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Abstract

Support for temporal data continues to be a requirement posed
many applications such as VLSI design and CAD, but also in co
ventional applications like banking and sales. Furthermore, t
strong demand for complex-object support is known as an inher
fact in design applications, and also emerges for advanced “conv
tional” applications. Thus, new advanced database managem
systems should include both features, i.e. should supporttemporal
complex-objects. In this paper, we present such a temporal com
plex-object data model. The central notion of our temporal com
plex-object data model is atime slice, representing one state of a
complex object. We explain the mapping of time slices onto t
complex objects supported by the MAD model (which we use f
an example of anon-temporalcomplex-object data model) as wel
as the transformation process of operations on temporal comp
objects into MAD model operations. Thereby, the basic propert
of the MAD model are a prerequisite for our approach. For exa
ple, time slices can only be directly stored, if non-disjunct (i.e. ove
lapping) complex objects are easily handled in the underlying co
plex-object data model.

1. Introduction

All human activities are embedded in time. Hence, the model of t
world which is used to describe relevant facts in a database a
should be capable of including temporal aspects. However, co
mercial databases lack this feature, and instead only show the la
state of the world. Concerning a temporal extension to the relatio
data model, there is plenty of literature, e.g. [Da88, Ga88, GY8
Sn86, SS88, Ta86]. Generally, these proposals do not represen
history of an entity as a whole, but rather cut it into several piec
(separate tuples). The implementation of a temporal data supp
for the relational data model presented in [KRS90] overcomes t
restriction by treating the history of an entity (represented by a
lational tuple) as a complex object. This allows for powerful ye
simple retrieval operations and for an efficient implementation
the system by mapping it onto a complex-object database syste

The relational model has been found useful in commercial applic
tions, but there are application areas where more powerful d
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models are required, for example CAD, expert systems or ge
graphic applications. For these areas, complex-object data mo
have been developed which map each entity of the real world
only one object in the databases, whereas the relational mode
general maps it to many tuples of different relations due to the n
malization required by this model. For example, the entity typ
“company” (which consists of employees, projects, plants, etc.)
mapped to a set of relations when using the relation model, wher
a complex-object data model maps is to a single (complex) obj
type. We claim that complex-object data models are useful in
most all areas, where the relational model has been successful.
fact will be illustrated by our running example which models
small part of the business world, consisting of some companies w
their employees.

Having found a satisfying solution for the temporal extension of th
relational data model, we now raise the question of whether ther
a similar solution which allows for a temporal extension of a com
plex-object data model. In particular, changes to the buildin
blocks of a complex object (for example, raise of the salary of
employee of the company) and to the relationships among them
example, a change in the project assignment of an employee) m
be captured in a natural way.

Modelling complex objects with the relational model has bee
found very cumbersome, mainly because of the great number
joins to be performed. Looking at temporal extensions of the re
tional model, we can recognize that the temporal evolution of o
jects (tuples) is captured quite well. However, changes in the re
tionships among objects are not easily handled, because in gen
two tuples may be joined only when they are temporally coincide
For this purpose, various forms of a “temporal join” have been i
troduced [GS90, SG89]. All of them are very complex operatio
and therefore even more expensive than the usual join operatio
relational database systems. We will see that modelling comp
objects with the help of atemporal complex-objectdata model in-
stead of the temporal relational model relieves us from the burd
of a temporal join facility.

We did not choose an example from a design environment or ano
er advanced application area to illustrate our approach, because
wanted to avoid the introduction of these sophisticated enviro
ments here. Nevertheless, the reader should observe the corres
dence of the temporal development of the complex objects in o
example and the temporal development of complex objects in
vanced applications. Design environments (and also almost all o
er application areas) are characterized by a continual developm
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of their data. This poses at least two requirements to database sys-
tems supporting these areas successfully:

• The database system has to supply the notion of aversion,
which is a state of design which the designer wants to fix ex-
plicitly, in order to be able to refer to it later on or to pass it to
a cooperating designer. Versioning tends to be non-linear, i.e.,
contain branches and alternatives. These aspects of temporal
data are covered in [KS92] and [Kä91].

• The database system has to supply the notion of thehistoryof a
complex object, e.g. in order to enable the reviewing of a design
process or to keep track of the development of a company with
its projects and employees etc. This is orthogonal to the previ-
ously mentioned versioning concept, because here the facts in
the history of the complex objects which will be of any interest
in the future are not known in advance. Furthermore, the se-
mantics of a version (i.e. a distinguished (intermediate) result or
unit of cooperation) do not apply to the history aspect. Time in
this context is linear.

In this paper, we deal with the latter aspect (history management for
complex objects). We choose the molecule-atom data model (MAD
model) [Mi88], which is a general complex-object data model al-
lowing for overlapping complex objects, to serveas the data model
to be extendedby a temporal dimension as wellas to implement this
extension by mapping it onto the MAD model(i.e. by performing
transformations as depicted in Figure 1). We call the temporally ex-
tended MAD modelTMADmodel, for short. The MAD model itself
is implemented in the PRIMA system [HMMS87]. The approach of
transforming temporal data model objects and operations has al-
ready shown to be an efficient means for the implementation of a
temporal extended relational model, which is described in
[KRS90]. However, we face new difficulties here which are caused
by the higher complexity of the objects to be dealt with and the dy-
namism in the object type definition provided by the MAD model.

Figure 1: The mapping of the temporal data model to the complex-
object data model

The following section gives a brief description of the MAD model
and introduces our running example. The query facilities of the
model are exemplified on a small sample database. Section three
deals with the temporal extensions of the MAD model thereby de-
fining the TMAD model, which is again illustrated on our sample
database. The fourth section discusses the implementation of the
TMAD model by means of the MAD model. We close with a short
summary and some conclusions.

2. The Molecule-Atom Data Model

Before we start with the introduction of the main concepts of the
MAD model, we depict a small part of a business world, which will

serve us as a running example throughout the paper.Companiesor-
ganize their work inProjects, which may be shared with other com-
panies.Employeesare assigned to at least one project. Each proje
has a single manager. Furthermore, there are sportClubswhich are
open only to the employees of the companies. In this small wor
we can identify several complex-object types: A project corr
sponds to a complex-object type consisting of project-specific
formation and all employees assigned to that project. Obviously,
stances of this type overlap, if an employee is assigned to more t
one project. A company also forms a complex-object type, inclu
ing projects and employees.

Another example of a complex-object type is the club (consisting
members and club-specific data). Even employee can be seen
complex-object type, consisting of personal data, project assi
ment, and club membership. From this enumeration, one can c
clude that complex-object types belonging to the same mini-wo
are non-disjoint and that it is not predictable which of the possib
complex-object types serve the specific needs of an application
complex-object data model reflecting these observations is the m
ecule-atom data model (MAD model) [Mi88], which allows for dy
namic complex-object type definitions at query time.

Figure 2: Database schema of the sample database

operations on
(non temporal)

complex objects non-temporal
complex object

transformed to modelled by realized using

system

(molecules)
complex objects database management(MAD model)

temporal

database management
complex-object

system

temporal queries complex objects

complex objects
on

(TMAD)
with history

CREATE ATOM_TYPE Company (
co_id: IDENTIFIER,
company_name: STRING,
capital_stock: INTEGER,
employees: REF_TO (Employee.company) (1,*),
projects: REF_TO (Project.companies) (1,*));

CREATE ATOM_TYPE Employee (
emp_id: IDENTIFIER,
employee_name: STRING,
salary: INTEGER,
company: REF_TO (Company.employees) (1,1),
works_for: REF_TO (Project.participants) (1,*),
manager_of: REF_TO (Project.managed_by) (0,1),
clubs: REF_TO (Club.members) (0,*));

CREATE ATOM_TYPE Project (
proj_id: IDENTIFIER,
project_name: STRING,
budget: INTEGER,
participants: REF_TO (Employee.works_for)(1,*),
managed_by: REF_TO (Employee.manager_of) (1,1),
companies: REF_TO (Company.projects) (1,*));

CREATE ATOM_TYPE Club (
club_id: IDENTIFIER,
club_name: STRING,
club_desc: STRING,
members: REF_TO (Employee.clubs)(2,*));

Project

Club

EmployeeCompany

E/R diagram of the sample mini world

clubs

members

company

employees

projects

companies

w
orks_for

m
anager_ofmanaged_by

participants
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Company.employees-
Employee.company

Company.projects-
Project.companies
or
Project.participants-
Employee.works_for

Project.managed_by-
Employee.manager_of

Employee.clubs-
Club.members

light cheese

BobMary Ann Bruce
1000 2000 1700 1500

Jim
2500

Jane
3000

Cheese
1,000,000

Cake
2,000,000

200,000
cheese crackers

700,000
apple pie
300,000

Figure 3: Sample database (valid at the first of June, 1988)
Bicycle club
“Fat Boys”
Thus, the database schema consists of a network of building blocks
(called atom types) which directly reflects an entity/relationship
model of the mini-world1. A MAD model schema definition which
describes the mini-world introduced above is shown in Figure 2.
Relationships are modelled by pairs of attributes of type REF_TO.
For example, the relationship betweenClub andEmployeeis mod-
elled by the REF_TO attributesClub.membersandEmployee.clubs.
Each instance of an atom type (called atom) has a unique system-
controlled identifier. The value of a REF_TO attribute consists of a
set of such identifiers. To indicate that atomsa andb are related
(linked), the REF_TO attribute ofa which points tob’s type con-
tainsb’s identifier, and additionally, the value of the corresponding
REF_TO attribute ofb containsa’s identifier. REF_TO attribute
definitions may be augmented by cardinality restrictions which in-
dicate the minimal and the maximal number of identifiers contained
in the attribute’s value. A “*” indicates “no restriction on the max-
imal number of identifiers”. For example, a club must have at least
two members, and an employee works exactly for one company ac-
cording to the schema depicted in Figure 2. A sample database is
shown in Figure 3. The “bubbles” represent atoms, whereas the
lines represent the links between them.

Using the MAD model’s query language MQL, one can retrieve the
complex object “Cheese” (company including projects and their
employees) by the following query: (Query 2.1)

SELECT ALL
FROM Company.projects-Project.participants-Employee
WHERE company_name = “Cheese”

The query is evaluated by searching qualifyingCompanyatoms,
adding all Project atoms whose identifiers are contained in the
projectsREF_TO attribute, and adding theEmployeeatoms whose
identifiers are elements of theirparticipants REF_TO attribute.

Figure 4: Result of Query 2.1

The SELECT clause specifies which parts of the complex object
shall be shown (projection clause), the FROM clause describes the
complex-object type to work on (molecule type definition), and the

WHERE clause is used to specify which molecules of that ty
qualify. The result of a query is a set of molecules, the type of whi
is dynamically defined at query time.

The result of this query applied to the database of Figure 3 is sho
in Figure 4. The query only includes information about the emplo
ees, but not about the managers of the projects. We can change
obtain this information by following two paths (i.e., links of two
different types) toEmployee. To be able to distinguish the two oc-
currences ofEmployeein this query, we assign so-called role name
(P and M) to them. The following query also shows the use of t
projection clause.

SELECT Company(capital_stock), Project (Budget),
P (salary, employee_name), M (employee_name)

FROM Company.projects-Project-(.participants-P (Employee)
.managed_by-M (Employee))

WHERE company_name = “Cheese”

The result of this query contains one molecule consisting of an at
representing the company’s capital stock, one atom for each pro
(showing the budget of the project), atoms for each employee as
picted in Figure 4, and additionally the atoms indicating that Ma
and Jim are managers. The atoms are interconnected by approp
links. Regarding Figure 4, we notice that query 2.1 includes t
projects “cheese crackers” and “light cheese” and the employ
“Mary”, “Bob”, “Ann”, “Jim”, and “Bruce” into the complex object
“Cheese”. If we want to include only those projects, which exclu
sively belong to the company, we have to rewrite the projectio
clause (to perform a so-called “qualified projection”):

SELECT Company (ALL),
SELECT Project(ALL), Employee(ALL)
FROM RESULT
WHERE COUNT(Project.companies) = 1

FROM Company-Project.participants-Employee
WHERE company_name = “Cheese”2

The keyword RESULT indicates that the corresponding SELEC
query refers to the result obtained by the surrounding query. AL
leads to the projection of all attributes of the corresponding ato
type. Thus, this query selects only those projects which belong
exactly one company (i.e. to the company we had started with)

If we want to get all projects of a company, but only the company
own employees, we can specify this by using the network seman
of the MAD model: if there is more than one reference attribu
pointing to an atom type, atoms of this type are included only if the
are reachable via all the references attributes:

1.with binary attribute-free relationships of type 1:1, 1:n, or n:m.

BobMary Ann
1000 2000 1700

Jim
2500

Bruce
1500

light cheese

Cheese
1,000,000

200,000
cheese crackers

700,000

2.The name of a REF_TO attribute may be omitted in the molecule type d
inition, if there is only one such attribute connecting the two atom type
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SELECT ALL
FROM Company - (.projects - Project.participants-Employees,

.employees-Employees)
WHERE company_name = “Cheese”

Furthermore, the MAD model can handle recursively structured
complex objects. Suppose, for example, one wants to retrieve all
employees who directly or indirectly come into contact to “Mary”.
Two employees come into contact if they work in the same project.
We can retrieve this information by the following query:

SELECT ALL
FROM Employee.works_for - Project

RECURSIVE Project.participants - Employee
WHERE Employee(FIRST).employee_name= “Mary”

The keyword RECURSIVE forces the construction of recursive
complex objects (transitive closure). An additional UNTIL clause
may be used for the premature termination of the recursion.

We cannot detail the MAD model’s powerful operations here. The
interested reader is referred to [Mi88, Schö89].

Obviously, the complex objects as depicted in Figure 3 are subject
to changes: new employees are hired, salaries are raised, project as-
signments change, etc. We have recorded some changes in Figure
5. These changes may be applied to the database using the MQL
statement UPDATE (replacing the old values by the new ones). Un-
fortunately, the MAD model discussed so far is capable only of
showing the latest state of the database. Figure 6 shows the database
state after all these changes have been performed.

Figure 5: Changes applied to the sample database during 1989

There is no support for a temporal dimension which would allow
for querying the history of a complex object. Many applications,
however, require just this feature. Typically, queries like the fol-
lowing occur:

• “How did companyCheese look like at 3/2/1989?”
• “Which clubs had members of companyCheesein the year

1989?”
• “Who has ever been employee of companyCheese?”
• “For which projects did Mary work during the whole year

1989?”
• “Which projects had a budget of 400,000 or more when one of

their companies had a capital stock of 1,000,000 or less?”

In the following, we present a temporal extension to the MAD mod-
el and MQL, which supports these kinds of queries. Then, we will
discuss how this extension can be implemented on top of the MAD
model.

3. The Temporal Complex-Object Data Model

In this section, we will discuss the temporal data model TMAD
which we want to implement. As mentioned before, it is an exten-

sion of the MAD model, and therefore, we will base the introdu
tion of the temporal model on the MAD model. We start we the o
jects known by TMAD, which are molecule histories. We then po
tulate the retrieval facilities needed in TMAD, and end with a dis
cussion of manipulation operations. We do not address schema
inition aspects, because they can be derived from the MAD mo
in a straightforward way.

Objects of TMAD

The objects dealt with by the MAD model are molecules: an MQ
query yields a set of molecules as its result, and manipulation sta
ments manipulate (sets of) molecules. Hence, the objects of a t
porally extended MAD model are temporally extended molecul
(molecule histories), and a temporal query yields a set of molecul
histories as result. A molecule history describes the evolution o
molecule in a certain interval of time (validity interval). It consists
of all states the molecule has had during the interval. Each stat
a molecule enhanced by a validity interval specifying when th
molecule had this state. We call such an enhanced moleculetime
slice (TSL). Obviously, each time slice equals (apart from the v
lidity interval) to the result of a corresponding non-temporal que
from a non-temporal database, asked at a point in time during
validity interval of the TSL.

Retrieval in Temporal Databases

In this section, we identify the retrieval facilities required fo
TMAD. As a first objective, we have to guarantee that retrieval o
erations referring only to the actual data show the same behavi
in the temporal database and in the non-temporal database. A
second objective, we want to have powerful retrieval operatio
working on the historical data. These queries can be differentia
according to the kind of temporal qualification they use in th
WHERE clause. Before we investigate these different kinds of te
poral queries, we give a short overview of the syntax of the retriev
statements. We precede all operations of our temporal model w
T_ in order to distinguish them from the MAD operations. In gen
eral, we use the syntax of the introduced MQL with some slig
modifications.

T_SELECT projection_list[temporal_projection]
T_FROM object_definition
T_WHERE non_temporal_conditiontemporal_selection

temporal_selection ::= AT <time_point>|

{SOMETIMES | ALWAYS}

DURING [time_point, time_point]

temporal_projection ::= CORRESPONDING |

AT time_point |

DURING [time_point, time_point]

In the following, we will discuss several kinds of temporal querie
We illustrate them by running some sample queries against our
tabase as depicted in (which assumes that the mini world ex
since the first of January 1988). The representation of the datab
reflects the fact that atoms have developed in time (cf. Figure
The bubbles connected by a bold edge are states of one atom,
of them valid during the corresponding validity interval. During th
following discussion of temporal query types we will neglect th
temporal projection which we will detail in a following step.

2/1/1989: Mary’s salary is raised to 2000
The capital stock of “Cake” is changed to 2,500,000

3/1/1989: Mary quits from project “cheese crackers”
4/1/1989: Ann quits company “Cheese” and joins “Cake”

John joins company “Cheese”, project “light cheese”
5/1/1989: Bob becomes Manager of “cheese crackers”
6/1/1989: Bob becomes member of bicycle club “Fat Boys”

The budget of “light cheese” is raised to 400,000
7/1/1989: A new project “lemon tart” is created by “Cake”

Bruce changes to “lemon tart”, becomes manager
Annworks for “lemon tart” and “cheese crackers”
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Juncture Query

This kind of query refers to the database state valid at a single point
in time, like in the query “Which companies had a capital stock of
1,000,000 at the 2nd of March 1989?”. Perhaps, this is the most ob-
vious way how the historical data can be accessed, i.e. we refer to a
certain recent state of the database. The condition given in the
WHERE clause is evaluated on the data valid at the given point in
time. Using the introduced syntax, we get the following temporal
query:

(1) T_SELECT ALL

T_FROM Company-Project-( .participants-E(Employee),

.managed_by-M(Employee))

T_WHERE capital_stock = 1000000 AT 3/2/1989

This query selects the values of all attributes of the companies
(“Cheese”), the projects (“light cheese” and “cheese crackers”),
their employees (“Mary”, “Bob”, “Jim” and “Ann”), and their man-
agers (“Mary” and “Jim”) valid at the 2nd of March 1989.

Existential Interval Query

The interval queries refer to an interval in time corresponding to
one or several states of the data. In case of the existential interval
query, the condition given in the WHERE clause has to hold at least
for one point in time included in the given interval. For example,
the query “Which clubs had members of companyCheesein the
year 1989?” results in the following temporal query:

(2) T_SELECT club_name

T_FROM Club-Employee-Company

T_WHERE EXISTS Company: company_name = “Cheese”

SOMETIMES DURING [1/1/1989, 12/31/1989]

The query retrieves all clubs which have at least one member who
worked for company “Cheese” at least for one point in time (within
the given interval). In our sample database, we would get the bicy-
cle club “Fat Boys”, because Bob joined the club at the 1st of June
1989.

Universal Interval Query

In this case, the given condition has to hold for all states of the da-
tabase valid in the given interval. Thus, the sample query (2)1

would have an empty result, because Bob wasn’t member of the bi-
cycle club in the first half of the year 1989. For another example,

we could ask “For which projects did Mary work during the whol
year 1989”:

(3) T_SELECT project_name

T_FROM Project.participants-Employee

T_WHERE EXISTS Employee: employee_name = “Mary”

ALWAYS DURING [1/1/1989, 12/31/1989]

In our sample database, the query retrieves only project “lig
cheese”.

Coincidence Query

This kind of query checks whether two conditions hold at the sam
time. Whereas in the temporally extended relational models co
plex join operations have to be defined to express this kind of que
if it spans more than one relation, the complex object approach
lows for a natural formulation of the query. Thus the query “Whic
projects had a budget of 400,000 or more when one of their com
nies had a capital stock of 1,000,000 or less?” delivers project “lig
cheese” when applied to our sample database:

(4) T_SELECT project_name

T_FROM Project - Company

T_WHERE Project.budget >= 400000 AND

EXISTS Company:

Company.capital_stock <= 1000000

SOMETIMES DURING [1/1/1988, NOW]

Temporal Projection

Until now, we assumed that the result of each query reflects the
terval mentioned in the WHERE clause. See, for example, query
where we said that the result was the state of the company at Ma
2nd, 1989. If we use the time selection “AT NOW”, each molecu
history consists of exactly one time slice showing the actual state
the database. Thus, the first requirement (queries referring to the
tual state of the database generate the same result as in non-te
ral MAD databases) is fulfilled.

However, the result of temporal queries becomes more complex
we take a more general view: Selecting data at one special poin
time (i.e. via a juncture query) does not necessarily mean that
want to get only the data valid at this special point in time. For e
ample, we can ask for the actual salary of those employees who
worked for project “cheese crackers” at the 15th of February 198
Thus, we have to apply a temporal projection which works like th
qualified projection of the MAD model, i.e., the temporal projec1.Of course, modified by changing SOMETIMES to ALWAYS.
BobMary
2000 2000

Jim
2500

Jane
3000

lemon tart

Bruce
1500

John
3000

Ann
1700

light cheese

Cheese
1,000,000

Cake
2,500,000

400,000
cheese crackers

700,000
apple pie
300,000100,000

Company.employees-
Employee.company

Company.projects-
Project.companies
or
Project.participants-
Employee.works_for

Project.managed_by-
Employee.manager_of

Employee.clubs-
Club.membersFigure 6: Sample database (valid at December 31, 1989)

Bicycle club
“Fat Boys”



1/1/88-NULL
cheese crackers

1/1/88-6/1/89
light cheese

7/1/89-NULL
lemon tart

1/1/88-NULL
apple pie

4/1/89-NULL
John
2000

3/1/89-NULL
Mary
2000

6/1/89-NULL
Bob
2000

7/1/89-NULL
Ann
1700

1/1/88-NULL
Jane
3000

2/1/89-3/1/89
Mary
2000

1/1/88-2/1/89
Mary
1000

5/1/89-6/1/89
Bob
2000

1/1/88-5/1/89
Bob
2000

1/1/88-4/1/89
Ann
1700

1/1/88-5/1/89
Jim
2500

5/1/89-NULL
Jim
2500

2/1/89-NULL
Cake

2,500,000

200,000 700,000 100,000 300,000

6/1/89-NULL
light cheese

400,000

1/1/88-NULL
Cheese

1,000,000

4/1/89-7/1/89
Ann
1700

1/1/88-7/1/89
Bruce
1500

7/1/89-NULL
Bruce
1500

1/1/88-2/1/89
Cake

2,000,000

Company.employees-
Employee.company

Company.projects-
Project.companies
or
Project.participants-
Employee.works_for

Project.managed_by-
Employee.manager_of

Employee.clubs-
Club.members

Figure 7: Sample database (representing all states of the data according to Figure 5)

1/1/88-NULL
Bicycle club
“Fat Boys”
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tion selects those TSL from the result of a temporal query which are
required by the user. For this purpose, we can apply an “AT” clause
and a “DURING” clause in thetemporal projection. The
“CORRESPONDING” clause1 leads to the selection of those TSL
which were valid during the time specification given in the
WHERE clause. The following example of a juncture query illus-
trates the effect of the different temporal projection clauses.

(5) T_SELECT employee_name, salary

T_FROM Project.employee-Employee

T_WHERE project_name = “cheese crackers”

AT NOW

• Using “CORRESPONDING” as temporal projection would re-
trieve “Mary 2000”, “Bob 2000”, “Ann 1700”, and “Jim 2500”.

• Using “AT 1/15/1989” as temporal projection would retrieve
“Mary 1000”, “Bob 2000”, “Ann 1700”, “Jim 2500”, and
“Bruce 1500”.

• Using “DURING [1/15/1989, 3/15/1989]” as temporal projec-
tion would retrieve two TSL for Mary: “1000 for [1/15/1989,
1/31/1989]” and “2000 for [2/1/1989, 2/28/1989]”.

Temporal Databases and Updates

In order to preserve the previous values of the data which is usua
overwritten by an UPDATE operation, we have to redefine the s
mantics of this operation. The new operation T_UPDATE has
work in a different way. Instead of overwriting the previous value
T_UPDATE inserts copies of the latest state of all modified atom
into the database without deletion of the old states. Each stat
marked with a corresponding validity interval. The user has to spe
ify the validity time in the T_UPDATE statement (in the form
VALID_FROM t1 (and optionally VALID_UNTIL t2), because
this time reflects when the associated fact will be valid in the min
world. The validity time must not be confused with the transactio
time, which represents the time, when a fact is inserted in the da
base. The transaction time is automatically recorded by our syste

So far, we have introduced the TMAD model as a powerful da
model for handling temporal complex objects. We have detail
various kinds of temporal queries and temporal answers. In the f
lowing chapter, we will discuss the implementation of the TMAD
model by a layer on top of the MAD model.

4. Implementation of the Temporal Model

The TMAD model is implemented in large parts by simple transfo
mation processes. For example, the schema definition of TMA
atom types is simply extended to get a suitable MAD model sche
definition. Similarly, the T_UPDATE operation is realized by que1.We use this clause as default, if no explicit temporal projection is applied.
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ry transformation. Only the T_SELECT operation needs some
more efforts to be implemented.

Transformation of a TMAD Schema into a MAD Model
Schema

The first problem we have to solve when implementing TMAD on
top of the MAD model is the representation of data. While MAD
model databases contain atoms, we have to store temporal atoms
now, i.e. the collection of all different states of one (logical) atom
together with their validity intervals. We record each state of a tem-
poral atom by storing the attribute values of the state together with
the validity interval as one MAD atom. For this purpose, we add the
attributesvalid_fromandvalid_until to each atom type definition.
The transaction time is stored in the attributetransaction_time. Fur-
thermore, all states of an atom are connected to one another by the
attributespastandfuture. shows the resulting MAD model schema
definition for the TMAD atom type Company.

Figure 8: Schema extension of an atom type in order to capture
the historical data

Implementation of T_UPDATE

When performing a T_UPDATE operation, we have to consider
two points, because the atom representing the old state and the one
representing the new (modified) state logically represent one tem-
poral atom. Firstly, we have to mark each atom with its validity in-
terval. Secondly, we have to combine the atoms which build the
temporal atom.

We accomplish the first task by assigning appropriate values to the
attribute pair valid_from and valid_until1 of the atom. The
T_UPDATE operation has to ensure that thevalid_fromattribute of
the new atom contains the same value as thevalid_untilattribute of

the previous atom in order to avoid “holes” in the history of the a
om.

In order to accomplish the second task mentioned above, we h
to combine all atoms constituting the history of one (temporal) a
om. We do this by creating a time ordered chain of these atoms
the REF_TO attributespastandfuture. Thus, each atom represent
ing a part of a history contains in itspastattribute the identifier of
the previously valid atom and in itsfutureattribute the identifier of
the next newer atom, respectively. In the following, we call such
chain of atomsTime Sequence(TS) [KRS90, SK86]. Thus, a tem-
poral atom is stored as a TS.

As an example, a shows the TS representing Mary’s history acco
ing to our mini-world (transaction time has been left out). The T
of Mary consists of three atoms. The most recent atom contains
reference in itsfutureattribute, whereas the oldest atom contains n
reference in itspastattribute. Furthermore, b reflects the fct tha
Mary’s history is only one part of the database and therefore the
oms are connected with other atoms of the database which may
long to the same or to different TS (the whole database is shown
). Raising Mary’s salary to 2000 at the 1st of February 1989 forc
the insertion of a new atom into the database as described in
above discussion of the T_UPDATE operation. Thus, all referenc
(i.e. all values of the REF_TO-type attributes) are copied into t
new atom connecting it to all previously referenced atoms. In ord
to guarantee referential integrity, the database system modifies
referenced atoms making them reference also the new atom
Mary’s history (i.e. of Mary’s TS) [Schö90]. Please notice, that th
is the only real update operation in our scenario2. Of course, we
could reflect the modifications to the REF_TO attributes by crea
ing a new atom as we do for other updates. Then, references to
new atom would have to be added to all atoms referencing it. Th
a snowball effect would be initiated, which in the worst case cou
generate a new copy of almost the whole database. The effect of
referential integrity maintenance mechanism described above
shown in , where the attributeworks_forof object e1c is expanded
by p1b due to the change of the budget of project light cheese.

1.valid_untilcontains a special NULL value, if we don’t know how long the
data will be valid in the future.

CREATE ATOM_TYPE Company(
co_id: IDENTIFIER,
company_name: STRING,
employees: REF_TO (Employee.Company) (1,*),
projects: REF_TO (Project.Companies) (1,*),
valid_from: TIME(DAY),
valid_until: TIME(DAY),
transaction_time: TIME(SECOND),
past: REF_TO (Company.future) (0,1),
future: REF_TO (Company.past) (0,1));

2.Obviously, our approach leads to different databases representing
same mini-world. If, for example, Bob joins the bicycle club “Fat Boys”
this can be seen as a change to Bob’s state (creating a new atom repre
ing Bob and updating the references of the “Fat Boys” atom). Or it can
ternatively be seen as a change to “Fat Boys”, creating a new atom of
bicycle club and updating Bob’s references. The retrieval procedure d
cussed in section 5, however, constructs the same result from both d
bases for each query.
raise
salary

quit
p2

works_for
manager e1b

2/1/89
3/1/89

emp_id e1b
Mary
2000
c1

p1a, p2
p1a

2/1/89
3/1/89

e1a
e1c

e1c
Mary
2000
c1

p1a,p1b
p1a,p1b
3/1/89

—
e1b
—

e1a
Mary
1000
c1

p1a, p2
p1a

1/1/88
2/1/89

—
e1b

name
salary
company

valid_from
valid_until
past
future

e1a
1/1/88
2/1/89

e1c
3/1/89

—

p1b
6/1/89

—

p2
1/1/88

—

c1
1/1/88

—

a) The TS of Mary; p1: light cheese, p2: cheese cracker, c1: Cheese b) The TS in the context of the database

cheese crackers
light cheese

p1a
1/1/88
6/1/89

temporal
atom (TS)

Cheese

Company.employees-
Employee.company

Project.participants-
Employee.works_for

Project.managed_by-
Employee.manager_of

Figure 9: History of Mary
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As a consequence of our approach, cardinality restrictions have to
be reconsidered. The upper bounds may not longer hold, if an atom
references more than one atom of the same TS. For example, in the
database shown in , the REF_TO attributemanaged_byof “cheese
crackers” contains 3 identifiers, although in the original schema the
cardinality restriction was (1,1). Hence, we remove the upper
bounds when transforming the original TMAD schema into a MAD
schema, and check them in the additional temporal layer which we
will introduce below.

Summarizing, we should stress that the extension of each atom type
definition of the database schema by two attribute pairs
(valid_from/valid_untiland past/future), one attribute for the trans-
action time, and the implementation of the T_UPDATE operation
by simple query transformation is sufficient for storing the histori-
cal data along with the actual data in the database.

Implementation of T_SELECT

The retrieval procedure is much more complicated. It bases on the
notion of time slices, as introduced before. A TSL is defined as the
molecule’s state valid within a specific time interval such that it
contains only one state of each atom of the molecule. Unfortunate-
ly, we cannot force MQL to produce such molecules. However, we
can retrieve the set of all relevant data for each molecule history as
a single molecule. As a consequence, we transform a TMAD query
such that it delivers sets of (possibly recursive) molecules, one set
for each TSL of the result. These molecules are then transformed
into TSLs by an additional layer.

Juncture Query

Juncture queries are easy to transform: we only have to find one
time slice by evaluating thevalid_from and valid_until attribute
(Example 10)

T_SELECT ALL
T_FROM Club-Employee
T_WHERE employee_name = “Mary” AT 3/1/1989

is transformed to

SELECT ALL
FROM Club-Employee
WHERE Employee.employee_name = “Mary” AND

Club.valid_from≤ 3/1/1989 AND
((Club.valid_until > 3/1/1989) OR
IS_NULL (Club.valid_until))

Example 10: Transformation of a juncture query

It is sufficient to ask only for thevalid_from and valid_until at-
tributes of the root atom type, because it contains all references
which were relevant in the interval formed byvalid_from and
valid_until. Thevalid_untilattribute may have a NULL value, if the
atom is representing the actual state. Note that there may be atoms
of type Employee in the resulting molecule which are not valid in
the specified interval. They are filtered out in a subsequent step (see
below).

Universal Interval Query

In this case, we have to retrieve a set of temporal molecules, each
of them representing a sequence of different states of the molecule
valid during one interval in time. For this purpose, we first retrieve
the MAD molecule which represents the latest state of the temporal
molecule as referenced in the query. We then append all recent

states until we reach the lower bound of the time interval by usi
the MAD models recursion facility. Hence, we use thepastattribute
of the root atom type of the molecule. Example 11 illustrates our a
proach.

T_SELECT ALL
T_FROM Company-Employee
T_WHERE company_name = “Cake”

ALWAYS DURING [2/1/1989, 5/1/1989]

is transformed to

SELECT ALL
FROM (Company-Employee)

REC_PATH Company.past-Company UNTIL
 Company(CURRENT).valid_until < 2/1/1989

WHERE Company(FIRST).valid_from≤ 5/1/1989 AND
(Company(FIRST).valid_until> 5/1/1989 OR
 IS_NULL (Company(FIRST).valid_until)) AND
Company(LAST).valid_from≤ 2/1/1989 AND
FOR ALL Company(ALL_REC):
Company(ALL_REC).company_name = “Cake”

Example 11: Transformation of a universal interval query.

The UNTIL clause stops the construction of the recursive molecu
when the given interval is overstepped. The conditio
“Company(LAST).valid_from ≤ 2/1/1989” guarantees that the
molecule existed during the whole interval.

Here, the condition is included into the MQL query because it on
restricts the root atom type. In general, the condition cannot be ev
uated by MAD because it is time specific. For example, consid
the condition “SUM(salary)<8000” added to the above query. T
molecule constructed by the MAD query contains two atoms
“Ann”. Thus, regarding the molecule, the condition would be vio
lated, although it holds for each time slice.

Existential Interval Query

In the case of an existential interval query the conditio
“Company(LAST).valid_from≤ 2/1/1989” is omitted and the
“FOR ALL” is replaced by “EXISTS”. The remarks concerning the
evaluation of the condition by MAD hold also for this kind of que
ries.

Construction of Time Slices

The result of the MQL queries presented above is a set of recurs
molecules each containing all relevant data of exactly one molec
history (and possibly some irrelevant data). Each recursion leve
such a molecule corresponds to one state of the molecule’s roo
om, starting with the most recent state within the specified interv
Each of these molecules must now be transformed into a set of t
slices giving a molecule history. This is done by the additional tem
poral layer. First, the validity intervals of the time slices have to b
computed. Allvalid_from (or valid_until) attributes in the mole-
cule, which do not exceed the interval specified by the query a
sorted. In this sorted list, each two adjacent values form the valid
intervals of a time slice1. For each time slice, the correspondin
root atom is determined. The construction mechanism of the tim
intervals for each TSL guarantees that each time slice contain
most one state of each temporal atom. From the root atom, the li

1.The first and the last value of the list form an interval with the correspon
ing bounds of the interval specified in the query.
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are followed, thereby discarding all atoms which do not overlap the
time interval of the TSL. The validity time of all atoms of a TSL is
set to that of the TSL itself. As soon as the TSL are constructed, the
conditions which could not be transferred to MAD must be tested.
In the case of an existential interval query the condition has to hold
for at least one of the TSL, in the case of a universal interval query
for all TSL.

Until now, we implicitly required the projected time to be a sub-in-
terval of the time of the “time selection clause”. This makes the
mapping process easier, but is not a necessary restriction. We can
use the methods discussed in [KRS90] to overcome it. Alternative-
ly, the temporal layer may perform its work in two steps in the case
where the projected time is not a sub-interval of the time of the time
selection clause. In a first step, the qualifying molecules are com-
puted as described above and the identifiers of the root atoms are
memorized. Then, a second query with the only condition “Recur-
sive molecule contains one of the identifiers memorized in step 1”
is used to retrieve the final result.

As mentioned above, during the construction of a time slice, atoms
which are not valid during the validity interval of the time slice are
discarded. Hence, atoms which are outside of the interval specified
in the temporal selection clause are always discarded by the tempo-
ral layer. Obviously, the MAD queries as described above deliver a
couple of such atoms, as the following example illustrates:

temporal query: T_SELECT ALL
T_FROM Company-Employee
T_WHERE company_name = “Cheese”

AT 5/1/1989

MAD query: SELECT ALL
FROM Company-Employee
WHERE Company.company_name = “Cheese”

AND Company.valid_from≤ 5/1/1989
AND (Company.valid_until> 5/1/1989
OR IS_NULL (Company.valid_until))

Example 12: Sample juncture query transformation

In our sample database, there is only oneCompanyatom represent-
ing Cheese. Hence, this atom as well as all referenced employees
including Ann are retrieved. However, Ann does not belong to
Cheeseat 5/1/1989. The corresponding atom could be discarded by
the additional temporal layer. We prefer discarding it already in the
MAD query by using the concept of qualified projection for each
atom type involved. Thus the optimized transformation result is:

SELECT Company,
SELECT ALL
FROM Employee
WHERE Employee.valid_from≤ 5/1/1989 AND

(Employee.valid_until > 5/1/1989 OR
 IS_NULL(Employee.valid_until))

FROM Company-Employee
WHERE Company.Company_Name = “Cheese” AND

Company.valid_from≤ 5/1/1989 AND
(Company.valid_until > 5/1/1989 OR
IS_NULL (Company.valid_until))

Analogously, for interval queries, all atom types except the root
atom type undergo the qualified projection.

5. Conclusion and Outlook

Comparison to the TSQL model

In [KRS90] we presented TSQL as a temporal extension to the
lational model. There, we added only one “valid” attribute to the r
lations (having the semantics ofvalid_from). valid_untilwas repre-
sented in the next atom of a time sequence. This prevents “holes
the time sequence already by the way of modelling. Furthermo
the insertion of a new state of an atom did not force an expli
change of an attribute (valid_until) of the previous atom. However,
retrieval queries become more complex. In order to stress the co
plex-object aspects of our approach presented in this paper, we h
chosen the more intuitive approach of both attributes. Neverthele
there is no reason why the approach of [KRS90] cannot be appl
here. Also, the storage saving techniques presented there are a
cable.

Conclusion

In this paper, we have presented a temporal data model which
fils the requirements listed in [WD92], i.e., support for various tem
poral operators, manipulation of temporal complex objects, mod
operators, etc. Here, we have dealt only with a linear notion of tim
The non-linearity found in versioning models can be implement
using the same approach, as we have shown in [KS92]. We belie
however, that the operations and semantics to be provided for v
sioning significantly differ from those of historical models. Hence
we define separate data models for these two areas. [WD92] b
dens the database designer with the definition of the temporal d
model, thereby achieving a uniform treatment of complex objec
in linear and non-linear environments. We feel that the definition
a temporal data model is not trivial and therefore should be prov
ed to the database designer.

We have shown that it is possible to extend a complex object d
model by a temporal dimension without a huge amount of ove
head. We could use all facilities of the underlying complex-obje
data model, and had only to restructure the results of queries to
model. One temporal query corresponds to only one non-tempo
query or to two queries if the less sophisticated method of handl
projections outside the selection interval (cf. section 4) is chose

The basic idea of our approach is not to represent a change to a c
plex object by storing the new state of the whole complex obje
but rather by representing only the new state of the building blo
which had changed. This is a prerequisite for incorporating dyna
ic complex object definitions at query time into the temporal com
plex-object data model. Furthermore, this approach does not
quire a huge storage overhead, even without additional compr
sion techniques like the ones presented in [KRS90].

Notice that the concept of a unique identifier for each tempor
atom is not automatically supported by our approach. We do not
the need for such an identifier (because it can neither be used
references nor is it necessary to group the various states of a tem
ral atom by such an identifier, because they are already linked
one another by the REF_TO attributespastandfuture). Neverthe-
less, a unique identifier could be computed by the temporal laye
the creation time of a temporal atom and might be added to the
oms’s schema definition. For the underlying MAD database, it w
appear as a normal attribute.

As a further work, we will consider whether there are any oth
classes of temporal queries which make sense in the complex-
ject context (perhaps a more general version of the “coincidenc
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queries). Furthermore, we have to investigate in which case condi-
tions which do not only restrict the root atom type may be trans-
ferred to the MAD query. We will also have to study the impact of
clustering mechanisms on the performance of our temporal data-
base system. Obviously, we cannot cluster all states of a molecule
physically. We have to investigate whether there are any tailored
access paths for our approach.

We claim that the temporal extension presented in the context of the
MAD model is also possible for similar complex-object data mod-
els. As a result of our work, we conclude that implementing a tem-
poral complex-object data model quite efficiently is not much hard-
er than implementing a non-temporal complex-object data model.
Other proposals like [WD92] lack hints for an efficient implemen-
tation.
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