
Multimedia Metacomputing †

Ulrich Marder Jernej Kovse

University of Kaiserslautern
Dept. of Computer Science

P. O. Box 3049
D-67653 Kaiserslautern

Germany

{marder,kovse}@informatik.uni-kl.de

Abstract

The concept of multimedia metacomputing involves the formation of a large
scale loosely coupled multiprocessing environment capable of performing
complex transformations on media objects. The transformations are pro-
vided in the form of operations integrated in special media processing com-
ponents. The components are described by signatures that denote the run-
time environments required for component deployment, the types of media
objects the component operations accept and emit and a formal description
of transformations they perform. The multiprocessing environment also
connects a set of heterogeneous processing resources in which the compo-
nents are dynamically deployed in order to carry out the transformations.
The existing Internet infrastructure is used to connect storages of media
processing components, available processing resources and the system con-
trolling the transformation process. By such an environment, we try to real-
ize the concept of delivering global media data without the need to generate
specially adapted materialization of the media data in advance. An open
“plugable” environment provides the possibilities for both vendors of media
processing components as well as providers of processing resources to ex-
ploit the potential of the business model involved in offering and providing
multimedia services using the existing Internet infrastructure.

1 Introduction
Over the last couple of years, the Internet has significantly improved in the sense of the vari-
ety of different media types it involves. The introduction of complex media types, such as
graphics, sound and video clips has made the usage of various Internet services, ranging from
electronic mail to the World Wide Web (Web), more appealing. However, the existing Inter-
net infrastructure along with its protocols today still is mainly used to merely support the ex-
change of media objects. It would be useful if we could find a way to combine this exchange
with the possibilities of media processing. This way, the Internet infrastructure would be used
to form a large, loosely coupled multiprocessing environment where various kinds of media
objects could efficiently be found and processed according to the requirements that may be
posed by human as well as certain types of software agents.

† This work is supported by the Deutsche Forschungsgemainschaft (DFG) as part of the Sonderforschungs-
bereich (SFB) 501 “Development of Large Systems with Generic Methods”.



During the last decade, metacomputing concepts have been invented to support the dynamic
distribution of processing components in high-performance multiprocessing environments.
While early approaches were targeted at homogeneous massive parallel systems [9], newer
approaches, e. g. [3], often exploit the advantages of distributed component architectures. Our
proposal of a multimedia metacomputing environment enhances the component-based ap-
proach with dynamic configuration, optimization, and multimedia-specific semantics. In par-
ticular, this kind of environment involves the following parts:

• mechanisms supporting storage and retrieval of various types of processing compo-
nents that enable media objects to be transformed according to specific user require-
ments,

• processing and communication infrastructure supporting the transfer of media objects
between processing resources used to carry out the transformations specified by cho-
sen processing components,

• a special control system supporting scheduling and dynamic migration of processing
components between the resources as well as initialization and gathering of the results
of the media transformation process taking into consideration the availability and the
existing processing load for a certain resource,

• a semantic model supporting the description of multimedia processing tasks independ-
ently from concrete processing components, optimization strategies, and materializa-
tion of media objects.

In the following, we describe the requirements that each of the parts has to fulfill in order to
be able to form the heterogeneous open multimedia metacomputing environment.

2 Component-based Multimedia Metacomputing

2.1 Providing and storing media processing components
Using the definition provided by the Unified Modeling Language (UML) Specification [7], a
component represents a physical piece of implementation of a system, including software
code (source, binary or executable) or equivalents such as scripts or command files. As such,
a component may itself conform to and provide the realization of a set of interfaces, which
represent services implemented by the elements resident in the component [7]. Over the last
couple of years, the so-called Component-based Software Development (CBSD) [1] has be-
come highly popular primarily because of its promise of reducing costs and time needed to
produce software products using components as their building blocks. Today, component
technologies such as JavaBeans [8] may be used to support the CBSD.

Using the term media processing component, we refer to a software component providing a
set of services used to transform the state of a media object. In our case, it is not necessary
that such a component conforms to one of the predefined technologies, such as JavaBeans, for
example. A component should merely be deployable in the sense of being able to find an ap-
propriate run-time environment tied to a processing resource where the operations provided
by a component may actually be applied to a media object. However, an important aspect of
using predefined technologies is that the issues of specifying a set of interfaces, component
deployment, and component cooperation are already defined, which makes the usage and
combination of such components easier.

After a deployed component receives a media object, it applies a sequence of transformations
and delivers a transformed object as its output. An audio transcription component, for in-



stance, first performs a speech recognition and then generates a text object containing the
transcript. The transformation process is configurable by a set of parameters, which makes it
possible for the user agents to influence the process of applying the transformations.

2.1.1 Describing component services
In our scenario, components are stored using a special storage mechanism. In order to be able
to successfully locate and retrieve components according to the transformations of the media
object that have to be carried out, a component has to provide not only processing functional-
ity, but also a formal description of the transformation process it supports. Also, the types of
media objects the transformations may be applied to, have to be precisely specified. This way,
the result of the process of applying transformation operations is exactly defined and the con-
trol system knows what kind of result a media object transformation delivers. We call such
additional information related to transformation functionality acomponent signature. In case
a component provides a formal description of its set of interfaces, as it is the case with the
majority of common component technologies, the component signature is to be compre-
hended as an upgrade of such a description that defines not only which operations may be
invoked, but also the exact effects of applying the transformation operations to a media ob-
ject. Component signatures may not be provided directly by media processing components
and may therefore be stored separately. Hence, relationships need to be established between
storage representations of components and component signatures. Figure 1 illustrates possible
usages of provided component signatures.

Figure 1: Media Processing Component with Sample Component Signature (shortened)

2.1.2 Managing dependencies between component versions
In a lot of cases, not only components, but also relationships declaring dependencies and pos-
sibilities of cooperation between them have to be stored and managed. For example, a com-
ponent declares by its set of interfaces that it is capable of carrying out an operation that per-
forms a media object transformation as required by the user. However, in the course of this
transformation, services of another component are required. For this reason, relationships be-
tween components have to be established to make the control system aware of this depend-

Media
processing
component

<component>
<!-- runtime environment-->
<environment><platform>JVM</platform>...</environment>
<!-- media objects accepted-->
<input name=“audio_in”>

<signature><property name=“MAINTYPE” …>AUDIO</property>…</signature>
</input>
<!-- media objects emitted-->
<output name=“text_out”>

<signature>…</signature>
</output>
<!-- transformations performed-->
<operation semantics=“transcript”>

<input ref=“audio_in”/>
<output ref=“text out”/>
<param name=“language”><value>EN</value><value>DE</value>…</param>

</operation>
</component>

Component signature

Media
processing
component

<component>
<!-- runtime environment-->
<environment><platform>JVM</platform>...</environment>
<!-- media objects accepted-->
<input name=“audio_in”>

<signature><property name=“MAINTYPE” …>AUDIO</property>…</signature>
</input>
<!-- media objects emitted-->
<output name=“text_out”>

<signature>…</signature>
</output>
<!-- transformations performed-->
<operation semantics=“transcript”>

<input ref=“audio_in”/>
<output ref=“text out”/>
<param name=“language”><value>EN</value><value>DE</value>…</param>

</operation>
</component>

Component signature



ency. This makes it possible to successfully deploy both components in appropriate run-time
environments, so that the media object transformation can be carried out. For example, the
transcription component mentioned earlier could as well be realized as a composition of two
other components:
speech recognition and
text generation. How-
ever, the storage
mechanism should also
be capable of storing
and managing different
versions of the same
media processing com-
ponents. A new compo-
nent version may pro-
vide improved
functionality related to
media processing, but
may prove to be incom-
patible with other components the initial component depends on. Therefore, various versions
of the same component should be stored and managed by the storage mechanism. Moreover,
the relationships between the components that define the dependencies should be refined in
such a fashion that it is possible to choose and deploy the appropriate configuration of com-
ponent versions that fits the desired context of a media object transformation. Hence, follow-
ing a similar approach as with components,configuration signaturesare required. Figure 2
illustrates an example of configurations of different component versions. Mahnke et al. [4]
describe more general advantages of using customized version control in repositories.

2.1.3 Storing media processing components
Because of the complex requirements related to storing meta information to support searching
of the appropriate components and managing valid configurations of component versions, we
think that the services of a file system offer only limited functionality to provide storage fa-
cilities for media processing components. Therefore, it is essential to provide storage facilities
in a form of special component repositories. Such a repository usually provides standard
amenities of a database management system (DBMS), such as data model, query facility,
view mechanism, and integrity control. However, in our case the functionality is upgraded
using special value-added repository services, such as efficient searching for stored compo-
nents according to desired functionality as well as version and configuration control.

Note that a repository may be distributed in general such that various media processing com-
ponents may actually be stored at different locations. Various component vendors may pro-
duce components providing media processing functionality, provide component signatures for
these components, store them at their own location and register them with the repository. This
way, a repository seamlessly integrates various storage locations in a single virtual storage
environment, which makes it possible for the control system to find and retrieve the compo-
nents in a simple fashion (see Figure 3).

2.2 Processing and communication infrastructure
The processing and communication infrastructureenables the control system to locate the
resources available for media processing, transfer data related to a media object to these

Figure 2: Configuration Example

Component
“Speech Recognition”

Version 1

Component
“Text Generation”

Version 1

Symbolic speech
representation

Component
“Text Generation”

Version 2
Component
“Optical Recognition”

Version 1

Recognized
patterns

Configuration I: Transcript Filter

Configuration II: Optical Character Recognition

Component
“Speech Recognition”

Version 1

Component
“Text Generation”

Version 1

Symbolic speech
representation

Component
“Text Generation”

Version 2
Component
“Optical Recognition”

Version 1

Recognized
patterns

Configuration I: Transcript Filter

Configuration II: Optical Character Recognition



resources and initiate the transformation process that may take place at various resources in a
parallel or sequential manner.

Processing resources form special run-time environments in which media processing compo-
nents are deployed in order to perform transformations on the media objects. Note, since our
multiprocessing environment involves multiple types of different processing components, the
communication infrastructure links heterogeneous run-time environments. Run-time envi-
ronments register with the control system, where the exact environment type and the possibili-
ties of component deployment are described.

2.3 Control system
A specialcontrol systemis used to direct the transfer of components to appropriate run-time
environments as well as the transfer of media objects between the components on various
stages of the performed transformations.

As an input, the control system receives data related to the media object and a formal descrip-
tion of a transformation that has to be performed on the object. The description may be given
as a list of commands in a special-purpose high-level language like VMML [6] (cf. Figure 4).
The system tries to analyze the description to obtain a list of basic transformation tasks
needed. Using special query capabilities of the distributed repository of media processing
components, it tries to locate the components capable of performing the requested transforma-
tions. In the process of searching for the components, component signatures stored in the re-
pository are used. In case the component is capable of carrying out the transformation, addi-
tional information about dependencies of the component to other components may be
delivered so that it is possible to choose a valid configuration of cooperating components.
Next, run-time environments needed to deploy the components have to be chosen among the
environments that have registered with the control system. After component deployment, a
media object that needs to be transformed is passed as an argument to the components along
with additional arguments used to configure the transformation process performed by the
components. The process of deploying appropriate components to run-time environments,
configuring them and passing the media object is repeated for each of the basic transformation
tasks. As a result of this process, an object transformed according to the user specification is
delivered to the user.

Note that due to different types of media processing components, the way of accessing a
component by a control system and retrieving the results of the transformation process may

Figure 3: General Architecture of the Multimedia Metacomputing Environment

A processing component
with signature

Storages of media
processing components

Component repository

Processing resources

Control system

Processing environment
retrieving
components

searching for
components

deploying components,
managing the transformation results

A processing component
with signature

Storages of media
processing components

Component repository

Processing resources

Control system

Processing environment
retrieving
components

searching for
components

deploying components,
managing the transformation results



vary. In this aspect, the
usage of predefined com-
ponent models proves to
be easier, since such mod-
els already define the way
clients access component
services, pass a media
object and other configu-
ration parameters, and
retrieve the results of the
transformation of the me-
dia object. However, the
usage of other compo-
nents, such as binary ex-
ecutables deployed in an
operation system envi-
ronment requires addi-
tional functionality
needed to access the ser-
vices to enable the com-
munication with the con-
trol system. This func-
tionality may be provided by a component vendor as a separate part of the software that is
deployed in the same run-time environment and is used as a mediator between the control
system and the actual component performing media transformation.

3 Semantic Model for Multimedia Metacomputing
The component-based metacomputing foundations described in the previous section form a
necessary prerequisite for multimedia metacomputing. We need, however, also a semantic
model clearly specifying

• an abstract collaboration model,

• the external representation of media objects, operations, and client requests, and

• how client requests are pre-processed (transformed) to become executable by the
metacomputing environment.

This model supplies the user or application programmer with everything needed to create both
ad-hoc requests and metaprograms (e. g., request templates). The model also precisely de-
scribes how these requests get transformed into plans executable within a given metacomput-
ing environment. The advantages of letting users make requests instead of directly creating
plans are:

Ease of use:Requests are much simpler to create, because one does not have to deal with
finding components implementing a certain operation, manipulating the media objects in
order to fit them to the selected operation's signature, and so on.

Stableness:Requests are stable while plans are not. The reason is the inherent unstableness of
a Web-based metacomputing environment, in which resources may become unavailable,
replaced, or updated from time to time. A plan fails, if one of the required resources is not

Figure 4: Sample Client Request using VirtualMedia
Markup Language (VMML)

<?xml version="1.0" encoding="UTF-8"?>
<?doctype vmd system "vmd.dtd"?>
<vmdesc>

<source>
<moid alias="bc_video" ext_ref="CNN_db/CNN_Videos/4711"/>

</source>
<virtual name="TranscriptedSpeech">

<signature>
<property name="Maintype" class="Typespec">Text</property>
<property name="Subtype" class="Typespec">Plain</property>
<property name="Encoding" class="Typespec">UTF-8</property>

</signature>
<transformation name="transcription">

<operation semantics="transcript">
<input alias="i1" ref="bc_video"/>
<param name="language" value="EN"/>

</operation>
</transformation>

</virtual>
…

</vmdesc>



available or compatible anymore, whereas a request would result in an alternative plan (if
one exists).

Optimization:A request may be transformed into different plans depending on volatile condi-
tions. We may, for example, consider time constraints, cost limits, utilization of resources,
and exploitation of redundancy.

Due to space limitations, we only sketch
the major aspects of the model in the
following sections.

3.1 Abstract Collaboration Model
Our collaboration model is based on
filter graphs (cf. Figure 5) similar to
those introduced in [2]. The start nodes
of the graph are media producerspi

(media objects managed by some
server, maybe even live media sources)
and the end nodes are media consumers
ci (e. g., client applications). The inter-
mediate nodes are media filtersfi, the
basic operations of a media computa-
tion, while the edges of the graph represent media streams flowing from one filter (or media
producer) to another filter (or media consumer).

The graph in Figure 5 can be interpreted as follows. There is a producerp1 creating a media
object sent to filterf1. Filter f1 generates from its input two media objects which are sent to
filters f2 and f4, respectively, and so on. Thus, the graph nodes are not bound to any real in-
stances of media servers or filters, therefore we call this an abstract collaboration model.

3.2 Abstract Media Semantics
Turning our collaboration model into a
multimedia metacomputing model requires
the addition of some more specific media
semantics to the graphs. This is done by
means of signatures. A signature is a set of
properties belonging to any of the follow-
ing property categories: type, quality, con-
tent, functional, and non-functional speci-
fications.

Figure 6 shows an example of a filter
graph with signatures, in which the path
p1�f1�c2 corresponds to the sample re-
quest presented previously in Figure 4. The
rectangular nodes contain node signatures.
An edge has two signatures, one for each
end. Edge signatures may be empty. In
Figure 6, non-empty edge signatures are
drawn as a circle between edge and node.

Figure 5: Illustration of the Collaboration
Model

Figure 6: Sample Request Graph with
Signatures

σ
c1

: σ
c2

:
[Typespec] [Typespec]
Maintype=Audio Maintype=Text
Subtype=Waveform Subtype=Plain
Encoding=WAV Encoding=UTF-8
[Quality]
Sampling_Frequency=44100
Sample_Depth=16

f1: Transcript

p
1
: CNN_Vi-

deos/4711

c
2
: Transcr-

iptedSpeech
σc2

c
1
: Speechσ

c1

P
C

F

p
1 f

1

c
1

p
2 f

2 f
3

e
1

e
2

e
3 e

4

e
6

e
7

f
4e

5



A graph like the one in Figure 6 describes the computation of some media objects on a very
abstract level, yet reflecting the full semantics from the client perspective.

3.3 Request Processing
The first thing to note is that the addition of edge signatures may turn the edges into a sort of
“magic channels”. Consider, for example, the edge betweenp1 andc1 in Figure 6. The signa-
tureσc1 contains some type properties of the media object emitted by this channel, but what
goes into this channel
fully depends on the
internal representation
of the media object
referenced byp1. Thus,
we can get edges with
incompatible signatures
at both ends. Appar-
ently, there should be
some kind of hidden
computation within the
channel, hence, the
name “magic channel”.

Consequently, one of
the major purposes of
request processing is
revealing the semantics
of “magic channels” in
such a way that the
request becomes executable by configuring and integrating appropriate components. In other
words, the request graph has to be transformed into a semantically equivalent graph that con-
tains only deployable components as nodes and edges with compatible media signatures at
both ends. This automatic process has to be supported by formally specified semantic equiva-
lence relations.

The three basic equivalence relations areneutrality, reversibility, andpermutability, thus de-
fining which media operations are considered semantically neutral, which operation is the
inverse of another, and which groups of operations are semantically independent from each
other, respectively. The semantics of mediacompositionand decompositionis defined by
generalized forms of these relations. The most important equivalence relation is calledseman-
tic assimilation(see Figure 7), which defines the relation between an abstract media operation
(usually specified in a user request) and a component or configuration of components imple-
menting that operation. More detailed explanations and a discussion of other important issues
like, for instance, materialization management can be found in [5,6].

4 Conclusions
In this paper, we described the so-called multimedia metacomputing approach that aims at the
formation of a large scale loosely coupled multiprocessing environment providing a distrib-
uted architecture to perform transformations on media objects. Basically, the following con-
clusions emerge from our previous discussion:

• operations that perform the transformations on media objects can be provided in the
form of special media processing components,

Figure 7: Equivalence of Abstract Operations (Filters) and
(possible) Implementations defined as Semantic Assimilation

σ
a

σ
v1

f
v
: op σ

v2
σ

b

σ
a

σ
i1

f
i
: op σ

i2
σ

b

Assimilation

Additional filters must
be semantically neutral

Conditions:
σ

i1
must be equally or more

specific thanσ
v1

and

σ
i2

must be equally or more

specific thanσ
v2

(in at least one case "more").



• each media processing component should provide a signature to formally describe the
run-time environment it requires during its deployment, types of media objects it ac-
cepts and the transformations it performs,

• it proves to be essential to exploit services of a repository as a distributed storage
mechanism for processing components; in comparison to other solutions, a repository
may provide additional functionality related to component versioning as well as com-
bining component versions into valid configurations capable of cooperation in the
process of media object transformation,

• an abstract semantic model has to be provided to ensure (semantically) correct request
processing and robustness of client programs against changes of the metacomputing
environment like, for example, exchange of components, processors, or media object
materialization.

A global multimedia metacomputing environment would, in principle, allow to deliver global
media data to any client and any kind of multimedia device without need to generate espe-
cially adapted materialization of the media data in advance. Moreover, computationally com-
plex transformations and manipulations of the data are dynamically delegated to the most ap-
propriate processing resources at run-time, thus optimizing response time and utilization of
expensive special-purpose hardware. Ultimately, a “plugable” model for vendors of compo-
nents providing media transformations and processing resource providers could form the
(technical) foundation of a flexible business model for offering and vending multimedia ser-
vices over the Internet. Albeit, our future work will be related to:

• further exploring the possibilities of using existing component technologies, such as
JavaBeans in our approach,

• developing a mechanism used to dynamically evaluate the performance of processing
components deployed in run-time environments while carrying out transformations on
the media objects; using this mechanism, the results obtained are stored in a special
history database and later used by the control system in order to achieve improved re-
sponse times in the instances of subsequent media transformations.

References
1. Brown, A. W.: Large Scale Component Based Development, Prentice Hall, 2000.
2. Candan, K. S., Subrahmanian, V. S., Venkat Rangan, P.: Towards a Theory of Collaborative

Multimedia. In: Proc. IEEE International Conference on Multimedia Computing and Systems
(Hiroshima, Japan, June 96), 1996, pp. 279–282.

3. Hawick, K. A., James, H. A., Silis, A. J., et al.: DISCWorld: An Environment for Service-Based
Metacomputing. In: Future Generation Computer Systems, 15 (5–6), 1999, pp. 623–635.

4. Mahnke, W., Ritter, N., Steiert, H.-P.: Towards Generating Object-Relational Software Engineering
Repositories. In: Proc. 8th GI-Fachtagung "Datenbanksysteme in Büro, Technik und Wissenschaft",
BTW ’99 (Freiburg, Germany, March 1–3), Buchmann, A. (ed.), Informatik aktuell, Springer-Verlag,
March 1999, pp. 251-270.

5. Marder, U.: On Realizing Transformation Independence in Open, Distributed Multimedia Information
Systems. In: Proc. 9th GI-Fachtagung "Datenbanksysteme in Büro, Technik und Wissenschaft", BTW
'2001 (Oldenburg, Germany, March 7–9), Heuer, A., Leymann, F., Priebe, D. (eds.), Springer-Verlag,
Heidelberg, Berlin, March 2001, pp. 424–433.

6. Marder, U.: Transformation Independence in Multimedia Database Systems. SFB-Report 11/2000, SFB
501, University of Kaiserslautern, Nov. 2000, 24 pages.

7. OMG, Unified Modeling Language Specification, version 1.3, OMG Document ad/00-03-01, March
2000.

8. Roman, E.: Mastering Enterprise JavaBeans, John Wiley and Sons, 1999.
9. Smarr, L., Catlett, C. E.: Metacomputing. In: Comm. ACM, Vol. 35 No. 6, June 1992, pp. 44–52.


