
e
an
ery
r
lor-

or
e
r in
ng
re
ls,
st-
a

eous
ess
ata

e
]
that
nt

rd.
l
e-
13]

d
rou-

hods

ed
QL
d to
nal
ases
ces,

To a Man with an ORDBMS everything looks like a Row in a Table

Wolfgang Mahnke, Hans-Peter Steiert
Database & Information Systems Group, University of Kaiserslautern

P.O.Box 3049, D-67653 Kaiserslautern
e-mail: {mahnke, steiert}@informatik.uni-kl.de

in: Proc. 3rd Int. Symposium on Cooperative Database Systems for Advanced Applications
(CODAS’01), Bejing, April 200
Abstract

In large software projects it is required to manage all project-re-
lated artefacts in a shared database in order to support cooper-
ation of developers and reuse of design. Unfortunately, such
projects have to be supported by various development tools using
proprietary strategies for storing their persistent data. Since we
need a strong query language to analyse the project-related data
we choose an object-relational database system (ORDBMS) as
integration platform. In this paper we will discuss possibilities of
how to integrate external data in an ORDBMS. Further, we in-
troduce a reference architecture for discussing the architectural
options of an ORDBMS-based integration environment. Finally,
we present our own system.

1. Introduction

In 1996 a new generation of database management systems
appeared on the market. The advocates of the so-called object re-
lational database management systems (ORDBMS) claim that
these systems will support non-standard applications better than
traditional relational DBMS. Our research goal in the SENSOR1

project is to examine whether or not this is true. One of the re-
search activities in SENSOR is to develop of guidelines for
building ORDBMS-based applications and to provide tools sup-
porting this task. We call this the SERUM2 approach.

In the SERUM approach, we suggest a model-centred devel-
opment process based on a tool-supported stepwise refinement
of UML models (UML, Unified Modeling Language [14]) until
they can be used as input for (semi-automatic) code generators.
For this purpose, we have developed an ORDBMS-based UML
repository. Managing UML models in a central repository has
many advantages. First, a shared repository eases cooperation of
developers involved in the SERUM process. Second, the reposi-
tory serves as a basis for the reuse of design decisions document-

ed as UML models. Third, higher software quality can b
achieved by analysing UML models. This way, design errors c
be detected early and design guidelines can be enforced. Qu
facilities provided by ORDBMSs have proven to be helpful fo
this task [15]. Last but not least, the repository serves as a tai
made storage for the SERUM tools.

Why did we built our own UML repository instead of using
existing products [2, 3]? First, we want to examine whether
not object-relational technology is sufficient to be applied in th
field of engineering applications, as suggested by Stonebrake
[13]. Second, the object-relational technology helps integrati
development tools. This is very important, since large softwa
projects have to be supported by multiple development too
most of them using a proprietary strategy for storing their persi
ent data. In order to use third-party tools and SERUM tools in
seamless manner, we want to provide access to heterogen
data sources through our UML repository. This means to acc
external data with exactly the same SQL statements as d
stored in the ORDBMS.

What is an ORDBMS? There is no common definition of th
functionality of an ORDBMS. Even the SQL:1999 standard [1
can not serve for it because it does not contain some concepts
are already implemented in current ORDBMS whereas curre
ORDBMS have not implemented all concepts of the standa
Additionally, the evolution of object-relational technology is stil
moving fast leading to a continuous adjustment of the list of r
quirements. The properties postulated in the literature [5,12,
so far can be assigned to three categories:object-relational data-
model(ORDM) with user-defined types (UDT), typed tables an
inheritance on types and typed tables as well as user-defined
tines (UDR); extensibility infrastructurelike integrating new
query language operators, data containers, table access met
or generic search trees [10]; andfunctional enhancementslike a
general-purpose rule system.

Using an ORDBMS as an integration platform, as propos
by Mattos et. al. in [12], means to access external data with S
queries. Therefore, we needed an integration schema and ha
built so-called ‘wrappers’ encapsulating the access to exter
data sources. Hence, our work is related to federated datab
[16] and other projects dealing with heterogeneous data sour
as for example GARLIC [17,18] or OLE DB [4].

1. Subproject A3“ Supporting SoftwareEngineering Processes byObject-
Relational Database Technology“of the Sonderforschungsbereich 501,
“Development of Large Systems by Generic Methods“, funded by the
German Science Foundation.

2. SERUM: GeneratingSoftwareEngineeringRepositories usingUML

e
the
er,

not
ast

an
sist-
ory

el-
led
-
The
n
his

-
re-

e
nt
unc-

M
nd
ed
e,

tion
ro-

pt-
l

Because extensibility is the key feature for ORDBMS-based
tool integration, we will examine its applicability for our purpos-
es in section 2. We have developed a reference architecture for
ORDBMS-based integration environments which we will intro-
duce in section 3. In section 4, we will present how we integrate
third-party tools in the SERUM process using our UML reposi-
tory. Section 5 concludes the paper.

2. How to Integrate External Data Access?

The key functionality for managing external data with an OR-
DBMS is extensibility, i. e., an extensible data-model and an ex-
tensibility infrastructure. Integrating external data into an
ORDBMS means that the DBMS extends the effects of SQL
queries to externally stored data, too. Therefore, we need an inte-
gration schema which reflects the semantics of the external data.
The extensible ORDM is much more suitable for this task than
the traditional relational data-model.

However, a suitable extensibility infrastructure is even more
important, because it enables us to overwrite the functions which
an ORDBMS uses to handle values, rows and tables. In this sec-
tion, we want to present three concepts for integrating external
data together with suitable extension interfaces and, if available,
known implementations. Since SQL queries refer to values,
rows, and tables, we have to integrate external data as external
values, external rows, or external tables. In Table 1 these con-
cepts are listed together with examples for an appropriate exten-
sibility infrastructure and known implementations.

2.1. External Values

The idea of handling external values (EV) is to provide a new
data type which can be used like a built-in data type, i. e., as the
type of an attribute of a row type or a table. EVs represent data
items external to the ORDBMS. Operations invoked on EVs as
part of the query processing are evaluated on the external data
item.

Assume there exists an image database managed by a special-
purpose server. Also, assume we are using an ORDBMS to man-
age the operational data. If we have to answer questions like
‘what is the average of items sold last year by bearded men’ then

we have to consider data of both locations in a query [6]. If w
make the ORDBMS treat images as EVs, then questions like
one above may be posed in SQL. For an application develop
the images look like values in the rows of a table.

Extensibility Infrastructure. An external value type (EVT)
can be implemented as an opaque type. Opaque types are
part of the SQL:1999 Standard [1] but are supported by at le
one ORDBMS [7]. In the following we will describe how to uti-
lize this opaque type concept w.r.t. managing external data.

It is necessary to handle three different representations of
opaque type, i.e., the representation used in the API, the per
ent representation stored on disk and the opaque main mem
representation for operators and UDRs (see Fig. 1).

Using opaque types in the API.If a row with an opaque type is
inserted using an INSERT statement then the application dev
oper has to provide the value in a format which can be hand
by the API. By calling the ‘receive’ method the ORDBMS cre
ates an opaque representation of the value in main memory.
other way around, the ORDBMS calls the ‘send’ method, if a
opaque type occurs in the result of a SELECT statement. T
method converts the opaque type to its API representation.

Storing opaque types.Even if the external data item, e. g., an im
age, is not stored in the DBMS, there must be a persistent rep
sentation like the URL (Uniform Resource Locator) of th
image. The record manager (RM), i. e., the DBMS compone
responsible for storing objects in database pages, uses three f
tions in order to fulfil this task. If it has to store an EV, it first al-
locates the required resources (‘assign’). Thereafter, the R
converts the opaque type to its persistent format (‘output’) a
stores it to disk. Reading an opaque type from disk is perform
by the ‘import’ method. If the RM has to delete an opaque typ
it calls the ‘destroy’ method which deallocates the resources.

Using operators and UDRs.If the application developer needs
operations on opaque types, for example an ‘hasBeard’ opera
on images, implementations for these operations have to be p
vided. Even SQL operators and built-in functions may be ada
ed to EV characteristics by overwriting the DBMS-interna
implementations.

Known Implementations. The upcoming SQL:1999/MED
Standard [9] offers a new SQL data type called DATALINK

Table 1. Concepts to integrate External Data

Concept
Extensibility
Infrastructure

Known
Implementations

external value Informix opaque type
SQL:1999/MED
(DATALINK)

external row not available not available

external table

Informix VTI
e.g. GAURON
(see section 4)

SQL:1999/MED
(foreign data wrapper)

not available

Figure 1. Interface of External Value Types

API representation

opaque main memory representaion

persistent representation

external
data

send receive

input output

assign
destroy

UDRs

an
re-
utes

el-
on-
es
that
the
lt

he
er
ace
ore

ct
en-
tain

M
t of
result

As
ilt-
en-

m-

ter-
us-
not
thod
Us-
n a

r
r-
f-
g

the

il.
(see
which references externally stored data. This can be seen as one
possible implementation of an EVT. A DATALINK value en-
codes the URL of an external data object managed by an exter-
nal data source, typically an enhanced file system.

2.2. External Rows

EVs have two disadvantages. First, we can not define an built-
in index on properties of an EV. Built-in index structures can be
customized for EVTs, but they do only work on the values them-
selves, i. e., we can use a built-in index on images but not on the
‘hasBeard’ property. For this purpose, we have to create a user-
implemented index structure. Second, you can not update the ex-
ternal items with SQL. The UPDATE statement works on table
cells, not on the values. Updating a table cell means to delete a
value and replace it by a new value. These problems could be
solved by external row types (ERT), which make an image look
like a row in a table.

Each ERT is related to a user-defined row type which is de-
termined as part of the ERT definition. At the SQL level, the
ERT has the same structure as its related type. Therefore, it can
be used in any SQL statement in exactly the same way as an UDT
with this structure. Moreover, you can define tables typed with an
ERT, which can be queried and indexed as any other typed table.

Extensibility Infrastructure. So far, no extensibility infra-
structure concerning ERTs is defined, neither in the standard nor
in current ORDBMSs. Hence, we present our proposal for such
an extensibility infrastructure in the following paragraphs.

An external row type is a user-implemented data type. ERTs
differ from user-defined row types by the fact that main memory
representation and persistent representation are opaque. The OR-
DBMS uses the methods given in Fig. 2 to handle external rows
(ER). It uses two generic functions, ‘getAttribute’ and ‘setAttrib-
ute’ in order to access the structural properties. Based on an at-
tribute identifier, the first method retrieves attribute values from
the ER whereas the second sets attribute values.

Using external rows in the API.The API representation of the
ERT is the API representation of the related type. Hence, the OR-
DBMS can generate it using the definition of an ERT and the at-

tribute access methods without an additional cast method. If
ER is inserted, then the ORDBMS calls the constructor and c
ates an opaque representation. It sets the values of the attrib
using the attribute access methods.

For INSERT and UPDATE statements the extension dev
oper must ensure that the properties of the resulting ER are c
sistent with the properties of the external data item, which it do
represent. In the case of an UPDATE statement, this means
the developer either has to reject the operation or to change
external data item. Of course, the ‘hasBeard’ property is difficu
to change. However, if the image is stored in GIF format and t
update changes the ‘format’ property to ‘JPEG’, the develop
can use an appropriate filter to convert the image. Due to sp
restrictions we can not discuss the consistency problems in m
detail here.

Storing external row types.Why does the RM not store the API
representation to disk? From our point of view this would restri
the extension developer too much. Since main memory repres
tation and persistent representation are opaque, they can con
information different from the external representation. The R
calls the ‘sizeOfPersRow’ method and determines the amoun
resources needed. It allocates the resources and stores the
of the ‘toPersRow’ method to disk.

Using operators and UDRs on external row types.Operations
needed for ERTs have to be implemented by the developer.
for EVTs the developer can overwrite SQL operators and bu
in functions. The operations are called with the opaque repres
tation as parameter.

Known Implementations. Because there is no extensibility in-
frastructure concerning ERTs available so far, there exist no i
plementations based on this concept.

2.3. External Tables

External values and external rows represent data items ex
nal to the ORDBMS and allow access to these items through
er-implemented methods. In contrast, external tables do
represent an external data item but define an access me
which can be used to iterate over a set of external data items.
ing external tables you can scan almost everything like rows i
table.

Extensibility Interface. The VTI (Virtual Table Interface) of-
fered by the Informix Dynamic Server [8] is a good example fo
an extensibility infrastructure which allows to implement exte
nal tables. The extensibility infrastructure defined by the VTI o
fers interfaces for the following tasks: creating and droppin
external tables; scanning, inserting, updating and deleting
rows of an external table.

Since the VTI is very complex, we do not describe it in deta
We just want to consider the scan operation as an example

class ExternalRowType
{ // external format

public ExternalRowType();

// attribute access
public Value* getAttribute(AttrId* aid);
public void setAttribute(AttrId* aid, Value* v);

// persistent format
public ExternalRowType(PersRow* v);
public PersRow* toPersRow();
public int sizeOfPersRow();

// operators
...}

Figure 2. Interface of External Row Types

we

-
f
r-

re
d

as-
nal
ble
. g.
nt
nal
r ex-
ob-
r-
e
e of
nd
nd

nal

-
ata
has
h
in

,
em,
ded
for
ide
c-

ng
Fig. 3). The ‘open’ method is called before the scan begins
processing. For example, this method can establish the connec-
tion to the external data source. The ‘beginscan’ method initial-
izes anything needed to perform the scan on the external table. It
receives a parameter, the scan descriptor, which describes quali-
fications and projections. If the external data source has appropri-
ate functionality, it can perform these tasks. Now, the ORDBMS
fetches the rows one by one by calling the ‘getnext’ method.
When the table scan is finished, the ‘endscan’ method is called.
If no further scans occur during processing the actual SQL state-
ment, then the ORDBMS calls the ‘close’ method. Here, resourc-
es allocated during the scan operation are deallocated. The
connection to the external data source is cut.

Another extensibility infrastructure for external tables is in-
troduced in SQL:1999/MED [9]. A foreign server is an external
data source, managing external data objects. The ORDBMS ac-
cesses such external data objects through a mechanism called a
‘foreign data wrapper’. Foreign data wrappers provide imple-
mentations for a set of interface routines similar to those intro-
duced above. The ORDBMS calls these implementations in
order to access the external data objects during query processing.

Nevertheless, there are differences to the concept of the VTI.
The interfaces defined for foreign data wrappers are more pow-
erful. For example, the ORDBMS can deligate the responsibility
for a partial query to the foreign data wrapper which is quite more
than a table scan. Hence, it seems to be intended that the foreign
server is an SQL-aware data source, i. e., it can process SQL que-
ries.

Known Implementations. An example for implementing ex-
ternal tables based on the VTI is our GAURON system which is
presented in section 4. As far as we know, there are currently no
implementations based on the concept of foreign data wrappers.

3. A Reference Architecture for Integrating
External Data

In section 2, we have introduced external values, external
rows, and external tables allowing the use of the SQL query pow-
er for computing external data. In current ORDBMSs, the exten-
sibility infrastructure already offers interfaces for implementing
external values and external tables. Which concept should be
used to encapsulate access to external data depends on the re-
quirements. But even if this choice is taken, further decisions
have to be done as well:

• Which interfaces do applications use to access external data?
Will all applications use the ORDBMS API or are there alter-
natives?

• Will the data reside only in the external data sources or do
have to manage copies in the ORDMBS?

• How much functionality should be implemented as an ORD
BMS extension? Do we want to exploit the functionality o
external data sources or do we directly use low-level inte
faces?
In this section, we want to introduce a reference architectu

in order to identify the options for building an ORDBMS-base
integration environment.

Before presenting the options, we want to make some
sumptions. In our scenario (Fig. 4), we assume that an exter
data object is a binary data stream. The lowest interface availa
for accessing it provides simple read and write operations, e
file system operations. An ‘external server’ is an independe
software system, external to the ORDBMS. It manages exter
data objects and provides some value-added services as, fo
ample, high-level operations on data items stored in the data
jects. The term ‘integration logic’ encompasses all use
implemented code which is registered in the ORDBMS for th
purpose of handling access to external data objects. In the cas
external values, the integration logic consists of constructor a
destructor functions, cast functions, SQL operator functions a
UDRs.

In this scenario an application program can access exter
data objects using three different interfaces:

Direct Access (1).If application programs directly access the ex
ternal data objects using the low-level operations on binary d
streams, the domain-specific interpretation of the data stream
to be part of the application program. It is difficult to establis
synchronisation of different applications and access control
this scenario.

External Server Access (2).In this scenario, an external server
for example, another DBMS, a document management syst
or a special-purpose file system, provides some value-ad
service. Application programs use the external server API
computing external data items. An external server may prov
additional functionality, as for example transaction control or a
cess control.

ORDBMS Access (3).If access is provided via an ORDBMS
the application program uses the ORDBMS API for accessi

open beginscan getnext endscan close

Figure 3. Scan Operation

SQL

ORDBMS Db

App App App

Da

API

123

ii

i

ext. server

ext. data object

Figure 4. Reference Architecture

ac-
u-
in
-
of

the-
de-
as

-

of
e-
e

e-
st
L
u-
m-
nd
ts

yse
c
11].
es
re-
external data. Instead of using special operations the data is ma-
nipulated through SQL operations. Because all SQL operations
refer to a database schema we have to provide an integration
schema. To which extend advantage can be taken of other
strengths of ORDBMSs besides query power, i. e., transactions
and access control, is strongly dependent on the environment
outside the ORDBMS.

These options are not mutual exclusive. Instead different
combinations determine the properties of the integration environ-
ment.

If data access is performed by using an ORDBMS, then we
can choose between two kinds of integration:

Materialized Integration (D a). Materialized integration means
to store a copy of the external data in the ORDBMS. This results
in the problem of how to guarantee that all copies are consistent.
Updates on the data in the database must be repeated on the ex-
ternal server and vice versa. This has to be done in the integration
logic. In domains having strong requirements regarding consist-
ency materialized integration is not adequate.

Virtual Integration (D b). If virtual integration is chosen, all data
remains in the external data source and no copies are stored in the
ORDBMS. External data is transmitted to the ORDBMS on de-
mand as part of the query evaluation process. The integration
logic has to implement the data transfer. This has two advantag-
es. First, only the data needed for the current operation is trans-
mitted to the ORDBMS and, second, it ensures an operation
consistent view. On the other hand, you have to accept higher ac-
cess costs in comparison to materialized integration.

External data accessible with low level operations needs to be
interpreted and converted to the internal format. When using an
ORDBMS as integration platform, the decision has to be made
on how much integration logic should be implemented as an OR-
DBMS extension. There are again two options:

i. Tight Coupling. If the ORDBMS is tightly coupled with the
external data, it directly accesses the binary data stream using
the low-level operations. Hence, the integration logic includes
functionality for reading, preprocessing, interpreting, and con-
verting the data. Developing DBMS extensions is very expen-
sive, because developers are restricted in using development
tools and programming languages. Furthermore, the program-
ming environment is very complex. Hence, the more integration
logic resides in the DBMS the higher are the development costs.

ii. Loose Coupling. In a loosely coupled environment the
developer exploits the functionality of an external server. Only
data conversion and communication are implemented as a
DBMS extension. Additionally, the external server can synchro-
nize access and enforce access control, if applications are
allowed to access external data without using the ORDBMS.

Compared to a tightly coupled environment the development
costs are lower, because the extension developer can reuse the
functionality of the external server.

Our reference architecture introduces three ways of data
cess, two choices for data integration and two options for co
pling the ORDBMS with external data sources. This results
many different combinations for building integration environ
ments. A more detailed discussion concerning the properties
the resulting systems is beyond the scope of this paper. Never
less, we have found our reference architecture very helpful in
signing our implementation of a data integration environment
described in section 4.

4. GAURON:
An ORDBMS-based Integration Environment

In the following we discuss our implementation of an integra
tion environment, called GAURON (Gateway toUML-Reposi-
tories usingobject-relational extensions [19]). First, we motivate
why we developed GAURON. Then a system overview
GAURON is given and the implementation aspects are d
scribed. We finish this section with some remarks of what w
have learned so far.

4.1. Motivation

The application scenario of the UML repository has been pr
sented in the introduction. It was not our intention to build ju
another graphical UML tool. Instead we examined existing UM
tools in order to integrate their data into our repository. Unfort
nately, most tools store their data in files and can not be custo
ized to use our repository instead. Therefore, we want to exte
our UML repository and enable it to deal with exchange forma
like XMI (XML Metadata Interchange [14]) or proprietary file
formats. So arbitrary file formats have to be supported.

SERUM tools should access external data in order to anal
UML models, to prove their validity regarding project-specifi
guidelines, and to use them as an input for code generators [
Especially the analysing and the checking of model guidelin
take great advantage from the query power of SQL:1999. The

Figure 5. GAURON system architecture

GAURON-Schema

Repository API

GAURON-Server
TCP/IP

D
at

aB
la

de

VTI

file system

layer 6: Communication

layer 5: Result generation

layer 4: Qualification

layer 2: Directories

layer 1: Files

layer 3: Tables

T
ra

ns
ac

tio
n

SQL

Extensibility Bus ORDBMS

R
R

X
M

I

m
an

ag
em

en
t

ix
wo
sec-
be
to

n-
di-
be

, the
en

ter-
U-
and
te
be
n
ate
o-
nt.

re
rces
c-
ve
e-
in-
r
to

R-

in
in
her
e

ter-
tion
ast
nd,
e-

tion
ess.
U-

te-
e
is
ate
m-
fore a stable database schema has to be provided, i.e., external da-
ta should be accessible exactly the same way as internal data.

In addition, manipulations of the external data should be done
directly with the third-party tools and cost-intensive round-trips
should be prevent.

4.2. System Overview

We chose external tables as concept to integrate external data.
External rows where out of question because no extensibility in-
frastructure exists for this concept and external values does not
offer a stable database schema, so we had to modify our tools.

Using the terms of our reference architecture, GAURON im-
plements an integration environment with ORDBMS access, vir-
tual integration and a loose coupling. ORDBMS access is needed
to use the query power of SQL:1999 and virtual integration to
avoid cost-intensive round-trips. The loose coupling was chosen
for strategic as well as implementational reasons. One strategic
thought was that using an external server gives us control over
the data at a single point. The server can read data from different
sources and provide access to the data for different clients.
Hence, it can synchronize and control access to the data. The im-
plementational reasons were that development outside a ORD-
BMS is much easier, less fault-prone, and has less restrictions
regarding tools and programming languages.

Fig. 5 shows the GAURON system architecture. It can be
seen that the repository API directly uses the SQL interface.
Therefore, providing access to external data means to provide an
integration schema which offers the same access as used for data
directly stored in the UML repository. The only difference is that
the tables are implemented as external tables by overwriting their
access methods. This is transparent to application programs. The
user-implemented access methods are put together in a package
called GAURON-DataBlade. The GAURON-DataBlade com-
municates via TCP/IP with the GAURON-Server, an external
process which provides the UML models in an internal exchange
format. The GAURON-Server uses wrappers for reading and ex-
tracting the data from files in different formats, e. g., XMI.

4.3. GAURON-DataBlade

As extensibility infrastructure we used the VTI introduced in
section 2.3. The VTI allows to overwrite operations for read ac-
cess as well as operations for write access with user-implemented
functions. Although write access is supported, too, we did not ex-
ploit it for two reasons. First, in our application scenario we do
not need it because we use external data access mainly for ana-
lysing tasks. Second, proprietary file formats do include data de-
scribing UML models and, in addition, tool-dependent data, as
for example presentation information, which is difficult to handle
if updates are possible. Therefore, we have just implemented the
scan operation. In Fig. 3 you can see which functions are called
during a scan and therefore had to be overwritten.

4.4. GAURON-Server

As can be seen in Fig. 5 the GAURON-Server consists of s
layers. Each layer abstracts from the layer below. This has t
advantages: First, a better understanding of each layer and,
ond, a more flexible implementation, e. g., a whole layer can
exchanged. Thus, our GAURON-Server can be used not only
read UML models out of files but also to retrieve data from a
other DBMS. In this case, only layer 4 has to be changed. Ad
tionally, some tasks, e.g. qualification and projection can
delegated to the external DBMS.

Beneath the six layers there is an independent component
transaction management. The GAURON-Server offers an op
interface to transaction management. Using this interface ex
nal applications can synchronize their file access with the GA
RON-Server. This enables them to access files directly (read
update files, add or remove files from a directory) and not viola
isolation. If tools are not cooperative, synchronization has to
done at the organizational level. Our GAURON-Server works o
a private directory tree. Files are exchanged between the priv
area and the public area with a checkout/checkin tool which c
operates with the GAURON-Server’s transaction manageme
External tools must work on files in the public area.

4.5. What we have learned so far ...

The realization of GAURON has proven that ORDBMSs a
a suitable technology for integrating heterogeneous data sou
in our context. The architectural options chosen (ORDBMS a
cess & direct access, virtual integration, loose coupling) ha
lead to an integration environment which meets our requir
ments. GAURON enables us to do both, developing and ma
taining UML models with external tools and using SQL fo
model checking and analysing. At the same time we avoid
copy the UML models in a time-consuming process into the O
DBMS at each round trip.

GAURON allows all three categories of access introduced
section 3. While cooperative tools can read and write files
place we have to use our checkout/checkin mechanism for ot
tools. In both cases, working with the files is easy and fast. W
benefit from the loosely coupled architecture, because the ex
nal server can synchronize data access. The virtual integra
avoids consistency problems and allows to implement the f
checkout/checkin mechanism at the file level. On the other ha
SQL queries run slower than using materialized integration, b
cause of the communication overhead, the additional transac
management and the time consuming data extraction proc
We think that future enhancements, like a cache in the GA
RON-Server, will increase performance significantly.

Because of the layered design of the GAURON-Server, in
gration of data sources different from files is possible. Mayb
some layers may not be needed anymore, if their functionality
already implemented in the new data source. We plan to integr
another DBMS in layer 4 but this requires some additional exa

, D.
d-

o-
n-
96

e
ings
a,

l
s of
of

-

l.

D,

ry

t-
GI-
ft“

-
gung
,

g
ent

-
nt

dis-
ting

-
ro-
n
ess

-
rn,
inations about synchronization. The concept of wrappers for file
access enables us to add new file formats without changing the
GAURON-Server.

Furthermore, we had to learn that the extension interfaces are
difficult to use and that developing a DBMS extension is much
harder work than building usual applications. Although the
GAURON-DataBlade does only consist of a few functions, it re-
quired a lot more realization efforts than the much more complex
GAURON-Server.

5. Conclusions & Outlook

In this paper, we have discussed ORDBMS-based data inte-
gration environments. ORDBMSs are a suitable technology for
this purpose for the following reasons:

• ORDBMSs provide an extensible data-model. Using the
expressive power of the object-relational data-model allows to
define integration schemas which reflect the data stored in
external data sources in a natural way.

• ORDBMSs provide an extensibility infrastructure, which ena-
bles an extension developer to implement external values,
external rows or external tables. These concepts support the
implementation of a broad range of integration environments.
Because ORDBMSs represent a new technology, so far little

experience is available for such systems, especially within our
context. Therefore, we have introduced a reference architecture
in order to categorize the architectural options available. The
three categories were data access, data integration, and data
source coupling. Future work will be concerned with the devel-
opment of a ‘cookbook’ which relates a specific combination of
architectural choices to the properties of a resulting integration
environment. For this purpose, we will further refine our refer-
ence architecture.

Last but not least, we have shown that the contents of this pa-
per is not just paperwork. The GAURON system is a running ex-
ample, illustrating that ORDBMSs are a suitable technology for
integrating heterogeneous data sources. The chosen architecture
has proven to fit our requirements. Further work will enhance the
systems functionality in order to cope with requirements from
other application scenarios.

Altogether, an ORDBMS given to a skilled team of develop-
ers can make look (almost) everything like a row in a table, but
note that not everything that could be treated as a row should be
treated as a row.

6. References

[1] ANSI/ISO/IEC 9075-2-1999: Database Languages - SQL - Part 2:
Foundation (SQL/Foundation). American National Standard Institute,
Inc., 1999
[2] P. A. Bernstein, B. Harry, P. Sanders, D. Shutt, J. Zander: The Mi-
crosoft Repository. Proceedings of 23rd International Conference on
Very Large Data Bases, 1997, Athens, Greece, Morgan Kaufmann 1997

[3] P. A. Bernstein, T. Bergstraesser, J. Carlson, S. Pal, P. Sanders
Shutt: Microsoft Repository Version 2 and the Open Information Mo
el. Information Systems 24(2)

[4] J. A. Blakeley: Data Access for the Masses through OLE DB. Pr
ceedings of the 1996 ACM SIGMOD International Conference on Ma
agement of Data, Montreal, Quebec, Canada, 1996, ACM Press 19

[5] M. J. Carey, N. M. Mattos, A. Nori: Object-Relational Databas
Systems: Principles, Products, and Challenges (Tutorial). Proceed
ACM SIGMOD International Conference on Management of Dat
1997, Tucson, Arizona, USA. ACM Press 1997

[6] S. Chaudhuri, U. Dayal, T. W. Yan: Join Queries with Externa
Text Sources: Execution and Optimization Techniques. Proceeding
the 1995 ACM SIGMOD International Conference on Management
Data, San Jose, California, 1995, ACM Press 1995

[7] Informix Press: Extending Informix Dynamic Server.2000. Ver
sion 9.2, 1999

[8] Informix Press: Virtual Table Interface - Programmers Manua
Version 9.2, 1999

[9] ISO/JTC 1/SC 32: Database Language SQL - Part 9: SQL/ME
Final Committee Draft ISO/IEC FCD. November 1999

[10] M. Jaedicke: New Concepts for Parallel Object-Relational Que
Processing, Ph. D. thesis, University of Stuttgart, 1999

[11] W. Mahnke, N. Ritter, H.-P. Steiert: Towards Generating Objec
Relational Software Engineering Repositories. Tagungsband 8.
Fachtagung „Datenbanken in Büro, Technik und Wissenscha
(BTW’99), Freiburg, March 1999, Springer Verlag

[12] N. M. Mattos, J. Kleewein, M. T. Roth, K. Zeidenstein: From Ob
ject-Relational to Federated Databases. Tagungsband 8. GI-Fachta
„Datenbanken in Büro, Technik und Wissenschaft“ (BTW’99)
Freiburg, März 1999, Springer Verlag

[13] M. Stonebraker, M. Brown: Object-Relational DBMSs: Trackin
the next great Wave. Morgan Kaufmann Series in Data Managem
Systems, 1999

[14] OMG: OMG UML v. 1.3. OMG Document ad/99-06-08

[15] N. Ritter, H.-P. Steiert: Enforcing Modeling Guidelines in an OR
DBMS-based UML Repository. International Resource Manageme
Association Conference 2000, Anchorage, Alaska, May 2000

[16] A. Sheth, J. Larson: Federated database systems for managing
tributed, heterogeneous, and autonomous databases. ACM Compu
Surveys, 22(3), September 1990

[17] M. T. Roth, M. Arya, L. M. Haas, M. J. Carey, W. F. Cody, R. Fa
gin, P. M. Schwarz, J. Thomas, E. L. Wimmers: The Garlic Project. P
ceedings of the 1996 ACM SIGMOD International Conference o
Management of Data, Montreal, Quebec, Canada, 1996. ACM Pr
1996

[18] M. T. Roth, P. Schwartz: Don’t Scrap It, Wrap It! A Wrapper Ar-
chitecture for Legacy Data Sources, VLDB Conference 1997

[19] A. Weber: GAURON - Gateway to UML-Repositories using ob
ject-relational Extensions. diploma thesis, University of Kaiserslaute
October 1999 (in german)

	Abstract
	1. Introduction
	2. How to Integrate External Data Access?
	Table 1. Concepts to integrate External Data
	2.1. External Values
	Extensibility�Infrastructure. An external value type (EVT) can be implemented as an opaque type. ...
	Figure�1.� Interface of External Value Types
	Known�Implementations. The upcoming SQL:1999/MED Standard [9] offers a new SQL data type called D...

	2.2. External Rows
	Extensibility�Infrastructure. So far, no extensibility in��������fra�structure concerning ERTs is...
	Figure�2.� Interface of External Row Types
	Known�Implementations. Because there is no extensibility infrastructure concerning ERTs available...

	2.3. External Tables
	Extensibility�Interface. The VTI (Virtual Table Interface) offered by the Informix Dynamic Server...
	Figure�3.� Scan Operation
	Known�Implementations. An example for implementing external tables based on the VTI is our GAURON...

	3. A Reference Architecture for Integrating External Data
	Figure�4.� Reference Architecture
	i. Tight Coupling. If the ORDBMS is tightly coupled with the external data, it directly accesses ...
	ii. Loose Coupling. In a loosely coupled environment the developer exploits the functionality of ...
	Figure�5.� GAURON system architecture

	4. GAURON: An ORDBMS-based Integration Environment
	4.1. Motivation
	4.2. System Overview
	4.3. GAURON-DataBlade
	4.4. GAURON-Server
	4.5. What we have learned so far ...

	5. Conclusions & Outlook
	6. References
	[1] ANSI/ISO/IEC 9075-2-1999: Database Languages - SQL - Part 2: Foundation (SQL/Foundation). Ame...
	[2] P. A. Bernstein, B. Harry, P. Sanders, D. Shutt, J. Zander: The Microsoft Repository. Proceed...
	[3] P. A. Bernstein, T. Bergstraesser, J. Carlson, S. Pal, P. Sanders, D. Shutt: Microsoft Reposi...
	[4] J. A. Blakeley: Data Access for the Masses through OLE DB. Proceedings of the 1996 ACM SIGMOD...
	[5] M. J. Carey, N. M. Mattos, A. Nori: Object-Relational Database Systems: Principles, Products,...
	[6] S. Chaudhuri, U. Dayal, T. W. Yan: Join Queries with External Text Sources: Execution and Opt...
	[7] Informix Press: Extending Informix Dynamic Server.2000. Version 9.2, 1999
	[8] Informix Press: Virtual Table Interface - Programmers Manual. Version 9.2, 1999
	[9] ISO/JTC 1/SC 32: Database Language SQL - Part 9: SQL/MED, Final Committee Draft ISO/IEC FCD. ...
	[10] M. Jaedicke: New Concepts for Parallel Object-Relational Query Processing, Ph. D. thesis, Un...
	[11] W. Mahnke, N. Ritter, H.-P. Steiert: Towards Generating Object- Relational Software Engineer...
	[12] N. M. Mattos, J. Kleewein, M. T. Roth, K. Zeidenstein: From Object-Relational to Federated D...
	[13] M. Stonebraker, M. Brown: Object-Relational DBMSs: Tracking the next great Wave. Morgan Kauf...
	[14] OMG: OMG UML v. 1.3. OMG Document ad/99-06-08
	[15] N. Ritter, H.-P. Steiert: Enforcing Modeling Guidelines in an ORDBMS-based UML Repository. I...
	[16] A. Sheth, J. Larson: Federated database systems for managing distributed, heterogeneous, and...
	[17] M. T. Roth, M. Arya, L. M. Haas, M. J. Carey, W. F. Cody, R. Fagin, P. M. Schwarz, J. Thomas...
	[18] M. T. Roth, P. Schwartz: Don’t Scrap It, Wrap It! A Wrapper Architecture for Legacy Data Sou...
	[19] A. Weber: GAURON - Gateway to UML-Repositories using object-relational Extensions. diploma t...

	To a Man with an ORDBMS everything looks like a Row in a Table
	Wolfgang Mahnke, Hans-Peter Steiert
	Database & Information Systems Group, University of Kaiserslautern P.O.Box 3049, D-67653 Kaisersl...

