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Abstract

Support for temporal data continues to be a requirement posed by many applications such as VLSI de-

sign and CAD, but also in conventional applications like banking and sales. The strong demand for com-

plex-object support is known as an inherent fact in design applications, but it also holds for advanced

“conventional” applications. Thus, new advanced database management systems should include both

features, i.e. should support temporal complex-objects. We show that such a system can be efficiently

implemented on top of a (non-temporal) complex-object data model. The central notion of the temporal

complex-object data model is a time slice, representing one state of a complex object. Time slices cannot

be directly stored, if non-disjunct (i.e. overlapping) complex objects are allowed. We explain the mapping

of time slices onto the complex objects supported by the MAD model. Operations on temporal complex-

objects are easily transformed into MAD model operations. Furthermore, we reduce the huge storage

requirements usually arising from temporal databases.

1. Introduction

All human activities are embedded in time. Hence, the model of the world which is used to describe rel-

evant facts in a database also should be capable of including temporal aspects. However, commercial

databases lack this feature, and instead only show the latest state of the world. Concerning a temporal

extension to the relational data model, there is plenty of literature, e.g. [SK86, Sn86, Ta86, Ga88]. Gen-

erally, these proposals do not represent the history of an entity as a whole, but rather cut it into several

pieces (separate tuples). The implementation of a temporal data support for the relational data model

presented in [KRS90] overcomes this restriction by treating the history of an entity (represented by a re-

lational tuple) as a complex object. This allows for powerful yet simple retrieval operations and for an

efficient implementation of the system by mapping it onto a complex-object database system.

Having found a satisfying solution for the temporal extension of the relational data model, we now raise

the question of whether there is a similar solution which allows for a temporal extension even of the com-

plex-object data model itself, which in [KRS90] was used only to realize the relational extension. The

request for complex-object supporting database systems originates from various design areas. In order

to employ database systems for their applications, designers need powerful modelling facilities. One of

the most important requirements is that of modelling a design object as one (complex) object in the da-

tabase, which can be accessed as a whole. However, complex-object data models are useful not only

in these areas, but also in almost all areas, where the relational model has been successful. This fact

will be illustrated by our running example which models a small part of the business world, consisting of

some companies with their employees. Furthermore, design environments (and also almost all other ap-
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plication areas) are characterized by a continual development of their data. This poses at least two re-

quirements to database systems supporting these areas successfully:

• The database system has to supply the notion of a version, which is a state of design which the de-

signer wants to fix explicitly, in order to be able to refer to it later on or to pass it to a cooperating

designer. These aspects of temporal data are covered in [KS91] and [Kä91].

• The database system has to supply the notion of the history of a complex object, e.g. in order to en-

able the reviewing of a design process or to keep track of the development of a company with its

projects and employees etc. This is orthogonal to the previously mentioned versioning concept, be-

cause here nobody knows in advance, which facts in the history of the complex objects will be of any

interest in the future. Furthermore, the semantics of a version (i.e. a distinguished (intermediate) re-

sult or unit of cooperation) do not apply to the history aspect.

In this paper, we deal with history management for complex objects. We choose the molecule-atom data

model (MAD model) [Mi88], which is a general complex-object data model allowing for overlapping com-

plex objects, to serve both as the data model to be extended by a temporal dimension and as the basis

for the implementation of this extension.

2. Motivation

We will implement the temporal extended MAD model (for short the TMAD model) by mapping it onto

the MAD model, i.e. by performing transformations as depicted in Figure 1. The MAD model itself is im-

plemented in the PRIMA system [HMMS87]. The approach of transforming temporal data model objects

and operations has already shown to be an efficient means for the implementation of a temporal extend-

ed relational model, which is described in [KRS90]. However, we face new difficulties here which are

caused by the higher complexity of the objects to be dealt with and the dynamism in the object type def-

inition provided by the MAD model.

• In contrast to tuples of the relational model, the (complex) objects we deal with in TMAD are defined

at query time (and not in the database schema).

• Whenever a tuple changes, we can store the new tuple and preserve the old one (perhaps, applying

some difference techniques in order to save storage space). The change to a complex object, how-

ever, cannot be determined, because complex objects may overlap due to the dynamism of their def-

inition. The only thing we can record is the change to tuples (and the links among them).

Figure 1: The mapping of the temporal data model to the complex-object data model
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Our approach may be characterized as follows. Whenever a complex object change is performed, this

is recorded as a change to tuples and links. The retrieval procedure is much more complicated. It bases

on the notion of time slices. A time slice is defined as a time interval which contains only one state of

each tuple of the complex object. For each time slice, the corresponding complex object is built up. Af-

terwards, the specified conditions and time restrictions are checked in order to identify the qualifying ob-

jects. If such objects exist, a projection is evaluated on the whole history of the complex object, i.e. all

its time slices. We introduce an additional layer on top of the MAD model (called temporal layer) which

is responsible for the transformation of the database schema and queries of the temporal data model

into those of the MAD model. Furthermore, this layer has to construct time slices from the molecules de-

livered by the MAD model.

Section three gives a brief description of the MAD model and introduces our running example. The query

facilities of the model are exemplified on a small sample database.Section four deals with the temporal

extensions of the MAD model thereby defining the TMAD model. The implementation of the TMAD mod-

el by means of the MAD model is shown in section five. We close with a short summary and some con-

clusions.

3. The MAD model

Before we start with the introduction of the main concepts of the MAD model, we depict a small part of

a business world, which will serve us as a running example throughout the paper. Companies organize

their work in Projects, which may be shared with other companies. Employees are assigned to at least

one project. Each project has a single manager. Furthermore, there are sport clubs which are sponsored

by the companies and therefore are open only to their employees. In this small world, we can identify

several complex-object types: A project corresponds to a complex-object type consisting of project-spe-

cific information and all employees assigned to that project. Obviously, instances of this type overlap, if

an employee is assigned to more than one project. A company also forms a complex-object type, includ-

ing projects and employees.

Another example of a complex-object type is the club (consisting of members and club-specific data).

Even employee can be seen as a complex-object type, consisting of personal data, project assignment,

and club membership. From this enumeration, one can conclude that complex-object types belonging to

the same mini-world are non-disjoint and that it is not predictable which of the possible complex-object

types serve the specific needs of an application. A complex-object data model reflecting these observa-

tions is the Molecule-Atom Data Model (MAD Model) [Mi88], which allows for dynamic complex-object

type definitions at query time.

Thus, the database schema consists of a network of building blocks (called atom types) which directly

reflects an entity/relationship model of the mini-world†. Such a schema which describes the mini-world

introduced above is shown in Figure 2. Relationships are modelled by pairs of attributes of type

REF_TO. For example, the relationship between Club and Employee is modelled by the REF_TO at-

tributes Club.members and Employee.club. REF_TO attribute definitions may be augmented by cardi-

nality restrictions which indicate the minimal and the maximal number of identifiers contained in the at-

tribute’s value. A * indicates “no restriction on the maximal number of identifiers”. For example, a club

must have at least four members, and an employee works exactly for one company according to the

† with binary attribute-free relationships
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schema depicted in Figure 2. Each instance of an atom type (called atom) has a unique system-control-

led identifier. A value of a REF_TO attribute consists of a set of such identifiers. To indicate that atoms

a and b are related (linked), the REF_TO attribute of a which points to b’s type contains b’s identifier,

and additionally, the value of the corresponding REF_TO attribute of b contains a’s identifier.

Figure 2: Database schema of the sample database

Using the MAD model’s query language MQL, one can retrieve the complex-object company “Cheese”

(including projects and employees) by the following query:

SELECT ALL

FROM Company.projects-Project.employees-Employee

WHERE company_name = “Cheese”

The query is evaluated by searching qualifying Company atoms, adding all Project atoms whose identi-

fiers are contained in the projects REF_TO attribute, and adding the Employee atoms whose identifiers

are elements of their employees REF_TO attribute.

The SELECT clause specifies which parts of the complex object shall be shown (projection clause), the

FROM clause describes the complex-object type to work on, and the WHERE clause is used to specify

which complex objects of that type qualify.

The query only includes information about the employees, but not about the managers of the projects.

We can change the query to obtain this information by following two paths to Employee. To be able to

distinguish the two occurrences of Employee in this query, we assign so-called role names (E and M) to

them:

SELECT ALL

FROM Company.projects-Project-( .employees-E(Employee),

.managed_by-M(Employee))

WHERE company_name = “Cheese”

CREATE ATOM_TYPE Company (co_id: IDENTIFIER,
company_name: STRING,
employees: REF_TO (Employee.company) (1,*),
projects: REF_TO (Project.companies) (1,*));

CREATE ATOM_TYPE Employee (emp_id: IDENTIFIER,
employee_name: STRING,
salary: INTEGER,
company: REF_TO (Company.employees) (1,1),
works_for: REF_TO (Project.employees) (1,*),
manager_of: REF_TO (Project.managed_by) (0,1),
club: REF_TO (Club.members) (0,*));

CREATE ATOM_TYPE Project (proj_id: IDENTIFIER,
project_name: STRING,
employees: REF_TO (Employee.works_for)(1,*),
managed_by: REF_TO (Employee.manager_of) (1,1),
companies: REF_TO (Company.projects) (1,*));

CREATE ATOM_TYPE Club (club_id: IDENTIFIER,
club_name: STRING,
club_desc: STRING,
members: REF_TO (Employee.club)(4,*));
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Figure 3: Sample database (valid at the first of June, 1988)

A sample database is shown in Figure 3. The “bubbles” represent atoms, whereas the lines represent

the links between them. Regarding this database, we notice that the query shown above will include the

projects “cheese crackers” and “light cheese” and the employees “Mary”, “Bob”, “Ann” and “Jim” into the

complex object “Cheese”. If we want to include only those projects, which exclusively belong to the com-

pany, we have to rewrite the projection clause (to perform a so-called “qualified projection”):

SELECT Company (ALL), SELECT Project(ALL), Employee(ALL)

FROM RESULT

WHERE COUNT(Project.companies) = 1

FROM Company-Project.employees-Employee

WHERE company_name = “Cheese”†

The keyword RESULT indicates that the corresponding SELECT query refers to the result obtained by

the surrounding query. ALL leads to the projection of all attributes of the corresponding atom type. Thus,

this query selects only those projects which belong to exactly one company (i.e. to the company we had

started with).

Furthermore, the MAD model can handle recursively structured complex objects. The expanded data-

base schema as shown in Figure 7 contains two additional attributes of the REF_TO type for each atom

type of the original schema: past and future are used to establish a chain of atoms of the same atom

type. We can retrieve these recursively structured molecules by the following query:

SELECT ALL

FROM Employee REC_PATH Employee.past-Employee

UNTIL salary< 3000

WHERE Employee(FIRST).employee_name= “Mary” AND

Employee(FIRST).future = EMPTY;

† The name of a REF_TO attribute may be omitted, if there is only one such attribute connecting the
two atom types.

Bicycle club
“Fat Boys”

Company.Employees-
Employee.Company

Company.Projects-
Project.Companies
or
Project.Employees-
Employee.works_for

Project.managed_by-
Employee.manager_of

Employee.club-
Club.members

apple piecheese crackerslight cheese

BobMary Ann Bruce
1000 2000 1700 1500

Jim
2500
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The keyword REC_PATH forces the construction of recursive complex objects, which is stopped when

the condition contained in the UNTIL clause would be fulfilled. The algorithm starts with an Employee

atom fulfilling the conditions indicated in the WHERE clause†. Employee(FIRST) names the first Employ-

ee atom in the molecule (i.e. the root of the molecule). Then, the Employee atom referenced by the past

attribute of the root is included into the molecule. Its past attribute is used to find the next level of recur-

sion, and so on, until the UNTIL clause is evaluated to be TRUE or the past attribute is empty‡. Thus, in

our example, the recursion terminates whenever a salary less than 3000 is encountered or when the past

attribute is empty.

Figure 4: Changes applied to the sample database during the year 1989

We cannot detail the MAD model’s powerful operations here. The interested reader is referred to [Mi88,

Schö89].

Obviously, the complex objects as depicted in Figure 3 are subject to changes: new employees are

hired, salaries are raised, project assignments change, etc. We have recorded some changes in Figure

4. Unfortunately, the MAD model discussed so far is capable only of showing the latest state of the da-

tabase. Figure 5 shows the database state after all these changes have been performed.

Figure 5: Sample database (valid at December 31 of 1989)

† Employee(FIRST).future = EMPTY ensures, that the recursion process starts with the most recent
Employee atom.

‡ In our application, the atom chain established by the past/future references is cycle-free. Otherwise,
the recursion would terminate whenever a cycle would appear in the molecule.

2/1/1989: Mary earns 2000
3/1/1989: Mary quits from project “cheese crackers”
4/1/1989: Ann quits company “Cheese” and joins “Cake”

John joins company “Cheese” and is assigned to Project “light cheese”
5/1/1989: Bob becomes Manager of “cheese crackers” instead of Jim
6/1/1989: Bob becomes member of bicycle club “Fat Boys”
7/1/1989: A new project “lemon tart” is created by company “Cake”

Bruce changes its project to “lemon tart” and becomes its manager
Ann is assigned to “lemon tart” and “cheese crackers”

Bicycle club
“Fat Boys”

Employee.club-
Club.members

apple piecheese crackerslight cheese

BobMary
1000 2000

Jim
2500

Jane
3000

Cheese

lemon tart

Bruce
1500

John
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1700
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There is no support for a temporal dimension which would allow for querying the history of a complex

object. Many applications, however, require just this feature. Typically, queries like the following occur:

• “How did company Cheese look like at 3/2/1989?”

• “Which clubs had members of company Cheese in the year 1989?”

• “Who has ever been employee of company Cheese?”

• “For which projects did Mary work during the whole year 1989?”

In the following, we present a temporal extension to the MAD model and MQL, which supports these

kinds of queries. Then, we will discuss how this extension can be implemented on top of the MAD model.

4. The Temporal Model

As mentioned above, the MAD model’s UPDATE operation works like in other non-temporal database

management systems by overwriting the previous values with the new data. Thus, the database repre-

sents only the actual data of the related mini-world like a snapshot. All earlier snapshots of the database

are lost and cannot be retrieved. In contrast to that, temporal databases preserve all snapshots of the

database and allow a wide variety of retrieval facilities on the actual and historical data. In the following,

we will describe the extensions to the schema definition which are necessary to capture all snapshots of

the database, and the operations which are necessary to handle the historical data. We record each

state of an atom by storing the attribute values of each atom’s state together with the time interval of the

state’s validity. For this purpose, we add the attributes valid_from and valid_until to each atom type def-

inition. Furthermore, all states of an atom are connected to one another by the attributes past and future

(cf. Figure 7). In the sequel, we will use the term “temporal atom” for the collection of all states of an atom.

Figure 6: Schema extension of the database in order to capture the historical data

Temporal Databases and Updates

In order to preserve the previous values of the data which is usually overwritten by an UPDATE opera-

tion, we have to redefine the semantics of this operation. The new operation T_UPDATE† has to work

in a different way. Instead of overwriting the previous values, T_UPDATE creates a copy of the original

atom, changes the related values and inserts the modified atom into the database. Now we have to con-

†  We precede all operations of our temporal model with T_.

CREATE ATOM_TYPE Company(co_id: IDENTIFIER,
company_name: STRING,
employees: REF_TO (Employee.Company) (1,*),
projects: REF_TO (Project.Companies) (1,*),
valid_from: TIME(DAY),
valid_until: TIME(DAY),
past: REF_TO (Company.future) (0,1),
future: REF_TO (Company.past) (0,1) );

CREATE ATOM_TYPE Employee(...

CREATE ATOM_TYPE Project(...

CREATE ATOM_TYPE Club (...
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sider two points, because these two atoms logically represent one atom. Firstly, we have to mark each

atom with its validity interval. Secondly, we have to combine the atoms which build one temporal atom.

We accomplish the first task by assigning appropriate values to the attribute pair valid_from and

valid_until† of the atom. The T_UPDATE operation has to ensure that the valid_from attribute of the new

atom contains the same value as the valid_until attribute of the previous atom in order to avoid “holes”

in the history of the atom. The user has to specify the validity time in the T_UPDATE statement, because

this time reflects when the associated fact will be valid in the mini-world. There is also the notion of trans-

action time, which represents the time, when a fact is recorded in the database. In the following, we con-

sider only the validity time, because the transaction time can be handled analogously.

In order to accomplish the second task mentioned above, we have to combine all atoms constituting the

history of one (temporal) atom. We do this by creating a time ordered chain of these atoms via REF_TO

attributes (named past and future). Thus, each atom representing a part of a history contains in its past

attribute the identifier of the previously valid atom and in its future attribute the identifier of the next newer

atom, respectively. In the following, we call such a chain of atoms Time Sequence (TS) [KRS90].

Figure 7: History of Mary

As an example, Figure 7a shows the TS representing Mary’s history according to our mini-world. The TS

of Mary consists of three atoms. The most recent atom contains no reference in its future attribute,

whereas the oldest atom contains no reference in its past attribute. Furthermore, Figure 7b reflects the

fact that Mary’s history is only one part of the database and therefore the atoms are connected with other

atoms of the database constituting the so-called complex objects (the whole database is shown in Figure

8). Raising Mary’s salary to 2000 at the 1st of February 1989 forces the insertion of a new atom into the

database as described by the T_UPDATE operation. Thus, all references (i.e. all values of the REF_TO-

type attributes) are copied into the new atom connecting it to all previously referenced atoms. In order

to guarantee referential integrity, the database system modifies the referenced atoms making them ref-

erence also the new atom of Mary’s history (i.e. of Mary’s TS) [Schö90]. Please notice, that this is the

only real update operation in our scenario‡. Of course, we could reflect the modifications to the REF_TO

attributes by creating a new atom as we do for other updates. Then, references to the new atom would

† valid_until contains a special NULL value, if we don’t know how long the data will be valid in the future.
‡ Obviously, our approach leads to different databases representing the same mini-world. If, for exam-

ple, Bob joins the bicycle club “Fat Boys”, this can be seen as a change to Bob’s state (creating a
new atom representing Bob and updating the references of the “Fat Boys” atom). Or it can alterna-
tively be seen as a change to “Fat Boys”, creating a new atom of the bicycle club and updating Bob’s
references. The retrieval procedure discussed in section 5, however, constructs the same result from
both databases for each query.

works_for
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have to be added to all atoms referencing it. Thus, a snowball effect would be initiated, which in the worst

case could generate a new copy of almost the whole database.

As a consequence of our approach, cardinality restrictions have to be reconsidered. The upper bounds

may not longer hold, if for an atom references to more than one atom of the same TS exists. For exam-

ple, in the database shown in Figure 8, the REF_TO attribute managed_by of “cheese crackers” contains

3 identifiers, although in the original schema the cardinality restriction was (1,1). Hence, we remove the

upper bounds when transforming the original schema.

Summarizing, we should stress that the extension of each atom type definition of the database schema

by two attribute pairs (valid_from/valid_until and past/future) and the modification of the update operation

is sufficient for storing the historical data along with the actual data in the database. Now, we have to

(re)define the semantics of the retrieval operation.

Retrieval in Temporal Databases

As a first objective, we have to guarantee that retrieval operations referring only to the actual data have

to show the same behaviour in the temporal database and in the non-temporal database. As a second

objective, we want to have powerful retrieval operations working on the historical data. These queries

can be differentiated according to the kind of temporal qualification they use in the WHERE clause. Be-

fore we investigate these different kinds of temporal queries, we give a short overview of the syntax of

the retrieval statements. In general, we use the syntax of the introduced MQL with some slight modifica-

tions.

T_SELECT projection_list [temporal_projection]

T_FROM object_definition

T_WHERE non_temporal_condition temporal_selection

temporal_selection ::= AT <time_point>|

{SOMETIMES | ALWAYS} DURING [time_point, time_point]

temporal_projection ::= CORRESPONDING |

AT time_point |

DURING [time_point, time_point]

In the following, we will discuss several kinds of temporal queries. We illustrate them by running some

sample queries against our database as depicted in Figure 8. Since Figure 8 shows only a part of the

database, most of the atoms have a validity interval from the first of January 1988 until now. The atoms

connected by a bold edge are atoms constituting one TS. The TS reflect the changes to the database

as shown in Figure 4. During the discussion of the query types, we neglect the temporal projection which

we will discuss in a following step.

juncture query

This kind of query refers to the database state valid at a single point in time, like in the query “How did

company Cheese look like at the 2nd of March 1989?”. Perhaps, this is the most obvious way how the

historical data can be accessed, i.e. we refer to a certain recent state of the database. The condition

given in the WHERE clause is evaluated on the data valid at the given point in time†. Using the intro-

duced syntax, we get the following temporal query:

† Thus, the company would also be retrieved, if it had changed its name after this date.
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(1) T_SELECT ALL

T_FROM Company-Project-(.employees-E(Employee), .managed_by-M(Employee))

T_WHERE company_name = “Cheese”

AT 3/2/1989

This query selects the values of all attributes of the companies (“Cheese”), the projects (“light cheese”

and “cheese crackers”), their employees (“Mary”, “Bob”, “Jim” and “Ann”), and their managers (“Mary”

and “Jim”) valid at the 2nd of March 1989.

As a special case, we can use the time function NOW which computes the actual date and time. Thus,

the clause “AT NOW” retrieves the actual data from the database†.

existential interval query

The interval queries refer to an interval in time corresponding to one or several states of the data. In case

of the existential interval query, the condition given in the WHERE clause has to hold at least for one

point in time included in the given interval. For example, the query “Which clubs had members of com-

pany Cheese in the year 1989?” results in the following temporal query:

(2) T_SELECT club_name

T_FROM Club-Employee-Company

T_WHERE EXISTS Company: company_name = “Cheese”

SOMETIMES DURING [1/1/1989, 12/31/1989]

The query retrieves all clubs which have at least one member who worked for company “Cheese” at least

for one point in time (within the given interval). In our sample database, we would get the bicycle club

“Fat Boys”, because Bob joined the club at the 1st of June 1989.

universal interval query

In this case, the given condition has to hold for all states of the database valid in the given interval. Thus,

the sample query (2)‡ would have an empty result, because Bob wasn’t member of the bicycle club in

the first half of the year 1989. For another example, we could ask “For which projects did Mary work dur-

ing the whole year 1989?”:

(3) T_SELECT project_name

T_FROM Project.employees-Employee

T_WHERE EXISTS Employee: employee_name = “Mary”

ALWAYS DURING [1/1/1989, 12/31/1989]

In our sample database, the query retrieves only project “light cheese”.

After having detailed the semantics of temporal selections, we have to take a closer look to the result of

those queries.

Results of Temporal Queries

A query in the MAD model yields a set of molecules as its result. Analogously, a temporal query yields

a set of molecule histories, which in turn are constituted of sets of molecules, each representing one

† We use this clause as default, if the query contains no explicit temporal selection.
‡ Of course, modified by changing SOMETIMES to ALWAYS.
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state of the complex object valid for some interval of time (which we will specify later on). We call such

a molecule together with the validity interval time slice (or shortly TSL). A time slice contains at most one

state of each atom. As a consequence, the validity intervals of all atoms included in a time slice are

equal. As an example, Figure 9 shows the time slices derived from a sample database of three temporal

atoms. Obviously, each time slice equals to the result of a corresponding non-temporal query from a non-

temporal database, asked at a point in time during the validity interval of the TSL.

Figure 9: Example of a time slice (TSL) construction

In the case of the juncture query with the time selection “AT NOW” discussed above, each molecule his-

tory consists of exactly one time slice. Thus, the first requirement (queries referring to the actual state of

the database generate the same result as in non-temporal MAD databases) is fulfilled.

However, the result of temporal queries becomes more complex, if we take a more general view: Select-

ing data at one special point in time (i.e. via a juncture query) does not necessarily mean that we want

to get only the data valid at this special point in time. For example, we can ask for the actual salary of

those employees who had worked for project “cheese crackers” at the 15th of February 1989. Thus, we

have to apply a temporal projection which works like the qualified projection of the MAD model, i.e., the

temporal projection selects those TSL from the result of a temporal query which are required by the user.

For this purpose, we can apply an “AT” clause and a “DURING” clause in the temporal projection. The

“CORRESPONDING” clause† leads to the selection of those TSL which were valid during the time spec-

ification given in the WHERE clause. The following example of a juncture query illustrates the effect of

the different temporal projection clauses.

(4) T_SELECT employee_name, salary

T_FROM Project.employee-Employee

† We use this clause as default, if no explicit temporal projection is applied.

1/1/90-1/31/91

1/1/89-2/1/90 3/1/90-3/31/912/1/90-3/1/90

2/3/90-2/1/92

This is a sample molecule as is would

be derived by MAD without the tempo-

ral component. Each represents

an atom. The different shadings show

different atom types.

1/1/89-2/3/90

1/1/90-2/1/90

1/1/90-2/1/90

First TSL: the validi-

ty times are adjust-

ed. The atom

does not fit into this

TSL.

2/1/90-2/3/90

2/1/90-2/3/90

2/3/90-3/1/902/1/90-2/3/90

Second and third TSL: the validity

times of the atoms force the cre-

ation of two TSL.

1 2 3

1 2

2/3/90-3/1/90

2/3/90-3/1/90
2

2 3

2 3

3/1/901/31/91

3/1/90-1/31/91

Fourth TSL: No

atoms available

3
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T_WHERE project_name = “cheese crackers”

AT 2/15/1989

• Using “CORRESPONDING” as temporal projection would retrieve “Mary 2000”, “Bob 2000”, “Ann

1700”, and “Jim 2500”.

• Using “AT 1/15/1989” as temporal projection would retrieve a salary of 1000 for Mary instead of 2000

as shown above.

• Using “DURING [1/15/1989, 3/15/1989]” as temporal projection would retrieve two TSL for Mary:

“1000 for [1/15/1989, 31/1/1989]” and “2000 for [2/1/1989, 2/28/1989]”.

So far, we have introduced the TMAD model as a powerful data model for handling temporal complex

objects. We have detailed various kinds of temporal queries and temporal answers. In the following

chapter, we will discuss the implementation of the TMAD model as a layer on top of the MAD model.

5. Implementation of the Temporal model

In order to safe as much implementation work as possible, we decided to implement the temporal com-

plex-object data model (TMAD) by an additional layer on top of the MAD model. Thereby, we want to

delegate as much work as possible to the MAD model.

We describe the mapping process beginning with the building blocks of the TMAD model, the temporal

atoms. As already mentioned, there have to be the additional attributes valid_from and valid_until as well

as the previous and the next REF_TO attribute. Thus, each user-defined temporal atom type is trans-

formed to a MAD atom by adding these four attributes and omitting the upper bounds of the cardinality

restrictions. Manipulation of temporal atoms has already been described. Only the handling of retrieval

statements has still to be discussed.

We transform each TMAD query to a MAD query which defines one molecule for each molecule history.

juncture query

Juncture queries are easy to transform: we only have to find one time slice by evaluating the valid_from

and valid_until attribute (Example 1)

T_SELECT ALL

T_FROM Club-Employee

T_WHERE employee_name = “Mary” AT 3/1/1989

is transformed to

SELECT ALL

FROM Club-Employee

WHERE employee_name = “Mary” AND

Club.valid_from ≤ 3/1/1989 AND

((Club.valid_until > 3/1/1989) OR IS_NULL (Club.valid_until))

Example 1: Transformation of a juncture query

It is sufficient to ask only for the valid_from and valid_until attributes of the root atom type, because it

contains all references which were relevant in the interval formed by valid_from and valid_until. The

valid_until attribute may have a NULL value, if the atom is representing the actual state.
13



universal interval query

In this case, we have to retrieve a set of temporal molecules, each of them representing a sequence of

different states of the molecule valid during one interval in time. For this purpose, we first retrieve the

MAD molecule which represents the latest state of the temporal molecule as referenced in the query.

We then append all states until we reach the lower bound of the time interval by using the MAD models

recursion facility. Hence, we use the next and previous attributes of the root atom type of the molecule.

Example 2 illustrates our approach.

T_SELECT ALL

T_FROM Company-Employee

T_WHERE company_name = “Cake”

ALWAYS DURING [2/1/1989, 5/1/1989]

is transformed to

SELECT ALL

FROM (Company-Employee) RECURSIVE Company.previous-Company

UNTIL Company.valid_until < 2/1/1989

WHERE Company(0).valid_from ≤ 5/1/1989 AND

(Company(0).valid_until > 5/1/1989 OR

IS_NULL (Company(0).valid_until)) AND

Company(LAST).valid_from ≤ 2/1/1989 AND

FOR ALL Company(ALLREC):

Company(ALLREC).company_name = “Cake”

Example 2: Transformation of a universal interval query.

The UNTIL clause stops the construction of the recursive molecule when the interval is overstepped. The

condition “Company(Last).valid_from ≤ 2/1/1989” guarantees that the complex object existed during the

whole interval.

Here, the condition is included into the MQL query because it only restricts the root atom type. In general,

the condition cannot be evaluated by MAD because it is time specific. For example, consider the condi-

tion “SUM(salary)<8000” added to the above query. The molecule constructed by the MAD query con-

tains two atoms of “Ann”. Thus, regarding the molecule, the condition would be violated, although it holds

for each time slice.

existential interval query

In the case of an existential interval query the condition “Company(LAST).valid_from ≤ 2/1/1989” is omit-

ted and the “FOR ALL” is replaced by “EXISTS”. The remarks concerning the evaluation of the condition

by MAD hold also for this kind of queries.

construction of time slices

The result of such queries is a set of recursive molecules each belonging to one complex object. Each

recursion level of such a molecule corresponds to one state of the complex object, starting with the most

recent state within the specified interval. These molecules have now to be transformed into a set of time

slices for each complex object. This is done by the temporal layer. First, the validity intervals of the time

slices have to be computed. All valid_from (or valid_until) attributes in the molecule, which do not exceed
14



the interval specified by the query are sorted. In this sorted list, each two adjacent values form the validity

intervals of a time slice†. For each time slice, the corresponding root atom is determined. The construc-

tion mechanism of the time intervals for each TSL guarantees that each time slice contains at most one

state of each temporal atom. From the root atom, the links are followed, thereby discarding all atoms

which do not overlap the time interval of the TSL. The validity time of all atoms of a TSL is set to that of

the TSL itself. As soon as the TSL are constructed, the conditions which could not be transferred to MAD

must be tested. In the case of an existential interval query the condition has to hold for at least one of

the TSL, in the case of a universal interval query for all TSL.

Until now, we implicitly required the projected time to be a sub-interval of the time of the “time selection

clause”.

This makes the mapping process easier, but is not a necessary restriction. We can use the methods dis-

cussed in [KRS90] to overcome it.

Alternatively, the temporal layer may perform its work in two steps in the case where the projected time

is not a sub-interval of the time of the time selection clause. In a first step, the qualifying molecules are

computed as described above and the identifiers of the root atoms are memorized. Then, a second que-

ry with the only condition “Recursive molecule contains one of the identifiers memorized in step 1” is

used to retrieve the final result.

As mentioned above, during the construction of a time slice, atoms which are not valid during the validity

interval of the time slice, are discarded. Hence, atoms which are outside of the interval specified in the

temporal selection clause are always discarded by the temporal layer. Obviously, the MAD queries as

described above deliver a couple of such atoms, as the following example illustrates:

temporal query:

T_SELECT ALL

T_FROM Company-Employee

T_WHERE company_name = “Cheese” AT 5/1/1989

MAD query:

SELECT ALL

FROM Company-Employee

WHERE Company.Company_Name = “Cheese” AND

Company.valid_from ≤ 5/1/1989 AND

(Company.valid_until > 5/1/1989 OR IS_NULL (Company.valid_until))

Example 3: Sample juncture query transformation

In our sample database, there is only one Company atom representing Cheese. Hence, this atom as well

as all referenced employees including Ann are retrieved. However, Ann does not belong to Cheese at

5/1/1989. The corresponding atom could be discarded by the additional temporal layer. We prefer dis-

carding it already in the MAD query by using the concept of qualified projection for each atom type in-

volved. Thus the optimized transformation result is:

† The first and the last value of the list form an interval with the corresponding bounds of the interval
specified in the query.
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SELECT Company, SELECT ALL

FROM Employee

WHERE Employee.valid_from ≤ 5/1/1989 AND

(Employee.valid_until > 5/1/1989 OR

IS_NULL(Employee.valid_until))

FROM Company-Employee

WHERE Company.Company_Name = “Cheese” AND

Company.valid_from ≤ 5/1/1989 AND

(Company.valid_until > 5/1/1989 OR IS_NULL (Company.valid_until))

Analogously, for interval queries, all atom types except the root atom type undergo the qualified projec-

tion.

6. Conclusion and Outlook

Comparison to the TMQL model

In [KRS90] we presented a temporal extension to the relational model. There, we added only one “valid”

attribute to the relations (having the semantics of valid_from). valid_until was represented in the next

atom of a time sequence. This prevents “holes” in the time sequence already by the way of modelling.

Furthermore, the insertion of a new state of an atom did not force an explicit change of an attribute

(valid_until) of the previous atom. However, retrieval queries become more complex. In order to stress

the complex-object aspects of our approach presented in this paper, we have chosen the more intuitive

approach of both attributes. Nevertheless, there is no reason why the approach of [KRS90] cannot be

applied here. Also, the storage saving techniques presented there are applicable.

Conclusion

We have shown that it is possible to extend a complex object data model by a temporal dimension with-

out a huge amount of overhead. We could use all facilities of the underlying complex-object data model,

and had only to restructure the results of queries to this model. One temporal query corresponds to only

one non-temporal query or to two queries if the less sophisticated method of handling projections outside

the selection interval (cf. section 5) is chosen.

The basic idea of our approach is not to represent a change to a complex object by storing the new state

of the whole complex object, but rather by representing only the new state of the building block which

had changed. This is a prerequisite for incorporating dynamic complex object definitions at query time

into the temporal complex-object data model. Furthermore, this approach does not require a huge stor-

age overhead, even without additional compression techniques like the ones presented in [KRS90].

Notice that the concept of a unique identifier for each temporal atom is not automatically supported by

our approach. We do not see the need for such an identifier (because it can neither be used for refer-

ences nor is it necessary to group the various states of a temporal atom by such an identifier, because

they are already linked to one another by the REF_TO attributes past and future). Nevertheless, a

unique identifier could be computed by the temporal layer at the creation time of a temporal atom and

might be added to the atoms’s schema definition. For the underlying MAD database, it will appear as a

normal attribute.
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As a further work, we will consider whether there are any other classes of temporal queries which make

sense in the complex-object context (perhaps the “coincidence” queries of [KRS90]). Furthermore, we

have to investigate in which case conditions which do not only restrict the root atom type may be trans-

ferred to the MAD query. We will also have to study the impact of clustering mechanisms on the perform-

ance of our temporal database system. Obviously, we cannot cluster all states of a molecule physically.

We have to investigate whether there are any tailored access paths for our approach.

We claim that the temporal extension presented in the context of the MAD model is also possible for

similar complex-object data models. As a result of our work, we conclude that implementing a temporal

complex-object data model quite efficiently is not much harder than implementing a non-temporal com-

plex-object data model.
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