL) is used to specify the VMI in SERUM. The
VDL can be considered as a special-purposehigh-level
language(HLL) that is defined by the BVF and can late
be adapted in the AVF.

The SME enhances the initial RDM using the chose
AVF and the defined VMI. The following steps are take
in this procedure:
1. Framework guidelinesof the AVF are checked to

assure the consistent AVF application.
2. Default structures(such as abstract base classes)

the AVF are added to the RDM.
3. VDL commands defining the VMI are applied to the

RDM. In this step, SERUMdesign patternsdefined
by the AVF are applied to enhance the RDM.

As a result of this procedure, the initial RDM is
enhanced and an ERDM is produced by the SME. Fig
illustrates the most important aspects of the ERDM. Ot
ers, such as the default structures of the BVF, are omitt
due to space restrictions.

4.3 Generating the repository manager

In this step, the repository designer chooses from a
of available templates provided by the AVF to addres
specific technology demands for a new repository ma

Figure 8: Enhanced RDM.

Chapter Paragraph

1..n1..1 1..n1..1

includes

inclparfig inclpartab

Figure

0..n 1..10..n 1..1
includes

Table

0..n1..1 0..n1..1
includes

V_Paragraph

0..1

1..1

0..1

1..1

paragraph

0..n

1..1

0..n

1..1

inclparfig

0..n

1..1

0..n

1..1

inclpartab

0..n

1..1

0..n

1..1

figure

0..n

1..1

0..n

1..1

table

V_Chapter

0..1

1..1

0..1

1..1

chapter

0..n0..n 0..n0..n v_inclchpar

VS_Paragraph

1..n

1..1

1..n

1..1
versions

VS_Chapter

1..n

1..1

1..n

1..1

versions

1..n1..1 1..n1..1 vs_inclchpar

vs_inclchpar

inclchpar

v_inclchpar

1..n

1..1

1..n

1..1
versions

1..n
0..n
1..n
0..n

inclchpar

Figure 7: A sample VMI definition.

Figure

Table

Paragraph

0..*
1..1

0..*
1..1

includes

0..*1..1 0..*1..1

includes
Chapter

1..*1..1 1..*1..1

includes

VS_ParagraphVS_Chapter

vs_inclchpar

1..*1..1



p

r-
p-

is
nt
i-
ion

ed
t.
er
in
he
t,

s-

for
ers
es.
m

ager. Using the ERDM and the chosen templates, a new
repository manager is generated. The following sections
describe the results of the generation process and their
possible usage (Fig. 9).

Repository database schema

An ORDBMS is used for the storage of repository
objects. Fig. 10 illustrates an example of the generation
of the repository database schema. ORDBMS features
make it possible to map object types defined by the
ERDM directly to user-defined types (UDT). Beside
classic CRUD (Create, Read, Update, Delete) operations
used for accessing and modifying the repository data,
special user-defined functions (UDF) are created to pro-
vide the essential functionality related to version control.
Examples of such functions include the functionality
needed to lock/unlock the access to a certain version for
a specific author or group of authors (perform checkout/
checkin), disable further modifications of a version
(freeze a version), create a successor of a specified ver-
sion, find differences between versions of the same ver-
sionable structure, merge two versions of the same

versionable structure, verify whether the version is a to
(current) one, etc.

Repository servers

Repository servers provide repository manager se
vices to various types of clients. In case of clients su
porting the authoring process, the generated server
used to provide the functionality needed for conte
retrieval and publishing along with value-added repos
tory manager services, such as concurrency and vers
control.

In case of Web browsers, the generated server is us
to deliver certain repository content to the browser clien
Additional aspects of value-added repository manag
services might be taken into account. For example,
case version control is supported by the repository, t
most current version is delivered to the browser clien
which is in this case fully unaware of the repository pre
ence.

A special type of adapter components is necessary
the case the users decide to use existing Web serv
unaware of value-added repository manager servic
Such components may be used to retrieve content fro

Figure 9: Usage of the generated repository manager.

ORDBMS

Resource
data

Repository DB schema
UDTs
UDFs

Repository (Web) server(s)

Web browsing
client

PL bindings Components

Existing
authoring
tool

Authoring
tool adapter
component

publish

retrieve

Server
adapter
component(s)

Custom client

programmatic
repository access

Existing
Web servers

retrieve
content

Figure 10: ORDBMS schema generation.

Paragraph

Figure
Table

V_Paragraph CREATE ROW TYPE TY_FIGURE (…);
CREATE ROW TYPE TY_TABLE (…);
CREATE ROW TYPE TY_PARAGRAPH (…);
CREATE ROW TYPE TY_V_PARAGRAPH (…);
CREATE TABLE TA_FIGURE OF TYPE TY_FIGURE (…);
CREATE TABLE TA_TABLE OF TYPE TY_TABLE (…);
CREATE TABLE TA_PARAGRAPH OF TYPE TY_PARAGRAPH (…);
CREATE TABLE TA_V_PARAGRAPH OF TYPE TY_V_PARAGRAPH (…);



be
a-
n
nd
re
he
ack
r-
d-
s
ed

n
m-
if-
ing
If,
m-

e
as
s
-

er
tory
ing

to
ess
ive
g
n-
the repository while considering aspects of version con-
trol, for example, so that the most current version is
always retrieved and passed to the Web server.

Authoring tool adapter components

Existing tools, authors may want to use to produce
different kind of content, such as plain text parts of Web
pages, graphics or scripts, are unaware of value-added
repository manager services. Therefore, it proves to be
essential to provide special authoring tool adapter com-
ponents bridging the gap between these tools and reposi-
tory manager services. In this approach, authoring tools
are used to create or modify parts of the content and
adapter components are used to transfer the parts to or
from the repository.

Since authoring tools adapter components are pro-
duced in the generation process, they recognize the types
defined by the RDM and are fully aware of value-added
repository manager services, such as concurrency and
version control, as defined by the UML specification of
these services.

In the following, we provide a short example of using
adapter components in the authoring process. Assume
that an author wants to modify a table as defined by the
example in Section 4.1 and illustrated by the RDM in
Fig. 4. Since, according to the corresponding VMI
(Fig. 7), paragraphs with their figures and tables are
combined in a single versionable structure, an instance of
the versionable structure (a version) containing the table
to be modified has to be chosen first. For this purpose,
the adapter component lets the author choose from a list
of versions. In case the version is frozen, further modifi-
cation of this version is disabled and a successor (identi-
cal) version has to be created by the repository manager.
Note that some restrictions may exist in relation to where
in the version hierarchy it may actually be allowed to cre-
ate a new version. These restrictions depend on the way
the BVF is adapted and applied in order to customize the
version control. During version modification, the access

to its data from other authors or groups of authors may
restricted according to the repository manager specific
tion of concurrency control services. A table is the
retrieved from the server by the adapter component a
modified in the authoring tool. If necessary, changes a
also made in the paragraph containing the table. T
adapter component then transfers the modified data b
to the server. The ORDBMS representation of the ve
sion of the paragraph along with its figures and the mo
ified table is updated according to the modification
made. Later, this paragraph version may be combin
with a chapter version to form a valid configuration.

Programming language bindings and component
model support

Programming language bindings provide applicatio
programming interfaces (APIs) used to enable progra
matic access to repository services. The support for d
ferent programming languages corresponds to choos
templates involving the language-specific semantics.
for example, the Java language is chosen using the te
plates, the SRG will provide implementations of ERDM
defined types in the form of Java classes (Fig. 11).

Repository manager functionality might as well b
supported using various component models, such
CORBA or COM+. If the repository manager choose
the templates providing support to the CORBA Compo
nent Model (CCM), the corresponding repository serv
exposes the access to the content stored in the reposi
as well as value-added repository manager services us
CORBA components.

5. Conclusions

In this paper, we described the SERUM approach
generating customizable repository managers to addr
different demands related to the process of collaborat
authoring for the Web. We use the SERUM versionin
framework as an example of adapting repository ma

Figure 11: API generation.

Paragraph

Figure
Table

V_Paragraph

public class Figure {…}
public class Table {…}
public class Paragraph {…}
public class V_Paragraph {…}



.

gn
ft-

r-
y
f
,

in:

r-
-

g
ft’

-

-

-
e
r
.
ic
ager services related to version control. Based on our dis-
cussion, the following conclusions can be made:
• For each aspect of customizing repository manager

services, it is possible to provide a core set of facili-
ties that can be adapted to successfully meet specific
requirements regarding repository manager services.
The framework approach provides a high degree of
flexibility both in aspects of reuse of existing
designs and adaptation of these designs to fit such
requirements.

• Technology-independent patterns enable a success-
ful enhancement of the UML specification of these
services by application-independent aspects.

• Using technology-dependent templates, it is possible
to support the generation of fully operatable custom-
ized repository managers from enhanced UML
specifications.

We think that the approach introduced by SERUM is
very promising in the sense of managing content-related
data as well as data related to the authoring process in a
customized way. This introduces a significant improve-
ment in the authoring process, since users might find it
easier to focus on the core process of providing content.
However, certain aspects of the area are still not explored
in detail. Therefore, in our future work we intend to:
• further explore possibilities of using UML for pro-

viding specifications of repository manager services;
• explore additional possibilities of SERUM frame-

works to tailor repository manager services;
• explore the relation of the SERUM approach to

other emerging approaches supporting collaborative
authoring, such as the WebDAV protocol [10], and
existing tools that may be used to support the author-
ing process;

• determine how various types of tools can be used to
support the application of SERUM frameworks; for
example, in case of the versioning framework,
graphic modeling tools may be used to support the
specification of the VMI;

• evaluate the overall SERUM approach to building
customizable resource repositories and estimate the
benefits of this approach for the collaborative
authoring process.

6. References

[1] P.A. Bernstein, U. Dayal: An Overview of Repository
Technology, in: Proc. 20th Int. Conf. on Very Large Data
Bases (VLDB‘94), J. B. Bocca et al. (Eds.), Santiago de
Chile, Sept. 1994, Morgan Kaufmann, pp. 705-713.

[2] P.A. Bernstein, B. Harry, P. Sanders, D. Shutt and
J. Zander: The Microsoft Repository, in: Proc. 23rd Int.
Conf. on Very Large Data Bases (VLDB‘97), M. Jarke

et al. (Eds.), Athens, Aug. 1997, Morgan Kaufmann, pp
3-12.

[3] J. Conallen: Modeling Web Application Architectures
with UML, in: Communications of the ACM 42:10,
1999, pp. 63-70.

[4] E. Gamma, R. Helm, R. Johnson and J. Vlissides: Desi
Patterns: Elements of Reusable Object-Oriented So
ware, Addison-Wesley Publishing Company, 1995.

[5] T. Härder, W. Mahnke, N. Ritter and H.-P. Steiert: Gene
ating Versioning Facilities for a Design-Data Repositor
Supporting Cooperative Applications, in: Int. Journal o
Intelligent & Cooperative Information Systems 9:1-2
2000, pp. 117-146.

[6] R.E. Johnson: Frameworks = Components + Patterns,
Communications of the ACM 40:10, 1997, pp. 39-42.

[7] W. Mahnke, N. Ritter and H.-P. Steiert: Towards Gene
ating Object-Relational Software Engineering Reposito
ries, in: Tagungsband der GI-Fachtagun
’Datenbanksysteme in Büro, Technik und Wissenscha
(BTW’99), A.P. Buchmann (Ed.), Informatik aktuell,
Freiburg, March 1999, Springer-Verlag, pp. 251-270.

[8] OMG, Unified Modeling Language Specification, ver
sion 1.3, OMG Document ad/00-03-01, March 2000.

[9] N. Ritter: DB-gestützte Kooperationsdienste für tech
nische Entwurfsanwendungen, Infix, 1997.

[10] E.J. Whitehead and Jr., Y.Y. Goland: WebDAV: A net
work protocol for remote collaborative authoring on th
Web, in: Proc. of the Sixth European Conf. on Compute
Supported Cooperative Work (ESCSW´99), Bødker, S
et al. (Eds.), Copenhagen, Sept. 1999, Kluver Academ
Publishers, pp. 291-310.


	1. Adapting the basic versioning framework
	2. Applying the adapted versioning framework

