
in: Proc. 4th Brazilian Symposium on Data Bases, Campinas, April 1989
A Framework for an Efficient DBS-Support

of Knowledge-Based Systems

F. - J. Leick, N. M. Mattos

University of Kaiserslautern, Department of Computer Science

P.O. Box 3049, 6750 Kaiserslautern, West Germany

e-mail : mattos@uklirb.uucp

1. Motivation

During the last few years a variety of Knowledge Based Systems (KS) has been developed as an applica-

tion of techniques from the area of Artificial Intelligence (AI). When modeling real world applications, these

systems are faced with problems of managing large amounts of knowledge, since virtual memory sizes are

not large enough to store the corresponding Knowledge Bases (KB).

Realizing that existing Database Systems (DBS) provide features to fulfil this kind of requirement, research

efforts have been done with the purpose of coupling KS and DBMS. So, the knowledge engineering tool

KEE [FK85], for example, has been extended with a new component (the so-called KEEconnection [In87]),

which enables it to store facts in an external DB to be managed by an independent relational DBS.

The coupling approach may perhaps solve KS limitations concerning virtual memory size, but it fails, how-

ever, to support KB management for several other reasons [Ma88b]. For example, when KB are maintained

on secondary storage devices, operations on knowledge (e.g. inference) are so computationally intolera-

ble, that coupling DBMS and KS yields very low performance [HMP87].

The solution to the DB deficiencies to support KS is to develop a new generation of systems, the so-called

Knowledge Base Management Systems (KBMS) , aimed at the modeling and manipulation of knowledge

as well as at its maintenance in very large, and possibly distributed, KB. Following this shift of viewpoint,

we implemented at the University of Kaiserslautern a multi-layered prototypical KBMS, called KRISYS,

which supports the above mentioned demands in an effective and efficient manner [Ma88b]. In this paper,

we concentrate on the KRISYS component responsible for the KB management, thereby describing the

framework provided by the system for an efficient processing of knowledge.

2. The Framework

Most of the performance difficulties of large KS result from the use of secondary storage. Further deficien-

cies may arise from the communication and transfer overhead between the used machines. When the KB

is distributed or maintained in a remote server while the KS runs at a local workstation, knowledge has to

be continuously extracted from the server and transferred to the workstation, where it is exploited for solv-

ing problems. The use of secondary storage as well as the server/workstation environment generate a so

long path length when accessing KB contents, that these accesses turn out to be very time consuming

[Ma86].

Exploitation of the application’s locality

It is, therefore, desirable to have a mechanism that enables the reduction of the path length of the KS ac-

cesses, in order to improve performance. This is achieved by the KRISYS component, called working-

memory , which temporarily stores and maintains objects of the KB in main memory, allowing the KS to

reference these objects almost directly. The working-memory is a kind of application buffer, which offers

very fast access to the stored objects. Consequently, KRISYS supports a processing model aimed at high

locality of object references, thereby drastically reducing the path length when accessing KB objects.

Knowledge Independence

During the problem solving process, objects are transferred from the KB and placed into the working-mem-

ory. Certainly, it is not a task of the KS to worry about such knowledge transfer. KBMS should support the

concept of knowledge independence , so that KS are unaware of the internal representation and storage

of knowledge. Note that this (knowledge representation and storage) concealing principle is not provided

by existing KS tools. In a KEE environment, for example, the KS must not only know whether its needed

objects are stored in the external DB or not, but also how the mapping of knowledge to DB relations is car-

ried out in order to process a KB. Moreover, this mapping can be quite difficult because the expressiveness

of the knowledge representation model is much higher than the one of the DB model. Since knowledge

structures are often mapped to several DB objects, it is not always possible to guarantee that changes on

the knowledge structures will be appropriately reflected in the external DB. By treating knowledge as a kind

of "window" to the DB contents, KEE presents the well known problems and restrictions of updates through

views [Ma83, Ke81]. Finally, when constructing a KB, the knowledge engineer has to deal with two different

environments, defining both knowledge structures and DB-schemas, as well as the mapping from one to

the other.

For this reason, most present-day tools have to be classified as knowledge dependent. This means that

the way in which the KB is organized in a storage device (i.e., DB and DB-schema) and the way in which

it is accessed (i.e., the mapping) are both dictated by the requirements of the KS, and moreover, that the

information about the organization and the access technique is built into the KS logic (i.e., embedded in

their program’s code). In such tools, it is impossible to change the storage structures (i.e., changes on the

DB-schema) or access strategies (i.e., changes on the mapping) without affecting the KS more than likely

drastically. Such a kind of knowledge dependence is particularly critical since computer systems should be

continuously ameliorated, however, without affecting their application programs. Following this issue, KRI-

SYS supports knowledge independence . It guarantees local confinement of all modifications and im-

provements throughout its lifetime, thereby isolating its applications from the internal representation and

the storage of knowledge. Therefore, rather than having to explicitly inform our KBMS when knowledge is

needed, KRISYS analyses the references of the KS to KB objects and automatically extracts these objects

from the server, when they are not at hand in the workstation.

Exploitation of processing contexts

In general, objects stored in the working-memory are replaced by means of a LRU-strategy. An analysis of

this strategy revealed however, that often KRISYS still has to perform many calls to its server component

due to the very small granule of the unit of replacement (i.e. one object). The count of KB accesses increas-

es especially after the KS starts a new phase of its problem solving process, when the majority of the need-

ed objects is not found in the working-memory. Hence, it is very important to have ways to minimize such

KB accesses. This can be achieved by supplying KRISYS with enough information about the KS access

behavior, giving it more scope for optimization. The issue used in the system is to exploit the existence of

the so-called processing contexts [HMP87, MW84], that are defined as the knowledge necessary to infer

the specific goal of a phase of the problem solving process. Consequently, such processing contexts de-

pend on the problem solving strategy being used by the KS. For example, KS exploiting the constraint-prop-

agation strategy [St81] have contexts corresponding to the several constraints used to reduce the search

space during the KS consultation. In the same manner, a problem-reduction strategy [Mc82] determines

contexts for processing each partitioned subproblem, and generate-and-test [BF78] organizes KB contents

according to the pruning activity (for an overview of existing strategies see [St83] or [St82]). For this reason,

the knowledge engineer, as the one who knows the KS in fullest details, knows about the existence of such

contexts. His task is to make known the existence of such contexts in order to supply KRISYS with valuable

information fruitful for performance improvement. From the modeling point of view, defining contexts means

making explicit the knowledge about the KS problem solving behavior, thereby improving KB semantics.

In principle, contexts are composed of several KB objects (in general of different types) and objects may

be elements of several contexts. Since contexts are not fastened to constructs of the knowledge model pro-

vided by KRISYS [DM88, Ma88a], they may be specified or deleted at any time during KB construction or

even dynamically during KS consultation. A dynamic definition of contexts is particularly important, because

needed contexts are often established on the basis of the results of the preceding phases of the problem

solving process.

Contexts are, therefore, the most important mechanism used by KRISYS to improve access efficiency.

When defined during the KB construction, KRISYS can use special storage structures or clustering to op-

timize secondary storage accesses to these objects. But even when contexts are defined during KS con-

sultation, our KBMS can use them to reduce KB accesses significantly. KRISYS exploits the existence of

a context to generate a set-oriented access to the KB in order to fetch the objects of the context and store

them into the working-memory, as soon as it is informed that a new processing phase of the KS will begin.

So, most or perhaps all objects referenced during this phase are found in the working-memory and only few

or no references to the KB are further necessary. At the end of the processing phase, its corresponding

context is then discarded from the working-memory and the context requested by the following phase is

loaded into it. By means of this set-oriented fetching and discarding of KB objects, the server component

of KRISYS can better employ its optimization potential, thereby drastically reducing I/O and transfer over-

head. Finally, the KS references to individual objects will be very efficiently supported, since the path

length, when accessing the working-memory objects, is very short.

In closing, one may observe that there are two orthogonal ways of looking at a context. Viewed from the

knowledge engineer, a context is a collection of objects needed by a specific phase of the problem solving

process of the KS, i.e., the knowledge necessary to work out a particular problem. KRISYS, on the other

hand, views it as a collection of objects which are brought into the working-memory by just one very efficient

KB access. Following this approach, the knowledge engineer is still working in his framework, without being

involved with internal KBMS aspects, although KRISYS is supplied with enough information for perfor-

mance improvement [MM88]. In other words, the processing context approach fortifies the discussed sup-

port of knowledge independence.

3. Overall Architecture

Internally, the component of KRISYS responsable for the working-memory management is divided in three

main subcomponents as shown in figure 1.

Figure 1: Structure of Working-Memory and Context Manager (WMCM)

The distribution component is responsible for the interpretation of the KS calls and the activation of the

respective component. The working-memory manager carries out the access requests, sometimes gen-

erating simple queries (read/write accesses) to the server component of KRISYS when the requested ob-

Server Component

Distribution Component

Working-Memory

Manager
Context Manager

control

 calls

access

requests

 simple

queries
complex
 queries

KRISYS

 Working-

 Memory

and Context

 Manager

Knowledge Modeling Component

Working

Memory

ject is not found in the working-memory. The context manager is responsible for the execution of control

calls, such as fetching or discarding of contexts. It carries them out by means of set-oriented DB-operations

(complex queries) to extract the contents from the KB or to discard them from the working-memory. There-

fore, the working-memory manager takes care of the replacement of individual objects, whereas the context

manager takes care of the replacement of object sets (contexts).

In order to guarantee very fast access to the working-memory contents, the working-memory manager

maintains two hash-tables, referring to the objects and to the attributes of the objects currently stored in the

working-memory. Thus, it supports a direct access to attributes avoiding the usual sequential search within

an object, which is in some cases (e.g., very complex objects) computationally intolerable. Both, objects

and their attributes, are maintained in structures with variable length containers, supporting an efficient stor-

age of KS objects, whose lengths are in general extremely different [Ma86].

4. Performance Comparison

The performance of our working-memory component has been compared with the performance of other

coupling approaches between KS and DBS as shown in figure 2.

Figure 2 : Performance Comparison of Different Approaches for KB Management

In order to pursue this investigation, we have adapted some available KS to work on the different environ-

ments shown in the figure. As basis for this comparison, we use the main memory-based form of KS (i.e.,

when the whole KB is stored in main memory). Coupling DBS and KS directly seems to be the most ineffi-

cient alternative, due to the already discussed long path length of the application’s accesses. This problem

is eliminated by using an application buffer, which uses LRU as replacement strategy, to keep the most

main memory based
KS

KS - DBS
direct coupling

KS - DBS coupling
 with application buffer

 Working-Memory

3574

3574

572

93

164

28105

2946

643

1

~ 170

~ 18

~ 4

Accesses to the Duration of
a Consultation
in CPU-sec.

slow down factor
with regard to

main memory KS
KB (on secondary

storage)

Approach

recently used objects in the buffer. Since this approach extracts and discards only individual objects re-

spectively from the KB and the buffer, very many calls to the DBS are still necessary, especially after chang-

es of the processing phases. The last approach, which is based on the above described working-memory

concept and implemented as part of the KBMS KRISYS, accomplishes an efficiency very close to the main

memory one. (Further performance analyses can be found in [HMP87].)

5. Summary

In this paper, we described the framework provided by the KBMS KRISYS to support an efficient process-

ing of large and even distributed KB.

KRISYS makes use of the application’s locality to guarantee very fast accesses to the KB objects. It takes

advantage of the knowledge about the access behavior of the KS, like for example the existence of pro-

cessing contexts, to manage relevant objects in a main memory structure, called working-memory, which

is maintained very close to the application, thereby drastically reducing I/O and transfer overhead. The def-

inition of such processing contexts is executed by the knowledge engineer, which however keeps working

in his original framework without being involved with internal aspects of KBMS. He only has to make known

the existence of contexts as well as the phases of the KS problem solving process.

Further concepts (not discussed in this paper) of KRISYS pay attention to knowledge modeling and manip-

ulation requirements [Ma88a, Ma88b]. The system has proven to be a very powerful tool for building KS,

CAD applications, etc., thereby being considered a very fruitful research vehicle as well as a generic system

for effective and efficient management of large KB.

Acknowledgments

We would like to thank the measurements performed by B. Rheinberger as well as his fruitful comments on

the obtained results which contribute to improve the described issues. Also acknowledged are the careful

reading and useful hints of S. Deßloch and B. Mitschang.

References

[BF78] Buchanan, B.G., Feigenbaum, E.A.: DENDRAL and Meta-DENDRAL: Their application di-

mension, in: Artificial Intelligence, Vol. 11, No. 1, 1978, pp. 5-24.

[DM88] Deßloch, S., Mattos, N. M.: KOALA and its Knowledge Model - An Application Interface for

a New Generation of DBS, internal report, University of Kaiserslautern, 1988, submitted for

publication.

[FK85] Fikes, R., Kehler, T.: The Role of Frame-based Representation in Reasoning, in: Commu-

nications of the ACM, Vol. 28, No. 9, Sept. 1985, pp. 904-920.

[HMP87] Härder, T., Mattos, N. M., Puppe, F. : On Coupling Database and Expert Systems (in Ger-

man), in : State of the Art, Vol. 1, No.3, 1987, pp. 23 - 34.

[In87] IntelliCorp. Inc.: KEEconnection: A Bridge Between Databases and Knowledge Bases, In-

telliCorp., Technical Article, 1987.

[Ke81] Keller, A. M. : Updates to Relational Databases Through Views Involving Joins, Research

Report RJ 3282, IBM Research Laboratory, San Jose, California, 1981

[Ma83] Masunaga, Y. : A Relational Database View Update Translation Mechanism, Research Re-

port RJ 3742, IBM Research Laboratory, San Jose, California, 1983

[Ma86] Mattos, N. M.: Concepts for Expert Systems and Database Systems Integration (in Ger-

man), Research Report No. 162/86, University of Kaiserslautern, Computer Science De-

partment, Kaiserslautern, 1986.

[Ma88a] Mattos, N. M.: Abstraction Concepts: the basis for data and knowledge modeling, in: 7th

Int. Conf on Entity-Relationship Approach, Rom, Italy, Nov. 1988.

[Ma88b] Mattos, N. M.: KRISYS - A Multi-Layered Prototype KBMS Supporting Knowledge Indepen-

dence, in : Proc. Int. Computer Science Conference - Artificial Intelligence : Theory and Ap-

plication, Hong Kong, Dec 1988.

[MM88] Mattos, N. M., Michels, M.: Modeling Knowledge with KRISYS: the Design Process of

Knowledge-Based Systems Reviewed, internal report, University of Kaiserslautern, 1988,

submitted for publication

[Mc82] McDermott, J.: R1: A Rule-based Configurer of Computer Systems, in: Artificial Intelli-

gence, Vol. 19, 1982, pp. 39-88.

[MW84] Missikoff, M., Wiederhold, G.: Towards a Unified Approach for Expert and Database Sys-

tems, in: Proc. of the First International Workshop on Expert Database Systems (ed. Ker-

schberg, L.), Kiawah Island, South California, October, 1984, pp. 186-206.

[St81] Stefik, M. J.: Planning with Constraints (MOLGEN: Part 1), in: Artificial Intelligence, Vol. 16,

No. 2, 1981, pp. 111-140.

[St82] Stefik, M. J. et al.: The Organization of Expert Systems, A Tutorial, in: Artificial Intelligence,

Vol. 18, 1982, pp. 135-173.

[St83] Stefik, M. J. et al.: The Architecture of Expert Systems, in: Building Expert Systems, Volume

1 (eds. Hayes-Roth, F., Waterman, D. A., Lenat, D. B.), Addison-Wesley Publishing Com-

pany, Reading, Mass., 1983, pp. 89-126.

	1. Motivation
	2. The Framework
	3. Overall Architecture
	4. Performance Comparison
	5. Summary

