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Abstract. For systems that share enough structural and functional commonali-
ties, reuse in schema development and data manipulation can be achieved by
defining problem-oriented languages. Such languages are often called domain-
specific, because they introduce powerful abstractions meaningful only within
the domain of observed systems. In order to use domain-specific languages for
database applications, a mapping to SQL is required. In this paper, we deal with
metaprogramming concepts required for easy definition of such mappings.
Using an example domain-specific language, we provide an evaluation of map-
ping performance.

1 Introduction

A large variety of approaches use SQL as a language for interacting with the database,
but at the same time provide a separate problem-oriented language for developing
database schemas and formulating queries. A translator maps a statement in such
problem-oriented language to a series of SQL statements that get executed by the
DBMS. An example of such a system is Preference SQL, described by Kießling and
Köstler [8]. Preference SQL is an SQL extension that provides a set of language con-
structs which support easy use of soft preferences. This kind of preferences is useful
when searching for products and services in diverse e-commerce applications where a
set of strictly observed hard constraints usually results in an empty result set, although
products that approximately match the user’s demands do exist. The supported con-
structs include approximation (clauses AROUND and BETWEEN), minimization/maxi-
mization (clauses LOWEST, HIGHEST), favorites and dislikes (clauses POS, NEG),
pareto accumulation (clause AND), and cascading of preferences (clause CASCADE)
(see [8] for examples).

In general, problem-oriented programming languages are also called domain-spe-
cific languages (DSLs), because they prove useful when developing and using systems
from a predefined domain. The systems in a domain will exhibit a range of similar
structural and functional features (see [4,5] for details), making it possible to describe
them (and, in our case, query their data) using higher-level programming constructs. In
turn, these constructs carry semantics meaningful only within this domain. As the
activity of using these constructs is referred to as programming, defining such con-



structs and their mappings to languages that can be compiled or interpreted to allow
their execution is referred to as metaprogramming.

This paper focuses on the application of metaprogramming for relational databases.
In particular, we are interested in concepts that guide the implementation of fast map-
pings of custom languages, used for developing database schemas and manipulating
data, onto SQL-DDL and SQL-DML. The paper is structured as follows. First, in
Sect. 2, we further motivate the need for DSLs for data management. An overview of
related work is given by Sect. 3. Our system prototype (DSL-DA – domain-specific
languages for database applications) that supports the presented ideas is outlined in
Sect. 4. A detailed performance evaluation of a DSL for the example product line will
be presented in Sect. 5. Sect. 6 gives a detailed overview of metaprogramming con-
cepts. Finally, in Sect. 7, we summarize our results and give some ideas for the future
work related to our approach.

2 Domain-Specific Languages

The idea of DSLs is tightly related to domain engineering. According to Czarnecki and
Eisenecker [5], domain engineering deals with collecting, organizing, and storing past
experience in building systems in form of reusable assets. In general, we can rely that
a given asset can be reused in a new system in case this system possesses some struc-
tural and functional similarity to previous systems. Indeed, systems that share enough
common properties are said to constitute a system family (a more market-oriented term
for a system family is a software product-line). Examples of software product-lines are
extensively outlined by Clements and Northrop [4] and include satellite controllers, in-
ternal combustion engine controllers, and systems for displaying and tracing stock-mar-
ket data. Further examples of more data-centric product lines include CRM and ERP
systems. Our example product line for versioning systems will be introduced in Sect. 4.

Three approaches can be applied to allow the reuse of “assets” when developing da-
tabase schemas for systems in a data-intensive product line.

Components: Schema components can be used to group larger reusable parts of a da-
tabase schema to be used in diverse systems afterwards (see Thalheim [16] for an ex-
tensive overview of this approach). Generally, the modularity of system specification
(which components are to be used) directly corresponds to the modularity of the result-
ing implementation, because a component does not influence the internal implementa-
tion of other components. This kind of specification transformations towards the imple-
mentation is referred to as vertical transformations or forward refinements [5].

Frameworks: Much like software frameworks in general (see, for example, Apache
Struts [1] or IBM San Francisco [2]), schema frameworks rely on the user to extend
them with system-specific parts. This step is called framework instantiation and re-
quires certain knowledge of how the missing parts will be called by the framework.
Most often, this is achieved by extending superclasses defined by the framework or im-
plementing call-back methods which will be invoked by mechanisms such as reflection.
In a DBMS, application logic otherwise captured by such methods can be defined by
means of constraints, trigger conditions and actions, and stored procedures. A detailed



overview of schema frameworks is given by Mahnke [9]. Being more flexible than
components, frameworks generally require more expertise from the user. Moreover,
due to performance reasons, most DBMSs restrain from dynamic invocation possibili-
ties through method overloading or reflection (otherwise supported in common OO pro-
gramming languages). For this reason, schema frameworks are difficult to implement
without middleware acting as a mediator for such calls.

Generators: Schema generators are, in our opinion, the most advanced approach to
reuse and are the central topic of this paper. A schema generator acts much like a com-
piler: It transforms a high-level specification of the system to a schema definition, pos-
sibly equipped with constraints, triggers, and stored procedures. In general, the modu-
larity of the specification does not have to be preserved. Two modular parts of the spec-
ification can be interwoven to obtain a single modular part in the schema (these
transformations are called horizontal transformations; in case the obtained part in the
schema is also refined, for example, columns not explicitly defined in the specification
are added to a table, this is called an oblique transformation, i.e., a combination of a hor-
izontal and a vertical transformation.)

It is important to note that there is no special “magic” associated with schema gen-
erators that allows them to obtain a ready-to-use schema out of a short specification. By
narrowing the domain of systems, it is possible to introduce very powerful language ab-
stractions that are used at the specification level. Due to similarities between systems,
these abstractions aggregate a lot of semantics that is dispersed across many schema el-
ements. Because defining this semantics in SQL-DDL proves labour-intensive, we rath-
er choose to define a special domain-specific DDL (DS-DDL) for specifying the sche-
ma at a higher level of abstraction and implement the corresponding mapping to SQL-
DDL. The mapping represents the “reusable asset” and can be used with any schema
definition in this DS-DDL. The data manipulation part complementary to DS-DDL is
called DS-DML and allows the use of domain-specific query and update statements in
application programs. Defining custom DS-DDLs and their mappings to SQL-DDL as
well as fast translation of DS-DML statements is the topic we explore in this paper.

3 Related Work

Generators are the central idea of the OMG’s Model Driven Architecture (MDA) [13]
which proposes the specification of systems using standardized modeling languages
(UML) and automatic generation of implementations from models. However, even
OMG notices the need of supporting custom domain-specific modeling languages. As
noted by Frankel [6], this can be done in three different ways:
• Completely new modeling languages: A new DSL can be obtained by defining a

new MOF-based metamodel.
• Heavyweight language extensions: A new DSL can be obtained by extending the

elements of a standardized metamodel (e.g., the UML Metamodel).
• Lightweight language extensions: A new DSL can be obtained by defining new

language abstractions using the language itself. In UML, this possibility is support-
ed by UML Profiles.



The research area that deals with developing custom (domain-specific) software en-
gineering methodologies well suited for particular systems is called computer-aided
method engineering (CAME) [14]. CAME tools allow the user to describe an own mod-
eling method and afterwards generate a CASE tool that supports this method. For an ex-
ample of a tool supporting this approach, see MetaEdit+ [11].

The idea of a rapid definition of domain-specific programming languages and their
mapping to a platform where they can be executed is materialized in Simonyi’s work
on Intentional Programming (IP) [5,15]. IP introduces an IDE based on active libraries
that are used to import language abstractions (also called intentions) into this environ-
ment. Programs in the environment are represented as source graphs in which each node
possesses a special pointer to a corresponding abstraction. The abstractions define ex-
tension methods which are metaprograms that specify the behavior of nodes. The fol-
lowing are the most important extension methods in IP.
• Rendering and type-in methods. Because it is cumbersome to edit the source graph

directly, rendering methods are used to visualize the source graph in an editable no-
tation. Type-in methods convert the code typed in this notation back to the source
graph. This is especially convenient when different notations prove useful for a sin-
gle source graph.

• Refactoring methods. These methods are used to restructure the source graph by
factoring out repeating code parts to improve reuse.

• Reduction methods. The most important component of IP, these methods reduce
the source graph to a graph of low-level abstractions (also called reduced code or
R-code) that represent programs executable on a given platform. Different reduc-
tion methods can be used to obtain the R-code for different platforms.

How does this work relate to our problem? Similar as in IP, we want to support a cus-
tom definition of abstractions that form both a custom DS-DDL and a custom DS-DML.
We want to support the rendering of source graphs for DS-DDL and DS-DML state-
ments to (possibly diverse) domain-specific textual representations. Most importantly,
we want to support the reduction of these graphs to graphs representing SQL statements
that can be executed by a particular DBMS.

4 DSL-DA System

In our DSL-DA system, the user starts by defining a domain-specific (DS) metamodel
that describes language abstractions that can appear in the source graph (the language
used for defining metamodels is a simplified variant of the MOF Model) for the DS-
DDL. We used the system to fully implement a DSL for the example product line of ver-
sioning systems which we also use in the next section for the evaluation of our approach.
In this product line, each system is used to store and version objects (of some object
type) and relationships (of some relationship type). Thus individual systems differ in
their type definitions (also called information models [3]) as well as other features il-
lustrated in the DS-DDL metamodel in Fig. 1 and explained below.



• Object types can be versioned or unversioned. The number of direct successors to
a version can be limited to some number (maxSuccessors) for a given versioned ob-
ject type.

• Relationship types connect to object types using either non-floating or floating re-
lationship ends. A non-floating relationship end connects directly to a particular
version as if this version were a regular object. On the other hand, a floating rela-
tionship end maintains a user-managed subset of all object versions for each con-
nected object. Such subsets are called candidate version collections (CVC) and
prove useful for managing configurations. In unfiltered navigation from some ori-
gin object, all versions contained in every connected CVC will be returned. In fil-
tered navigation, a version preselected for each CVC (also called the pinned ver-
sion) will be returned. In case there is no pinned version, we return the latest ver-
sion from the CVC.

• Workspace objects act as containers for other objects. However, only one version
of a contained object can be present in the workspace at a time. In this way, work-
spaces allow a version-free view to the contents of a versioning system. When ex-
ecuted within a workspace, filtered navigation returns versions from the CVC that
are connected to this workspace and ignores the pin setting of the CVC.

• Operations create object, copy, delete, create successor, attach/detach (connects/
disconnects an object to/from a workspace), freeze, and checkout/checkin (locks/
unlocks the object) can propagate across relationships.

A model expressed using the DS-DDL metamodel from Fig. 1 will represent a source
graph for a particular DS-DDL schema definition used to describe a given versioning
system. To work with these models (manipulate the graph nodes), DSL-DA uses the
DS-DDL metamodel to generate a schema editor that displays the graphs in a tree-like
form (see the left-hand side of Fig. 2). A more convenient graphical notation of a source
graph for our example versioning system that we will use for the evaluation in the next
section is illustrated in Fig. 3.

The metamodel classes define rendering and type-in methods that render the source
graph to a textual representation and allow its editing (right-hand side of Fig. 2). More
importantly, the metamodel classes define reduction methods that will reduce the

Fig. 1. DS-DDL metamodel for the example product line



source graph to its representation in SQL-DDL. In analogy with the domain-specific
level of the editor, the obtained SQL-DDL schema is also represented as a source graph;
the classes used for this graph are the classes defined by the package Relational of the
OMG’s Common Warehouse Metamodel (CWM) [12]. The rendering methods of these

Fig. 2. DS-DDL schema development with the generated editor

Fig. 3. Example DS-DDL schema used in performance evaluation



classes are customizable so that by rendering the SQL-DDL source graphs, SQL-DDL
schemas in SQL dialects of diverse DBMS vendors can be obtained.

Once an SQL-DDL schema is installed in a database, how do we handle statements
in DS-DML (three examples of such statements are given by Table 1)? As for the DS-
DDL, there is a complementary DS-DML metamodel that describes language abstrac-
tions of the supported DS-DML statements. This metamodel can be simply defined by
first coming up with an EBNF for DS-DML and afterwards translating the EBNF sym-
bols to class definitions in a straightforward fashion. The EBNF of our DS-DML for the
sample product line for versioning systems is available through [17]. DS-DML state-
ments can then be represented as source graphs, where each node in the graph is an in-
stance of some class from the DS-DML metamodel. Again, metamodel classes define
reduction methods that reduce the corresponding DS-DML source graph to an SQL-
DML source graph, out of which SQL-DML statements can be obtained through ren-
dering.

DS-DML is used by an application programmer to embed domain-specific queries
and data manipulation statements in the application code. In certain cases, the general
structure of a DS-DML statement will be known at the time the application is written
and the parameters of the statement will only need to be filled with user-provided values
at run time. Since these parameters do not influence the reduction, the reduction from
DS-DML to SQL-DML can take place using a precompiler. Sometimes, however, es-
pecially in the case of Web applications, the structure of the DS-DML query will de-
pend on the user’s search criteria and other preferences and is thus not known at compile
time. The solution in this case is to wrap the native DBMS driver into a domain-specific
driver that performs the reduction at run time, passes the SQL-DML statements to the
native driver, and restructures the result sets before returning them to the user, if neces-
sary. To handle both cases where query structure is known at compile time and when it
is not, DSL-DA can generate both the precompiler and the domain-specific driver from
the DS-DML metamodel, its reduction methods, and its rendering methods for SQL-
DML. We assumed the worst-case scenario in which all SQL-DML statements need to
be reduced at run time for our evaluation in the next section to examine the effect of run
time reduction in detail.

Statement Explanation
SELECT Task.*
FROM Department-consistsOf->Employee-
executes->Task
WHERE Department.globalId = 502341

Get all tasks executed by employees of a given department 
(all three objects are versioned). Note that the fact that the 
relationship end executes is floating (i.e. filtered navigation 
will be used) is transparent for the user.

CREATE SUCCESSOR OF OBJECT Task
USE WORKSPACE Project
WHERE globalId = 235711
AND Task WHERE objectId = 982

Create a successor version to a version of a task. The ver-
sion graph for the task is identified by the objectId. The suc-
cessor is to be created to the version attached to the 
workspace with a given globalId. Note that according to the 
DS-DDL schema, the operation will propagate to connected 
costs.

GET ALTERNATIVES OF Employee
WHERE globalId = 234229

Get the alternative versions (versions that have the same 
predecessor) of a given employee version

Table 1. Examples of DS-DML statements



5 Evaluation of the Example Product Line

The purpose of the evaluation presented in this section is to demonstrate the following.
• Even for structurally complex DS-DML statements, the reduction process carried

out at run time represents a very small proportion of costs needed to carry out the
SQL-DML statements obtained by reduction.

• DS-DDL schemas that have been reduced to SQL-DDL with certain optimizations
in mind imply reduction that is more difficult to implement. Somewhat surprising-
ly, this does not necessarily mean that such reduction will also take more process-
ing time. Optimization considerations can significantly contribute to a faster exe-
cution of DS-DML statements once reduced to SQL-DML.

To demonstrate both points, we implemented four very different variants of both DS-
DDL and DS-DML reduction methods for the example product line. The DS-DDL
schema from Fig. 3 has thus been reduced to four different SQL-DDL schemas. In all
four variants, object types from Fig. 3 are mapped to tables (called object tables) with
the specified attributes. An object version is then represented as a tuple in this table. The
identifiers in each object table include an objectId (all versions of a particular object,
i.e., all versions within the same version tree, possess the same objectId), a versionId
(identifies a particular version within the version tree) and a globalId, which is a com-
bination of an objectId and a versionId. The four reductions differ in the following way.
• Variant 1: Store all relationships, regardless of relationship type, using a single

“generic” table. For a particular relationship, store the origin globalId, objectId,
versionId and the target rolename, globalId, objectId, and versionId as columns.
Use an additional column as a flag denoting whether the target version is pinned.

• Variant 2: Use separate tables for every relationship type. In case a relationship
type defines no floating ends or two floating ends, this relationship type can be rep-
resented by a single table. In case only one relationship end is floating, such rela-
tionship type requires two tables, one for each direction of navigation.

• Variant 3: Improve Variant 2 by considering maximal multiplicity of 1 on non-
floating ends. For such ends, the globalId of the connected target object is stored
as a column in the object table of the origin object.

• Variant 4: Improve Variant 3 by considering maximal multiplicity of 1 of floating
ends. For such ends, the globalIds of the pinned version and the latest version of
the CVC for the target object can be stored as columns in the object table of the
origin object.

Our benchmark, consisting of 141,775 DS-DML statements was then run using four
different domain-specific drivers corresponding to four different variants of reduction.
To eliminate the need of fetching metadata from the database, we assumed that, once
defined, the DS-DDL schema does not change, so each driver accessed the DS-DDL
schema defined in Fig. 3 directly in the main memory. The overall time for executing a
DS-DML statement is defined as tDS= tpar+tred+tren+tSQL, where tpar is the required
DS-DML parsing time, tred the time required for reduction, tren the time required for
rendering all resulting SQL-DML statements, and tSQL the time used to carry out these
statements. Note that tpar is independent of the variant, so we were mainly interested in
the remaining three times as well as the overall time. The average tDS, tred, tren and tSQL



values (in µs) for the category of select statements are illustrated in Fig. 4. This category
included queries over versioned data within and outside workspaces that contained up
to four navigation steps. As evident from Fig. 4, Variant 4 demonstrates a very good
tSQL performance and also allows the fastest reduction. On the other hand, due to mate-
rialization of the globalIds of pinned and latest versions for CVCs in Variant 4,
Variant 2 proves faster for manipulation (i.e., creation and deletion of relationships).
The values for the category of create relationship statements are illustrated in Fig. 5.

Most importantly, the overhead time required due to the domain-specific driver
tdr=tpar+tred+tren proves to be only a small portion of tDS. As illustrated in Fig. 6, when
using Variant 4, the portion tdr/tDS is lowest (0.8%) for the category of select statements

Fig. 4. Execution times for the category of select statements
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and highest (9.9%) for merge statements. When merging two versions (denoted as pri-
mary and secondary version), their attribute values have to be compared to their so-
called base (latest common) version in the version graph to decide which values should
be used for the result of the merging. This comparison, which is performed in the driver,
accounts for a high tred value (9.1% of tDS). Note that tSQL is the minimal time an ap-
plication spends executing SQL-DML statements in any case (with or without DS-
DML available) to provide the user with equivalent results: Even without DS-DML, the
programmer would have to implement data flows to connect sequences of SQL-DML
statements to perform a given operation (in our evaluation, we treat data flows as part
of tred).

How difficult is it to implement the DS-DML reduction methods? To estimate this
aspect, we used measures such as the count of expressions, statements, conditional
statements, loops, as well as McCabe’s cyclomatic complexity [10] and Halstead
effort [7] on our Java implementation of reduction methods. The summarized results
obtained using these measures are illustrated by Fig. 7. All measures, except for the
count of loops confirm an increasing difficulty to implement the reduction (e.g., the
Halstead effort almost doubles from Variant 1 to Variant 4). Is there a correlation be-
tween the Halstead effort for writing a method and the times tred and tSQL? We try to
answer this question in Fig. 8. Somewhat surprisingly, a statement with a reduction
more difficult to implement will sometimes also reduce faster (i.e., an increase in Hal-
stead effort does not necessarily imply an increase in tred), which is most evident for the
category of select statements. The explanation is that even though the developer has to
consider a large variety of different reductions for a complex variant (e.g., Variant 4),
once the driver has found the right reduction (see Sect. 6), the reduction can proceed
even faster than for a variant with less optimization considerations (e.g., Variant 1). For
all categories in Fig. 8, a decreasing trend for tSQL values can be observed. However, in
categories that manipulate the state of the CVC (note that operations from the category
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copy object propagate across relationships and thus manipulate the CVCs), impedance
due to materializing the pin setting and the latest version comes into effect and often
results in only minor differences in tSQL values among Variants 2-4.

6 Metaprogramming Concepts

Writing metacode is different and more difficult than writing code, because the pro-
grammer has to consider a large variety of cases that may occur depending on the form
of the statement and the properties defined in the DS-DDL schema.

Our key idea to developing reduction methods is the so-called reduction polymor-
phism. In OO programming languages, polymorphism supports dynamic selection of
the “right” method depending on the type of object held by a reference (since the type
is not known until run time, this is usually called late binding). In this way, it is possible
to avoid disturbing conditional statements (explicit type checking by the programmer)
in the code. In a similar way, we use reduction polymorphism to avoid explicit use of
conditional statements in metacode. This means that for an incoming DS-DML state-
ment, the domain-specific driver will execute reduction methods that (a) match the syn-
tactic structure of the statement and (b) apply for the specifics of the DS-DDL schema
constructs used in the statement. We illustrate both concepts using a practical example. 

Suppose the following DS-DML statement.
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Fig. 8. Correlation of tred and tSQL to the Halstead effort

1: SELECT Cost.*
2: FROM Offer-contains->Task-ratedCosts->Cost
3: USE WORKSPACE Project WHERE globalId = 435532 AND Offer WHERE objectId = 122;



Using our DS-DDL schema from Fig. 3 and reduction Variant 4, the statement gets
reduced to the following SQL-DML statement (OT denotes object table, ATT the attach-
ment relationship table, F a floating end, and NF a non-floating end).

First, any SELECT statement will match a very generic reduction method that will in-
sert SELECT and FROM clauses into the SQL-DML source graph. A reduction method
on the projection clause (Cost.*) will reduce to a projection of identifiers (globalId,
objectId, and versionId), user-defined attributes and the flag denoting whether the ver-
sion is frozen. Note that because the maximal multiplicity of the end causedBy pointing
from Cost to Task is 1, the table CostOT also contains the materialization of a pinned
or latest version of some task, but the column for this materialization is left out in the
projection, because it is irrelevant for the user. Next, a reduction method is invoked on
the DS-DML FROM clause, which itself calls reduction methods on two DS-DML sub-
nodes, one for each navigation step. Thus, the reduction of Offer-contains->Task
results in conditions in lines 5–6 and the reduction of Task-ratedCosts->Cost re-
sults in conditions in lines 7–8. The reductions carried out in this example rely on two
mechanisms, DS-DDL schema divergence and source-graph divergence.

DS-DDL schema divergence is applied in the following way. The relationship type
used in the first navigation step defines only one floating end while the one used in the
second navigation step defines both ends as floating. Thus in the reduction of DS-
DDL, we had to map the first relationship type to two distinct tables (because relation-
ships with only one floating end are not necessarily symmetric). Therefore, the choice
of the table we use (isPartOfF_containsNF) is based on the direction of naviga-
tion. The situation would be even more different in case the multiplicity defined for the
non-floating end would be 1, where we would have to use a foreign key column in the
object table. Another important situation where schema divergence is used in our
example product line is operation propagation. To deal with DS-DDL schema diver-
gence, each reduction method for a given node comes with a set of preconditions
related to DS-DDL schema that have to be satisfied for method execution.

Source-graph divergence is applied in the following way. In filtered navigation
within a workspace, we have to use the table causedByF_ratedCostsF to arrive at
costs. The obtained versions are further filtered in lines 9, 11, and 13 to arrive only at
costs attached to the workspace with globalId 435532. The situation would be different
outside a workspace, where another table which stores the materialized globalIds of
versions of costs that are either pinned or latest in the corresponding CVC would have
to be used for the join. Thus the reduction of the second navigation step depends on

1: SELECT CostOT.globalId, CostOT.objectId, CostOT.versionId, CostOT.wages, CostOT.travelExpenses,
2: CostOT.materialExpenses, CostOT.validUntil, CostOT.isFrozen
3: FROM OfferOT, TaskOT, CostOT, isPartOfF_containsNF, causedByF_ratedCostsF,
4: ProjectOT, Project_OfferATT, Project_TaskATT, Project_CostATT
5: WHERE OfferOT.globalId = isPartOfF_containsNF.isPartOfGlobalId
6: AND isPartOfF_containsNF.containsGlobalId = TaskOT.globalId
7: AND TaskOT.globalId = causedByF_ratedCostF.causedByGlobalId
8: AND causedByF_ratedCostF.ratedCostsGlobalId = CostOT.globalId
9: AND Project_OfferATT.projectGlobalId = 435532

10: AND Project_OfferATT.offerGlobalId = OfferOT.globalId
11: AND Project_TaskATT.projectGlobalId = 435532
12: AND Project_TaskATT.taskGlobalId = TaskOT.globalId
13: AND Project_CostATT.projectGlobalId = 435532
14: AND Project_CostATT.costGlobalId = CostOT.globalId
15: AND Offer.objectId = 122



whether the clause USE WORKSPACE is used. To deal with source-graph divergence,
each reduction method for a given node comes with a set of preconditions related to
node neighborhood in the source graph that have to be satisfies for method execution.

Due to source-graph divergence, line 3 of the DS-DML statement gets reduced to
lines 9–15 of the SQL-DML statement.

Obviously, it is a good choice for the developer to shift decisions due to divergence
to many “very specialized” reduction methods that can be reused in diverse superordi-
nated methods and thus abstract from both types of divergence. In this way, the subor-
dinated methods can be explicitly invoked by the developer using generic calls and the
driver itself selects the matching method. Four different APIs are available to the devel-
oper within a reduction method.
• Source tree traversal. This API is used to explicitly traverse the neighboring nodes

to make reduction decisions not automatically captured by source-graph polymor-
phism. The API is automatically generated from the DS-DML metamodel.

• DS-DDL schema traversal. This API is used to explicitly query the DS-DDL sche-
ma to make reduction decisions not automatically captured by DS-DDL schema
polymorphism. The API is automatically generated from the DS-DDL metamodel.

• SQL-DML API. This API is used to manipulate the SQL-DML source graphs.
• Reduction API. This API is used for explicit invocation of reduction methods on

subordinated nodes in the DS-DML source graph.

7 Conclusion and Future Work

In this paper, we examined the topic of custom schema development and data manipu-
lation languages which facilitate increased reuse within database-oriented software
product lines. Our empirical evaluation, based on an example product line for version-
ing systems, shows that the portion of time required for mapping domain-specific state-
ments to SQL at run time is below 9.9%. For this reason, we claim that domain-specific
languages introduce great benefits in terms of raising the abstraction level in schema de-
velopment and data queries at practically no cost.

There is a range of topics we want to focus on in our future work. Is there a way to
make DS-DMLs even faster? Complex reduction methods can clearly benefit from the
following ideas.
• Source graphs typically consist of an unusually large number of objects that have

to be created at run time. Thus the approach could benefit from instance pools for
objects to minimize object creation overhead.

• Caching of SQL-DML source graphs can be applied to reuse them when reducing
upcoming statements.

• Would it be possible to use parameterized stored procedures to answer DS-DML
statements? This makes the reduction of DS-DML statements simpler, because a
statement can be reduced to a single stored procedure call. On the other hand, it
makes the reduction of DS-DDL schema more complex, because stored procedures
capable of answering the queries have to be prepared. We assume this approach is
especially useful when many SQL-DML statements are needed to execute a DS-



DML statement. Implementing a stored procedure for a sequence of statements
avoids excessive communication between (a) the domain-specific and the native
driver and (b) between the native driver and the database.

• In a number of cases where a sequence of SQL-DML statements is produced as a
result of reduction, these statements need not necessarily be executed sequentially.
Thus developers of reduction methods should be given the possibility to explicitly
mark situations where the driver could take advantage of parallel execution.

In addition, dealing with DS-DDL schemas raises two important questions.
• DS-DDL schema evolution. Clearly, supplementary approaches are required to deal

with modifications in a DS-DDL schema which imply a number of changes in ex-
isting SQL-DDL constructs.

• Product-line mining. Many companies develop and market a number of systems
implemented independently despite their structural and functional similarities, i.e.,
without the proper product-line support. Existing schemas for these systems could
be mined to extract common domain-specific abstractions and possible reductions,
which can afterwards be used in future development of new systems.
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