
es
y
-
h
of
r-

and
n-line
traint)
tive.
xecu-
same
large

al can
scale
t for
vide
icro-
MIPS
ain-

on so-
ing.
es or
mory,
abase
ssage

ed for
ase is
ans-
respec-

in: Proc. PARLE-92 (Parallel Architectures and Languages Europe), Paris, 1992,
 Lecture Notes in Computer Science 605, Springer-Verlag, pp. 295-310
Performance Evaluation of
Parallel Transaction Processing in
Shared Nothing Database Systems

 Robert Marek

Erhard Rahm

University of Kaiserslautern
Dept. of Computer Science

6750 Kaiserslautern, GERMANY

Abstract. Complex and data-intensive database queries mandate parallel processing strategi
to achieve sufficiently short response times. In praxis, parallel database processing is mostl
based on so-called "shared nothing" architectures entailing a physical partitioning and alloca
tion of the database among multiple processing nodes. We examine the performance of suc
architectures by using a detailed simulation system. We analyse response time performance
transactions and individual database queries in single-user as well as in multi-user mode. Fu
thermore, we study the throughput behavior for on-line transactions. Three workload types
covering a wide range of commercial applications are used for performance evaluation: the
debit-credit benchmark load, synthetically generated relational queries as well as real-life
workloads represented by database traces.

1 Introduction

Increasing requirements on performance, availability and modular system growth dem
distributed architectures for transaction and database processing. With respect to o
transaction processing (OLTP), high transaction rates (subject to a response time cons
for short transactions as debit-credit [An85, TPC89] is the primary performance objec
For complex database queries, providing short response times acceptable for on-line e
tion is the main performance challenge, in particular if such queries are executed on the
database than concurrent OLTP transactions. Since complex queries typically access
amounts of data or/and perform extensive computations, in general the response time go
only be achieved by employing parallel query processing [Pi90]. Performance should
with the number of nodes: ideally adding processing nodes linearly improves throughpu
OLTP or response times for complex queries. Furthermore, viable solutions have to pro
good cost-effectiveness which can be achieved by using a larger number of powerful m
processors (instead of mainframes) for database processing. Typically, the price per
(Million Instructions Per Second) is substantially lower for microprocessors than for m
frames.

To meet these requirements, research and system developments have concentrated
calledshared nothingarchitectures [St86] for distributed and parallel database process
Shared nothing systems consist of multiple functionally homogenous processing nod
processing elements (PE). Each PE comprises one or more CPUs and a local main me
and runs local copies of application and system software like operating system and dat
management system (DBMS). Cooperation between PE takes place by means of me
passing. Typically, the PE are locally distributed so that a high-speed network can be us
communication. The characteristic feature of shared nothing systems is that the datab
partitioned and distributed among all nodes so that every PE "owns" one partition. If a tr
action needs to access data owned by another node, a sub-transaction is started at the

otocol
the

ng in-
012

and
chines
L (Data
rectly
ns or
on pro-
red

- and

ready
s to
rallel-

tion.
the
nts be-
lism
te lan-
nt

n da-
located
fferent
pro-
s (or

e this
ble by

arallel
ob-
s for
tions
ucing
duces
orting
ction
ble at

trade-
port

nsti-
rela-
kloads
trans-
ingle
of al-
most
tive owner PE to access the remote data. In this case, a distributed two-phase commit pr
[MLO86, ÖV91] is also to be executed to guarantee the all-or-nothing property [HR83] of
transaction. Existing shared nothing systems supporting parallel transaction processi
clude the products Tandem NonStop SQL [Ta89, EGKS90] and Teradata’s DBC/1
[Ne86] as well as several prototypes like Bubba [Bo90], Gamma [De90], EDS [WT91]
Prisma [Ke88]. With the exception of Tandem, these systems represent database ma
(back-end systems) dedicated to database processing. The database operations or DM
Manipulation Language) statements submitted to the back-end system may originate di
from the end-user (ad-hoc queries) or from application programs running on workstatio
mainframes. Some database machines (e.g. EDS) support the management of applicati
grams (consisting of multiple DML statements) in the back-end system in the form of "sto
procedures" that may be started by a single request.

With respect to parallel transaction processing, we can roughly distinguish between inter
intra-transaction parallelism.Inter-transaction parallelismrefers to the concurrent execution
of multiple independent transactions on the same database. This kind of parallelism is al
supported in centralized DBMS (multi-user mode), e.g. in order to overlap I/O delay
achieve acceptable system throughput. To improve response time, intra-transaction pa
ism is needed either in the form of inter-DML or intra-DML parallelism.Inter-DML paral-
lelismrefers to the concurrent execution of different DML statements of the same transac
The degree of parallelism obtainable by inter-DML parallelism, however, is limited by
number of database operations of the transaction as well as by precedence constrai
tween these operations. Currently, commercial DBMS do not support this kind of paralle
because the programmer would have to specify the DML dependencies using adequa
guage features.Intra-DML parallelismaims at parallel processing of a single DML stateme
based on a parallel execution plan generated by the DBMS query optimizer.

In shared nothing systems, parallel query processing is largely influenced by the chose
tabase allocation. To support response time improvements, the database should be al
such that sub-queries on disjoint database portions can be processed in parallel on di
PE (e.g. using a horizontal partitioning of relations). On the other hand, parallel query
cessing entails cooperation and communication overhead for initialization of sub-querie
sub-transactions), for exchanging intermediate results and for two-phase-commit. Whil
overhead increases with the number of nodes, the response time improvements obtaina
increasing the degree of intra-transaction parallelism generally decrease. As a result, p
query processing is useful only for a limited number of PE in general [Bo90]. Another pr
lem is to find a database and workload allocation supporting both high transaction rate
OLTP transactions and a high potential for parallelizing complex queries. OLTP transac
should be processed locally as far as possible to limit the communication overhead red
the attainable transaction rates. On the other hand, parallelizing complex queries intro
communication overhead in order to support short response times. Frequently, supp
both locality of reference (by clustering related data and transactions) and intra-transa
parallelism (by de-clustering data) are contradicting subgoals that may not be achieva
the same time.

We have developed a comprehensive simulation system to study basic performance
offs of shared nothing architectures. A distinctive feature of our approach is that we sup
three different workload types for performance evaluation: the debit-credit workload co
tuting the standard load in OLTP benchmarks [An85, TPC89], synthetically generated
tional queries as well as real-life workloads represented by database traces. These wor
are used to investigate response time and throughput performance for inter- and intra-
action parallelism. Former performance studies [DGS88, SD89] were restricted to a s
workload type (e.g. relational queries) or concentrated on comparing the performance
ternative algorithms for parallel query processing (e.g. join strategies). Furthermore,

ter-
table
to ac-
e sys-
ntrol
tion

e the
sum-

neric
screte
es of

f the
ion, we
found
cording

eval-
load
abase
nulari-
of par-

re. A
er of
hich
por-
ac-

rrency
ddi-

lled

we de-
kload
in of

state-
ifica-
tween
rallel-
ntra-
ral-
query
execu-
studies only considered intra-DML parallelism in single-user mode thereby ignoring in
transaction parallelism. Since in reality multi-user mode is inevitable to support accep
throughput and cost-effectiveness, inter-transaction parallelism should also be taken in
count in performance evaluations. Other performance evaluations investigated concret
tems [EGKS90] or concentrated on specific aspects like the impact of concurrency co
[CL89, JTK89]. We are not aware of any other study using real-life traces in the evalua
of parallel query processing strategies.

The next section provides a survey of our simulation system. In section 3 we describ
workloads as well as the results of the conducted simulation experiments. Finally, we
marize the major findings of our investigation.

2 Simulation model

Our simulation system models the hardware and transaction processing logic of a ge
shared nothing DBMS architecture. The system has been implemented using the di
event simulation language DeNet [Li87, Li89] and encompasses more than 20.000 lin
source code. Our system consists of two main components:workload generationandpro-
cessing subsystem. The first component generates the workload and assigns it to the PE o
processing subsystem where the actual transaction processing takes place. In this sect
summarize the implementation of both components; a more detailed description can be
in [Ma91]. Several architectural features and processing schemes have been chosen ac
to the ESPRIT effort EDS [WT91].

2.1 Workload generation and allocation

The database and workload model is of great importance to any database performance
uation. In order to cover a wide range of applications we support three different work
types: debit-credit transactions, relational queries and real workloads derived from dat
traces. In all cases, we use the same database model which is based on four object gra
ties: database, partitions, pages and objects (e.g. records). The database is a collection
titions that may be used to represent a file, a record type (relation) or an index structu
partition consists of a number of database pages which in turn consist of a specific numb
objects (records). The number of objects per page is determined by a blocking factor w
can be specified on a per-partition basis. Differentiating between objects and pages is im
tant in order to study the effect of clustering which aims at reducing the number of page
cesses (disk I/Os) by storing related objects into the same page. Furthermore, concu
control may now be performed on the page or object level. For relational queries, we a
tionally support specific index structures (clustered and non-clustered B*-trees).
We employ a horizontal data distribution of partitions (relations) at the object level contro
by a relative distribution table. This table defines for every partition Pj and processing element
PEi which fragment of Pj is allocated to PEi.

To keep the processing subsystem independent from the various workload generators
fined a uniform interface for representing transactions and queries that supports all wor
types and parallelization forms. In this model, a transaction consists of a BOT step (beg
transaction), several DML statements and an EOT step (end of transaction). Each DML
ment in turn consists of multiple object references, indicating the object and page ident
tions and the access mode (read or write).To achieve the mentioned independency be
workload generation and processing subsystem, we determined the distribution and pa
ization of DML statements already at load generation time, supporting both inter- and i
DML parallelism. Special FORK-WAIT operations are used to specify distributed and pa
lel execution sequences within a transaction or a DML statement. The transaction and
representations at the interface to the processing subsystem roughly correspond to the

sac-

de-

idual
lloca-
ction

ystem
ccess
, each
ompo-
nts of

ximal
wly
imal
starts

g of
e de-
trans-
ng all
tion plans in real systems that are generated during the compilation (optimization) of tran
tion programs and queries.
The parallelization forms and parameter settings used for the different workloads will be
scribed in section 3.

The simulation system is an open queuing model and supports the definition of an indiv
arrival rate for each transaction type. Several strategies can be chosen for workload a
tion, e.g. random routing or the use of a routing table. In the latter case, for every transa
type Tj and processing element PEi it can be specified which percentage of type Tj will be as-
signed to PEi.

2.2 Workload processing

The processing component models the execution of a workload on a shared nothing s
with an arbitrary number of PE connected by a communication network. Each PE has a
to private database and log files allocated on external storage devices (disks). Internally
PE is represented by a transaction manager, a buffer manager, a concurrency control c
nent, a communication manager and a CPU server. Figure 1 shows the main compone
the processing subsystem.

The transaction manager controls the (distributed) execution of transactions. The ma
number of concurrent transactions per PE is controlled by a multiprogramming level. Ne
arriving transactions must wait in an input queue until they can be served when this max
degree of inter-transaction parallelism is already reached. The transaction processing

with the BOT processing entailing the transaction initialization overhead. The processin
DML operations and object references is performed according to the execution structur
termined by the workload generator indicating when remote requests and parallel sub-
actions have to be started. The EOT step triggers two-phase commit processing involvi

PE 1

transaction manager

concurrency
CPU buffer

deadlock
detection and
resolution

communication manager

communication network

Figure 1: Gross structure of the simulation system.

workload generation and allocation

control manager

database disks

log disk

PE n

...

e op-
first

per re-
DML

rite
par-
ction
es.

es) or
een
nager
ording
disk,

e out
og-
local

Mes-
the re-

peri-
ce of
spect
S90,

and
of the
ant

ue-
dup is

lt for

e var-
8 PE
ottle-
op-
time.
to the

hree
PE that have participated during execution of the respective transaction. We support th
timization proposed in [MLO86] where read-only sub-transactions only participate in the
commit phase.

CPU requests are served by a single CPU per PE. The average number of instructions
quest can be defined separately for every request type (e.g. transaction initialization,
and object reference processing, communication overhead, I/O overhead etc.).

For concurrency control, we employ distributed strict two-phase locking (long read and w
locks). The local concurrency control manager in each PE controls all locks on the local
tition. Locks may be requested either at the page or object level. A central deadlock dete
scheme is used to detect global deadlocks and initiate transaction aborts to break cycl

Database partitions can be kept memory-resident (to simulate main memory databas
they can be allocated to a number of disks. Disks and disk controllers have explicitly b
modelled as servers to capture I/O bottlenecks. Disks are accessed by the buffer ma
component of the associated PE. The database buffer in main memory is managed acc
to a global LRU (Least Recently Used) replacement strategy. For update propagation to
either a FORCE or NOFORCE strategy [HR83] can be selected. FORCE requires to writ
all pages modified by a transaction at EOT, while NOFORCE only incurs logging I/O. L
ging is modelled by writing a single page per update transaction or sub-transaction to the
log file of the respective PE.

The communication network provides transmission of message packets of fixed size.
sages exceeding the packet size (e.g. large sets of result tuples) are disassembled into
quired number of packets.

3 Simulation results

Using the described simulation system, we conducted a large number of simulation ex
ments with different workloads. Our performance evaluation concentrates on the influen
parallelism and the number of PE (scalability) on throughput and response time. With re
to scalability, the following performance metrics are essential for parallel systems [EGK
Bo90]:

- Throughput scaleupmeasures the throughput improvement as the number of PE
the database size are increased. For N PE, scaleup is defined as the quotient
throughput for N PE and the throughput for 1 PE. This metric is especially import
for OLTP workloads (e.g. debit-credit).

- Response time speedup, on the other hand, measures the improvement of complex q
ry response times as more PE are added to execute the query. For N PE, the spee
obtained by dividing the response time for a single PE by the response time resu
parallel execution on N PE with the same database size.

Table 1 summarizes the major parameter settings used for all workloads. In general, w
ied the number of nodes between 1 and 64; for the trace-driven experiments only up to
proved useful. The parameters for the I/O (disk) subsystem were chosen so that no b
necks occurred (sufficiently high number of disks and controllers). The duration of an I/O
eration is composed of the controller service time, disk access time and transmission
The parameter settings for the communication network have been chosen according
EDS prototype [WT91].

In the following three subsections 3.1 to 3.3, we discuss the simulation results for our t
workload types. Workload-specific parameter settings will also be described there.

ction
NT,
e.
and
g to
nch

e size
k def-
tion
) dis-

Y
to the
IS-
C-
, we
-op-

inter-
d on

mit.
es-
ory.
0.000
ica-
3.1 Results for Debit-Credit workload

The debit-credit workload is completely homogeneous and consists of a single transa
type from a banking application [An85, TPC89]. Every transaction updates one ACCOU
BRANCH and TELLER record. Additionally, a record is inserted into a HISTORY fil
There is a one-to-many relationship between BRANCH and TELLER and BRANCH
ACCOUNT specifying all accounts and tellers associated with a given branch. Accordin
[An85, TPC89], 15% of the transactions access an ACCOUNT record of a different bra
than the one where the transaction is processed.

Table 2 shows the major parameter settings for the debit-credit workload. The databas
is chosen according to the throughput goal (number of PE) as required by the benchmar
inition. The size of the HISTORY partition is immaterial for our purposes as every transac
adds a new record at the end of this sequential file. Each relation is equally (horizontally
tributed among all PE. In particular, each PE holds all TELLER, ACCOUNT and HISTOR
records belonging to the PE’s BRANCH records. Hence, when a transaction is assigned
PE owning the corresponding BRANCH record, accesses to BRANCH, TELLER and H
TORY are local and inter-PE communication may only be required for up to 15% of the A
COUNT accesses. Besides such an "intelligent" (BRANCH-based) transaction routing
also investigated a random routing of transactions in order to study the influence of sub
timal workload allocation strategies. Random routing is expected to cause much more
PE communication since both the BRANCH and the ACCOUNT record may be allocate
a remote PE. Additionally, more transactions are subject to a distributed two-phase com
In our experiments the smaller relations (BRANCH, TELLER and HISTORY) were kept r
ident in main memory whereas ACCOUNT was allocated either on disks or in main mem
With the parameter settings from Table 1, the average path-length per transaction is 15
instructions (BOT, four object references, EOT) not including the overhead for commun
tion and I/O.

Table 1: General parameter settings.

number of PE

CPU: number of processors per PE
processor capacity

avg. #instructions for BOT
for EOT
per object reference
for message send/receive
per I/O

buffer manager: update strategy

disk devices: avg. controller service time
transmission time per page
avg. disk access time

comm. network: packet size
avg. packet transmission time

1, 2, 4, 8, 16, 32, 64

1
30 MIPS

25000
25000
5000 (Debit Credit: 25000)
5000
3000

NOFORCE

1 ms (per page)
0.4 ms
15 ms (5 ms for log disks)

128 bytes data
8 microsec

parameters settings

ary
as well
These

s are
For debit-credit, the obtainable throughput (using inter-transaction parallelism) is of prim
interest. Fig. 2 shows the achieved transaction rates (in transactions per second, TPS)
as the corresponding throughput scaleup for system sizes varying between 1 and 64 PE.
results refer to a CPU utilization of 90% (based on simulation results). The experiment
designated as follows:

- experiment b*: BRANCH-based transaction routing
- r*: random transaction routing
- *d: ACCOUNT allocated on disk
- *m: all relations main memory resident.

Table 2: Parameter settings for debit-credit workload.

number of objects per partition

blocking factor
 (number of objects per page)

concurrency control

storage allocation

main memory buffer size

transaction routing

per PE: 100 BRANCH, 1000 TELLER and
10.000.000 ACCOUNT objects

1 (BRANCH), 10 (TELLER),
20 (ACCOUNT and HISTORY)

object level

BRANCH, TELLER, HISTORY:
main memory resident
ACCOUNT: disk or main memory resident

10 page frames (for ACCOUNT)

via BRANCH, RANDOM

parameters settings

Figure 2: Debit-credit: throughput and scaleup.

num-
level
ork-

pared
cale-
t case
itional
mes-
arding
more
owing
was
path-
ased

eved
e char-
n and
PE

ults
stic.

outing
f in-
ML

Inter-
usly
state-
large
does
ere the

ider-
ction
lding
ject
tures,
E. In
ver-

e time
vities.
any
dex-

in sort
, the
has
peri-
llel
The curves show that in all cases throughput could almost linearly be increased with the
ber of PE. However, with random routing the throughput increase takes place at a lower
due to the considerably higher communication overhead than for the BRANCH-based w
load allocation. So only a throughput scaleup of 44 was reached for random routing com
to 60 for a BRANCH-based routing in the case of 64 PE. The almost linear throughput s
up even for random routing was favored by the short size of this transaction. So the wors
in terms of messages per transactions was almost reached for 8 PE already so that add
PE did not cause any further deterioration. Random routing causes a maximum of 6.9
sages per transaction vs. 0.9 messages using BRANCH-based routing. However, reg
throughput per PE, the impact of communication on performance can be perceived
clearly. In any case throughput per PE actually decreases with growing system size, sh
best performance using BRANCH-based routing. The storage allocation for ACCOUNT
less significant for throughput since the I/O overhead was small compared to the total
length. In fact, throughput scaleup is virtually the same for the disk- and the memory-b
allocation.
A similarly ideal throughput behavior for debit-credit transactions has already been achi
in real shared nothing systems. For instance, Tandem demonstrated such performanc
acteristics for NonStop SQL on 2 to 32 processors (using a disk-based storage allocatio
a BRANCH-based workload allocation) [Ta88]. Since performance predictions of the 256
EDS prototype state 12000 TPS running at 30% utilization [WT91], our simulation res
(approx. 10000 TPS on a 64 PE machine running at 90% utilization) proved to be reali

Due to the increased number of remote requests, transaction response time for random r
was higher than for the BRANCH-based workload allocation. For debit-credit, the use o
tra-transaction parallelism permitted only modest response time improvements. Intra-D
parallelism cannot be utilized since each DML statement accesses only a single record.
DML parallelism, however, is applicable as all four DML statements can be simultaneo
executed in principle. However, since we assumed a single CPU per PE and most DML
ments of a transaction are executed on the same PE, this kind of parallelism did not yield
response time improvements, too. On the positive side, the use of inter-DML parallelism
not cause any extra messages for debit-credit so that the attainable transaction rates w
same as without employing intra-transaction parallelism.

3.2 Experiments using relational queries

With respect to the synthetically generated relational workloads, we restrict our cons
ations to the simple case of read operations on a single relation (no joins). Every transa
corresponds to a single SQL SELECT operation and is executed in parallel on all PE ho
tuples of the corresponding relation (intra-DML parallelism). The transaction’s local ob
references are basically determined by the relation’s cardinality, the use of index struc
the selectivity of the (imaginary) selection predicate as well as the data allocation to P
our model, every distributed SELECT is followed by a merge statement covering the o
head for merging the qualifying tuples.

Table 3 shows the main parameter settings for this workload. We examine the respons
impact of different access methods (relation scan vs. index scan) and predicate selecti
In addition, multi-user experiments with different arrival rates were conducted. Like m
existing DBS, our simulation system supports clustered and non-clustered B*-trees for in
ing. In the case of a clustered index, the tuples of the relations themselves are stored
order permitting a substantial reduction of disk I/Os during query evaluation (in general
amount of I/O savings corresponds to the blocking factor). The height of the B*-trees
been determined according to the relation size and the fan-out of index pages. In all ex
ments, the relation is uniformly distributed among all PE maximizing the potential for para

pecify

ccess
index

cution
the

e from
nge of
was
duce
l pro-
r, only

ize of
inear
ulted
d and
eful

he re-
e im-
also

only

r than
was
nica-

bstan-
32 to
e ob-
uffer
, for a
time

s. In
ilized
query processing. To determine the communication overhead for result exchange, we s
the average size of qualifying tuples.

Fig. 3 plots response time and speedup results against the system size for different a
methods in single-user mode and a selectivity of 1%. As expected, the use of a clustered
supports the best absolute response times while without index (relation scan) query exe
takes the longest time. On the other hand, without index intra-DML parallelism permitted
highest absolute response time improvements by shortening the average execution tim
about 30 minutes (1 PE) to 30 seconds for 64 PE. Speedup was linear over the entire ra
number of nodes and almost optimal (factor 60 for 64 PE). Still, response time for 64 PE
higher than in the case with a clustered index on 1 PE. This illustrates, that in order to re
query response time the use of an index may be more effective than employing paralle
cessing (Of course, not all queries can be supported by an adequate index. In particula
one clustered index is possible per relation).

The ideal speedup behavior for relation scans was favored by the comparatively large s
the relation. In experiments with a relation size of 10.000 tuples, even for relation scans l
speedup was obtained only for up to 8 PE, while parallel processing on 64 PE merely res
in a 35-fold response time improvement. This is because the communication overhea
delays per query increase proportionally with the number of PE, while the amount of us
work decreases (for 64 PE, each PE performs only 1/64 of all object references since t
lation size remains constant). Even with a linear speedup, the absolute response tim
provements decrease when adding more PE. Hence, the useful number of PE is
constrained by cost-effectiveness considerations (in Fig. 3, more than 16 or 32 PE
achieved comparatively small improvements).

In the case of index scans, the number of object references per PE is considerably lowe
for a relation scan resulting in a much lower potential for parallel query processing. This
particularly the case for clustered indexes causing an unfavorable ratio between commu
tion overhead and useful work and modest speedup values. For both index types, no su
tial improvements were obtained any more when increasing the number of nodes from
64. However, in the case of a non-clustered index even a super-linear throughput could b
tained for 2-32 PE ! This interesting behavior was due to the fact that the aggregate b
size grows with the number of PE while the database size remains constant. As a result
non-clustered index hit ratios increased with the number of nodes resulting in a response
improvement that was more significant than the communication delays for up to 32 node
the case of a clustered index or without an index, the incresed buffer size could not be ut

Table 3: Parameter settings for relational queries (SELECT on single relation)

relation size
blocking factor
index type
storage allocation
allocation to PE

SELECT selectivity
size of result tuples
access method
workload allocation

buffer size per PE

1.000.000 objects (tuples)
10
no index, clustered index, non-clustered index
disk
uniform

1 %, 10 %
100 bytes
sequential (relation scan) or index scan
random (uniformly over all PE)

1000 pages

parameters settings

t ratios

ities.
For

.

up
since in these cases pages are sequentially processed. Due to the blocking factor 10, hi

were always about 90% irrespective of the buffer size.

Further experiments were conducted to evaluate the influence of different query selectiv
In Fig. 4 we have additionally shown two curves for index scans and 10% selectivity.

Figure 3: Influence of access method on response time and speedup (selectivity 1%)

Fig. 4: Influence of selectivity and access method on response time and speed
(1 million tuples).

ed in
index
es for
ased
.

the
lin-

erent
index

riorate
ntra-
par-
p re-
grows

PU
eries
unica-
ult,
oved

ared
ML

t in-

ative
ce of
llel-

tional
sting
work-
such a high selectivity, the use of a non-clustered index did not prove useful and result
virtually the same response times than without index. Response times with a clustered
closely match the results for a non-clustered index and 1% selectivity. The speedup valu
10% selectivity show the same shape than for 1% but are slightly higher due to the incre
number of object references per query improving the potential for intra-DML parallelism

Finally, we examine the influence of multi-user mode (inter-transaction parallelism) on
effectiveness of intra-DML parallelism. For this purpose, we increased query arrival rates
early with the number of nodes. Fig. 5 shows the resulting response time results for diff
arrival rates per PE and contrasts them with the single-user values (use of a clustered
and selectivity of 1% are assumed). We observe that response times increasingly dete
with growing arrival rates thereby considerably reducing the improvements obtained by i
DML parallelism. For 0.2 TPS per PE, response times could be improved by intra-DML
allelism only for up to 16 PE, while increasing the number of PE further caused a stee
sponse time increase. This behavior is due to the fact that communication overhead
quadratically with the number of PE thereby increasingly causing CPU waits (higher C
contention). The quadratic effect comes from the fact that the number of concurrent qu
increases with the arrival rates and thus with the number of PE and because the comm
tion overhead per query grows with the number of PE (intra-DML parallelism). As a res
in multi-user mode only for a restricted number of nodes could response times be impr

by intra-DML parallelism. Even in this range, speedup was considerably smaller comp
to single-user mode. Furthermore, the communication overhead introduced by inter-D
parallelism significantly limits the attainable throughput and prevents a linear throughpu
crease with the number of PE.
Multiple CPUs per PE can help to reduce the average CPU waiting times so that the neg
effect of multi-user mode may be less pronounced in this case. However, in the presen
update transactions lock contention can further limit the effectiveness of intra-DML para
ism.

3.3 Experiments using real-life workloads

The available traces were obtained from real-life database applications using a non-rela
DBMS. Here we only consider results for the largest of these traces called DOA consi
of about 17.500 transactions and more than one million database references. Since the

Figure 5: Influence of arrival rate on response time (use of intra-DML parallelism).

ention
nts a
ies.
ferenc-
a total of
e ref-
es in

ons are
and

ed by
trans-
rel-
hich

nd that
d case
fferent
en dif-

of
ages.
eriod,
encies

di-

e same
load is dominated by read accesses (merely 1.6% of all accesses are writes), lock cont
is expected to be low in the case of inter-transaction parallelism. The trace represe
"mixed" workload with a majority of shorter OLTP transactions and a few ad-hoc quer
While the largest query performs more than 11.000 database accesses, a transaction re
es 58 pages on average. Database accesses are spread over 13 database files and
about 66,000 different pages; the total database consists of about one million pages. Th
erence matrix in Table 4 depicts the relative access distribution of the 12 transaction typ
the workload against the 13 database partitions. Transaction types and database partiti
ordered according to their number of references. The matrix value for transaction type x
partition y indicates which percentage of the total number of page references are caus
transactions of type x on pages of partition y (e.g. 9.1% of all references are issued by
action type TT1 against partition P1). Below the reference matrix, for every partition the
ative size is specified (in % of the total database size). Furthermore, it is indicated w
fraction of a partition has been referenced during the trace period.

The table shows that the major areas are accessed by almost every transaction type a
the important transaction types access all major areas. This means that in the distribute
the database and workload cannot generally be assigned such that transactions of di
nodes operate on disjoint database partitions. Furthermore, access distribution betwe
ferent partitions and within the partitions is clearly non-uniform. For instance, almost 27%
all references are directed against partition P2 which accounts only for about 6% of all p
Furthermore almost 17% of the pages in P2 have been referenced during the trace p
while the corresponding share is merely about 7% for the entire database. Access frequ
to individual pages also differ largely within a partition (more than 4500 references are
rected to the most frequently accessed page).

In our experiments, we used a data allocation such that each PE has to process about th

TT1

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 Total

TT2

TT3

TT4

TT5

TT6

TT7

TT8

TT9
TT10

TT11

TT12

6.4

9.1

7.5

0.0

3.1

2.4

1.3

0.3

0.0

0.3

Total

3.5

6.9

1.3

3.4

4.1

2.5

30.3 26.6 11.0 9.4 8.3 4.9 4.1 3.3 1.4 0.6 0.0 0.0 0.0

2.3

1.4

0.1

0.9

0.1

3.3

0.4

2.8

0.3

0.4

0.6

0.2

0.0

0.3

2.6

0.0

6.8

5.0

0.0

2.6

0.0

0.7

0.0

0.9

0.5

0.2

1.0

0.4

0.8

0.7

0.6

0.5

0.9

0.1

0.1

0.1

1.0

0.1

0.4

0.0

0.3

1.1

0.2

0.3

1.1

0.2

0.4 0.0

22.3

20.3

15.6

11.6

 8.2

 7.4

 2.9

 2.6

 1.8

 1.1

 0.1

2.6 2.3 0.1

0.0

0.0

0.0

0.0

0.0

 partition
 size (%) 31.3 6.3 8.3 17.8 1.0 20.8 2.6 7.3 2.6 1.3 0.8 0.0 0.0 100.0

 6.2

 % refe-
 renced 11.1 16.6 8.0 2.5 18.1 1.5 9.5 4.4 5.2 2.7 0.2 13.5 5.0 6.9

Table 4: Relative reference matrix of DOA transaction load.

100.0

ployed
ine
of re-

e no
trans-
enc-
s. On
ll po-
S.
tabase
that

me is
e for

con-

p to 8
also
In-

eed-
with
4 PE
-phase
nodes
tra-
sing

DML
in-

DML
number of database accesses. Furthermore, a table-driven workload allocation was em
aiming at an approximately uniform PE utilization. Additionally, the algorithm to determ
the database and workload allocations tried to find assignments minimizing the number
mote database accesses [Ra86].

Inter-DML parallelism could not be used for the trace-driven simulations since we hav
information about precedence constraints between DML statements. To support intra-
action parallelism we therefore use intra-DML parallelism by processing the object refer
es of a DML statement in parallel if the respective objects are allocated to different node
average, 6.5 objects are referenced per DML statement indicating a comparatively sma
tential for intra-DML parallelism partially influenced by the use of a non-relational DBM
On the other hand, even with a relational DBMS the average number of accesses per da
operation may be similarly low for applications with a high share of OLTP transactions
are typically supported by appropriate index structures.

Since DOA contains several transaction types of different size, transaction response ti
no adequate performance metric any more.Therefore, we determined the execution tim
so-called "units of processing" (U) rather than for transactions. Every object reference
stitutes such a unit of processing as well as the BOT and EOT steps.

Fig. 6 shows the response time and speedup results for DOA in single-user mode for u
PE. In order to estimate the impact of intra-DML parallelism on response time, we have
shown the results for sequential DML processing (not employing intra-DML parallelism).
tra-DML parallelism permitted only small response time improvements for up to 4 PE (sp
up factor 1.5); additional PE resulted in an increased response time. Surprisingly, even
a sequential DML processing a response time improvement could be obtained for up to
(by about 20%) despite the communication delay for remote database accesses and two
commit. This was again because the aggregate buffer size increases with the number of
permitting a significant reduction of the I/O delay. Since this effect also happened for in
DML parallelism, the actual response time improvements due to parallel query proces
correspond to the difference to the results for sequential processing.

One reason for the modest response time improvements is the small potential for intra-
parallelism in the workload. In addition, the number of remote requests per operation
creased with the number of nodes without resulting in a corresponding increase of intra-

Figure 6: Response time and speedup in single-user mode (DOA).

entire
m is
eal-
ber
ation,

Fig.
llel-
ctive-
or
ould
uni-

worse
not

ally

ations
load

ber
e to
sac-
urce
LTP
ltiver-
tions

ibuted
load
us has
ulti-
time
parallelism. This is because a transaction’s object references may be spread over the
database and processing may thus involve the majority of PE while intra-DML parallelis
limited by the number of references per DML statement. Another problem typical for r
life applications was that the suboperations of a DML statement differ widely in the num
of their object references. Since the execution time is determined by the slowest suboper
the benefit of intra-DML parallelism is further reduced.

Finally, we analyse the response time impact of multi-user mode for DOA. The results in
7 were obtained for arrival rates of 1-32 TPS per PE and with the use of intra-DML para
ism. Increasing inter-transaction parallelism caused an even higher reduction of the effe
ness of intra-DML parallelism than for the relational workload (Fig. 5). Only f
comparatively low arrival rates (system underload) slight response time improvements c
be achieved for 2 to 4 PE. For higher arrival rates the increased CPU contention (comm
cation overhead) caused higher response times than for 1 PE and this effect became
with an increasing number of PE. Another problem for the DOA workload was that it was
possible to achieve a similarly uniform CPU utilization in all nodes as for the synthetic
generated (homogeneous) workloads.

Our results indicate some of the problems that need to be addressed for real-life applic
with both OLTP transactions and complex queries. In particular finding appropriate work
and database allocations is difficult for workloads such as DOA, especially if a larger num
of PE should be utilized. The use of intra-DML parallelism reduces OLTP throughput du
the extra communication overhead for parallelism, while the effectiveness of intra-tran
tion parallelism is also impaired by inter-transaction parallelism due to increased reso
contention. Further performance problems are possible due to lock conflicts between O
transactions and complex queries unless special concurrency control schemes (e.g. mu
sion concurrency control) are supported that allow a processing of read-only transac
without locking.

4 Summary

We have presented a performance evaluation of shared nothing architectures for distr
and parallel transaction processing using a detailed simulation system. Different work
types were considered representing a wide spectrum of database applications. The foc
been on studying the effectiveness of intra-DML parallelism in single-user as well as in m
user mode (inter-transaction parallelism). To evaluate scalability we used response

Fig. 7: DOA response times with inter-transaction and intra-DML parallelism

nves-
rallel

lin-
arks
over-
hough
t linear
ponse
loy-

ned in
ible

use-
. The
with
tial for

for
r in
rhead
result,
ld be
ation
ented

nts by
ata-
ficulty
oads
eter-
ating
appro-

asing
with-
mine
rgely
ries
speedup and throughput scaleup as our primary performance metrics. In addition, we i
tigated workload allocation aspects and the influence of storage (index) structures for pa
query processing.

For OLTP workloads like debit-credit, we have shown that it is generally easy to achieve
ear throughput scaleup. This simple workload often used in DBMS and OLTP benchm
permits an ideal partitioning of the database and workload so that the communication
head per transaction remains small and almost independent of the number of nodes. Alt
a random assignment of transactions results in a higher number of messages, an almos
throughput scaleup (at a lower level) can be achieved even in this case. A (modest) res
time improvement is possible for debit-credit without introducing extra messages by emp
ing inter-DML parallelism.

For complex relational queries, an almost linear response time speedup could be obtai
single-user mode by employing intra-DML parallelism. However, this is generally poss
only until a certain number of nodes since the ratio between communication overhead an
ful work per subquery deteriorates when the number of processing elements grows
greatest improvements by employing intra-DML parallelism were observed for queries
high response times in the central case (1 PE). On the other hand, only a modest poten
parallelization is given for queries with a high selectivity or when an index can be used
query evaluation. The effectiveness of intra-DML parallelism was substantially lowe
multi-user mode where CPU capacity is more constrained and the communication ove
introduced by parallel query processing increasingly causes resource contention. As a
response time improvements were much smaller than in single-user mode and cou
achieved only for a more restricted number of nodes. Furthermore, the high communic
overhead for parallel query processing significantly reduced transaction rates and prev
a linear throughput growth.

For the real-life workloads represented by database traces, response time improveme
using intra-DML parallelism were even lower. This was in part because the number of d
base accesses per DML statement was comparatively small, but also because of the dif
to find a "good" database and workload allocation for such applications. The real workl
consist of multiple transaction types and database files with a highly non-uniform and h
ogeneous reference behavior. In particular, the majority of references is by a few domin
transaction types and on few database files. These reference characteristics allowed an
priate database and workload allocation only for a small number of nodes; when incre
the number of nodes further, the communication requirements per transaction increase
out enabling a higher degree of intra-DML parallelism. More research is needed to deter
database and workload allocation strategies for mixed applications for which both a la
local processing of OLTP transactions as well as intra-DML parallelism for complex que
is to be supported.

References
An85 Anonymous et al.: A Measure of Transaction Processing Power.Datamation, 112-

118 (April 1985).
Bo90 Boral, H. et al.: Prototyping Bubba: A Highly Parallel Database System.IEEE

Trans. on Knowledge and Data Engineering 2, 1, 4-24 (1990).
CL89 Carey, M.J., Livny, M.: Parallelism and Concurrency Control Performance in Dis-

tributed Database Machines.Proc. ACM SIGMOD Conf. (1989).
De90 DeWitt, D.J. et al. 1990. The Gamma Database Machine Project.IEEE Trans. on

Knowledge and Data Engineering 2 ,1, 44-62 (1990).
DGS88 DeWitt, D.J., Ghandeharizadeh, S., Schneider, D.A.: A Performance Analysis of

the Gamma Database Machine.Proc. ACM SIGMOD Conf. (1988).
EGKS90 Englert, S., Gray, J., Kocher, T., Shath, P.: A Benchmark of NonStop SQL Release

2 Demonstrating Near-Linear Speedup and Scale-Up on Large Databases.Proc.
ACM SIGMETRICS Conf., 245-246 (1990).

HR83 Härder, T., Reuter, A.: Principles of Transaction-Oriented Database Recovery.
ACM Computing Surveys 15 (4), 287-317 (1983).

JTK89 Jenq, B.P., Twichell, B., Keller, T.: Locking Performance in a Shared Nothing Par-
allel Database Machine.IEEE Trans. on Knowledge and Data Engineering 1(4)
(1989).

Ke88 Kersten, M. et al.: A Distributed, Main-Memory Database Machine. In: Database
Machines and Knowledge Base Machines (Proc. 5th Int. Workshop on Database
Machines, 1987), North-Holland, 353-369 (1988).

Li87 Livny, M.: DeLab - A Simulation Laboratory.Proc. Winter Simulation Conf., 486-
494 (1987).

Li89 Livny, M.: DeNet Users’s Guide, Version 1.5, Computer Science Department, Uni-
versity of Wisconsin, Madison (1989).

Ma91 Marek, R.: Simulation of a Shared-Nothing System for Parallel Query Processing.
Master’s Thesis (in German), Univ. Kaiserslautern, Dept. of Comp. Science (1991).

MLO86 Mohan, C., Lindsay, B., Obermarck, R.: Transaction Management in the R* Dis-
tributed Database Management System.ACM Trans. on Database System 11(4),
378-396 (1986).

Ne86 Neches, P.M.: The Anatomy of a Database Computer - Revisited.Proc. IEEE Com-
pCon Spring Conf., 374-377 (1986).

ÖV91 Özsu, M.T., Valduriez, P.: Principles of Distributed Database Systems. Prentice
Hall (1991).

Pi90 Pirahesh, H. et al.: Parallelism in Relational Data Base Systems: Architectural Is-
sues and Design Approaches. InProc. 2nd Int.Symposium on Databases in Parallel
and Distributed Systems , IEEE Computer Society Press (1990).

Ra86 Rahm, E.: Algorithms for efficient load control in multi-system DBMS.An-
gewandte Informatik4/86 (in German), 161-169 (1986).

SD89 Schneider, D.A., DeWitt, D.J.: A Performance Evaluation of Four Parallel Join Al-
gorithms in a Shared-Nothing Multiprocessor Environment.Proc. ACM SIGMOD
Conf., 110-121 (1989)

St86 Stonebraker, M.: The Case for Shared Nothing.IEEE Database Engineering 9(1),
4-9 (1986).

Ta88 The Tandem Performance Group: A Benchmark of NonStop SQL on the Debit
Credit Transaction.Proc. ACM SIGMOD Conf., 337-341 (1988).

Ta89 The Tandem Database Group: NonStop SQL, A Distributed, High-Performance,
High-Availability Implementation of SQL. In Lecture Notes in Computer Science
359, Springer-Verlag, 60-104 (1989).

TPC89 Transaction Processing Performance Council (TPC): TPC Benchmark A. (1989).
WT91 Watson, P., Townsend, P.: The EDS Parallel Relational Database System. In: "Par-

allel Database Systems", LNCS 503, Springer-Verlag, 149-168 (1991).

	1 Introduction
	2 Simulation model
	2.1 Workload generation and allocation
	2.2 Workload processing

	3 Simulation results
	3.1 Results for Debit-Credit workload
	3.2 Experiments using relational queries
	3.3 Experiments using real-life workloads

	4 Summary

