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On the Performance of
Parallel Join Processing in

Shared Nothing Database Systems

 Robert Marek
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Abstract: Parallel database systems aim at providing high throughput for OLTP transactions as well as
response times for complex and data-intensive queries. Shared nothing systems represent the majo
tecture for parallel database processing. While the performance of such systems has been extensiv
lyzed in the past, the corresponding studies have made a number of best-case assumptions. In pa
almost all performance studies on parallel query processing assumed single-user mode, i.e., that th
system is exclusively reserved for processing a single query. We study the performance of parallel joi
cessing under more realistic conditions, in particular for multi-user mode. Experiments conducted with
tailed simulation model of shared nothing systems demonstrate the need for dynamic load bala
strategies for efficient join processing in multi-user mode. We focus on two major issues: (a) determ
the number of processors to be allocated for the execution of join queries, and (b) determining whic
cessors are to be chosen for join processing. For these scheduling decisions, we consider the current
utilization as well as the size of intermediate results. Even simple dynamic scheduling strategies are
to outperform static schemes by a large margin.

1 Introduction
Parallel database systems are the key to high performance transaction and database pro
[DG92]. These systems utilize the capacity of multiple locally distributed processing nodes i
connected by a high-speed network. Typically, fast and inexpensive microprocessors are u
processors to achieve high cost-effectiveness compared to mainframe-based configuration
allel database systems aim at providing both high throughput for on-line transaction proce
(OLTP) as well as short response times for complex ad-hoc queries. Efficient query proce
increasingly gains importance due to the wide-spread use of powerful query languages an
tools. Next-generation database applications for engineering, VLSI design or multi-media
port will lead to substantially increased query complexity [SSU91]. Since these complex qu
typically access large amounts of data or/and perform extensive computations, in general t
sponse time goal can only be achieved by employing parallel query processing strategies [
Furthermore, performance should scale with the number of nodes: adding processing nod
ally improves throughput for OLTP or response times for complex queries linearly.
Most research and development efforts on parallel database systems have concentrated
calledshared nothingarchitectures [St86, DG92]. Shared nothing systems consist of mult
functionally homogenous processing nodes or processing elements (PE). Each PE compris
or more CPUs and a local main memory, and runs local copies of application and system so
like operating system and database management system (DBMS). Cooperation between P
place by means of message passing over a high-speed network. The characteristic fea
shared nothing systems is that the database is partitioned and distributed among all nodes
every PE “owns” one partition. If a transaction (query) needs access to data owned by an
node, a sub-transaction is started at the respective owner PE to access the remote data. In th
a distributed two-phase commit protocol is also to be executed to guarantee the all-or-no
property of the transaction [MLO86, ÖV91]. Existing shared nothing systems supporting par
transaction processing include the products Tandem NonStop SQL [Ta89, EGKS90] and Te
ta’s DBC/1012 [Ne86] as well as several prototypes including Bubba [Bo90], Gamma [De
EDS [WT91] and PRISMA/DB [WFA92]. With the exception of Tandem, these systems rep
sent database machines (back-end systems) dedicated to database processing. The datab
ations or DML (Data Manipulation Language) statements submitted to the back-end system
originate directly from the end-user (ad-hoc queries) or from application programs runnin
workstations or mainframe hosts.
With respect to parallel transaction processing, we distinguish between inter- and intra-tra
tion parallelism.Inter-transaction parallelismrefers to the concurrent execution of multiple in
dependent transactions on the same database. This kind of parallelism is already suppo
centralized DBMS (multi-user mode), e.g., in order to overlap I/O delays to achieve accep
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system throughput. To improve response time, intra-transaction parallelism is needed either
form of inter-DML or intra-DML parallelism.Inter-DML parallelismrefers to the concurrent ex-
ecution of different DML statements (queries) of the same transaction. However, the degr
parallelism obtainable by inter-DML parallelism is limited by the number of database operat
per transaction as well as by precedence constraints between these operations. Furtherm
application programmer would have to specify inter-DML parallelism by means of adequate
guage features.
As a result, current parallel database systems support intra-transaction parallelism only
form of intra-DML parallelism1. Relational database systems with their descriptive and set-
ented query languages (e.g. SQL) have made possible this kind of parallelism [DG92]. Intra-
parallelism is implemented by the DBMS query optimizer, completely transparent for the d
base user and application programmer. For each query, the optimizer determines an (paral
ecution plan specifying the basic operators (e.g. scan, selection, join, etc.) to proces
operation. The optimizer may support two types of intra-DML parallelism: inter- and intra-op
ator parallelism.Inter-operator parallelismrefers to the concurrent execution of different oper
tors in an execution plan, whileintra-operator parallelismaims at parallelizing a single operator
In both cases, parallel processing is largely influenced by the database allocation. In parti
the database should be allocated such that operators or sub-operators on disjoint database
can be processed in parallel on different PE. Typically, this is achieved by horizontally parti
ing relations among several PE.
Despite the fact that several parallel database systems have been benchmarked and numer
formance studies on parallel query processing have been conducted (see section 2), we fe
is a strong need for further performance evaluations. This is because previous benchmar
performance studies mostly assumed a number of best-case conditions that have an overrid
fect on performance. One of the most questionable assumptions is the sole consideration
gle-user experiments in most studies, frequently without even making this assumption ex
Our research focus is to study the performance of parallel database systems under more r
conditions and to identify shortcomings of current query processing approaches. The nex
then is to develop better query processing strategies that work well under ideal and realistic
ditions.
For this purpose, we have developed a comprehensive simulation system of a generic s
nothing database system. In a previous paper, we have already presented performance res
ing this simulation model for the debit-credit workload as well as for real-life workloads rep
sented by database traces [MR92]. For the present paper, we have extended our simulation
to study the performance of complex database queries, in particular join queries. In relation
tabase systems, joins occur frequently and are the most expensive operations to execute, e
ly on large relations. We investigate join performance in single- as well as in multi-user m
Our multi-user experiments clearly demonstrate the need for dynamic query processin
scheduling algorithms that take the current system state into account. Important scheduling
sions that should dynamically be drawn include determination of how many and which proce
should be used for join processing. These decisions should be based on the size of interm
results and current processor utilization. Our experiments show that even simple dynamic s
gies outperform static schemes by a large margin.
The next section provides a survey of related performance studies. Sections 3 and 4 brie
scribe our simulation system and the workload parameters, respectively. In section 5 we p
and analyze simulation results for different configurations and scheduling strategies. Finall
summarize the major findings of this investigation.

2 Related Work
Most benchmarks and performance studies of parallel database systems either concentr
throughput for OLTP workloads or response time experiments for complex queries. For si
OLTP workloads such as debit-credit, it was shown that transaction rates can be linearl
proved with the number of nodes [Ta88, Bo90, MR92]. The use of intra-transaction paralle

1. In the case of ad-hoc queries there is only a single DML statement per transaction. Hence, intra-tran
parallelism is equivalent to intra-DML (intra-query) parallelism.
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was found to be similarly effective with respect to decreasing the response time of complex
ries, both in benchmarks [EGKS90, De90, WFA92] as well as in many analytical and simula
studies. However, the majority of the studies on intra-transaction parallelism is based on bes
assumptions like single-user mode, uniform data distribution, uniform load balancing, etc
cently, researchers have begun to relax some of the uniformity assumptions by considerin
effects of different forms of "data skew" [WDJ91, DG92]. However, these studies still ass
single-user mode. This also holds for performance studies of different parallel join strategies
[SD89, Pa90]) and of schemes for processing N-way joins by means of inter-operator parall
[SD90, MS91, CYW92].
While the single-user studies provided many significant insights, it is imperative to evaluat
effectiveness of intra-transaction parallelism in multi-user mode, i.e., in combination with in
transaction parallelism. Assuming that a large system with hundreds of processors is exclu
reserved for processing a single query is clearly unrealistic since it would result in very poor
effectiveness. Furthermore, single-user operation would prevent meeting the throughput re
ments for OLTP transactions. One problem with supporting multi-user mode ist that the cu
system load may significantly vary during query execution thus making dynamic schedu
strategies necessary. [GW89] already demonstrated that considerable performance gains
realized by choosing dynamically among multiple query plans - depending on both system
and the size of intermediate results. However, they restricted their considerations to two al
tive query plans (either B-tree scan and index nested loops join or file scans and hash join
did not consider parallelization issues.

3 Simulation Model
Our simulation system models the hardware and transaction processing logic of a generic s
nothing DBMS architecture. The system has been implemented using the discrete event s
tion language DeNet [Li89]. Our system consists of three main components:workload genera-
tion, workload allocationand processing subsystem(Figure 1). The workload generation
component models user terminals and generates work requests (transactions, queries). Th
load allocation component assigns these requests to the PE of the processing subsystem w
actual transaction processing takes place. In this section, we summarize the implementa
these components.
3.1 Workload Generation and Allocation
Database Model
Our database model supports four object granularities: database, partitions, pages and obje
ples). The database is modeled as a set of partitions that may be used to represent a rel
fragment of a relations or an index structure. A partition consists of a number of database
which in turn consist of a specific number of objects. The number of objects per page is d
mined by a blocking factor which can be specified on a per-partition basis. Differentiating
tween objects and pages is important in order to study the effect of clustering which aim
reducing the number of page accesses (disk I/Os) by storing related objects into the same
Furthermore, concurrency control may now be performed on the page or object level. Each
tion can have associated clustered or unclustered B*-tree indices.
We employ a horizontal data distribution of partitions (relations and indices) at the object l
controlled by a relative distribution table. This table defines for every partition Pj and processing
element PEi which portion of Pj is allocated to PEi.This approach models range partitioning an
supports full declustering as well as partial declustering.

Workload Generation
Our simulation system supports heterogeneous workloads consisting of several transaction
ry) types. In this paper we restrict ourselves to queries (transactions with a single DML s
ment), in particular join queries. Query types may differ in the structure of their operator tr
referenced relations, selection predicates etc. The simulation system is an open queuing
and allows definition of an individual arrival rate for each query type.
The join queries studied in this paper use three basic operators:scan, sortandjoin. These opera-
tors can be composed to query trees representing the execution plan for a query. Thescanof a
relation A using a predicate P produces a relational data output stream. The scan reads eac
t of R and applies the predicate P to it. If P(t) is true, then the tuple is added to the output st
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We support relation scans as well as index (B*-tree) scans. Thesort operator reorders its input
tuples based on an attribute sort criteria. Thejoin operator composes two relations, A and B, o
some join attribute to produce a third relation. For each tuple ta in A, the join finds all tuples tb in
B whose join attribute values are equal to that of ta

2. For each matching pair of tuples, the join
operator inserts a tuple built by concatenating the pair into the output stream.
For our study we have implemented a representative parallel join strategy based on hash pa
ing. It applies a hash function on the join attribute to partition both input relations (scan ou
relations) to a specific number of join processors (dynamic data redistribution). This hash
tioning guarantees that tuples with the same join attribute value are assigned to the same jo
cessor. This approach has the advantage that it offers a high potential for dynamic load bala
since the number and selection of join processors constitute dynamically adjustable param
For local join processing we have implemented a sort-merge algorithm. At each join proc
the input relations are first sorted on the join attribute. The sorted relations are then scanne
matching tuples are added to the output stream. The complete join result is obtained by me
the results of the distributed local joins.
In the query graphs of our model, parallelism is expressed by means of a so-calledparallelization
meta-operator (PAROP). This operator does not perform any semantic data transformatio
stead it implements inter- as well as intra-operator parallelism and encapsulates all paralleli
sues3. In particular, the PAROP operator comprises two basic parallelization functions: amerge
function which combines several parallel data streams into a single sequential stream, andsplit
function which is used to partition or replicate the stream of tuples produced by a relational o
ator.
We employ the PAROP operator to parallelize scan and join operators. For this purpose, PA
operators are inserted into the query trees. With respect to intra-operator parallelism severa
egies can be chosen to allocate parallel suboperations to processors. For scan operators,
cessor allocation is always based on a relation’s data allocation. For join operators, on the
hand, we support several static and dynamic allocation alternatives, e.g. random allocat
based on the PE’s CPU utilization. More details will be given in section 5 together with the
ulation results.
The example in Figure 2 illustrates the use of the PAROP operator. The query specifies that
is to be performed between relations A and B and the result is to be printed. Relation A is p
tioned into three fragments A0, A1, A2 (residing on disjoint PE) and relation B into two fragment
B0, B1. The two lower PAROP operators specify that the scan operations are parallelized ac
ing to this fragmentation. Furthermore, they indicate that the output streams of the local sca
to be split onto two join processors (according to some split function). Before the local joins
processed, the input streams have to be merged. The final PAROP operator specifies that th
join results are sent to and merged at an output (print) node.

2. We only consider equi-joins in this paper.
3. A similar operator-based parallelization model has been implemented in the Volcano prototype [G

PE 1

Figure 1: Gross structure of the simulation system.
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Workload Allocation:
Two forms of workload allocation have to be distinguished. First, each incoming transac
(query) is assigned to one PE (acting as the coordinator for the transaction) according to a
ment strategy. Our simulation system supports different placement strategies, in particular
dom allocation or the use of a routing table4. The second form of workload allocation deals wit
the assignment of suboperations to processors during query processing. As mentioned abo
is performed according to the chosen strategy for parallel query processing.
3.2 Workload Processing
The processing component models the execution of a workload on a shared nothing system
an arbitrary number of PE connected by a communication network. Each PE has access to
database and log files allocated on external storage devices (disks). Internally, each PE is
sented by a transaction manager, a query processing system, a buffer manager, a concurren
trol component, a communication manager and a CPU server (Figure 1).
The transaction manager controls the (distributed) execution of transactions. The maximal
ber of concurrent transactions (inter-query parallelism) per PE is controlled by a multiprog
ming level. Newly arriving transactions must wait in an input queue until they can be served w
this maximal degree of inter-transaction parallelism is already reached. The query processin
tem models basic relational operators (sort, scan and join) as well as the PAROP meta-op
(see above).
Execution of a transaction starts with the BOT processing (begin of transaction) entailing
transaction initialization overhead. The actual query processing is performed according to t
lational query tree. Basically, the relational operators process local input streams (relation
ments, intermediate results) and produce output streams. The PAROP operators indicate
parallel sub-transactions have to be started and perform merge and split functions on their
data streams. An EOT step (end of transaction) triggers two-phase commit processing invo
all PE that have participated during execution of the respective transaction. We support the
mization proposed in [MLO86] where read-only sub-transactions only participate in the first c
mit phase.
CPU requests are served by a single CPU per PE. The average number of instructions per
can be defined separately for every request type. To accurately model the cost of query pr
ing, CPU service is requested for all major steps, in particular for query initialization (BOT),
object accesses in main memory (e.g. to compare attribute values, to sort temporary relati
to merge multiple input streams), I/O overhead, communication overhead, and commit pro
ing.
For concurrency control, we employ distributed strict two-phase locking (long read and w
locks). The local concurrency control manager in each PE controls all locks on the local part
Locks may be requested either at the page or object level. A central deadlock detection sch
used to detect global deadlocks and initiate transaction aborts to break cycles.
Database partitions can be kept memory-resident (to simulate main memory databases) o
can be allocated to a number of disks. Disks and disk controllers have explicitly been mod
as servers to capture I/O bottlenecks. Disks are accessed by the buffer manager componen

4. The routing table specifies for every transaction type Tj and processing element PEi which percentage of
transactions of type Tj will be assigned to PEi.

merge the input streams at
each join node
split each scan output
stream into two streams

Figure 2: A simple relational query graph and the corresponding dataflow graph.
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associated PE. The database buffer in main memory is managed according to a global LRU
Recently Used) replacement strategy.
The communication network provides transmission of message packets of fixed size. Mes
exceeding the packet size (e.g. large sets of result tuples) are disassembled into the require
ber of packets.

4 Workload Profile and Simulation Parameter Settings
Our performance experiments are based on the query profile and database schema of the W
sin Benchmark [Gr91]. This benchmark has extensively been used for evaluating the perform
of parallel database systems [EGKS90, De90, WFA92]. Although the Wisconsin Benchm
constitutes a single-user benchmark, we use it also for multi-user experiments.
Table 1 shows the major database, query and configuration parameters with their settings
parameters are self-explanatory, some will be discussed when presenting the simulation r
The join queries used in our experiments correspond to the WisconsinjoinABprimequery [Gr91],
but we support selections on both input relations. Each query performs two scans (selectio
the input relations A and B and joins the corresponding results. TheA relation contains 1 million
tuples, theB relation 100.000 tuples. The selections onA andB reduce the size of the input rela-
tions according to the selection predicate’s selectivity (percentage of input tuples matchin
predicate). Both selections employ indices (B*-trees), clustered on the join attribute. The join re
sult has the same size as the scan output on B. Scan selectivity is varied between 0.1% an
thus yielding join result sizes between 100 and 10.000 tuples.
The number of processing nodes is varied between 10 and 80, the number of join processo
tween 1 and 80 depending on the experiment. Both database relations are partitioned into a
tical number of fragments and allocated on disjoint PE. Two declustering strategies are stud
the experiments with each relation allocated to either half of the PE or to a third of the PE.
The parameters for the I/O (disk) subsystem are chosen so that no bottlenecks occurred
ciently high number of disks and controllers). The duration of an I/O operation is compose
the controller service time, disk access time and transmission time. The parameter settings
communication network have been chosen according to the EDS prototype [WT91].

Configuration settings Database/Queries settings

number of PE (#PE)
CPU speed per PE

avg. no. of instructions:
BOT
EOT
I/O
send message (8 KB)
receive message (8 KB)
scan object reference
join object reference
sort n tuples

buffer manager:
page size
buffer size per PE

disk devices:
controller service time
transmission time per page
avg. disk access time

communication network:
packet size
avg. transmission time

10,20,30,60,80
20 MIPS

25000
25000
3000
5000
10000
1000
500
n log2(n) * 10

8 KB
250 pages (2MB)

1 ms (per page)
0.4 ms
15 ms

128 bytes
8 microsec

relation A:
#tuples
tuple size
blocking factor
index type
storage allocation
allocation to PE
relation B:
#tuples
tuple size
blocking factor
index type
storage allocation
allocation to PE

join queries:
access method
input relations sorted
scan selectivity
no. of result tuples
size of result tuples
degree of parallelism
 for join:
arrival rate

query placement

(200MB)
1.000.000
200 bytes
40
(clustered) B*-tree
disk
1..#PE/2 (1..#PE/3)
(20MB)
100.000
200 bytes
40
(clustered) B*-tree
disk
#PE/2 + 1..#PE
(#PE/3 + 1..2#PE/3)

via clustered index
FALSE
0.1%-10% (varied)
100-10000 (varied)
400 bytes

1-80 PE(varied)
single-user,
 multi-user (varied)
random (uniformly
over all PE)

Table 1: System configuration, database and query profile.
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5 Simulation Results
Our experiments concentrate on the performance of parallel join processing in single-use
multi-user mode. The single-user experiments have been performed to validate our simu
system and to clarify the differences to the multi-user results. The base experiment descri
section 5.1 analyses scalability of our join strategy in single-user mode. In sections 5.2 an
we investigate join performance for different degrees of intra-query parallelism in single-use
multi-user mode, respectively. Additionally, the performance impact of the size of intermed
results is analysed. Finally, we compare the performance of four workload allocation alterna
for parallel join processing in multi-user mode (5.4).
5.1 Base Experiment
The base experiment measures response time and response time speedup5 of our parallel join
strategy for the parameter settings of Table 1. The number of processing nodes (#PE) is
between 10 and 80. The input relations A and B are both partitioned into #PE/2 fragment
allocated on disjoint nodes. The queries’ join operators are executed on the PE holding re
A. Thus, both scan operators as well as the join operator are processed on #PE/2 nodes usin
operator parallelism. Both scans are supported by indices and select 10% of the their input t
Two cases are considered depending on whether or not the join attribute corresponds to th
titioning attribute of the relations. If the relations are partitioned on the join attribute, only
small relation B needs to be redistributed among the A nodes performing the joins. Other
both relations are redistributed according to a hash function on the join attribute.
Figure 3 shows the obtained response time and speedup results. As expected, response ti
better when the relations are partitioned on the join attribute because of the reduced comm
tion overhead. Still, the query response time is significantly reduced in both cases as more P
added for query execution6. For both query types, we observe a near-linear response time spe
(speedup factors of 6.8 and 7.7 on 80 PE). This is favored by the large relation sizes and th
siderable I/O overhead for accessing the database files on disks. So approximately 57%
query response time is due to disk I/O for 80 PE (I/O activity occurs not only for the scan, but
during the join phase since the temporary relations could not always be kept in main mem
Since query execution is comparatively expensive, even 80 PE could be employed effect
We also conducted the base experiment for memory-resident fragments. In this case the sp
values were considerably lower, in particular for the joins on non-partitioning attributes. Th
because the communication overhead for redistributing the relations is more significant wh
I/O delays occur.
Even for a disk-based database allocation, perfect linear speedup cannot generally be ac
over the entire range of processing nodes. This is because start-up costs for the distributed
tion of the (scan and join) operators increase with the number of PE involved, while the

5.Response time speedupmeasures the improvement of complex query response times as more PE are
to execute the query. For N PE, the speedup is obtained by dividing the response time for the base c
PE in our experiments) by the response time result for parallel execution on N PE (N > 10) with the
database size [Gr91].
6. [De90] observed basically the same behaviour when running similar join queries on the Gamma da
machine.

Figure 3: Influence of parallel query processing on response time and speedup.
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amount of useful work remains the same. Furthermore, the communication overhead for red
uting the scan output among the join processors increases quadratically with the number o
cessors. Therefore, the ratio between start-up and communication overhead, and the am
useful work per PE deteriorates when the number of PE grows, thereby limiting the effective
of parallel query processing. This is a general trade-off of parallel query processing and has
quantified in several previous studies [Bo90, DGSB90, MR92]. In the following experime
these effects will be more pronounced than in the base experiment.
5.2 Degree of Join Parallelism in Single-User Mode
In this and the next subsection we study join performance for different degrees of intra-transa
parallelism and intermediate result sizes. For this purpose, we vary the number of join proce
as well as the selectivity of the scan operators. For these experiments we use a constant
size of 80 PE and a declustering of both relations across 40 disjoint PE. Thus scan overhea
given selectivity factor remains unchanged for the different configurations so that perform
differences are due to join processing. The number of join processors is varied between 1 a
and the join PE are chosen at random.
Figure 4 shows the resulting response time and speedup results for different scan selectiv
single-user mode. We observe that increasing the number of join processors is most effect

"large" joins, i.e. for high scan selectivity (10%). In this case, response times could continuo
be improved by increasing the degree of intra-operator parallelism, although only slightly
more than 20 join processors. For small joins (selectivity 0.1%) response times improved on
up to 10 join processors. This is because the work per join processor decreases with the de
intra-operator parallelism, while the communication overhead for redistributing the data inc
es. Thus even for large joins and despite single-user mode, comparatively modest speedup
are achieved. Of course, this is also influenced by the fact that the scan portion of the res
times is not improved when increasing the number of join processors.
In the response time table of Fig. 4, the minimal response times are printed in bold-face to ind
the "optimal" degree of intra-query parallelism (minimum response time point Pmrt). In single-
user mode when the entire system is at the disposal of a single query, the optimal degree
allelism is solely determined by rather static parameters such as the database allocation, r
sizes and scan selectivity. Thus the query optimizer can determine the number of join proce
without considering the current system state (no need for dynamic load balancing).
5.3 Degree of Join Parallelism in Multi-User Mode
For the multi-user experiment, we varied the arrival rate for our join query. The resulting resp
time results for different degrees of join parallelism and 1.0% and 0.1% scan selectivitie
shown in Figure 5. The results show that multi-user mode significantly increases query res
times. Furthermore, the effectiveness of join parallelism increasingly deteriorates with gro
arrival rates. This is mainly due to increased CPU waits, because CPU requests (for comm
tion as well as for object references) of concurrent queries have to be served by a limited nu
of processors. An important observation is that the optimal degree of join parallelism (Pmrt) for
single-user mode does not yield the best response times in multi-user mode. In fact, for mult
mode the optimal degree of join parallelism depends on the arrival rate and thus on the c
system utilization. The higher the system load, the worse the single-user Pmrt point performs and
the lower the optimal multi-user Pmrt becomes. This is because the communication overhead

scan
selectivity 1 10 20 30 60 80

10 % 6177 2082 1837 1797 17671736

1 % 677 281 264 266 279 286

0.1 % 182 149 151 158 172 178
scan selectivity 0.1%

scan selectivity 1.0%
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Figure 4: Influence of the size of intermediate results and the number of join processors on respon
time and speedup in single-user mode.
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creases with the number of join processors which is the less affordable the more restricte
CPU resources are.
The differences between single-user and multi-user results are particularly pronounced for
joins (0.1% selectivity). For an arrival rate of 60 TPS, join execution on a single join proce
achieved here the best response time. In this case, the single-user Pmrt of 10 results in a response
time that is 50% higher than for the multi-user Pmrt of 1. For 30 TPS, join parallelism also did no
result in any response time improvement but only introduced unnecessary communication
head thereby limiting throughput. In the case of 1% scan selectivity, join parallelism was m
effective since more work has to be executed by the join processors. However, Fig. 5 show
a good degree of parallelism is difficult to find since it is confined to a small range. In single-
mode, on the other hand, more than the optimal number of join processors did not signific
increase response times. For 1% selectivity, the multi-user Pmrt differs from the single-user Pmrt
as well (for 15 TPS, the multi-user Pmrt is 10 rather than 20).
Our experiment clearly demonstrates the need of dynamic load balancing and scheduling fo
allel join processing in multi-user mode. The optimal degree of intra-query parallelism has
chosen according to both the size of intermediate results and the current system load. In th
experiment we study the performance of a dynamic workload allocation strategy that selec
join processors based on the current system utilization.
5.4 Processor Allocation of Join Operator
While the processor allocation of scan operators is determined by the data distribution, th
more freedom for allocating parallel join operators. This is because the join is not performe
base relations but on intermediate data that can be distributed dynamically. Hence a join op
may be executed on any PE permitting a wide range of allocation strategies. In our last e
ment, we study the performance of the following four join operator allocation strategies:
• Strategy 1 “Minimize Data Transfer”:

This strategy tries to minimize the communication cost for data transfers by allocating the
operators to those PE owning most of the data needed for join processing. The degree
parallelism and the selection of join processors are determined by the data distribution. F
join query, strategy 1 means that the join operators are allocated on the processors h
fragments of the larger relation A.

• Strategy 2 “Assign Join Operators to the Processors With Minimal Work for Scan”:
This strategy aims at balancing the load by assigning join operators to processors whe
scans have to be performed. If all processors hold fragments of the input relation, the joi
erators are assigned to those nodes with the smallest fragments.

• Strategy 3 “Random”:
This strategy does not care about any information on the database distribution or query p
It tries to avoid that certain nodes become overloaded by simply distributing the join oper
across all available PE at random.

• Strategy 4 “Keep Overall CPU Utilization Balanced”:
This strategy uses global information on the processing nodes’ CPU utilization. The basic
is to keep the overall CPU utilization balanced in order to avoid CPU bottlenecks. The join
erators are assigned to those PE which currently offer the lowest CPU utilization7.

Figure 5: Influence of the system load and the number of join processors on response tim
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Alternatives 1 to 3 representstatic strategiessince they do not consider the current system sta
operator allocation is only based on static information such as the database distribution (stra
1 and 2) or the number of PE (strategy 3). Strategy 4 is a dynamic approach since it conside
current CPU utilization for workload allocation.

Using these strategies, we performed single-user as well as multi-user experiments on a 6
shared nothing system. To provide some alternatives for operator allocation, we determine
data distribution as follows: relation A is distributed across the nodes 1 to 20 and relation B a
nodes 21 to 40. Nodes 41 to 60 do not hold any data. Both scans select 1% of the relations
To facilitate a comparison between the different allocation strategies, we employ a fixed de
of join parallelism in this experiment by always using 20 join processors. Strategy 1 uses th
holding PE (1-20) for join processing, while strategy 2 selects the nodes 41-60 as join proce
since they have no scan operations to perform. Strategies 3 and 4 may employ any PE of th
tem for join processing. The selection of the 20 join processors occurs at random (strategy
based on the current CPU utilization (strategy 4).
Figure 6 plots response time results for single-user and multi-user mode. Furthermore, the
age processor utilization for the multi-user experiments is shown. Each entry in this table co
of four numbers indicating the average CPU utilization of all PE, of the A-holding PE 1-20, of
B-holding PE 21-40, and of PE 41-60, respectively.

Single-user performance
As expected, the best single-user response times are achieved by strategy 1which minimize
munication overhead. Strategy 2 yields the highest response time since the joins are perform
nodes not holding any data leading to the highest communication and cooperation over
Strategies 3 and 4 offer response times in between of strategies 1 and 2. This shows that in
user mode there is no need for dynamic load balancing since all PE have a low CPU utiliza
This also explains the low differences between the four strategies (< 10%) indicating that in
gle-user mode selection of the join processors is less important than finding the right degr
join parallelism (section 5.2).

7. For this purpose, we assume that information on the global CPU utilization is available when the joi
erators are allocated. This can be achieved by maintaining such information either at a designated P
periodically broadcasting it among all PE. The overhead for exchanging this information can be kept
by piggy-backing it to other messages used for query processing.

join allocation responsetime [ms]

strategy 1 378

strategy 2 411

strategy 3 395

strategy 4 400

join allocation 10 TPS 15 TPS 20 TPS 25 TPS 30 TPS

strategy 1 20 50 10 0 30 75 15 0 3997 20 0 ------------ ------------

strategy 2 23 29 09 31 35 44 15 46 46 57 18 63 56 70 22 76 6580 2689

strategy 3 22 37 18 11 33 55 28 16 44 74 35 23 5588 47 30 6495 59 38

strategy 4 23 23 23 23 34 35 34 33 45 46 45 44 56 57 56 55 66 67 66 65

Figure 6: The influence of the workload allocation strategy and the system load on response tim
and processor utilization.
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Multi-user performance
As the system load increases, the performance impact of the different allocation strategie
comes more visible. The average query execution time raises rapidly with increasing arrival
particularly in the case of the static strategies. Strategy 1 which performed best in single
mode exhibits the lowest performance in multi-user mode. This strategy caused substa
higher response times and lower throughput than the other schemes. Throughput is limi
about 20 TPS since this strategy only uses 40 of the 60 PE. For this arrival rate, the A-ho
nodes are completely overloaded (97%) thus leading to drastically increased response time
result underlines that in multi-user mode limiting the communication overhead is by far less
portant than load balancing.
Strategies 2 and 3 achieved better performance since they use all processors thus supportin
30 TPS. However, as the table on CPU utilization reveals there are still significant load imba
es with these two static strategies. In particular, with strategy 2 the B-holding nodes are und
lized so that the other nodes become overloaded at 30 TPS. Strategy 3 (random) is slightly
than strategy 2 since it spreads the join work equally among all processors. This strategy how
suffers from the load imbalances due to the different degrees of scan activity on the diff
nodes. Here, the A-holding nodes become overloaded first thus limiting throughput.
The dynamic workload allocation strategy 4 clearly provided the best throughput and resp
time results. This strategy avoids local bottlenecks by assigning the join operators to the PE
the lowest CPU utilization. As a result, resource utilization is kept balanced among all node
response time raises very slowly with increasing arrival rates. This also supports a higher thr
put than 30 TPS. Thus, the dynamic load balancing strategy is capable of satisfying both
response times by utilizing intra-query parallelism as well as high throughput.
Although strategy 4 outperformed the static strategies, we observed an interesting phenom
in our experiments which is inherent to dynamic load balancing strategies. We found ou
strategy 4 tends towards assigning two consecutive queries’ joins to the same processors
the impact of the first query’s activation on resource utilization does not appear immediately
since the information on CPU utilization is updated only periodically. Therefore, queries b
on the same information about resource utilization will be assigned to the same processing
thus impeding each other. By taking this effect into account, the dynamic strategy 4 can be fu
improved, e.g., by estimating changes in the resource utilization due to an assignment dec

6 Summary
We have presented a simulation study of parallel join processing in shared nothing system
contrast to previous studies, we focussed on the performance behavior in multi-user mode
we believe this will be the operating mode where parallel query processing must be succes
practice. Multi-user mode means that only limited resources are available for query proce
and that both response time and throughput requirements must be met. This necessitates d
scheduling strategies for assigning operators during query processing.
In contrast to scan operations, parallel join strategies offer a high potential for dynamic load
ancing. In general, a join is not performed on base relations but on derived data obtained b
vious scan operations. These intermediate results are dynamically redistributed among s
join processors to perform the join in parallel. The number of join processors (degree of join
allelism) and the selection of these processors represent dynamically adjustable paramete
Our experiments demonstrated that effectively parallelizing join operations is much simpl
single-user than in multi-user mode. In single-user mode the optimal degree of join paralleli
largely determined by static parameters, in particular the database allocation, relation size
scan selectivity. Determining where the join operators should be executed is also unproble
since all processors are lowly utilized in single-user-mode. Thus, the join processors can a
selected statically so that communication overhead is minimized.
In multi-user mode, the optimal degree of join parallelism depends on the current system sta
is the lower the higher the nodes are utilized. Using the optimal single-user degree of join p
lelism in multi-user mode is therefore not appropriate and was shown to deliver sub-optima
formance (up to 50% higher response times in our experiments). Our results demonstrate
selection of the join processors must also be based on the current utilization in order to ac
both short response times and high throughput. Even a simple load balancing strategy ba
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the current CPU utilization was shown to clearly outperform static strategies. The best work
allocation strategy in single-user mode achieved the worst performance in multi-user mode.
balancing the load is more important for selecting the join processors in multi-user mode
minimizing the communication overhead.
In future work, we will study further aspects of parallel query processing in multi-user mode
could not be covered in this paper. In particular, we plan to investigate dynamic scheduling
egies for mixed workloads consisting of different query and transaction types [RM93]. Furt
more, we will consider the impact of data contention (lock conflicts) and data skew on
performance of parallel query processing.
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