
ware
s. Re-

rvices.
sitory
pecial
n, we
are),
show

d-
. Nowa-
esign
sys-
, i. e.
ach
peci-
want
nding
first
s the

rt of
the
nder-
dapt-
envi-
e pre-

derfor-

in: Tagungsband der GI-Fachtagung ’Datenbanksysteme in Büro,
Technik und Wissenschaft’ (BTW’99), A. Buchmann (Hrsg.),
Informatik aktuell, Freiburg, März 1999, Springer-Verlag, S. 251-270
Towards Generating
Object-Relational Software Engineering Repositories1

W. Mahnke, N. Ritter, H.-P. Steiert

Department of Computer Science
University of Kaiserslautern

P O Box 3049, 67653 Kaiserslautern, Germany
e-mail: {mahnke/ritter/steiert}@informatik.uni-kl.de

Abstract
Nowadays the complexity of design processes, no matter which design domain (CAD, soft
engineering, etc.) they belong to, requires system support by means of so-called repositorie
positories help managing design artifacts by offering adequate storage and manipulation se
One among several important features of a repository is version management. Current repo
technology lacks in adequately exploiting database technology and in being adaptable to s
application needs, e. g. support of application-specific notions of versioning. For that reaso
propose new repository technology, which is not completely generic (as current repositories
but exploits generic methods for generating tailored repository managers. Furthermore, we
that new, object-relational database technology is extremely beneficial for that purpose.

Keywords: Repositories, Object-Relational Database Systems, Software Engineering,
Versioning, Reuse, Generic Methods.

1 Introduction

For years the termrepositoryhas been used in a restricted manner, since it only a
dressed metadata management in the context of database management systems
days it is used in a much broader sense and covers multiple services supporting d
applications. It is not the goal of this paper to redefine the functional requirements a
tem has to provide in order to deserve the name repository, but to point out a better
more flexible, way to make well customized repositories available for users. To re
this goal, we propose a framework approach, allowing users to reuse predefined s
fications of repositories services and adapt them to their special needs. Thus, we
to generate specific repository services from predefined service elements and ame
user specifications. Before introducing our approach (in the following sections) we
want to recall basic services a repository manager has to provide and briefly discus
technology a repository manager may be based on.

Frameworks and Repositories

In the literature, two kinds of technology can be found aiming at an adequate suppo
design applications: frameworks [21, 7, 26] and repositories [2, 3, 25]. Although
goals of both are pretty close, we think, there are some differences between the u
lying approaches. Frameworks focus on providing basic services, which may be a
ed to special application needs, and, thus, help to provide corresponding design
ronments capable to support the (special) design application. Repositories or, mor

1. This work has been supported by the Deutsche Forschungsgemeinschaft (DFG) as part of the Son
schungsbereich (SFB) 501 “Development of Large Systems with Generic Methods”.

ct of a
offer
way

nt to

i-

n,
c-

ilding
gers

these
it the
ries.
base

ses the
ac-

ms, in
nted
ata
up-
onal
MS
ly
lving
pos-
oach-

ell
e ex-
T)
al da-

are. Let
itory
truc-
cisely, repository managers, on the other hand, emphasize the data control aspe
certain class of design applications, e. g. software development applications, and
predefined, generic services. We think, the two approaches may be integrated in a
beneficial for both, system providers and system users. In simple words: we wa
provide a framework allowing togenerate repository managers.

Repository Manager Services

In [2] the termrepositoryis defined asa shared database of information about eng
neering artifacts. Thus,a common repository allows(design)tools to share information
so they can work together.A correspondingrepository managerprovides services for
modeling, retrieving, and managing objects in a repository. For that purpose, a reposi-
tory manager has to provide thestandard amenities of a DBMS(data model, queries,
views, integrity control, access control, and transactions) as well as some value-added
services [2]:checkout/checkin, version control, configuration control, notificatio
context management and workflow control. Since these terms (as well as their respe
tive meaning) are widely known, we do not detail them.

Database Support for Repositories

In [2] the exploitation of a database management systems is favored instead of bu
repository manager services on top of a file system. Many current repository mana
[4], as CMS, SCCS, RCS, and MMS, are based upon a file system. Advantages of
systems are portability and performance. Nevertheless, it is reasonable to explo
benefits of DBMS, as for example transactions, integrity maintenance and que
Therefore, some repository managers store descriptions of objects within a data
system and leave the objects themselves be managed by the file system. This cau
well-known problems of keeping descriptions and objects consistent and controlling
cess to objects, which are not under control of the database system. These proble
turn, may be solved by using a DBMS for managing all the data. Current object-orie
DBMS (OODBMS, [22]) offer some support for complex objects and user-defined d
types, but as stated in [2], they often provide limited transaction facilities, limited s
port for queries, views, and integrity maintenance. These key features of relati
DBMS (RDBMS) are now integrated with the advantageous features of OODB
within so-called object-relational DBMS (ORDBMS, [24, 11]), which are current
considered to be the most successful trend in DBMS development (see the evo
SQL3 standard [8]). Thus, ORDBMS seem to be a good foundation for realizing re
itory managers. As far as we know, there are currently no repository manager appr
es which are based on ORDBMS technology. We will argue that ORDBMS are w
suited for that purpose, especially because of enriched modeling concepts and th
tensibility property [13], i. e. the possibility of defining user-defined data types (UD
and functions (UDF). For these reasons, our approach is based on object-relation
tabase technology, as we will especially see in Sect. 4.

Genericity

Usually repository manager services are as generic as database system services
us consider versioning facilities as an example for generic services. Usually a repos
manager implements a given versioning model offering a predefined set of data s

acets,
ich
ly, a
e,
ding
en-
ted
an-
As far
l da-

h
rs to
con-
xam-
pose,
ded-
n be
t from

sed in
ppro-
e-add-

the
n re-
ds of

er.
eth-
ized

n the
ons.
tures and generic operations. As already discussed in [10] there are very many f
versioning models may differ in. As we think, many of the different concepts wh
lead to (lots of) different version models are very application-specific. Consequent
generic version model cannot supportall applications properly, but serves some mor
some less appropriately. Our goal is to be able to support all applications by provi
basic versioning facilities which may be refined and which are the foundation for g
erating application-specific functionality. We think that this approach is not only sui
w.r.t. versioning, but also w.r.t. other fields of design domains, e. g. designflow m
agement. Therefore, our repository managers are more generated than generic.
as we know, our approach is the first one generating extensions of object-relationa
tabase systems, which, in turn, implement repository manager functionality.

Overview of this paper

Sect. 2 will give an overview of our approach, which is called the SERUM approac2.
SERUM can be considered to be an infrastructure for tailoring repository manage
special application needs by exploiting generic methods. Sect. 3 and Sect. 4 will
sider versioning, which is one of the key issues of repository management, as an e
ple helping to discuss the generic approach, SERUM is based on. For that pur
Sect. 3 outlines a basic versioning framework and how it can be adapted to reflect a
icated version model; Sect. 4 explains how an adapted versioning framework ca
used to generate repository manager services and how this process can benefi
ORDBMS technology. Sect. 5 concludes the paper.

2 Overview of SERUM

Obviously, in large product development projects a shared database should be u
order to support cooperation and reuse of design. Usually, a repository is more a
priate than a pure DBMS, because repositories enhance database systems by valu
ed services. The requirements on repository services vary w. r. t. differentdomains.
Our domain iscomputer aided software engineering, or, more exactly,development of
large (software) systems with generic methods. This domain spans differentdomain
sections, as for examplemanagement of versioned product dataor designflow manage-
ment. While the former requires facilities for versioning complex structured objects,
latter may utilize active repository services. Hence, each domain section has its ow
quirements pertaining dedicated repository services. In order to cope with the nee
the different domain sections, we want to provide aframework for building customized
repository managersinstead of a single, universally applicable repository manag
Since SERUM is a framework and not a “stand-alone” system, it offers a set of m
ods, tools, techniques and “half-fabricated” components helping to create custom
repository managers. Thus, thedomain repositoryis established by a set of repository
managers, one for each domain section. All repository managers are based upo
same (logically) centralized DBMS allowing for data sharing among domain secti

2. SERUM stands for:SoftwareEngineeringRepositories usingUML.

zing

the
e has

and
ge of

ding,

a-

ish the

sec-
nager.
vel

t for

o gen-
In Fig. 1 a graphical illustration of SERUM and the steps to be executed for customi

a repository manager is given. If therepository designer3 wants a new repository man-
ager to be generated or an existing one to be modified, he first has to choose from
set of half-fabricated components, associated with the particular domain section h
in mind. We call such a half-fabricated component aframework(see Sect. 2.3). The re-
pository designer has to customize the framework by adapting, refining, completing
specializing the chosen components (1). The customizing process takes advanta
object-oriented concepts, as, for example, subclassing (specialization), overloa
late binding of interfaces. Several of thereusetechniques identified in [12] are exploit-

ed. The result of the customization process is anUML4 specification of the new repos-
itory manager, which is stored in the SERUM meta-database (2). This UML-specific
tion is used as input for the SERUMrepository generator(3), which generates there-
pository database schema, the customized tool APIand (several)repository servers
(4). All these (generated) value-added data management services together establ
new repository manager. Because we are using an ORDBMS, therepository database
schemanot only consists of tables but also includes UDTs and UDFs. Generatedtool
API functionsmust meet the requirements of the tools associated with the domain
tion and allow for adequate access to the services of the (generated) repository ma
Additional functionality, which cannot (or should not) be implemented at the API le
or the database server level, must be realized by specializedrepository servers.

In the following, we will have a closer look at the aspects and components relevan
generating repository managers.

3. The repository designer is the person specifying application-specific semantics needed by SERUM t
erate repository manager services.
4. Unified modeling language [18, 19].

Patterns

Frameworks

Templates

UML-
Repository

2

Fig 1: SERUM-Overview

Server(s)
Repository

ORDBMS

Repository-DBMeta-DB

Generic Repository API Customized Tool API

Repository Generator

FW-DB

Repository Definition API

Rep.-Browser
WF

CSCW
CA*

customizing-data-
and-services

stores-specification

reads-specification
generates

generates

1

3

4

generates

ry
si-
os-

with
age-

UML
an
ts of
into
fa-
ur-
rs of
de-

and
o re-
lp for
ents
ER-
ass
[17],

ased
sign
e way
ver-
2.1 Interfaces

The SERUM system provides a general API for the customization process (repository
definition API, RDAPI) and a generic API for browsing metadata as well as reposito
data (generic repository API, GRAPI). The latter is needed to provide access to repo
tory data for common tools, like browsers, which are not written for a dedicated rep
itory model. Additionally, the (generated) repository managers have to come along
customized tool APIs allowing for an efficient access to the value-added data man
ment services (customized tool API, CTAPI).

2.2 SERUM Metamodel

As a metamodel for components and user specifications we have chosen the
metamodel [18, 19] for the following reasons. First, we believe that UML will play
important role as a standard language for specifying and documenting the artifac
software systems. The Object Management Group (OMG) has integrated the UML
the Object Management Architecture (OMA) and also specified an OA&D CORBA
cility [20] as a standard interface for accessing UML-based tools via CORBA [16]. F
thermore, the current UML standard has become broadly supported by the vendo
graphical modeling tools and is widely used by system architects for analysis and
sign of software systems. Second, we expect using UML not only during analysis
design but also for specifying value-added data management services will help t
duce the cognitive distance between these two steps and, additionally, may he
bridging the gap between modeling and semi-automatically implementing compon
of software systems. Third, in comparison with other information models, e. g. the
Model, UML has lots of advantages (object orientation, detailed modeling of cl
structures and semantic relationships, formal object constraint language OCL
modeling of behavior and state-oriented aspects, extensibility).

2.3 SERUM Frameworks

The generic methods offered by SERUM to customize repository managers are b
on a set of pre-defined frameworks. According to [9] “a framework is a reusable de
of all or a part of a system that is represented by a set of abstract classes and th
their instances interact. “SERUM provides a framework for each domain section (
sioning, activity support, ...); each framework consists of so-calleddesign patternsand
templates,which will be discussed in the following subsections.

SE-
the
lica-

the
ed
ship

os-
rame-
user
allow
uage
ver-
ct. 4,
om-

ifica-
SERUM Design Patterns

In [5] a design pattern is defined as
“descriptions of communicating ob-
jects and classes that are customized
to solve a general design problem in
a particular context”. SERUM design
patterns are used to automatically en-
hance UML models. A SERUM de-
sign pattern consists of two parts, an
informal one helping the repository
designer to select the pattern, and a
formal one used to enhance user
specifications. Due to the second
part, SERUM design patterns are
much more formal than those presented in [5]. Fig. 2 illustrates the process of using
RUM design patterns. The repository designer specifies an initial UML model of
domain objects (1). Usually, this model is incomplete and mainly contains the app
tion-specific parts. The so-called SERUM model enhancer (SME) is used to apply
design pattern script(formal part of a SERUM design pattern) to the user-specifi
UML model (2). This way, the model is enhanced by new classes and relation
types. Furthermore, already existing classes may be modified (5).

While the SME automatically applies design pattern scripts to UML models, the rep
itory designer must select the patterns to be applied and determine the generic pa
ters of the pattern application. This can be done either interactively, where the
chooses the patterns and parameters (3), or by external tools (4). These tools may
the repository designer to express specifications in a more abstract high-level lang
(HLL) which depends on the corresponding SERUM framework. For instance, the
sioning framework, we will use as an example for the discussion in Sect. 3 and Se
comes along with a specific data definition language (DDL) and a corresponding c
piler translating DDL statements into sequences of SME calls.

After the mentioned definition steps are finished, a technology-independent spec
tion of the repository model is stored in the meta-database.

Framework

Templates

PatternsModel
Enhancer

FW-DB

UML-
Repository

Meta-DB

Fig 2: Applying Design Patterns

①

②

③

④

HLL-
Compiler

⑤

s to
our

de-
the
quent-

-
ruc-
ifica-
new
lls of

ments
l

re-
To support the outlined
specification process
appropriately, a SE-
RUM design pattern
must fulfill two require-
ments. First, searching
design patterns must be
supported. Several de-
sign pattern languages
[5] try to cope with this
problem. Hence, we
want to concentrate on
the second requirement,
which is the provision
of an appropriate design
pattern scripting lan-
guage. As we think, a
scripting language must
at least offer constructs
for specifying the fol-
lowing elements (Fig. 3,
in order of appearance):

• Parameters.Parame-
ters specify the ele-
ments of the input
model which are to
be manipulated.

• Constraints.If a SE-
RUM design pattern is applied in order to enhance an UML model, this model ha
fulfill preconditions. The SME checks these preconditions, which we specify in
design pattern definition script using OCL constraints.

• Default Structures.Default structures are, for example, abstract base classes with
fault attributes, relationships and behavior. Within the design pattern script
names of the default structure needed are to be enumerated and the SME subse
ly incorporates the corresponding specifications.

• Model Evolution Operations.Applying a design pattern to an UML model means in
tegrating the user-specified definitions and the (pre-defined) framework infrast
ture used by the pattern. This, actually, happens by manipulating the user spec
tions: Class definitions may be enriched by new attributes, new relationships,
superclasses, new methods, etc. For that purpose, the script may contain ca
model evolution operations; the parameters of these operations are usually ele
of the user specification. In the OMG OA&D CORBA facility [20] a set of mode
management operations is already defined. Hence, we use similar operations.

After the SME has applied all relevant patterns, a technology for implementing the
pository manager has to be chosen. Implementation is supported bySERUM templates.

1. begin define pattern “ProductDataObject”
2. begin parameters
3. ClassUList : aClassSeq;
4. end parameters
5. begin constraints
6. aClasses->forAll(c | exists(“Class”,
7. c.name))
8. end constraints
9. begin definitions
10. if (! exists(“Class”, “BVF_Object”))
11. {
12. begin mdl
13. (object Class “BVF_Object”
14. // definitions
15.)
16. end mdl
17. };
18. if (! exists(“Class”, “BVF_PDO”)
19. {
20. begin mdl
21. (object Class “BVF_PDO”
22. superclasses
23. (list inheritance_relationship_list
24. (object Inheritance_Relationship
25. supplier “BVF_Object”))
26. // additional definitions
27.)
28. end mdl
29. };
30. end definitions
31. begin alter model
32. for (int i; i < aClassSeq.length; i++)
33. {
34. Generalization.create_generalization
35. (aClassSeq.name(), “BVF_PDObject”);
36. }
37. end alter model
38. end define pattern

Fig 3: Design Pattern Definition Script

en-
trat-
hing

...).

re-
y sup-
fined

the
ode
nents
stom-

pos-
en-
work

upple-
class-
UML
re-
itory
of the

ired
ink

ined)
ica-

er-

in a
SERUM Templates

Partitioning a framework into a technology dependent (templates) and a technology in-
dependent (patterns) part enables design solutions without being technology dep
dent. Technology refers to programming languages (C++, Java, ...), ORDBMSs, s
egies for architectural design (client-centric, server-centric, repository servers, cac
and buffering strategies) and communication mechanisms (CORBA, OLE, RPC,

A SERUM framework must provide implementations for the customized API, the
pository servers and the object-relational database schema. For each technolog
ported by SERUM, templates must be provided with base mappings for user-de
classes. Thus, SERUM provides mappings of UML to the object models of PLs and
DBMSs. Here, object orientation is very helpful. Templates do not only consist of c
fragments but also of ready-to-use components. Examples of ready-to-use compo
are the repository servers and the client-caches. If such components need to be cu
ized, this is done via parameters and not by generated code.

2.4 SERUM Repository Generator

So far we have described the two parts of the SERUM frameworks. The SERUM re
itory generator (SRG) is the counterpart of the SME w.r.t. templates. It is used for g
erating the components of a repository manager using the templates of the frame
and for integrating the resulting APIs, repository servers and database schemas.

Generating the components of the repository manager means generating code, s
menting the user-defined classes enabling them to cooperate with the framework
es. This process exploits the templates providing code fragments as well as the
specification providing the generic parameters. If application logic is involved, the
pository designer has to deliver an implementation. Both, the SRG and the repos
designer, can take advantage of object-oriented concepts. Some components
frameworks are ready-to-use and may be customized via parameters.

3 Versioning Principles

As already mentioned, a spectrum of versioning functionality/mechanisms is requ
to adequately support applications with different demands. According to [10] we th
that there is a core of basic versioning facilities which can be used (extended, ref
to establish a version model fulfilling the specific needs of a given (class of) appl
tion(s). Furthermore we think that this tailoring process consists of two steps:

(1) Adapting the basic versioning framework.Starting from a so-calledbasic version-
ing framework (BVF), which represents the above mentioned core of basic v
sioning facilities (see Sect. 3.1), anadapted versioning framework (AVF)is de-

rived, which, in turn, represents the versioning data model5 adequately supporting
the application(s) in mind.

5. Note, the notiondata modelis used in the meaning of a modeling system. Thus, it is to be understood
similar way, the term relational data model is understood. It is not meant to be a database schema.

-
ct. 4.

the
the

der to
le to
e
ayer
the

and

ess.
(2) Applying the adapted versioning framework.The AVF resulting from step (1) and

a product data model6 given for a certain application are ‘melted’ in a way deliv
ering a customized versioning repository manager. This step is detailed in Se

In this section we want to emphasize the first step.

3.1 The Idea of the Basic Versioning Framework

Since we think thathand-
ling versions is a special
way of managing views to
product data, our BVF fol-
lows a bottom-up ap-
proach. Assume, there is
some product data given,
consisting of objects and
associations (relations). In
the lower layer of Fig. 4
product data objects
(PDO) are shown as ovals
andproduct data associa-

tions (PDA)7 as lines. A view on this product data, like the grey marked excerpt in
lower layer of Fig. 4 (consisting of PDOs and PDAs) is a version. The structure of
product data is given as aproduct data model(PDM, see middle layer in Fig. 4). Thus,
at this layer, ovals and lines do not represent instances but types (classes). In or
be able to version not only single PDOs but also semantic units, it must be possib
specify so-calledversionable structures(VS), which are illustrated as rectangles at th
upper layer of Fig. 4. The set of structuring elements associated with this upper l
(VSs, corresponding associations and additional versioning information) is called
version management infrastructure(VMI). The overall advantage of this bottom-up
approach is that the PDM may be defined without coping with versioning aspects
afterwards the versioning semantics may be defined on top of the PDM.

6. This time, the notiondata modelrefers to a sort of database schema, i. e. the result of a modeling proc
At this point, we stick to this notion (model), since it is mostly used in the literature this way.
7. Note, the lower layer of figure 3 shows data occurrences and not types!

Fig 4: Basic Model of Versioning

product

product

versioning

 infrastructure
management

data
model

data

er-
everal

ned,
e VS
an

may
also
there
from
here
tions

rt of
c se-
tep
s
give
asso-

pri-
al and

-

3.2 Elements of the Basic Versioning Framework

First of all, the PDM contains
PDO classes as well asPDA
classes (see UML-structures
in Fig. 5). The classVersion
serves as a container grouping
together elements which are to
be versioned as units. Note
that there are no restrictions
about the multiplicity of the
associations connectingPDO
andVersion (VPDOAssoci-
ation), or PDAandVersion
(VPDAAssociation) respectively. For example, each PDO may be part of several v
sions (but does not have to belong to a version), and each version may consist of s
PDOs. Versions may also have associations with each other (VVAssociation), e. g.
to express derivation relationships or to represent overlapping. As already mentio
PDM classes are assigned to (classes of) VSs. A version must belong to exactly on
(VSVAssociation), VSs (of course) may have many versions. Like versions, VSs c
be associated with each other (VSVSAssociation).

Note that there are the following dependencies concerning associations. A PDA
only be part of a version if at least one of the two PDOs connected by this PDA
belongs to that version. If the other PDOs do not belong to the same version, then
must be a VVAssociation between both versions (the PDOs belong to), abstracting
the PDA. Furthermore, if versions of different VSs are related to each other, then t
must be a corresponding VSVSAssociation, in turn, abstracting from the associa
at the version level and at the product data level.

Recall that Fig. 5 only contains the classesPDOandPDAin order to clarify the semantics
of the BVF structures. Actually the process of assigning PDM classes to VSs is pa
step (2), as mentioned at the beginning of this section. In contrast, defining specifi
mantic roles PDOs/PDAs may play or have to play within a certain AVF is part of s
(1). Different semantics are expressed by corresponding subclasses of the classePDO
andPDA. Due to space restrictions, we cannot detail all these aspects, but want to
an overview, which subclasses provide dedicated versioning semantics PDOs and
ciations may be equipped with. A more detailed description can be found in [14].

3.2.1 Specializing the PDO Classes

The following classes (see Fig. 6) are offered by the BVF in order to provide appro
ate version semantics for PDOs. The special semantics are encoded in the structur
behavioral elements of these classes.
• Instances of the classObject_NonVersioned cannot be associated to any ver

sioned objects and cannot be part of a version.

VersionableStructure VSVSAssociation

Version

PDO

VPDAAssociationVPDOAssociation

VSVAssociation

VVAssociation

Fig 5: Basic Structure of Versioning

1

*

*

**

*
PDA

s to

r-

rsion-

e set
• An Instance of the class
PDO_NonVersioned
can be associated to ver-
sioned and non-ver-
sioned objects but can-
not be part of a version
itself. To associate an in-
stance of this class to a
versioned object, a spe-
cial PDA class is needed,
which will be outlined in
the next subsection.

• Instances of the class
PDO_Exclusive may belong to at most one version. Because a version belong
exactly one VS, instances ofPDO_Exclusive can be part of at most one VS, too.

• Instances ofPDO_Shared may be associated with several VSs.
• Instances ofPDO_Shared_same_VSmay be part of several versions, but these ve

sions must belong to the same VS.

3.2.2 Specializing the Association Classes

Similar to PDO classes pre-defined association classes are carriers of dedicated ve
ing semantics in the BVF. Obviously not onlyPDA, but alsoVVAssociation andVS-
VSAssociation have to be considered.

3.2.2.1 Product Data Associations

Product data associations may occur in different constellations. Thus, we divide th
of pre-defined association classes into four groups (see illustration in Fig. 7):

Object_NonVersioned BVF_Object

PDO

PDO_NonVersioned PDO_Versioned

PDO_Exclusive PDO_Shared

PDO_Shared_same_VS

Fig 6: Inheritance Hierarchy of the Object-Classes

Version VersionableStructure

PDA_SREOPDA_SRSO PDA_ERSO PDA_EREO

PDA_SRSOsameVS PDA_ERSOsameVS

PDA_SRsameVSEO

PDA_SRsameVSSRsameVS

BVF_Association

PDA

PDA_SharedOwnership PDA_ExclusiveOwnership PDA_Refinement

PDA_SharedRefinement PDA_ExclusiveRefinement
PDA_SharedOwnership_same_VS

PDA_SharedRefinement_same_VS

PDA_SRsameVSSR

Association_NonVersioned

PDA_V_to_NV_ExlusivePDA_V_to_NV_Shared

PDA_V_to_NV_Shared_same_VS

PDA_V_to_NV

Fig 7: Inheritance Hierarchy of PDA Classes

Group (1)

Group (2)

Group (4)

Group (3)

rsion.
eless,

t and
,

.

nnect

t

lled
.

-
ated
in-

,

be-
of

O,

so-
es of
 (2).

-

s

(1) The simplest possible case is an association between PDOs of the same ve
We consider these associations being part of the corresponding version. Neverth
we have to distinguish three different types.

• Instances of the classPDA_ExclusiveOwnership can be part of at most one ver-
sion and, therefore, belong to at most one VS. Such PDAs may associate (direc
transitive) instances of the classPDO_Versioned (see above). Note that two PDOs
associated with each other viaPDA_ExclusiveOwnership , may also belong to
other versions, but each PDA among them must belong to exactly one version

• Instances ofPDA_SharedOwnership_same_VS may belong to different versions,
but these versions must be part of the same VS. These associations can co
PDOs of the classesPDO_Shared andPDO_Shared_same_VS.

• Instances ofPDA_SharedOwnership can be part of different versions of differen
VSs. Therefore, both associated PDOs have to be instances ofPDO_Shared.

(2) PDAs can also connect PDOs of different versions. This class of PDAs is ca
PDA_Refinement . Such a PDA is considered to be “part-of” a VVAssociation
PDA_Refinement is refined into three subclasses.

• Instances ofPDA_ExclusiveRefinement can be part of at most one VVAssocia
tion and, therefore, either be part of exactly two versions (which are associ
through the VVAssociation) or part of no version. This, in turn, implies that an
stance ofPDA_ExclusiveRefinement can be part of none or two VSs.

• Instances ofPDA_SharedRefinement can be part of several VVAssociations and
therefore, be part of several versions and several VSs.

• Instances ofPDA_SharedRefinement_same_VS can belong to several VVAsso-
ciations and, therefore, also to several versions. But all VVAssociations have to
long to the same VSVSAssociation and therefore an instance
PDA_SharedRefinement_same_VS can belong to at most two VSs.

(3) Special PDA classes are needed to associate not-versioned objects.

• Instances ofAssociation_NonVersioned connect non-versioned objects.

• Instances of the classPDA_V_to_NV connect a versioned and a non-versioned PD
respectively. According to the discussions above, an instance ofPDA_V_to_NV can
be exclusive (subclassPDA_V_to_NV_Shared_Exclusive), shared between ver-
sions of different VSs (subclassPDA_V_to_NV_Shared) or shared between ver-
sions of the same VS (subclassPDA_V_to_NV_Shared_same_VS).

(4) To create an AVF, it can also be helpful to have pre-defined definitions for as
ciations which may exist within versions as well as between versions. The class
this group (see Fig. 7) result from combinations of concepts mentioned in (1) and

3.2.2.2 Associations between Versions and between VSs

Associations between versions (VVAssociation) can be used to manage the deriva
tion graph (VVA_Derivation) or to abstract fromPDA_Refinement instances
(VVA_Refinement). While aVVA_Derivation instance can only associate version
of the sameVersionableStructure instance, an instance ofVVA_Refinement al-
ways associates versions of differentVersionableStructure instances.

ion in-
work
ruc-

con-

s, a
ns.

n [5],
n ap-
ction

y re-
the

o be
sce-

n and
o en-
red to
dated
ond-

e

The class of associations between VSs (VS-
VSAssociation) can be specialized to a
class calledVSVSA_Refinement . Instanc-
es of this class abstract from instances of
VVA_Refinement . Fig. 8 shows the depen-
dencies between the different refinement
classes. EachPDA_Refinement instance
can be part of severalVVA_Refinement in-
stances, but eachVVA_Refinement in-
stance has to belong to exactly one instance
of VSVSA_Refinement .

3.3 Collaboration of BVF Classes

To be adequately adaptable, besides the mentioned set of classes a communicat
frastructure is required. After having discussed the structural elements of the frame
in the sections above, we will now have a closer look at the communication infrast
ture and how it can be used to express particular versioning semantics.

Designing a framework means separating
variant from invariant parts. The data ob-
jects, especially the PDOs, mainly consist of
variant parts, since their attributes and meth-
ods are typically application-specific. In
contrast, the relationships, which are the
structural backbone of the versioning frame-
work, do not depend on application-specific definitions. Hence, we have chosen to
trol the semantics of the relationships by associating an additional object, called thesig-
nal handler, with each data object. The signal handler has to control the operation
user applies to the associated object, possibly by implicitly invoking further operatio

The idea of our signal handlers is similar to the observer design pattern presented i
where the signal handler acts as the observer (Fig. 9). An action, i. e. an operatio
plied to a data object, triggers two events: a before-action event and an after-a
event. After an event has occurred, the event handler, implemented by theBVF_Object
class, sends a signal to the signal-handler (BVF_SignalHandler). In contrast to the
original design pattern, the observer is closely coupled with its data object, but onl
acts to an event, if it might be necessary to take further action in order to maintain
inherent integrity of one or more of the object’s associations.

Let us examine a (versioning) example: Assume, the notion of ‘frozen’ versions is t
specified. A frozen version ensures a durable view on a product data state. In this
nario, a PDO may be shared between different versions, some of which are froze
others are not. Assume further, an update operation is applied to this PDO. Now, t
sure versioning semantics, the object must be copied. Then, the copy is conside
be the representative of the PDO in the frozen versions, and the original may be up
(in the context of the non-frozen) versions afterwards. Fig. 10 illustrates a corresp
ing sample message flow. It starts with an update message received by PDO P1, which
is shared between two versions V1 (frozen) and V2 (updateable). The update messag

VersionableStructure

Version

PDO

1

*

*

*

1

*

Fig 8: Refinement-Associations

VSVSA_Refinement

VVA_Refinement

*

PDA_Refinement

*

Fig 9: Communication Infrastructure

BVF_SignalHandler

BVF_Object BVF_Association

2

1..*1

1

0..*

0..*

vent,
r not

copy
st be
ided

of
evel-

lica-
plica-
her-
nging
nd
initiates a before-update event (1.1). After the event handler has recognized the e
it sends a signal to the signal-handler (1.1.1). The signal handler checks whether o
corresponding versions are frozen (messages 1.1.1.1 to 1.1.1.4). Since V2 is frozen, the
signal handler has to create a copy of P1, disconnect V2 from P1 and connect it to the
new instance (1.1.1.5 to 1.1.1.7). Afterwards, the update operation is applied to P1 (1.2).

Note that no variant (application-specific) parts of objects are affected except the
method. Besides this method, which either has to be provided by the user or mu
generated from the specification, only framework classes, i. e. classes initially prov
by the BVF, participate.

4 Generating a Repository-Manager in SERUM

In the previous section, we have introduced our BVF by out-
lining its structural elements (Sect. 3.2) as well as its com-
munication mechanisms (Sect. 3.3), both allowing to estab-
lish an AVF representing a tailored versioning model. In this
section, we want to clarify that the AVF is still a framework
and to illustrate, how this framework can be used to generate
a repository manager tailored to the needs of software devel-
opment applications. The following subsections outline the
steps which are to be carried out in SERUM in order to reach
this goal.

4.1 Providing the Product Data Model

As already mentioned, the prerequisite for applying the AVF is a PDM, which, first
all, does not take any versioning aspects into account. Fig. 11 shows a software d
opment example. It consists of applications, which may be divided into sub-app
tions in order to ease administration. Several classes may belong to each (sub)ap
tion and a class is not allowed to exist without a corresponding application. Furt
more, a class may contain methods, whereas methods must not exist without belo
to a class. Note, to simplify explanation, the UML model (Fig. 11) is not complete a
the example is intentionally very simple.

Fig 10: Message Flow

V1 :Version V2 :Version

A1 :V_PDO_Shared_Association

P1 :PDO_Shared

state = updateable state = frozen

1.: update()

A2 :V_PDO_Shared_Association {destroyed}

SV1 :SignalHandler SV2 :SignalHandler

P2 :PDO_Shared {new} SP2 :SignalHandler {new}

A3 :V_PDO_Shared_Association {new}

1.1.1: sBeforeUpdate()

1.
1.

1.
1:

 v
1

:=
 v

er
si

on
()

1.1.1.6: aPDO := copy()

1.
1.

1.
3:

 v
2

:=
 v

er
si

on
()

v 2 <<local>>v1 <<local>>

1.
1.

1.
4:

 is
F

ro
ze

n(
)

1.
1.

1.
5:

 d
is

co
nn

ec
t(

P
1)

1.
1.

1.
7:

 c
on

ne
ct

(a
P

D
O

)

1.
1.

1.
2:

 is
F

ro
ze

n(
)

aPDO <<local>>

1.1: eBeforeUpdate()
1.1.2: aUpdate()
1.2: eAfterUpdate()

SP1 :SignalHandler

Fig 11: Sample PDM

0..1 0..*+super +sub

classes

1..*

0..*

0..*
methods

subapplication

Application

Class

1

Method

ClassClass

S-

of

i-
ver-

ies of
4.2 Specifying Versioning Structures

In this step, the repository designer has to incorporate
versioning aspects by synthesizing the VMI(-specifica-
tions), as introduced in Sect. 3.1, and the given PDM. A
graphical illustration of the result is given in Fig. 12. Two
versionable structures, namedVS_Application and
VS_Class, are specified.VS_Application allows
versioning each single application andVS_Class allows
versioning each class together with its methods as units.

For specification purposes, we use a version definition
language (VDL), which can be considered as a special-
purpose HLL (cf. Sect. 2). The VDL statements corre-
sponding to the graphical illustration in Fig. 12 are
shown in Fig. 13. The first statement defines the VS
VS_Application . The class which is in charge of man-
aging versions of this VS has been named
V_Application (see line 4). The cardinality restrictions specified in the OBJECT
clause (see line 2) clarify that an instance ofApplication is not allowed to be part of
two versions. The second statement (see line 6) defines a subclass
VSVSA_Refinement as well as a corresponding subclass ofVVA_Refinement (cf.
Sect. 3.2.2.2) abstracting from thesubapplication relationship. This allows han-
dling an application hierarchy also at version (and VS) level.

Looking at the
third statement
(line 13), we see
that, again, at
most one in-
stance ofClass
is allowed to be-
long to a version
of VS_Class .
An instance of
Method may
only occur in a
version of
VS_Class , if it
is connected to
an instance of
Class which is
also contained in
the same ver-
sion. Therefore, the associationmethods is under control of the version and the card
nality restrictions regarding this association are checked by the framework at a ‘per
sion’ base. Last but not least (fourth statement, see line 20) the refinement propert
the associationclasses at the VS level and the version level are specified.

0..1 0..*+super +sub

classes

1..*

0..*

0..*methods

subapplication1 0..*
+super +sub

1..*

0..*

vs_subapplication

vs_classes

Fig 12: PDM with
Versioning Structures

Class

1

Method

V
S

_C
lass

V
S

_A
pplication

Application

1. DEFINE VERSIONABLE STRUCTURE
2. OBJECTS(Application [0..1] EXCLUSIVE [1]) WITH
3. VS_NAME IS VS_Application
4. V_NAME IS V_Application
5.
6. DEFINE LINK REFINEMENT OF
7. subapplication(Application(super), Application(sub))
8. BETWEEN VS_Application(super) AND VS_Application(sub)
9. WITH
10. VS_NAME IS vs_subapplication
11. V_NAME IS v_subapplication
12.
13. DEFINE VERSIONABLE STRUCTURE
14. OBJECTS(Class [0..1] EXCLUSIVE [1],
15. Method [*] EXCLUSIVE [1])
16. ASSOCIATIONS(methods(Class, Method)) WITH
17. VS_NAME IS VS_Class
18. V_NAME IS V_Class
19.
20. DEFINE LINK REFINEMENT OF classes(Application, Class)
21. BETWEEN VS_Application(Application) AND VS_Class(Class)
22. WITH
23. VS_NAME IS vs_classes
24. V_NAME IS v_classes

Fig 13: VDL Script

4.3 PDVM Evolution

Next, the PDM is en-
hanced by definitions
(classes) contributing to
managing versions in a
way determined by the
chosen AVF and previ-
ous definitions of the re-
pository designer (given
as a VDL script). Conse-
quently, a design pattern
gets a PDM and one or
more VDL statements as
input and delivers a mod-
ified PDM as output.
Modifications (additional
class definitions, refine-
ments of existing class
definitions, etc.) pertain
specifications which, in
turn, ensure the version-
ing semantics expressed
by the VDL definition
w.r.t. the underlying
AVF.

Design patterns are ap-
plied by executing corre-
sponding design pattern
scripts. We want to illus-
trate this complex pro-
cess by examining exam-
ples of its most typical
steps.

In order to provide the
base functionality needed
for managing PDOs and
PDAs, each PDM class
becomes a subclass of
PDOand each association
is replaced by an associa-
tion class, which is speci-
fied as a subclass of

PDA8.

8. Note that each AVF offers a class PDO as well as a class PDA.

1. begin define pattern “VersionableStructure”
2. begin parameters
3. ClassUList aPdoS;
4. sequence<boolean> aPdoExcS;
5. Multiplicity aPdoMultiS [];
6. Multiplicity aPdoVMultiS [];
7. AssociationUList aPdaS;
8. Name name;
9. Name vname;
10. end parameter
11. begin constraints
12. end constraints
13. begin definitions
14. begin mdl
15. (object Class <name>
16. superclasses
17. (list inheritance_relationship_list
18. (object Inheritance_Relationship
19. supplier “VersionableStructure”)))
20. (object Class <vname>
21. superclasses
22. (list inheritance_relationship_list
23. (object Inheritance_Relationship
24. supplier “Version”)))
25. (object Association “version”
26. connections
27. (list association_end_list
28. (object AssociationEnd “”
29. aggregation composite
30. multiplicity “[1]”
31. type name)
32. (object AssociationEnd “”
33. aggregation none
34. multiplicity “[1..*]”
35. type vname)))
36. end mdl
37. end definitions
38. begin alter model
39. // all classes are subclasses of PDO
40. ApplyPattern.ProductDataObject(aPdoS);
41. // connect version to pdo
42. for(int i = 0; i < aPdoS.length; i++)
43. {
44. AssociationEndUList assoEnds =
45. new AssociationEndUList();
46. assoEnd[0] =
47. AssociationEnd.create_association_end
48. (aPdoS[i].name(), true, false, none,
49. instance, aPdoMultiS[i]));
50. assoEnd[1] =
51. AssociationEnd.create_association_end
52. (vname, true, false, none, instance,
53. aPdoVMultiS[i]));
54. Association asso =
55. Association.create_association
56. (newName(), false, false, false);
57. asso.add_connection(assoEnds);
58. };
59. end define pattern

Fig 14: Sample Design Pattern Script

ble-
n as
erves
r rep-
w as-
socia-

uper-
tric-
ardi-
con-

an
r-ap-

cess
el-
Each VS definition (in the VDL script) is processed by the design pattern Versiona
Structure; Fig. 14 shows the corresponding script. This script takes a VS definitio
input and delivers definitions of two (associated) classes as output. The first class s
for representing versionable structures and managing their versions, the second fo
resenting versions and managing their PDOs. Each link definition leads to three ne
sociation classes. For example, the second VDL statement in Fig. 13 adds the as
tion classesvs_subapplication , v_subapplication and subapplication .
The latter replaces the original reflexive association onApplication .

Since (in our sample scenario) an application may be connected to more than one s
application, each included in another version, we have to relax the cardinality res
tions at the product data level and consider the version level, when checking the c
nality restrictions. OCL constraints [17] are needed, because of the more complex
sistency requirements. The sample constraint given in Fig. 15, which is derived from
UML template, ensures that an application is not connected to more than one supe
plication regarding a pair of associated versions.

An excerpt from the enhanced PDM delivered by the complete model evolution pro
of our example is shown in Fig. 16. Due to simplicity, we did not include all model
ements. For example, the generalization relationships are not displayed.

Application
self.version.v_subapplication->forAll
(vsa|(vsa.sub=self.version)
implies (1>=count(vsa.pda->select(sa|sa.sub=self))))

Fig 15: Sample Constraint

v_classes

vs_classes

methodsclasses

VS_Class

V_Class

Class

V_Application

methodsclasses

v_classes

vs_subapplication

v_subapplication

subapplication

[0..*]

[1..n] [0..*]

[1]

[1..*]

[1]

[0..*]

[0..1] [0..*]

[1] [0..*][1..*] [0..*]

[0..*]

[0..*]

[0..*]

[0..*]

[1]

[1..*]

[0..*]

[1..*]

[1]

[1..*]

[0..*]

[1..*]

pdo

[0..1]

[1]

[1..*]

super

sub

subapplications

v_subapplications

vs_subapplications

super

sub

super

sub

[0..*][0..*]

class method
methods

classes

versions
versions

[1] [1][1]

vs_classes

pda

versions

version

application
version

pda

versions

Fig 16: Enhanced PDM

V_Class

VS_Application

[0..1]

Application Method

e en-
ere-
and
dif-
ns to
serv-
edi-

will

at the
17).
4.4 Generating the Repository Manager

The next step in the SERUM approach is to generate a repository manager from th
hanced model. An ORDBMS is used by the repository manager for storing data. Th
fore, we have to create an ORDBMS schema (consisting of table definitions, UDTs
UDFs). Additionally, an API for accessing the versioned data is needed. Although
ferent programming languages may be supported, we will restrict our consideratio
examples in Java. Further components of a repository manager may be repository
ers. A repository server associated with the versioning framework may enforce a d

cated synchronization protocol, as for example the C3-locking-protocol [23]. Due to
space restrictions, we cannot detail this aspect; in the following subsections, we
give examples for schema design and some selected API functions.

ORDBMS Schema

Currently, evolution of ORDBMS
technology moves very fast. Until
now, the SQL-3 standard [8] is still in
evolution and existing systems calling
themselves object-relational differ to a
great extend in concepts implemented
and the syntax used. Our examples
mainly use the language of the OR-

DBMS IDS/UDO9 ([6]).

Each class in the enhanced PDM is
mapped by the SRG (see Sect. 2.4) to
a named row type. We exploit inherit-
ance by subclassing framework types.
The PDO classes inherit from the class
PDO, version classes fromVersion
and versionable structures fromVersionableStructure . Association classes are
mapped to named row types, too. Since IDS/UDO does not support references
moment, we use foreign keys for implementing relationships in this example (Fig.

9. Informix Dynamic Server - Universal Data Option

1. CREATE ROW TYPE VS_Application
2. () UNDER VersionableStructure;
3. CREATE ROW TYPE V_Application
4. () UNDER Version;
5. CREATE ROW TYPE Application
6. () UNDER PDObject;
7. CREATE ROW TYPE subapplication
8. (super IdType,
9. sub IdType,
10.) UNDER VSVSA_Refinement;
11. CREATE ROW TYPE v_subapplication
12. (super IdType,
13. sub IdType,
14. vstructure IdType
15.) UNDER VVA_Refinement;
16. CREATE ROW TYPE vs_subapplication
17. (super IdType,
18. sub IdType,
19. version IdType
20.) UNDER PDAssociation;

Fig 17: Schema Definition (excerpt)

1. CREATE FUNCTION isTop(va V_Application): boolean;
2. CREATE FUNCTION isVersionOf(va1 V_Application, va2 Application): boolean;
3. CREATE FUNCTION isVersionOf(va V_Application, vs VS_Application): boolean;
4. CREATE FUNCTION subapplicationConnects
5. (super Application, sub Application): boolean;
6. CREATE FUNCTION v_subapplicationConnects
7. (super V_Application, sub V_Application): boolean;
8. CREATE FUNCTION vs_subapplicationConnects
9. (super VS_Application, sub VS_Application): boolean;
10. CREATE FUNCTION subapplicationsCount
11. (pdo Application, super V_Application, sub V_Application): integer;

Fig 18: UDFs (excerpt)

uto-
. Thus,

ation

asily

art in
e an
itory

ted for
n to
sult

rget

er-
In order to support convenient access via the SQL interface of the ORDBMS, the a
matically generated row types representing association classes are encapsulated
beside others, UDFs are created (see sample functions in Fig. 18) to check,
• whether a version is the current (topical) one of its VS (Fig. 18: 1);
• whether two given occurrences are connected (Fig. 18: 4, 6, 8);
• whether a given PDO belongs to a given version (Fig. 18: 2);
• whether a given version belongs to a given VS (Fig. 18: 3);
• how many PDOs are connected to a given PDO w.r.t. a given version associ

(Fig. 18: 10).

By using generated functions, the OCL constraint, given in Sect. 4.3, can be e
mapped to SQL (see Fig. 19).

Additionally, the
SRG generates
UDFs for manip-
ulating relation-
ships, creating in-
stances of ver-
sionable structures, creating versions, etc. from the UML specification.

Application Programming Interface

Object-oriented programming languages (OOPL) have become the state of the
system development. Hence, we intend to provide APIs for OOPLs. In order to giv
idea of how to embed the versioning functionality (offered by the generated repos
manager) in an OOPL, we give an example of integrating API calls into Java [1]:

Each class in the enhanced PDM is mapped to a Java class. Methods are genera
the traversal of relationships. Assume that we want to navigate from an applicatio
its sub-applications. Without taking a certain version context into account the re
would be ambiguous. Hence, the Java classApplication is equipped with a set of
methods enabling navigation from one version to another. If the context of the ta

PDOs is definite, either determined by the workspace context10 or by a configuration

context11, thesub() method can be used. Calling this method without a definite v

10. A workspace is a private subset of the repository data.

1. CHECK(NOT EXISTS
2. SELECT *
3. FROM application a1,
4. v_application va1, v_application va2
5. WHERE NOT (1 >= subapplicationsCount(a1, va1, va2))

Fig 19: Cardinality Constraint

1. public class Application extends PDO {
2. public ApplicationList sub() throws AmbiguousVersionException;
3. public Subapplication subapplication() throws ... ;
4. public ApplicationList sub(V_Application aVersion) throws ... ;
5. // ...more methods and attributes }
6. public class Subapplication extends PDA {
7. public V_SubapplicationList versions()

throws AmbiguousVersionableStructureException;
8. // ...more methods and attributes }
9. public class V_Subapplication extends VVA_Refinement {
10. public V_Application sub() throws AmbiguousVersionableStructureException;
11. // ...more methods and attributes }

Fig 20: Sample Java API Classes

a list
and

. The

e for
eth-
nsist-
illus-
itory

can
isre-
ful-

easy
with

duct
pat-

itory
n OR-
for
into

ch,

and
ess
o re-

cus-

rac-
bject
gain-
ment

ccur.
sion context w.r.t. the target leads to an exception. The exception object provides
of all versions of sub-applications. This list can be used to choose a target version
access the application belonging to this version with thesub(V_Application)
method. Of course, the developer can also collect the eligible versions in advance
association classesSubapplication and V_Subapplication provide methods
needed for that purpose (Fig. 20: 6, 9).

5 Conclusions

In this paper, we have introduced the SERUM approach providing an infrastructur
tailoring repository managers to special application needs by exploiting generic m
ods. SERUM considers a design domain, as for example software engineering, co
ing of several domain sections. The (sample) domain section used in this paper to
trate SERUM’s genericity has been versioning, one of the key aspects of repos
technology. By means of the versioning aspects, our discussions showed:
• There is a core of basic versioning facilities (basic versioning framework) which

be tailored to dedicated versioning models (adapted versioning frameworks). D
garding configurations, the basic versioning framework introduced in this paper
fills the demands stated in [10].

• Since handling versions is a special way of managing views to product data, it is
for the repository designer to synthesize the version management infrastructure
a (non-versioned) product data model. The actual work of expanding the pro
data model by versioning facilities is performed be applying pre-defined design
terns.

• The SERUM repository generator is able to generate the (versioning) repos
manager from the enhanced product data model. The latter encompasses a
DBMS schema, special UDFs for version manipulations in SQL, special UDFs
checkin/checkout as well as special UDFs for embedding version manipulations
an OOPL.

Besides offering the possibility of adapting versioning facilities, the SERUM approa
in general, is beneficial for the following reasons:
• Users may choose from pre-defined UML specifications.
• Application-specific semantics may be incorporated by refining, enhancing,

adapting the chosen UML model in an intuitive manner. This customization proc
is supported by pre-defined technology-independent design patterns in order t
lieve users.

• Repository manager functionality (code) is automatically generated from the
tomized UML model by applying technology-dependent design templates.

Obviously, the basic idea of reusing design artifacts has effectively been put into p
tice by the SERUM approach. The paper has further shown that the concepts of o
orientation and object-relational database technology are crucial prerequisites for
ing the mentioned benefits. The former enables reuse and model adoption/refine

11. A configuration provides a consistent view to the PDO level, i. e. no ambiguous version contexts o
Configurations are beyond the scope of this paper.

h, in
ad-

g ex-
itory

MS

, and
rios.

B,

iz,

nt.

sable

.,

oc.

wg3/

, pp.

es,

gy,

183.
s-
p. 77-

ni-
Kai-

cts,
pp.

2.2,

-08-

97.
.
/

ek-

base
in an intuitive manner and the latter provides extensible data management, whic
turn, is essential for integrating the generated repository manager functionality with
equate data management facilities. Thus, SERUM is the first approach generatin
tenders of object-relational database systems, which, in turn, implement repos
manager functionality.

As future work, we intend
• to detail concepts for generating repository servers, i. e. functionality the DB

may not be extended by,
• to examine other domain sections, e. g. designflow management, more detailed
• to evaluate/validate the overall SERUM approach in realistic application scena

6 Literature

[1] Arnold, K., Gosling, J.: The Java Programming Language, Addison-Wesley, 1996.
[2] Bernstein, P.A., Dayal, U.: An Overview of Repository Technology, Proc. 20th VLD

Santiago, Chile, September, 1994, pp. 705-713.
[3] Bernstein, P.A.: Repository Internals, Tutorial Handouts, 21th VLDB, Zürich, Schwe

September, 1995.
[4] Conradi, R., Westfechtel, B.: Version Models for Software Configuration Manageme

Technical Report AIB 96-10, RWTH Aachen, October, 1996.
[5] Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reu

Object-Oriented Software, Addison-Wesley Publishing Company, 1995.
[6] Getting Started with INFORMIX-Universal Server, Version 9.1, Informix Software Inc

März 1997.
[7] Harrison, D., Newton, R., Spickelmier, R., Barnes, T.: Electronic CAD Frameworks, Pr

of the IEEE, 78:2, February, 1990, pp. 393-417.
[8] ISO Final Committee Draft - Database Language SQL ´ftp://jerry.ece.umassd.edu/iso

dbl/BASEdocs/public/´, 1998.
[9] Johnson, R. E.: Frameworks = Components + Patterns, CACM, 40:10, October, 1997

39-42.
[10] Katz, R.: Towards a Unified Framework for Version Modeling in Engineering Databas

ACM Computing Surveys, Vol. 22, No. 4, December, 1990, pp. 375-408.
[11] Kim, W.: Object-Relational - The unification of object and relational database technolo

UniSQL White Paper, 1996.
[12] Krueger, C. W.: Software Reuse, ACM Computing Surveys, 24:2, June, 1992, pp. 131-
[13] Loeser, H.: Exploiting Extensibility of ORDBMS for client/server-based Application Sy

tems, Proc. 10. GI-Workshop Grundlagen von Datenbanken, Konstanz, June, 1998, p
81, in german.

[14] Mahnke, W., Ritter, N., Steiert, H.-P.: A basic versioning framework for SERUM, Tech
cal Report, Sonderforschungsbereich 501, Dept. of Computer Science, University of
serslautern, 1998, in preparation.

[15] Nink, U., Ritter, N.: Database Application Programming with Versioned Complex Obje
in Klaus R. Dittrich, Andreas Geppert (eds): Proceedings of the BTW’97, March, 1997,
172-191.

[16] OMG, The Common Object Request Broker: Architecture and Specification, Version
OMG Document ad/98-07-01, August, 1998.

[17] OMG, Object Constraint Language Specification, Version 1.1, OMG Document ad/97
08, September, 1997.

[18] OMG, UML Notation Guide, Version 1.1, OMG Document ad/97-08-05, September, 19
[19] OMG, UML Semantics, Version 1.1, OMG Document ad/97-08-04, September, 1997
[20] OMG, OA&D CORBAfacility Interface Definition, Version 1.1, OMG Document ad

97-08-09, September, 1997.
[21] Rammig, F. J., Steinmüller, B.: Frameworks and Design Environments, Informatik-Sp

trum, Vol. 15, 1992, pp. 33-43, in german.
[22] Rao, B.R.: Object-Oriented Databases, Technology, Applications, and Products, Data

Experts’ Series, McGraw-Hill, 1994.

-
ion

or-

993.
ic,
[23] Ritter, N.: The C3-Locking-Protocoll - A Concurrency Control Mechanism For Design En
vironments, ITG-Fachbericht 137, Softwaretechnik in Automation und Kommunikat
(STAK’96), Munich , March, 1996, pp. 95-110.

[24] Stonebraker, M., Brown, P., Moore, D.: Object-Relational DBMSs, Second Edition, M
gan Kaufmann Series in Data Management Systems, September 1998.

[25] Wakeman, L., Jowett, J.: PCTE - The Standard for Open Repositories, Prentice Hall, 1
[26] van der Wolf, P.: CAD Frameworks - Principles and Architecture, Kluwer Academ

1994.

	Towards Generating Object-Relational Software Engineering Repositories
	Department of Computer Science University of Kaiserslautern P�O Box 3049, 67653 Kaiserslautern, G...
	Abstract
	1 Introduction
	Frameworks and Repositories
	Repository Manager Services
	Database Support for Repositories
	Genericity
	Overview of this paper

	2 Overview of SERUM
	Fig 1: SERUM-Overview
	2.1 Interfaces
	2.2 SERUM Metamodel
	2.3 SERUM Frameworks
	SERUM Design Patterns
	Fig 2: Applying Design Patterns
	1. begin define pattern “ProductDataObject”
	2. begin parameters
	3. ClassUList : aClassSeq;
	4. end parameters
	5. begin constraints
	6. aClasses->forAll(c | exists(“Class”,
	7. c.name))
	8. end constraints
	9. begin definitions
	10. if (! exists(“Class”, “BVF_Object”))
	11. {
	12. begin mdl
	13. (object Class “BVF_Object”
	14. // definitions
	15.)
	16. end mdl
	17. };
	18. if (! exists(“Class”, “BVF_PDO”)
	19. {
	20. begin mdl
	21. (object Class “BVF_PDO”
	22. superclasses
	23. (list inheritance_relationship_list
	24. (object Inheritance_Relationship
	25. supplier “BVF_Object”))
	26. // additional definitions
	27.)
	28. end mdl
	29. };
	30. end definitions
	31. begin alter model
	32. for (int i; i < aClassSeq.length; i++)
	33. {
	34. Generalization.create_generalization
	35. (aClassSeq.name(), “BVF_PDObject”);
	36. }
	37. end alter model
	38. end define pattern

	Fig 3: Design Pattern Definition Script

	SERUM Templates

	2.4 SERUM Repository Generator

	3 Versioning Principles
	3.1 The Idea of the Basic Versioning Framework
	Fig 4: Basic Model of Versioning

	3.2 Elements of the Basic Versioning Framework
	Fig 5: Basic Structure of Versioning
	3.2.1 Specializing the PDO Classes
	Fig 6: Inheritance Hierarchy of the Object-Classes

	3.2.2 Specializing the Association Classes
	3.2.2.1 Product Data Associations
	Fig 7: Inheritance Hierarchy of PDA Classes

	3.2.2.2 Associations between Versions and between VSs
	Fig 8: Refinement-Associations

	3.3 Collaboration of BVF Classes
	Fig 9: Communication Infrastructure
	Fig 10: Message Flow

	4 Generating a Repository-Manager in SERUM
	Fig 11: Sample PDM
	4.1 Providing the Product Data Model
	4.2 Specifying Versioning Structures
	Fig 12: PDM with Versioning Structures
	2. OBJECTS(Application [0..1] EXCLUSIVE [1]) WITH
	3. VS_NAME IS VS_Application
	4. V_NAME IS V_Application
	5.
	6. DEFINE LINK REFINEMENT OF
	7. subapplication(Application(super), Application(sub))
	8. BETWEEN VS_Application(super) AND VS_Application(sub)
	9. WITH
	10. VS_NAME IS vs_subapplication
	11. V_NAME IS v_subapplication
	12.
	13. DEFINE VERSIONABLE STRUCTURE
	14. OBJECTS(Class [0..1] EXCLUSIVE [1],
	15. Method [*] EXCLUSIVE [1])
	16. ASSOCIATIONS(methods(Class, Method)) WITH
	17. VS_NAME IS VS_Class
	18. V_NAME IS V_Class
	19.
	20. DEFINE LINK REFINEMENT OF classes(Application, Class)
	21. BETWEEN VS_Application(Application) AND VS_Class(Class)
	22. WITH
	23. VS_NAME IS vs_classes
	24. V_NAME IS v_classes

	Fig 13: VDL Script

	4.3 PDVM Evolution
	2. begin parameters
	3. ClassUList aPdoS ;
	4. sequence<boolean> aPdoExcS;
	5. Multiplicity aPdoMultiS [];
	6. Multiplicity aPdoVMultiS [];
	7. AssociationUList aPdaS;
	8. Name name;
	9. Name vname;
	10. end parameter
	11. begin constraints
	12. end constraints
	13. begin definitions
	14. begin mdl
	15. (object Class <name>
	16. superclasses
	17. (list inheritance_relationship_list
	18. (object Inheritance_Relationship
	19. supplier “VersionableStructure”)))
	20. (object Class <vname>
	21. superclasses
	22. (list inheritance_relationship_list
	23. (object Inheritance_Relationship
	24. supplier “Version”)))
	25. (object Association “version”
	26. connections
	27. (list association_end_list
	28. (object AssociationEnd “”
	29. aggregation composite
	30. multiplicity “[1]”
	31. type name)
	32. (object AssociationEnd “”
	33. aggregation none
	34. multiplicity “[1..*]”
	35. type vname)))
	36. end mdl
	37. end definitions
	38. begin alter model
	39. // all classes are subclasses of PDO
	40. ApplyPattern.ProductDataObject(aPdoS);
	41. // connect version to pdo
	42. for(int i = 0; i < aPdoS.length; i++)
	43. {
	44. AssociationEndUList assoEnds =
	45. new AssociationEndUList();
	46. assoEnd[0] =
	47. AssociationEnd.create_association_end
	48. (aPdoS[i].name(), true, false, none,
	49. instance, aPdoMultiS[i]));
	50. assoEnd[1] =
	51. AssociationEnd.create_association_end
	52. (vname, true, false, none, instance,
	53. aPdoVMultiS[i]));
	54. Association asso =
	55. Association.create_association
	56. (newName(), false, false, false);
	57. asso.add_connection(assoEnds);
	58. };
	59. end define pattern
	Fig 14: Sample Design Pattern Script
	Fig 15: Sample Constraint
	Fig 16: Enhanced PDM

	4.4 Generating the Repository Manager
	ORDBMS Schema
	2. () UNDER VersionableStructure;
	3. CREATE ROW TYPE V_Application
	4. () UNDER Version;
	5. CREATE ROW TYPE Application
	6. () UNDER PDObject;
	7. CREATE ROW TYPE subapplication
	8. (super IdType,
	9. sub IdType,
	10.) UNDER VSVSA_Refinement;
	11. CREATE ROW TYPE v_subapplication
	12. (super IdType,
	13. sub IdType,
	14. vstructure IdType
	15.) UNDER VVA_Refinement;
	16. CREATE ROW TYPE vs_subapplication
	17. (super IdType,
	18. sub IdType,
	19. version IdType
	20.) UNDER PDAssociation;
	Fig 17: Schema Definition (excerpt)
	2. CREATE FUNCTION isVersionOf(va1 V_Application, va2 Application): boolean;
	3. CREATE FUNCTION isVersionOf(va V_Application, vs VS_Application): boolean;
	4. CREATE FUNCTION subapplicationConnects
	5. (super Application, sub Application): boolean;
	6. CREATE FUNCTION v_subapplicationConnects
	7. (super V_Application, sub V_Application): boolean;
	8. CREATE FUNCTION vs_subapplicationConnects
	9. (super VS_Application, sub VS_Application): boolean;
	10. CREATE FUNCTION subapplicationsCount
	11. (pdo Application, super V_Application, sub V_Application): integer;

	Fig 18: UDFs (excerpt)
	2. SELECT *
	3. FROM application a1,
	4. v_application va1, v_application va2
	5. WHERE NOT (1 >= subapplicationsCount(a1, va1, va2))

	Fig 19: Cardinality Constraint

	Application Programming Interface
	2. public ApplicationList sub() throws AmbiguousVersionException;
	3. public Subapplication subapplication() throws ... ;
	4. public ApplicationList sub(V_Application aVersion) throws ... ;
	5. // ...more methods and attributes }
	6. public class Subapplication extends PDA {
	7. public V_SubapplicationList versions() throws AmbiguousVersionableStructureException;
	8. // ...more methods and attributes }
	9. public class V_Subapplication extends VVA_Refinement {
	10. public V_Application sub() throws AmbiguousVersionableStructureException;
	11. // ...more methods and attributes }
	Fig 20: Sample Java API Classes

	5 Conclusions
	6 Literature
	[1] Arnold, K., Gosling, J.: The Java Programming Language, Addison-Wesley, 1996.
	[2] Bernstein, P.A., Dayal, U.: An Overview of Repository Technology, Proc. 20th VLDB, Santiago, ...
	[3] Bernstein, P.A.: Repository Internals, Tutorial Handouts, 21th VLDB, Zürich, Sch�weiz, Septem...
	[4] Conradi, R., Westfechtel, B.: Version Models for Software Configuration Management. Technical...
	[5] Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable Object...
	[6] Getting Started with INFORMIX-Universal Server, Version 9.1, Informix Software Inc., März 1997.
	[7] Harrison, D., Newton, R., Spickelmier, R., Barnes, T.: Electronic CAD Frameworks, Proc. of th...
	[8] ISO Final Committee Draft - Database Language SQL ´ftp://jerry.ece.umassd.edu/isowg3/ dbl/BAS...
	[9] Johnson, R. E.: Frameworks = Components + Patterns, CACM, 40:10, October, 1997, pp. 39-42.
	[10] Katz, R.: Towards a Unified Framework for Version Modeling in Engineering Databases, ACM Com...
	[11] Kim, W.: Object-Relational - The unification of object and relational database technology, U...
	[12] Krueger, C. W.: Software Reuse, ACM Computing Surveys, 24:2, June, 1992, pp. 131-183.
	[13] Loeser, H.: Exploiting Extensibility of ORDBMS for client/server-based Application Systems, ...
	[14] Mahnke, W., Ritter, N., Steiert, H.-P.: A basic versioning framework for SERUM, Technical Re...
	[15] Nink, U., Ritter, N.: Database Application Programming with Versioned Complex Objects, in Kl...
	[16] OMG, The Common Object Request Broker: Architecture and Specification, Version 2.2, OMG Docu...
	[17] OMG, Object Constraint Language Specification, Version 1.1, OMG Document ad/97-08- 08, Septe...
	[18] OMG, UML Notation Guide, Version 1.1, OMG Document ad/97-08-05, September, 1997.
	[19] OMG, UML Semantics, Version 1.1, OMG Document ad/97-08-04, September, 1997.
	[20] OMG, OA&D CORBAfacility Interface Definition, Version 1.1, OMG Document ad/ 97�08-09, Septem...
	[21] Rammig, F. J., Steinmüller, B.: Frameworks and Design Environments, Informatik-Spektrum, Vol...
	[22] Rao, B.R.: Object-Oriented Databases, Technology, Applications, and Products, Database Exper...
	[23] Ritter, N.: The C3-Locking-Protocoll - A Concurrency Control Mechanism For Design Environmen...
	[24] Stonebraker, M., Brown, P., Moore, D.: Object-Relational DBMSs, Second Edition, Morgan Kaufm...
	[25] Wakeman, L., Jowett, J.: PCTE - The Standard for Open Repositories, Prentice Hall, 1993.
	[26] van der Wolf, P.: CAD Frameworks - Principles and Architecture, Kluwer Academic, 1994.

