
Abstract

Extensibility is one of the mayor benefits of ob-

ject-relational database management systems. We

have used this system property to implement a

StateMachine Module inside an object-relational

database management system. The module allows

the checking of dynamic integrity constraints as

well as the execution of active behavior specified

with the UML. Our approach demonstrates that

extensibility can effectively be applied to inte-

grate such dynamic aspects specified with UML

statecharts into an object-relational database

management system.

1 Motivation

Object-relational database management systems (ORD-

BMS) enable us to extend their off-the-shelf functionality

by self-developed extension modules [6]. This allows us to

adopt an ORDBMS to the needs of several application do-

mains. Our demonstration illustrates how this feature can

be exploited to equip an ORDBMS with a module which

handles dynamic aspects inside the database system.

In our SERUM project [3], we use an object-oriented

specification as an input to generate data storage compo-

nents. Since UML [4] offers a rich set of object-oriented

constructs and is widely used, we have chosen it as speci-

fication language. Class diagrams are used to describe the

data structures, and the mapping of these structures to an

object-relational schema is straightforward. Each class of

the class diagram is mapped to a row type and a typed table

in the database schema. Inheritance relationships can be

mapped onto table inheritance (see [2] for details and prob-

lems with multiple inheritance). Methods declared in the

class diagram are implemented as user-defined routines

(UDRs) in the ORDBMS, and associations can be estab-

lished in several ways, e.g., by using foreign keys. These

mappings do not only apply to the SERUM context, but are

a general approach when implementing an object-relation-

al schema on the basis of an object-oriented specification.

In addition, the capabilities of ORDBMSs allow to con-

sider dynamic modelling aspects, too. UML statechart dia-

grams are an appropriate way to specify these aspects. In

the context of ORDBMS-based data storage components,

statecharts can be used for two purposes [5]:

• Observing dynamic integrity constraints

In contrast to static integrity constraints describing the

correctness of a database state, dynamic integrity con-

straints restrict the transitions between different states.

For this purpose, valid sequences of operations, pre-

and post-conditions for transitions, and state-depen-

dent invariants can be specified. Whenever such a con-

straint is being violated, the conflicting operation has

to be prevented.

• Implementing active behavior

Statecharts can be used to specify functionality in form

of actions which have to be executed when the trigger-

ing event occurs. There are predefined events in an

ORDBMS, e.g., INSERT, UPDATE, or DELETE

events on tables, which can be used by SQL triggers.

Furthermore, application-specific events can be

defined and triggered by UDR calls or, in turn, by the

actions of the statecharts.

UML statecharts specify dynamic aspects of a class or an

operation. We restrict our demonstration to statecharts de-

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy otherwise,
or to republish, requires a fee and/or special permission from the
Endowment.
Proceedings of the 28th VLDB Conference,
Hong Kong, China, 2002

Extending an ORDBMS: The StateMachine Module

Wolfgang Mahnke2 Christian Mathis2 Hans-Peter Steiert1

1DaimlerChrysler AG

Research & Technology

P.O.Box 2360

89013 Ulm

Germany

hans-peter.steiert@daimlerchrysler.com

2University of Kaiserslautern

P.O.Box 3049

67653 Kaiserslautern

Germany

{mahnke|mathis}@informatik.uni-kl.de



fined on classes and do not deal with the dynamic aspects

related to the operations.

In the following, a short overview of the architecture of

our StateMachine Module is given and two example state-

charts are introduced, one specifying dynamic integrity

constraints, and the other specifying active behavior. In our

demonstration, we present both examples and illustrate the

internal processes of the StateMachine Module.

2 Architecture of the StateMachine Module

Fig. 1 illustrates the architecture of the StateMachine Mod-

ule. The product data and their related UDRs are shown at

the lefthand side. The specification, expressed as a UML

model, is stored as part of the StateMachine Module data-

base tables, denoted as ModelManagement in Fig. 1. Ap-

plications can access the product data directly (1) or via

UDRs (2,3). Both ways, calling a UDR or manipulating the

product data directly, can trigger an event, which is send to

the Event Interface of the StateMachine Module (4,5). To

create these events we integrate specific event calls in the

UDRs and use SQL triggers for INSERT, UPDATE, and

DELETE operations on the typed tables of the product da-

ta. In the SERUM project, this integration is straightfor-

ward, since the typed tables and the UDRs are generated.

In other environments, additional efforts are required to as-

sure that each event is called correctly.

When an event arrives at the Event Interface, it is

passed on to the Animation component (6). Depending on

its type and the current state (stored in the StateManage-

ment component), it may be processed directly or delayed.

By storing it in an event queue of the StateMachineMan-

agement component, it can be processed later on. Whenev-

er initiating a state machine, the StateMachineManage-

ment uses a subscription mechanism to keep information

for the events to be expected. Since each state machine re-

sponding to the event received has to be animated, the An-

imation reads its specification and its current state (7).

While performing the animation, conditions have to be

evaluated and actions have to be executed (8), both steps

referring to the product data (9). The manipulation of the

product data, in turn, can trigger new events to be handled.

As soon as the animation process for the state machine un-

der consideration has been finished, its new state is saved

by the StateManagement.

As ORDBMS we used the IBM Informix Internet

Foundation.2000 [1] to implement the StateMachine Mod-

ule. Most functions of the module are coded as Java UDRs.

Object-relational concepts like type hierarchies, overload-

ing and polymorphism helped managing the different event

types occurring in the UML-based specification.

3 Observing Dynamic Integrity Constraints

We introduce a short example to demonstrate the use of the

StateMachine Module to observe dynamic integrity con-

straints. In the following, we restrict ourselves to a single

class, calledAircraft. An excerpt of the corresponding

statechart diagram is illustrated in Fig. 2. A flight of an air-

craft starts in the PrepareToTakeOff state. In this

product data

SQL

Application

UDRs ModelManagement

StateManagement

StateMachine-
Management

StateMachine Module

Event
Interface

ConditionEvaluation

ActionExecution

Animation

21

3

4

5

6

8

7

9

ORDBMS

Figure 1. Architecture of the StateMachine Module



state, the aircraft can be checked, while the passengers can

check in, represented by parallel substates. The boarding

can only start after the aircraft is successfully checked.

Therefore, we use a sync-state between the parallel sub-

states. As soon as the boarding is completed, the aircraft

can take off. Upon arrival at the destination, the aircraft can

disembark and the passengers can check out. By releasing

the crew, the aircraft comes again into the PrepareTo-
TakeOff state.

Most transitions of the example are triggered by func-

tion calls. Hence, the statechart describes in which state a

specific function can be called. An error occurs if a func-

tion is called while the aircraft is in a state where the call is

not allowed. For example, the retractLand-
ingGear() function can only be called when the air-

craft is in the air.

There are two possibilities for handling errors. One is

to define an error state, and whenever an unexpected event

occurs, the error state is entered. The other is to raise an ex-

ception which leads to a rollback of the operation. Because

we do not want an aircraft entering the error state, we use

the second one in our example.

4 Implementing Functionality

Our second example deals with the implementation of ac-

tive behavior. We use a statechart diagram to implement

the behavior of an ATM (Automated Teller Machine). In

this scenario, the class diagram involves more than just one

class, as illustrated in Fig. 3. Each ATM manages a session

object, representing the current session, and belongs to a

bank. The bank manages accounts and has customers.

These customers can use their bank card to access the

ATM.

Fig. 4 illustrates the statechart diagram. Conditions are

defined on most transitions. The actions of the transitions

define the intended behavior of the ATM. For example, if

the ATM is in the state WaitingForCard, it expects

the function call insertingCard(card). As soon

as the function is called, the transition is initiated by trig-

gering an event and the action checkCard(card) is

executed. This function sets retainCard of the current

session. If retainCard is false, the ATM displays

´Your account is locked´ and changes to the

RetainingCard state. Afterwards it displays ´Your
card is retained´, calls retain-
Card(card), and moves into the SystemCheck
state. If retainCard is true, the ATM displays

´Please insert PIN´ and moves into the state

WaitingForPin.

This example shows that statechart diagrams can easily

be used to implement active behavior of database objects.

5 Presentation Details of the Demonstration

Since the StateMachine Module runs completely inside the

ORDBMS, it is hard to visualize its internal processes.

WaitingForCrew

PrepareToTakeOff

Checked

Unchecked
getCrew()

Maintenance

check()

[check = false]

[check = true]

CheckAircraft

CheckIn

WaitingForCheckIn

Boarding

CheckedIn

closeCheckIn()

checkIn()
[else]

[passengers<seats]

*

getPassengers()

TakeOff

ReadyToTakeOff SpeedsUp
thrust()

InTheAir

takeOff()

retractLandingGear()

Flying

getCleranceToTakeOff()

Disembarking

InLandingZone LandingApproach
extendLandingGear()

initilizeLanding()

RollOut

hitTheGround()break()

stop()

CheckOut

PassengersInArcraft
releasePassengers()

moveToParkingZone()releaseCrew()

Figure 2. Statechart of an Aircraft

H

maintain()

Bank

Session
retainCard : boolean
pinValid : boolean
function : String
amountIsValid : boolean
amount : Integer
pin : Integer

0..*

0..* +Customer

0..*

0..1

1..1
0..*

0..*

0..*

1..1

0..*
1..1

0..*

1..1

0..*

0..1
0..1

Card

getTrials()
getPin()

increaseTrials()

Account
getBalance()
withdrawMoney()

ATM

abort()
checkAmount()
checkCard()

working : boolean

checkPin()
checkSystem()
choseFunction()
continue()
display()
ejectCard()
insertCard()
enterPin()
enterAmount()

Figure 3. Class Diagram of Example Scenario

Person 1..1

0..1

maintenance()
provideMoney()
retainCard()



Therefore, we have implemented a Java application run-

ning outside the ORDBMS, which performs two tasks:

• First, it serves as a front-end for manipulating product

data, i.e., inserting new objects or calling UDRs.

Thereby, it creates new events for the StateMachine

Module.

• Second, it visualizes the internal processes running

inside the StateMachine Module. For this purpose, it

observes one object of the product data. The current

attribute values of the object and an animated state-

chart diagram, where the current state is highlighted,

are displayed. Whenever an event for this object

occurs, the application visualizes the state transitions

of the statemachine instance.

To get the information about the animation, it reads the

data from the log file written by the StateMachine

Module.

In our demonstration, we will present the aircraft scenario

to prove that the StateMachine Module can reasonably be

used to observe dynamic integrity constraints. We will also

demonstrate the ATM scenario in order to prove the usabil-

ity of the StateMachine Module to effectively implement

functionality inside the ORDBMS by specifiing a statema-

chine.

6 Conclusions

Our StateMachine Module allows to control dynamic as-

pects inside an ORDBMS. The introduced examples, pre-

sented as UML statechart diagrams, illustrate different

possibilities for the use of dynamic modelling aspects: dy-

namic integrity constraints and active behavior of database

objects.

Nevertheless, there are some difficulties related to the

integration of dynamic features into the ORDBMS. In an

environment using a generated database schema, it is easy

to create the required events for the StateMachine Module

by appropriate generator actions. In other environments,

this may turn out to be a problem, because the programmer

may fail to provide them. What we have not considered so

far, are performance restrictions. Specifying complex dy-

namic integrity constraints may lead to a high run-time

burden for the constraint checking. Because this function-

ality is integrated in the StateMachine Module, the query

optimizer can not relieve this problem.

Despite these problems, our demonstration confirms

that an ORDBMS can be extended successfully to manage

dynamic aspects of database objects.

7 Literature

[1] IBM: Getting started with the IBM Informix Dynamic

Server. Version 9.30. August 2001.

[2] Mahnke, W., Steiert, H.-P.: The potential of OR-

DBMS in design environments (in German). GI-

Fachtagung CAD 2000 - Kommunikation, Koopera-

tion, Koordination, Berlin, March 2000.

[3] Mahnke, W., Ritter, N., Steiert, H.-P.: Towards Ge-

nerating Object-Relational Software Engineering Re-

positories. 8. GI-Fachtagung „Datenbanken in Büro,

Technik und Wissenschaft“ (BTW’99), Freiburg,

March 1999.

[4] OMG: OMG UML v. 1.3, OMG Document ad/99-06-

08.

[5] Steiert, H.-P.: Aspects of the generic design of ORDBMS-

based data storage components (in German). Dissertation,

Department of Computer Science, University of Kaiser-

slautern, September 2001.

[6] Stonebraker, M., Brown, M.: Object-Relational DBMSs:

Tracking the next great Wave. Morgan Kaufmann, 1999.

WaitingForMaintenance

SystemCheck

/entry checkSystem()

[working = false]
/display(’Out of order’)

maintenance()

WaitingForCard

[working = true]
/display(’Please insert card’)

insertCard(card)
/checkCard(card)

[session.retainCard = false]
/display(’Please insert PIN’)

[session.retainCard = true]
/display(’Your account is locked’)

WaitingForPIN

RetainingCard

/(display(’Your card is retained’),
retainCard(card))

enterPin(pin)
/checkPin(card.getPin(),session.pin)

[session.pinValid = false

/display(’PIN is incorrect!’)
&& card.getTrials() = 3]

EjectingCard
abort()

/(display(’Your card is ejected’),
ejectCard())

[session.pinValid = false
&& card.getTrials() < 2]

/(display(’PIN is incorrect! Try again’),
card.increaseTrials())

WaitingForDecision

[session.pinValid = true]
/display(’Display balance or withdraw money?’)

abort()

choseFunction(function)

DisplayBalance

abort()

[session.function = ’Display Balance’]
/(display(card.account.getBalance()),
display(’Want to withdraw money?’)

EnterAmount

[session.function = ’Withdraw money’]
/display(’Enter amount’)

abort()

/display(’Enter amount’)
continue()

enterAmount(amount)
/checkAmount(session.amount)

[session.amountIsValid = true]
/provideMoney(session.amount)

[session.amountIsValid = false]
/display(’amount too high, try again!’)

Figure 4. Statechart of an ATM


