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Abstract. Even though SQL has become widely accepted as a language for im-
plementing relational database schemas and querying data, there are cases where
its users experience the need for new language abstractions which would allow
them to express data modeling and querying solutions in a clearer and simpler
manner. This paper describes the idea of language extensions to SQL:1999 that
come in form of independent packages and may be implemented by different ven-
dors. A translator system uses information imported from the packages to trans-
late the statements containing the extensions into SQL:1999-compliant state-
ments.

1 Motivation

Over years, SQL has become a widely accepted language for implementing relational
database schemas and querying data, irrespective of application domain. Its usage po-
tential reaches well beyond simple database querying, which is often reflected by pro-
posals aiming at seamless integration and access to heterogeneous data sources and ap-
plications via an SQL interface (e.g. SQL/MED [9]). The new ANSI/ISO/IEC standard
SQL:1999 [7] supersedes the previous SQL-92 standard and introduces support for the
execution of application logic in database servers as well as object-relational extensions
to SQL.

A common problem for SQL users is the limitation of its syntax and semantics. There
is, as we think, a substantial set of problems, developers typically consider at the appli-
cation and not at the database level, simply because of lack of appropriate constructs:
• Multiple inheritance of complex structured types and tables is not supported in

SQL:1999. There is a number of arguments supporting the elimination of multiple
inheritance from a language, such as naming conflicts, repeated inheritance, pro-
grammer’s temptation to apply multiple inheritance where containment would be the
better choice, etc. [23]. Despite this fact, we take the stand that in certain designs,
multiple inheritance allows a straightforward implementation of real-world prob-
lems (see [14] for examples) and promotes code reuse to the extent otherwise diffi-
cult to achieve. An obvious problem caused by the lack of multiple inheritance in
SQL:1999 is that even some standardized metamodels defined using multiple inher-
itance (e.g. OMG’s UML metamodel [17]) cannot be directly mapped onto type and
table hierarchies in database schemas.



• Zhang [24] notes that current object-relational databases fail to support relationships
that contain extended semantics. As a solution, she proposes an extension to SQL
called Orient-SQL to allow precise specification of relationship’s additional struc-
tural and operational properties. For example, relationship’s participants, their su-
perordinated or subordinated roles in the relationships and their cardinalities can be
defined using structural properties. Behavior at the events of selecting, inserting, and
deleting the relationship’s participants in the database can be defined using opera-
tional properties.

• SQL:1999 fails to fully support modular implementation of database schemas [13]
that would enable reuse of schema parts, assembly of off-the-shelf schema modules
and increase schema quality by encouraging unit tests on interrelated structural (type
and table definitions) and behavioral (triggers, user-defined routines) elements of a
module.

• Preference queries [12] that have to be answered cooperatively by treating prefer-
ences as soft constraints are not supported in SQL:1999.
Motivated by the above examples, this paper presents our X-Translate system, which

allows the users to extend SQL:1999 with general as well as domain-specific language
constructs. The extensions defining the constructs are delivered in form of packages
which can be imported into the system. The system comes with a translator that invokes
methods defined by the extensions to translate statements containing custom language
constructs onto SQL:1999 statements.

Sect. 2 will focus on the example of extending SQL:1999 to support modular schema
implementation in detail. Sect. 3 presents the X-Translate system architecture. A list of
open issues is discussed in Sect. 4, while Sect. 5 gives an overview of related work. In
Sect. 6, we conclude our work and present some ideas for future work related to our ap-
proach.

2 Modularity in Schema Design

Even though a modular or even component-based design is state-of-the-art in applica-
tion development ([1], [5]), there is a lack of such concepts in SQL:1999. In SQL:1999,
there are only flat schemas and server modules [8], which mainly contain user-defined
functions and do not deal with other schema elements. Both concepts do not offer inter-
faces or explicitly defined relationships between them (see [13], [15] for details). Al-
though concepts like DataBlades or Cartridges offered by some ORDBMS vendors can
be used to group schema elements, these concepts serve merely as initialization units
that place their elements in a schema. Nevertheless, grouping schema elements together
in nestable modules, offering interfaces to these modules and supporting relationships
between the modules would make the benefits common to component-based applica-
tion design also possible at the database schema level. Particularly w.r.t. the object-re-
lational features of SQL:1999, like user-defined routines (UDR) and user-defined types
(UDT), this would be extremely beneficial. The object-relational features of SQL:1999
allow to map much more functionality to the database schema which, in turn, leads to a



more complex and time-consuming schema design. The main advantages of a modular
schema design are in detail:
• Reuse of parts of the schema. By grouping semantically interrelated schema ele-

ments in modules, the elements can easily be reused in other schemas. For example,
developing an XML data type and UDRs for managing XML documents inside the
database, is a cost- and time-intensive task. Moreover, this functionality is probably
needed by many different schemas. By grouping the schema elements for managing
XML documents in a single schema module, they can easily be reused by other sche-
mas. Without the concept of modularity, different schema elements, like UDTs and
UDRs, are hidden in the schema making it unclear which elements are actually need-
ed for a given functionality.

• Easy and rapid schema design by assembling off-the-shelf modules. If there is a suf-
ficient number of (off-the-shelf) schema modules, new schemas can be developed
mainly by combining existing schema modules. This does not only reduce develop-
ment costs, but also decreases time-to-market.

• Quality and robustness of a schema. By (re)using high-quality, well-tested schema
modules, both quality and robustness of a schema increase. Because most testing can
be done on a small excerpt of a schema (the schema module), testing is much simpler
compared to testing the whole schema at a time. The complexity of object-relational
technology, especially when considering UDRs, makes testing necessary.

• Exchange and extension of parts of the schema. Using interfaces and, thereby,
achieving information hiding, schema modules implementing the same interface can
be replaced in a schema. This allows the optimization of schema parts and the inclu-
sion of new code into an existing schema. Furthermore, the schema can be extended
with new functionality by replacing an old schema module with a new one offering
more functionality, but still complying with the old interface. We have to mention
that most schema modules have a persistent state, that is, represented by tuples of a
table. Exchanging stateful schema modules in a running system requires that the state
of the old schema module is transferred to the new one. Nevertheless, exchanging
schema modules seems to be a promising way to handle schema evolution. 

• Structural and distributed schema design. Modularity allows structural design by di-
viding different tasks of the schema in separate schema modules and only define in-
terfaces and relationships between them. The schema modules can be developed in-
dependently of each other by distributed groups of programmers. 

• Continued, component-based design. Nowadays, a component-based development
of applications is often blurred as far as the data storage component is concerned.
The application components are separated at the application layer, but use a global
database schema for their persistent data with overlapping parts. If each application
component offers its own schema module and only well-defined relationships be-
tween the schema modules are used, the separation and isolation continues at the
schema level.
The main objective of schema modularity is to control the dependencies between

schema elements of separate schema modules. By schema elements we mean the mod-
eling elements offered by SQL:1999, like tables, triggers, UDRs, UDTs, etc. The de-
pendencies may emerge from a foreign key definition between two tables, but also a



UDR call or a trigger definition can lead to a dependency. In [15], a description and
classification of the different dependencies is given. Using narrow interfaces and defin-
ing relationships between separate schema modules, the number of possible dependen-
cies is restricted and other dependencies (unknown to the DBMS) are prohibited.

In [13], a framework for a modular schema design is introduced. We do not want to
present the framework in detail, an excerpt of this framework may illustrate the idea of
modular extensions of SQL:1999. The framework consists of different kinds of schema
modules. In this paper, we will focus on one kind, the schema component. A schema
component can contain all kinds of schema elements and can exist independently of oth-
er schema modules. It is important to know that, unlike the DDL statements of
SQL:1999, there has to be a declaration of a schema component apart from the creation
of a schema component. This is necessary, because a schema component may be used
more than once in a schema, e.g., there may be several instances of a user management
schema component, managing different kinds of users. A schema component can im-
plement several interfaces as well as use interfaces of other schema components. Of
course, only schema elements defined at the interface are visible outside the schema
component. The schema component declaration specifies which interfaces are imple-
mented by the schema component and which interfaces are required by the component.
Concrete schema components used behind the interfaces are specified at the deploy-
ment of a component.

1. DECLARE INTERFACE BookManagementInterface
2. TYPE bookT AS ( title CHARACTER(20),
3.  ...)
4. NOT FINAL
5.  METHOD getTOC() RETURNS CLOB,
6.  METHOD addChapter(chap Chapter, number INTEGER)
7.  ...;
8. TYPE ChapterT AS (...) NOT FINAL;
9. TABLE book OF bookT;
10. END INTERFACE;
11.
12. DECLARE COMPONENT BookManagement
13. IMPLEMENTING BookManagementInterface;
14. DECLARE TYPE bookT AS ( title CHARACTER(20) NOT NULL,
15.                 ...)
16.   NOT FINAL
17.  METHOD getTOC() RETURNS CLOB,
18.   METHOD addChapter(chap Chapter, number INTEGER)
19.   ...;
20. DECLARE TYPE chapterT AS ...;
21. DECLARE TABLE book OF bookT
22.   title WITH OPTIONS NOT NULL;
23. DECLARE TABLE chapter OF chapterT;
24. ...
25. DECLARE METHOD addChapter(chap Chapter, number INTEGER)
26.   FOR bookT
27.  BEGIN INSERT INTO chapter ....;
28.  END;
29. END COMPONENT;
30.
31. CREATE COMPONENT bm OF BookManagement;

Fig. 1. Extended SQL for schema modularity



In Fig. 1, a small example for a DDL statement of a schema component declaration,
called BookManagement, is given (lines 12-29). Line 13 defines which interfaces are
implemented by BookManagement (in this example, there is only one interface,
called BookManagementInterface, declared by lines 1-10). Note that in the ex-
ample no interfaces and, as a consequence, no other schema modules are needed. Since
BookManagement implements BookManagementInterface, all elements of
the interface have to be part of BookManagement, like the structured types chap-
terT and bookT, supplemented with a constraint (NOT NULL in line 14). In addition
to the typed table book, specified at the interface, BookManagement contains anoth-
er table chapter and the implementations of the methods defined in the structured
type (lines 25-28). After the schema component is instantiated (line 31), only the ele-
ments offered by the interface are accessible outside the schema component. That is, the
table chapter is not accessible from outside the schema component, it can only be
manipulated by method calls (e.g. addChapter of the bookT). The schema compo-
nent has its own namespace and the elements are accessible only via this namespace.

3 X-Translate System Architecture

In this section, we introduce our approach to supporting different language extensions
for SQL:1999, called the X-Translate System. The main goal of such a system is that
different language extensions can be integrated into the system and, thereby, a new lan-
guage containing the extensions is provided. Such an extended language is called XSQL
(eXtended SQL). Note that XSQL does not mean a fixed combination of language ex-
tensions, but the combination specified by the currently installed language extensions
of the system. Of course, not all language extensions can work together, e.g., if they use
overlapping keywords. The system should be open to define new language extensions;
it should be easy to define them and they should not invalidate existing legacy code that
already contains SQL statements.

Certainly, we do not want to build a new DBMS from scratch, but translate XSQL to
SQL:1999 and use it with an existing ORDBMS. We are quite sure that using query
translation and the large expressive power of SQL:1999, most language extensions can
be mapped to SQL:1999. Due to the fact that no ORDBMS vendor directly supports the
exact syntax of SQL:1999, we also need a mapping from SQL:1999 to different SQL
dialects. Because there is no big gap between SQL:1999 and the functionality offered
by the ORDBMS vendors, this can easily be done. There are already approaches ad-
dressing this problem (see [25] for example), however, it proves possible to apply our
approach successively to translate a SQL:1999 statement to a certain SQL dialect. 

In Fig. 2, we illustrate the general architecture of the X-Translate system. It consists
of a translator, an extension directory and an extended system catalog. Language ex-
tensions are defined in form of extension packages. Several extension packages can be
imported into the system simultaneously. Each of them contains grammar extensions,
metamodel extensions (to manage the metadata of the language extension), and trans-
lation rules, which describe how the extended grammar should be translated. The sys-
tem manages the information related to the extensions within a single extension direc-



tory. This directory uses a registry to keep track of the imported packages. The grammar
extensions are included in the extended XSQL EBNF (Extended Backus-Naur Form)
and the metamodel extensions in the extended metamodel. The translation rules are used
to generate the reduction methods of the system. To store the data of the extended meta-
model, an extended system catalog is built on top of the SQL:1999 information schema.
It is able to include the metadata of the extension packages and additional functionality
to manage this metadata. For example, using schema modularity requires metadata for
the declared schema modules and functionality to instantiate a schema module.

To translate an XSQL statement, the system works in the following way: The trans-
lator takes the XSQL statement as input (1). The statement is parsed utilizing the ex-
tended XSQL EBNF. The reduction methods are used to transform the XSQL statement
to an SQL:1999 statement (3). Applying the reduction methods often requires accessing
metadata stored in the extended system catalog (2). The translated statement itself can
also access or manipulate data in the extended system catalog. The following sections
will describe the architecture of the X-Translate system in detail. 

3.1 Extension Packages

Extension packages are used to provide information needed by the system to support
the use of new language constructs. This information comes in form of metamodel ex-
tensions, grammar extensions, and definitions of translation rules. A major challenge
for extension packages is that they have to define the information in a generic way. This

Fig. 2. General architecture of X-Translate
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means that the user should be given the possibility of tailoring the extensions during the
import process to avoid possible conflicts with already imported packages:
• Metamodel extensions: These extensions are used to add additional constructs to the

metamodel. During the import the user has to decide where in the metamodel a con-
struct is to be inserted and what its relationships to other constructs are.

• Grammar extensions: Class implementations for new EBNF symbols are inserted
into the existing class hierarchy.

• Definitions of translation rules: The rules are used to obtain the default implementa-
tion of the reduction method which reduces a high-level XSQL language construct
to lower level constructs that are either directly supported by SQL:1999 or need to
pass additional reduction steps. The default implementation of the reduction method
as generated from the rules can afterwards be tailored by the user.
In Fig. 3, an excerpt from the extension package that introduces schema modularity

extensions (as described in Sect. 2) to SQL:1999 is shown. The grammar extensions are
embedded into the SQL:1999 EBNF (see lines 1-6). Translation rules have to be spec-
ified for DDL (lines 7-11) and DML statements. It is useful to encapsulate DDL state-
ments into UDR calls to get adequate error messages. Translating a component decla-
ration statement directly into an insert statement for the corresponding extended system
catalog table would lead to an incomprehensible error message. DML statements, in
contrast, are directly translated to modified DML statements. The metamodel exten-
sions consist of information of how to upgrade the original metamodel and the extended
system catalog, storing the data of the metamodel. We use the XML-based Metadata In-
terchange (XMI) to specify transformations on the metamodel [10] (not shown in Fig.
3 due to space restrictions, the transformed metamodel is shown in Fig. 4). The extend-
ed system catalog is modified either by hints based on the metamodel (line 12, simply

Fig. 3. Excerpt of an extension package introducing schema modularity to SQL:1999

1. <SQL schema definition statement> ::= !! All alternatives from SQL:1999
2. | <SQL component declaration>
3.
4. <SQL component declaration> ::= DECLARE COMPONENT <component declaration name>
5.  .....
6. END COMPONENT

EBNF extensions
7. <SQL component declaration> => 
8. CALL declareComponent(<component declaration name>, ...);
9. ...
10. CALL addToComponentDeclaration(
11.          <component declaration name>,<component declaration element>)

Translation rules
12. MAP class schema component TO TABLE schema_component;
13. CREATE TYPE namespace (.....);
14. CREATE INTERNAL TABLE namemapping(realname SQL_IDENTIFIER NOT NULL,
15.  namesp namespace NOT NULL);
16. CREATE INTERNAL FUNCTION declareComponent(name ...)
17. BEGIN ... 
18.  ... INSERT INTO schema_component VALUES (name, ....); ...
19. END;

Metamodel extensions (extended system catalog hints)



mapping a class of the metamodel to a table), or by concrete DDL statements (lines 13-
19). Most of the constructs are marked as INTERNAL, as they have no corresponding
class in the metamodel. For example, to support schema modularity, a table containing
the mapping information of a virtual schema element with a namespace to the internal
schema element without namespace (lines 14-15) is needed.

3.2 Extension Directory

Although language extensions originate from various independent packages, they are
merged to form a single-level extension directory. Thus, the packages can be viewed as
a means for gradually extending the directory. It is the extension directory that is used
by the translator and not the packages. Using the packages directly in the translation
process would lead to the following problems.
• Extensions introduced from separate packages may (i) define overlapping semantics,

but use distinct syntactical notation or (ii) define distinct semantics, but use overlap-
ping syntactical notation.

• In case the extension packages are not aware of each other, how to make translation
rules in one package aware of rules in the other package, e. g., to be able to define
schema modules containing relationships with extended semantics (see Sect. 1)?

• How would the translator recognize the package where the translation process has to
be initiated? For this purpose, at least a basic global registry system for extensions is
required in any case.
As extensions are merged to a single-level directory, we force the user to make de-

cisions on the above issues prior to using the extensions, so that these problems can be
avoided at translation time. The registry is the simplest part of the extension directory.
It is used to uniquely identify the packages that have been imported in the directory. The
following sections describe the remaining parts of the directory.

Extended Metamodel. There is a set of (object-relational) constructs present in
SQL:1999 that are commonly used for organizing, storing and querying data: complex
structured types, typed tables, user-defined routines, etc. Imported language extensions
introduce additional constructs, e.g., a table inheriting from more than one table, a rela-
tionship with extended semantics or a schema module. The extension directory uses an
extended metamodel to organize the constructs defined in imported extension packages
and thereby available in XSQL (including those already provided by SQL:1999). In-
stead of building the SQL:1999 part of the metamodel from scratch, we decided to use
the OMG’s Common Warehouse Metamodel (CWM) [18]. CWM is a metamodel based
on Meta Object Facility (MOF) [16] designed to enable easy interchange of warehouse
and business intelligence metadata between warehouse tools, warehouse platforms and
warehouse metadata repositories. Choosing an already present and accepted OMG
metamodel, the users of extension packages might already be familiar with, alleviates
the tasks of importing new packages that require user assistance. The extended meta-
model is stored in a dedicated repository that provides a GUI for interactive and an API



for programmatic manipulation of the extended metamodel. Fig. 4 shows a part of the
CWM extended to support schema components.

Extended XSQL EBNF. The syntax of XSQL statements is defined by the XSQL EB-
NF. The EBNF is extensible, meaning that at import time an extension package will at-
tempt to apply rules that upgrade the current EBNF with new constructs. In a similar
fashion as with the extensible metamodel, this process is user-mediated: The user can
accept or reject the application of a specific production rule contained by the EBNF up-
grade or modify the production rule to avoid possible inconsistencies with other pack-
ages and assure compliance with the metamodel. In certain cases, the system is capable
of suggesting multiple alternative production rules for the EBNF upgrade. The suggest-
ed rules are constructed by exploiting the information in the metamodel and existing
XSQL EBNF.

There is a mapping of XSQL EBNF symbols onto class implementations. A class im-
plementation of an EBNF symbol will be instantiated to represent a node in the XSQL
syntax tree. For this reason, the class implementation of non-terminal symbols defines
associations to implementations representing other symbols, which facilitates the tra-
versal of the syntax tree. Most importantly, a class implementation provides reduction
methods used by the translator to transform XSQL statements.

Reduction Methods for Producing SQL:1999 Statements. Reduction methods im-
plement operations used to transform nodes in the syntax tree of the XSQL statement to
produce the reduced syntax tree(s) of the SQL:1999-compliant statement(s) – in most
cases, a single statement in XSQL is transformed into more than one SQL:1999 state-
ments. Class implementations for the EBNF symbols are organized into an inheritance
hierarchy. For example, the class implementation for a table capable of multiple inher-
itance would extend the implementation for the common table construct. As the trans-
lator parses the XSQL statement to build an initial syntax tree, it uses information in the
extended system catalog (see Sect. 3.3) to select the class implementation that needs to
be instantiated to represent a given node in the syntax tree. Reduction methods defined
by class implementations are polymorphic in the following sense:
• A reduction method in the subclass may extend or completely override the default

implementation of the reduction method implemented in the superclass.

Fig. 4. Excerpt of an extended metamodel
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• The behavior of the reduction method (the generation of nodes for the SQL:1999-
compliant syntax tree) depends on the pattern the node resides in, meaning that in
order to complete the reduction process, the method may need to gather information
from the neighboring nodes.
Fig. 5 shows a reduction method for transforming the declaration of a schema com-

ponent into routine calls that will insert the declaration (including the component ele-
ments) to the extended system catalog. The method has been automatically generated
from translation rules illustrated in Fig. 3. For a detailed overview of reduction methods
and reduction pattern concepts, we refer to [3].

3.3 Extended System Catalog

The imported packages introduce constructs initially not present in the SQL:1999 or in
the SQL dialect of the target database system. Because of this, the database system cat-
alog (i.e., system tables) no longer suffices for storing database metadata (e.g., it does
not allow us to store which tables and complex structured types are combined in a sche-
ma component). To support complete organization and storage of metadata needed for
translating and executing XSQL statements, we introduce an extended system catalog.
The tables in this catalog are instantiated from the constructs defined in the extended
metamodel that is a part of the extension directory using the extended system catalog
hints. For example, for the metamodel illustrated in Fig. 4, using the hints in Fig. 3 we
obtain a table used to store schema components, a table to map the names, etc. To avoid
replication of metadata, relational views are defined on DB-proprietary system tables
so that these can be directly reused as part of the extended catalog. View definitions are
supplied within the extension package in a specific form for each DBMS product sup-
ported by the vendor. However, the definitions can be customized by the user during the
import of the package to allow the use of the extended system catalog with further
DBMS products initially not supported by the vendor.

public class SQLComponentDeclaration implements NonTerminalSymbol {

  protected ComponentDeclarationName     name;
  protected ComponentDeclarationElements elems;

  public void reduce( SyntaxTreeSymbol caller, SyntaxTree tree ) {
    this.addReduction(
      new CallFunction( "declareComponent", this.name.getValue() ) );
    Enumeration e = this.getComponentDeclarationElements().elements();
    while( e.hasMoreElements() ) {
      this.addReduction(
        new CallFunction( "addToComponentDeclaration",
                          this.name.getValue(),
                          e.nextElement().getValue() ) );
    }
    // Store additional reduction information into the transformed tree.
  }
  ...
}

Fig. 5. An automatically generated reduction method



When familiar with tables and views contained in the extended system catalog, the
user may query the catalog to explore metadata for the database. Manual updates to the
catalog by the user are not recommended, since the consistency of the catalog may be
jeopardized. However, the translator is aware of any consistency constraints related to
the catalog, so that after their execution the translated DML statements that manipulate
the catalog will always leave it in a consistent state.

3.4 Translator

The translator accepts a statement in XSQL and constructs a corresponding syntax tree
using the XSQL EBNF included in the extension directory. Afterwards, it invokes the
reduction method of the root node in the syntax tree. The method delivers one or more
reduced syntax trees that represent the translated statements in SQL:1999.

A method may access the extended metamodel and the extended system catalog via
a set of dedicated APIs to gather information needed in the course of reduction. In ad-
dition, the execution of the reduction method of a node may require information related
to the reduction of other nodes residing in remote parts of the XSQL syntax tree. We
call constellations of nodes that require uni-directional or mutual information on each
other’s reduction outcomes node patterns. A single XSQL syntax tree may contain mul-
tiple (possibly overlapping) node patterns.

The translator exposes the functionality for initiating remote reductions and deliver-
ing the results in form of an API. In this way, all reductions in the XSQL syntax tree are
initiated by the translator, which maintains a reduction log and makes sure the process
does not contain any cycles and will eventually terminate.

Obtaining the second statement of Fig. 1 (line 12-29) as input, the translator would
produce an SQL:1999-compliant statement as shown in Fig. 6. Encapsulated in the
UDRs, these statements insert data into the extended system catalog.

4 Open Issues

This section attempts to address a set of important issues that assist us in assessing the
pros and cons of the approach.

SQL serves its purpose well and the capabilities of language extensions can be simulat-
ed by providing an API in a general-purpose language (GPL), such as Java. So why in-
troduce custom extensions?

Fig. 6. Excerpt of a translated statement in SQL:1999

1. CALL declareComponent(’BookManagement’, ...);
2. CALL addToComponentDeclaration(’bookT’, ROW(ARRAY(ROW(’title’,...)...));
3. CALL addToComponentDeclaration(’chapterT’,...);
4. CALL addToComponentDeclaration(’book’, ...);
5. CALL addToComponentDeclaration(’chapter’, ...);
6. CALL addToComponentDeclaration(’addChapter’, ...);
7. ...



SQL serves its purpose well as long as you downgrade your problem domain so that it
fits the limits of the object-relational model. By doing this, you are losing design infor-
mation and higher-level abstractions that would ideally be present in your schema. Un-
fortunately, both of these are key issues for effective schema reuse, matching, reengi-
neering and reverse engineering. How can you be sure that a trigger in a schema was
initially meant (a) as a pure trigger, or (b) is the result of downgrading a higher-level
abstraction, such as a relationship with extended semantics, so that someone could have
expressed it in the object-relational model? How can you be sure that a table in the sche-
ma was (a) meant to exist at the same level with other tables or (b) initially originated
from a modular and replaceable schema part (i.e., schema module), but has been flat-
tened out of the module to this level, since there was no effective way to represent the
module in the object-relational model?

Leaving SQL unadorned and simulating its extensibility in a GPL does not solve the
problem either, since the syntax and semantics of such a language may prove too limit-
ing as well and less natural as to extend the syntax of SQL:1999 at any place convenient.
In this aspect, by offering the extensions in form of an API, we don’t really avoid the
problem, but rather migrate it to another level: In the same manner as the syntax of
SQL:1999 limits us in efficiently expressing higher-level abstractions, the syntax of the
GPL might be a similar obstacle.

Object-relational databases are bloated with features we don’t really need [2], [20].
Won’t relationships with extended semantics, schema modules and other extensions
make things look even worse?

For Date and Darwen [4], orthogonality of language concepts is a key issue: A language
is orthogonal, if independent concepts are kept independent and not mixed together in
confusing ways. Pitfalls in the orthogonality increase the complexity of the language
and reduce its expressive power. In our opinion, careful selection of language exten-
sions to SQL:1999 does not necessarily implicate the loss of orthogonality, but rather
allows developers to retain complex high-level abstractions directly in their schema im-
plementations and queries embedded in application code.

Customers will define own extensions and purchase off-the-shelf extension packages,
which will lead to the incompatibility of extensions, cause notational havoc, prevent ex-
change of schema design and burden reengineering of database applications.

This is the same problem Czarnecki and Eisenecker [3] mention as they discuss the role
of off-the-shelf active libraries in the context of Intentional Programming [22] (see Sec-
tion 5). They claim that in the same manner as conventional libraries emerge in different
domains today, standard domain-specific language extensions will emerge. Once a mar-
ket for off-the-shelf extensions will be present, developers will have access to high-
quality extensions provided by vendors, which will decrease the need to implement own
extensions. For a detailed classification of problems related to interactions among lan-
guage abstractions originating from different active libraries, we refer to [3]. In
X-Translate, we cope with these problems by using a global metamodel for extension
constructs, a global system catalog and a global XSQL EBNF with reduction methods.
To resolve possible conflicts, the import of extension packages is user-mediated.



The reduction process impedes processing and thereby has an impact on overall per-
formance of database applications. Therefore, language extensions introduce benefits
not for customers, but mostly for developers, which can now easily design and maintain
database applications.

The outcome of reducing XSQL statements are multiple statements that conform to
SQL:1999. XSQL statements cannot be completely translated at compile time of the ap-
plication, since in most cases the outcome will depend on the state of the system catalog
at runtime. To reduce the impact of translation delay, we implemented an approach sup-
porting pre-compilation. In X-Translate, the reduced statements in SQL:1999 contain
empty placeholders that are filled by values fetched at runtime from the system catalog
using a user-defined routine. Thereby, excessive invocations of reduction methods at
run-time are avoided.

The execution time of statements once fully translated is another issue: This time can
be improved by assuring that reduction methods produce efficient translations of pro-
prietary SQL statements for a given language extension.

To a certain extent, we admit that performance drawbacks are an issue that has to be
accepted if language extensions are used. However, it would be interesting to examine
the trade-offs related to the total cost of ownership of applications that are easier to
maintain, but on this account demonstrate minor performance disadvantages due to lan-
guage extensions used.

5 Related Work

The idea of an extensible programming and metaprogramming environment is materi-
alized in the Simonyi’s work [22] on Intentional Programming (IP). As a programming
environment, IP supports developers in the programming tasks by allowing them to
load extension libraries in order to extend the programming language with general-pur-
pose and domain-specific abstractions [3]. Among other components, the environment
includes dedicated editor and browsing tools, allowing the developers to browse the
program source in form of a syntax tree and a reduction engine that is used to generate
an implementation based on a set of primitive abstractions. Our X-Translate system can
be seen as an attempt to examine how the idea of extensible programming environment
concepts applies to SQL:1999.

An early paper on query language translators by Howells et al. [6] does not discuss
the notion of introducing and translating custom extensions, but rather focuses on lan-
guage-to-language translation. The approach uses a common internal relational algebra
tree with input language translation schemes specified as sets of extendible PROLOG
clauses.

A substantial amount of work is done on transforming schemas and translating que-
ries in one query language into SQL. For example, Keim et al. [11] describe the trans-
lation of Structured Object Query Language (SOQL) into SQL, arguing that SOQL que-
ries are shorter, easier to write and understand and more intuitive than corresponding
SQL queries. Shanmugasundaram et al. [21] present the XPERANTO system that in-
volves the evaluation of XML queries over XML views of relational data. It supports



processing arbitrary complex queries specified using the XQuery query language. Most
computation is pushed to the relational engine to increase the efficiency of the system.

Query translation proves important for accessing heterogeneous information sources
via a single application interface. Queries posed to this interface have to be translated
to source-specific (sometimes called native) queries or commands [19]. Since
SQL:1999 was chosen as a target platform, which already includes an approach for in-
tegrating heterogeneous data sources (see SQL/MED [9]), considering diverse map-
pings to multiple native query languages would be superfluous in our case. Instead of
tackling the problems that arise from translating a single common query language to di-
verse native languages, our approach focuses on problems that arise on behalf of exten-
sibility of the common language.

6 Conclusion and Future Work

In this paper, we presented X-Translate, a system supporting the definition of custom
language extensions to SQL:1999. Language extensions allow the formation of com-
plex data definition and manipulation statements as well as queries that involve custom
language constructs. The main purpose of these constructs (which can be general pur-
pose as well as domain specific) is to allow developers the expression of high-level ab-
stractions that exist at the time the database application is developed, but usually get lost
in the mapping to the limited set of original SQL:1999 constructs. We believe the loss
of these abstractions is a major obstacle for efficient schema reuse and database appli-
cation reengineering.

The paper has shown that the idea of extensible programming language environment
(resembling the one described by Simonyi [22]) can prove useful for the implementa-
tion of schemas and the development of database applications. It is possible to support
the introduction of language extensions in form of packages that are imported into the
system and to semi-automatically extend the corresponding metamodel and XSQL
EBNF (which are shared among different extensions). The process of importing exten-
sion packages has to be user-mediated to assist the system in resolving possible con-
flicts.

In the course of our future work we intend to:
• Consider further language extensions that might be useful for developers. As our

first goal, we attempt to focus on version management of table data.
• Consider a number of interactive tools that would alleviate the import of extension

packages into X-Translate, such as visualization and interactive editing of the ex-
tended metamodel and XSQL EBNF as well as dedicated browser tools for the ex-
tended system catalog. In addition, especially when importing new language pack-
ages, visualization of applied reductions of a statement plays an important role for
discovering inconsistencies with existing language extensions. In our opinion, a ded-
icated debugging tool capable of tracking and visualizing successive reduction phas-
es as well as accesses to the extended system catalog would prove useful. We will
try to integrate the mentioned tools in a single visual environment to be used with the
X-Translate system.



• Explore techniques for improving overall performance of the system.
• Empirically evaluate the scope in which SQL:1999 extensions alleviate the develop-

ment, maintenance, and reengineering of database applications using a large set of
selected sample applications.
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